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Abstract
Federated Learning allows multiple distributed agents to
contribute to a global machine learning model. Each agent
trains locally and contributes to a global model by sending
gradients to a central parameter server. The approach has
some limitations: 1) some events may only occur in the local
environment, so a global model may not perform as well as a
specialized model; 2) changes in the local environment may
require an agent to use some dedicated model, that is not
available in a single global model; 3) a single global model
approach is unable to derive new models from dealing with
complex environments. This paper proposes a novel feder-
ated learning approach that is local environment aware and
can compose new dedicated models for complicated envi-
ronments. The approach is implemented in Elixir to exploit
pattern matching and hot-code-swapping to maximize ver-
satility. Our proposed approach outperforms the state of the
art FL by an average of 7-10% for the MNIST dataset and
2% for the FashionMNIST dataset in specific and complex
environments.

CCS Concepts: • Computing methodologies→ Super-
vised learning; Neural networks.

Keywords: Federated learning, Neural networks, Distributed
systems, Elixir, BEAM
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1 Introduction
Federated Learning (FL) addresses the challenge of machine
learningwhen the training data is distributed between agents
with poor network connections[20]. Conventional FL trains
a single global model that is used for all environments. To ob-
tain the global model, agents in different environments train
their models locally. Then a central Parameter Server (PS)
periodically randomly selects a subset of agents to update
the global model. It does so by collecting model gradients
from the chosen agents and updating the global model with
some average value. The new global model can be sent to,
or requested by, agents to be used for training or inference.
Over time the global model accuracy improves.
However, a global model may fail in some local environ-

ments because of the statistically heterogeneity in the data
[23, 27, 32]. For example, an autonomous vehicle in the city
faces driving challenges and events (pedestrians, rain, traffic
lights). These may differ from those encountered in rural
areas (uneven road, narrow roads, side winds). So while FL
produces a global model that works in various environments,
there are tasks where agents only operate in one specific
environment. Moreover, the distribution of the sample space
in a particular environment may be unique.

That is to say, some events are highly related to the local
environment, especially when they are rare events. For ex-
ample, an autonomous vehicle may encounter fallen trees
on mountain roads, or experience vibration in earthquake-
prone areas. These events can sometimes be safely ignored,
e.g. wrongly predicting a bus as a truck. In other cases, there
is no harm if the model gives a wrong prediction for an
event, e.g. slowing down after wrongly predicting that a
pedestrian is about to cross the road. For other events wrong
predictions have serious consequences, e.g. failing to identify
pedestrians, and not giving way.
A change in an agent’s environment is likely to change

the distribution of the sample space, requiring a new model.
A single global model cannot provide this adaption, and
while the global model may be effective in the new local
environment, it may not perform as expected [27, 38]. For
example, a global model trained for driving in sunny or rainy
weather might not perform well on windy icy roads.

An agent’s new environment may combine sets of events
from two or more simple environments previously seen. For
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example, driving in the rain with side winds. In such cases,
a single specialized model might not perform as well as in
the simple environment. Traditional methods for combining
models do not take this approach. For example, the ‘’one-
vs-all” (OvA), a.k.a ‘’one-vs-rest” (OvR), strategy trains 𝑁
models (equal to the number of classes), where each model
only has a binary output: whether this input belongs to a
specific class 𝑖 ??. Then the class that has been predicted by
most of the 𝑁 models will be selected as the final prediction.
In general, ensemble methods improve the predictive perfor-
mance beyond a single model by training multiple models
and combining their predictions??. Ensemble methods don’t
address the challenge of combining environments, as the
agent has to feed the same input to all specialized models,
and this increases the computation power needed and the
inference time.

This paper proposes a novel federated learning approach
that (1) enables the agent to be aware of its environment;
(2) makes it possible to derive models specialized for spe-
cific environments that outperform the global model; and (3)
makes it possible to compose models to create new models
for complex environments. The paper contributions are:

1. A Composable and Environment Aware Federated
Learning (CAEFL) approach that aggregates model
updates calculated in similar local environments and
derives multiple global specialized models each for a
specific environment (Section 4).

2. A CAEFL Communication Protocol (CAEFL-CP) for
agents to submit multiple model updates with environ-
mental tags generated from local sensors. CAEFL-CP
also allows agents to request specialized models based
on the environmental tags (Section 5.2).

3. An elite selection process applied by CAEFL (Section.
5.3) on the PS when generating specialized models
and new composite models appropriate for complex
environments (Section 5.4).

4. An open-source Elixir library that implements the
above methods1.

The remainder of this paper is structured as follows. Sec-
tion 2.1 reviews conventional FL technologies and how they
train a global model using stochastic gradient descent. Then
it outlines the non-i.i.d data challenge where the samples
(random variables) do not have the same probability distribu-
tion as the others or are not mutually independent. Section
2.2 reviews similar approaches to solve this challenge and
establishes the gap in the state-of-the-art that this paper
addresses. Thereafter, a formal description of local environ-
ment aware FL is given, followed by the proposed method for
the derivation, aggregation, and combination of local models
in the PS for specialized models (Section 3). Next it describes
the proposed method and the experimental settings used in

1https://github.com/cocoa-xu/caefl

Section,6. The experiment results are reported and analysed
in Section 7. Conclusions are drawn in Section 9.

2 Background
2.1 Federated Learning
Typically FL coordinates multiple devices with a central pa-
rameter server (PS) to train a global model collaboratively.
Each worker downloads the current model from the PS and
computes its model update on its local dataset, e.g. using
stochastic gradient descent (SGD). The local model is then
uploaded to the PS, where all the received models are aver-
aged periodically. The new global model may be sent back
to, or requested by, agents. In the long run, the global model
will be continuously updated and thus will gradually per-
form the task with better overall accuracy [28, 31, 35]. The
general form of SGD using mini-batches [10] can be written
as follows in Eq. 1 2 and defined in [16]:

w𝑡+1 = w𝑡 − [𝑡g𝑡 (1)
g𝑡 = ∇𝑓 (w𝑡 ; x𝑡 ) (2)

where w𝑡 and w𝑡+1 are the parameters of the model at
iteration 𝑡 and 𝑡 + 1 respectively, [𝑡 > 0 is the learning rate,
and g𝑡 is the gradient of the error function 𝑓 evaluated at
w𝑡 given input mini-batch x𝑡 . When w𝑡 in Eq.(1) is fixed, we
can partition the input samples x𝑡 and compute the gradient
for each subset as follows:

g𝑡 =
𝑛∑︁
𝑖=1
∇𝑓 (w𝑡 ; x𝑖𝑡 ) (3)

where

{
x𝑖𝑡 ∩ x

𝑗
𝑡 = ∅, ∀𝑖 ≠ 𝑗

∪𝑛𝑖=1x𝑖𝑡 = x𝑡
(4)

The 𝑛 subsets of the training data will be distributed to
available agents. Agents feed the training data as the input to
the neural network and apply the SGD method to calculate
the corresponding gradients in a parallel manner as long as
the model parametersw𝑡 are the same across these agents [1,
5, 11, 22]. After calculating the gradients, the PS first gathers
all gradients from all agents, sums them and finally takes
the average value as the gradient for the global model. This
approach produces the same value as processing the input x𝑡
on a single agent. That brings us to the most straightforward
approach, synchronous SGD (Sync-SGD).
In Sync-SGD, the master node of the cluster splits the

workload and dispatches work to all agents in each iteration.
Meanwhile, the master node must ensure that each worker’s
model parameters are identical when calculating the gra-
dients. Then all nodes will wait for the slowest worker to
report its gradient back to the master node before starting
the next iteration [33]. The authors in [7] implement such a
mechanism using strict synchronization for every iteration,

2
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demonstrating a better convergence speed than training on a
single node. The workers’ and PS’s algorithms are shown in
Algo. 1 and 2 based on the process described in [6]. These im-
plementations refer to a fixed [; where [ is the learning rate
ranging between 0 and 1. Later in [29, 42] adaptive learning
rates were proposed to further improve accuracy.
Despite sync-SGD’s simple form and ease of paralleliza-

tion, further research [3, 25, 36, 39, 45] has observed and
reported that synchronization and communication cost be-
tween workers is a major bottleneck when applying sync-
SGD in a distributed system because we have to (i) wait for
the slowest agent to complete and (ii) dispatch the newmodel
parameters to all workers at each round. Those drawbacks
hinder the scalability and deteriorate runtime performance.

Algorithm 1: Sync-SGD (agent) based on [6]
for t=1:T do

wait for w𝑡 to be available;
w𝑡 ← fetch w𝑡 from PS;
x𝑖𝑡 ← current mini-batch of data on worker 𝑖;
g𝑖𝑡 ← ∇𝑓 (w𝑡 ; x𝑖𝑡 ) /* calculate gradient */ ;
acquire lock on PS;
send g𝑖𝑡 to PS;
release lock;

Algorithm 2: Sync-SGD (PS) based on [6]
initialise and signal w1 is available;
for t=1:T do

while the slowest worker is not done do
wait for a gradient g𝑖𝑡 to arrive;
w𝑡 ← w𝑡 − [g𝑖𝑡 /* update global model */ ;

w𝑡+1 ← w𝑡 ;
signal w𝑡+1 is available;

To allow asynchronous gradient updates, asynchronous
SGD (Async-SGD) has been introduced and further improved
in several research publications [8, 9, 17, 18, 34, 43] as it does
not require strict synchronization prior to the training stage
which reduces training time when compared to Sync-SGD.

A simplified algorithm of the Async-SGD agent and its
PS are depicted in Algo.3 and 4 based on the description
and algorithm of Async-SGD in [4]. The authors in [9] find
that although Async-SGD is rarely applied to non-convex
problems, it is a very good approach when training deep
networks, particularly when combined with Adagrad [14]
adaptive learning rates.
On the other hand, the asynchronous characteristics of

Async-SGD also inevitably introduce the issue of stale gradi-
ents; as any worker may calculate gradients based on out-
datedmodel parameters. This situation happens when a node

gives g𝑡 = ∇𝑓 (w𝑡 ; x𝑖𝑡 ) while the global model w𝑡+𝑢, 𝑢 ≥ 1 is
𝑢-iterations ahead.

Algorithm 3: Async-SGD (agent) based on [4]
wait for w1 to be available;
for t=1:T do

w𝑡 ← fetch latest w from PS;
x𝑖𝑡 ← current mini-batch of data on worker 𝑖;
g𝑖𝑡 ← ∇𝑓 (w𝑡 ; x𝑖𝑡 ) /* calculate gradient */ ;
send g𝑖𝑡 to PS;

Algorithm 4: Async-SGD (PS) based on [4]
initialise and signal w1 is available;
w← w1;
while termination criteria not satisfied do

wait for a gradient g to arrive;
w← w − [g /* update global model */ ;

Although Async-SGD can act as a pain reliever and alle-
viate the FL system from long waiting time in Sync-SGD,
the main challenge in both Sync- and Async-SGD lies in
that the gradient is evaluated at a specific point (model with
specific parameter values) and the gradient is, technically,
only valid at that point. In both practice and research [46],
the stale gradient can be accepted with some trade-offs like
calculation time or model performance, if it allows gradients
that are 𝑡′ iterations behind the latest global model. That is
to say, gradient g𝑖𝑡 = ∇𝑓 (w𝑡 ; x𝑖𝑡 ) on agent 𝑖 evaluated at w𝑡

with local training data x𝑖𝑡 is only valid if it is used to update
the global model at that point w𝑡 as in Eq. 5.

w𝑡+1 = w𝑡 + [
𝑛∑︁
𝑖=1

g𝑖𝑡 (5)

The PS can only choose between whether to apply it to
the global model w𝑡 or reject it because of staleness.

In this paper, we propose an adaptation of Async-SGD to
solve this challenge and formally define our SGD approach
in Section 3. In the following subsections, CAEFL is differen-
tiated from other distributed ML approaches beyond SGD.

2.2 The Non-IID Data Challenge
Much research [26, 37] has been undertaken in non-i.i.d data,
focusing on non-i.i.d data caused by the user. Our proposed
method concentrates on the environment. These are two
seemingly similar but different challenges:

1. User-centric research question: How should we
train a personalized model in FL? Or in other words:
How should the vehicle drive to suit the driver’s pref-
erence?

3
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2. Environment-centric research question: How to
obtain a specialized model that adapts to a specific
environment? Or in other words: How should the
vehicle drive in different weather and road conditions?

In the former, the local model bonds to a specific user and
does not necessarily contribute to the training of a global
PS model. Whereas the local model bonds to a specific envi-
ronment in the latter one and could contribute to a global
model for this environment or even a general global model.

Another active research domain in ML discusses ensemble
models [40? ]. Ensemble models are often used to improve
the accuracy of a problem by training identical or hetero-
geneous models on the same dataset and then comparing
or merging the outputs to arrive at a final prediction. The
main difference between our proposed combined models
and ensemble models is that in an ensemble model, the sub-
components (estimators) remain autonomous. For example,
the random forest model will store all 𝑘 decision trees sep-
arately. Although the sub-components (estimators) in an
ensemble model can be extracted as a standalone predictor,
they cannot be merged. Even if we can somehowmerge these
sub-trees into a single decision tree, the total number of pa-
rameters will be the sum of them in all sub-trees. Whereas
in our proposed tagged model updates, once we obtain the
gradient set we requested, we can merge them back into a
single neural network model, regardless of the set size. This
merging capability only depends on the architecture of the
neural network being identical.

3 Defining a Composable Environment
Aware Federated Learning Model

Let x𝑡 ∈ R𝑑 denote 𝑑-dimensional training samples col-
lected at epoch 𝑡 . An epoch is completed when all train-
ing data is used exactly once to update the model from w𝑡

to w𝑡+1, where w𝑡 is the neural network model at epoch
𝑡 . Let 𝑓 (w; x) : R𝑑 × w → R+ be the error function that
measures the prediction error of model w when given in-
puts x. 𝐾 is the total number of mini-batches of training
data x𝑡 =

⋃
x𝑡𝑘 , 𝑘 = 1 · · ·𝐾 . The goal is to find a model

w∗ = w𝑇+1 among all feasible w in the parameter space that
gives minimal error after 𝑇 epochs as shown in Eq. 6 based
on the description in [2, 13].

w∗ = w𝑇+1 = argmin
all feasible w

𝑇∑︁
𝑡=1

1
𝐾

𝐾∑︁
𝑘=1

𝑓 (w𝑡 ; x𝑡𝑘 ) (6)

To parallelize the training process, the training samples
are firstly subdivided into 𝑛 subsets x𝑡 =

⋃
x𝑖𝑡 , 𝑖 = 1, · · ·𝑛

obeying the conditions in Eq. 4. This is equivalent to update
w𝑡 using Eq. 7.

w𝑡+1 = w𝑡 − [
𝑛∑︁
𝑖=1
∇𝑓 (wt; x𝑖𝑡 )

= w𝑡 − [
𝑛∑︁
𝑖=1

1
𝐾

𝐾∑︁
𝑘=1
∇𝑓 (wt; x𝑖𝑡𝑘 )

= w𝑡 − [
𝑛∑︁
𝑖=1

1
𝐾

𝐾∑︁
𝑘=1

g𝑖
𝑡𝑘

= w𝑡 − [
𝑛∑︁
𝑖=1

g𝑖𝑡

= w𝑡 − [g𝑡 (7)

where [ is the learning rate and g𝑖𝑡 is the observed gradient
at point w𝑡 on agent 𝑖 when given training samples x𝑖𝑡 . The
expected value 𝐸 (g𝑡 ) should be equal to the true gradient
g𝑡 at point w𝑡 when sufficient samples are presented in x𝑡 ,
i.e., g𝑡 only gives the estimated gradient at w𝑡 based on the
observed input samples.
Let 𝐶 = {𝑐𝑙 |𝑙 = 1, 2, · · · } be a set of criteria. A subset 𝐶𝑘

identifies an environment 𝑒𝑘 if all environment conditions
match those criterion declared in 𝐶𝑘 . Hence the training
process for specialized model w𝑒𝑘 can be defined as in Eq. 8.

w𝑡+1𝑒𝑘 = w𝑡𝑒𝑘 − [
𝑛∑︁
𝑖=1
∇𝑓 (w𝑡𝑒𝑘 ; x

𝑖
𝑡𝑒𝑘
) (8)

= w𝑡𝑒𝑘 − [
𝑛∑︁
𝑖=1

g𝑖𝑡𝑒𝑘

where x𝑖𝑡𝑒𝑘 represents the samples observed in environ-
ment 𝑒𝑘 on agent 𝑖 at epoch 𝑡 , w𝑡𝑒𝑘 is the specialized model
for the specific environment 𝑒𝑘 at 𝑡-th epoch, and g𝑖𝑡𝑒𝑘 is the
corresponding gradient given by the specialized model w𝑡𝑒𝑘
and samples x𝑖𝑡𝑒𝑘 .
A key novelty of our approach is the 𝑐 (·) function that

composes a set of specialized models 𝑀 = {w𝑒𝑘 } into a
composite model w𝑐 for the given environment set {𝑒𝑘 }. w𝑐
aims to classify events in environment set {𝑒𝑘 }. For instance,
𝑀 = {w𝑒1 ,w𝑒2 }, and class 1, 2 are present in 𝑒1, 𝑒2 respec-
tively, then using w𝑐 = 𝑐 (𝑀) should be able to predict both
classes and give better accuracy rate for class 2 than using
w𝑒1 , the same goes for class 1 and w𝑒2 .

4 Environment Aware FL
Traditional FL transfers the samples from each edge device
to a central PS and gains knowledge from these samples by
transforming them into an optimization problem and apply-
ing appropriate machine learning techniques. More recently,
to preserve privacy and minimize communication, edge de-
vices contribute to the global model by uploading the gradi-
ents calculated based on observed samples x𝑖 . However, gra-
dients contributed from samples in different environments
are usually averaged and added to the global model. The
environmental information is not taken into consideration.

4
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To exploit local environment information and to enable
environment aware models, an environment 𝑒𝑘 is identified
with a subset 𝐶𝑘 of a set of criteria 𝐶 = {𝑐𝑙 |𝑙 = 1, 2, · · · } if 𝑒𝑘
match those criteria in 𝐶𝑘 . In practice x𝑖 collected on agent
𝑖 may be subdivided to multiple smaller sets because they
may be observed under different environment conditions 𝑒𝑘 .
Each 𝐶𝑘 is a set that contains one or more semantic or

numerical criteria. For the autonomous vehicle example, the
environmental tags can be the time, temperature, humidity,
sea level, and wind speed. One of the benefits of doing so is
that PS can store these tagged model updates and generate
a new specialized model with a subset of them on-demand.
The autonomous vehicle example might have the following
𝑐𝑙 criteria set or subsets thereof:

𝑐1 = {snow: true} 𝑐2 = {fog: true}
𝑐3 = {rain: true} 𝑐4 = {sidewinds: true}

So 𝑐1 and 𝑐2 denote an environment 𝑒1 that is snowy and
foggy, 𝑐3 denotes an environment with rain (𝑒2), and 𝑐4 de-
notes an environment with sidewinds (𝑒3) (Fig. 1).
After obtaining the set of environments 𝐸 = {𝑒𝑘 }, the

training set x𝑖 on agent 𝑖 can be subdivided into {x𝑖𝑒𝑘 }. Then
the local model is trained with {x𝑖𝑒𝑘 } and the correspond-
ing tagged model updates {d𝑖𝑒𝑘 } will be stored. Next, tagged
model updates will be uploaded to a PS (not necessarily a
central server) and stored there. For instance, if the agent
requests a dedicated model for snowy weather, then tagged
model updates that match 𝑐1 will select and the average
value for each parameter will be used to generate a special-
ized model for that agent. If an agent requests a composite
model for rainy and foggy weather, then tagged model up-
dates that either match 𝑐1 or 𝑐2 will be selected and averaged
to generate a new composite model. Fig.2 depicts this pro-
cess. Moreover, if all tagged model updates are selected and
merged the resulting model is the global model w𝑔 produced
by conventional federated learning.

c1 c2 c3 c4

Criterion Set C

e1 e2 e3

Figure 1. Three environment classes based on different cri-
terion/criteria subsets.
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Figure 2. A demonstration of tagged model updates, special-
ized model generation and deriving new composite models.
Tagged model updates will first be rebuilt back to a model
and go through the elite selection process. elite selection will
choose the top 𝑟% of the rebuilt models and their corre-
sponding tagged updates will be merged into the specialized
models. However, all tagged model updates will be stored
for future use when composing a new composite model for
complex environments.

5 Composing Environment Aware FL
Models

5.1 Model Updates
In this work, we first rearange Eq. 5 to Eq. 9, then substitute
w𝑡+1 with w𝑖

𝑡+1, [ with [𝑖 in Eq. 10

w𝑡+1 −w𝑡 = [

𝑛∑︁
𝑖=1

g𝑖𝑡 (9)

∀𝑖=1,· · · ,𝑛 w𝑖
𝑡+1 −w𝑡 = [

𝑖g𝑖𝑡 = d𝑖𝑡 (10)

where w𝑡 is still the global model with specific parameter
values, but w𝑖

𝑡+1 and [
𝑖 is the local updated model and local

learning rate on agent 𝑖 . d𝑖𝑡 denotes the difference between
local updated model w𝑖𝑡+1 and the global model w𝑡 . Since all
parameter values are fixed in the pulled global model, we
can use a unique identifier 𝑢𝑡 to reference this fixed model.
The key change in our work is that CAEFL sends d𝑖𝑡 and

𝑢𝑡 to the PS instead of the gradient g𝑖𝑡 . This first allows the
agent to locally update the global model w𝑡 multiple times
before reporting back to the PS. This delay can happen when
there is no internet connection over a period of time or the
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agent computes slowly. The update is stale but not necessar-
ily useless as the agent could have trained the model with
valuable training samples. For example, an autonomous ve-
hicle driving in a mountain area, plateau or desert for a week
where it has poor to no internet coverage. Secondly, the PS
can now rebuild the updated model using d𝑖𝑡 and 𝑢𝑡 instead
of considering whether to apply the gradients to the global
model or discard it. Lastly, this gives the agent the flexibility
to apply adaptive learning rate methods [19, 44] to update
the local model w𝑖

𝑡+1.

5.2 Tagged Model Updates
In our proposed CAEFL approach, for each input sample
x𝑖 𝑗 ∈ x𝑖 on agent 𝑖 , there is an environment feature e𝑖 𝑗

associated with it where e𝑖 𝑗 is a key-value dictionary that
stores the corresponding environment readings when x𝑖 𝑗 is
collected. We use 𝐸 = {𝑒1, 𝑒2, · · · , 𝑒𝑝 } to denote 𝑝 classes of
environments. If an e𝑖 𝑗 matches an environment 𝑒𝑘 , then the
corresponding training sample x𝑖 𝑗 will be collected into a
set X𝑒𝑘 .
There are two potential ways to define a match between

an e𝑖 𝑗 and an environment 𝑒𝑘 . The first one is partial match
where an e𝑖 𝑗 matches an environment 𝑒𝑘 as long as it satisfies
all criteria defined in 𝐶𝑘 . For example, e11 = {rain: true, fog:
true} matches 𝑒1 if 𝐶1 = {rain: true} when using partial
match. This is useful because rain is presented in the sample
x11, that is exactly what is required to satisfy the criteria
in 𝐶1. The fog presented in x11 can be seen as an extension
of the rain environment. Using partial match will add the
sample x11 into set X𝑒1 . The second approach is a full match,
where all features must be present in both e𝑖 𝑗 and 𝐶𝑘 , and
features in e𝑖 𝑗 should match the corresponding criteria in
𝐶𝑘 . A full match can help when a strict and finer level of the
environment set 𝐸 is demanded. The optimization problem
using SGD algorithm on a single node can be described in
Algo. 5.

5.3 Specialized Models
After each tagged model updates {d𝑖𝑒𝑘 } is calculated, they
will go through an elite selection process. Firstly, they will
be sent to a central PS along with corresponding unique
identifiers {𝑢𝑒𝑘 }. Then the PS can find the model w𝑒𝑘 using
the unique identifier 𝑢𝑒𝑘 and generate temporary models
w𝑖
𝑒𝑘

= w𝑒𝑘 + d𝑖𝑒𝑘 . After generating temporary models using
tagged model updates from all agents, PS will calculate the
accuracy of those temporary models using test samples from
environment 𝑒𝑘 . For each environment 𝑒𝑘 , temporary models
will be sorted by their test accuracy and only the top 𝑟% of
them will be kept in a set 𝑆𝑘 . Finally, for temporary models
in the set 𝑆𝑘 , they will be merged into a single specialized
model w′𝑒𝑘 by taking the average parameter value across
them. w′𝑒𝑘 will be the updated model for environment 𝑒𝑘 .
Algo. 6 describes this process.

Algorithm 5: CAEFL: Calculate Tagged Model Up-
dates using SGD with Mini-batch (agent 𝑖)
Parameters: Batch size 𝑏, env. set 𝐸 = {𝑒1, · · · , 𝑒𝑝 };
Input: sample x𝑖1 · · · x𝑖𝑚 , env. feature e𝑖1, · · · e𝑖𝑚 ;
for 𝑒𝑘 ∈ 𝐸 do

initialise model w𝑖
𝑒𝑘

= w𝑒𝑘 and corresponding
unique identifier 𝑢𝑒𝑘 from central PS;

X𝑒𝑘 = {};
𝑔𝑖𝑒𝑘 = 0;
for x𝑖 𝑗 ∈ x𝑖 do

X𝑒𝑘 ← X𝑒𝑘 ∪ x𝑖 𝑗 if e𝑖 𝑗 matches 𝑒𝑘 ;
for𝑚 = 1 to 𝑠 = size(X𝑒𝑘 )/𝑏 do

w𝑖𝑒𝑘 ← w𝑖𝑒𝑘 −[
𝑖 1
𝑏

∑𝑏𝑚
𝑑=𝑏 (𝑚−1)+1 ∇𝑓 (w𝑖𝑒𝑘 ;X𝑑𝑒𝑘 );

𝑑𝑖𝑒𝑘 ← w𝑖
𝑒𝑘
−w𝑒𝑘 ;

Output: {𝑢𝑒𝑘 }, {𝑑𝑖𝑒𝑘 };

Algorithm 6: CAEFL: Generate Specialized Models
with Tagged Model Updates
Parameters: env. sets 𝐸 = {𝑒𝑘 };
Input: tagged model updates {d𝑖𝑒𝑘 } from all agents,
unique identifiers 𝑢𝑒𝑘 ;
for 𝑒𝑘 ∈ 𝐸 do

find base model w𝑒𝑘 by 𝑢𝑒𝑘 ;
w𝑖
𝑒𝑘
← w𝑒𝑘 + d𝑖𝑒𝑘 for agent 𝑖 , 𝑖 = 1, · · · , 𝑛;

test model w𝑖
𝑒𝑘

using test samples for env. 𝑒𝑘 ;
only keep top 𝑟% of them by accuracy in a set N;
w𝑒𝑘 ← average of all models in N;

Output: A set of specialized models {w𝑒𝑘 };

Based on the design, it is a requirement that the archi-
tecture of the neural network model on all agents should
be the same, that means that the value of the neural net-
work parameters can be different while they all have the
same number of layers, same input and output shapes and
activation methods at each layer.

5.4 Deriving Composite Models
Let 𝐶𝑐 be the criteria set for the requested composite envi-
ronment 𝑒𝑐 . To derive the composite models w𝑐 from the
central PS, CAEFL uses tagged model updates stored on the
PS. Firstly, the tag of existing tagged model updates will be
used to match with the requested criteria set 𝐶𝑐 using the
partial match approach. If the tag partially matches with 𝐶𝑐 ,
then the corresponding tagged model updates d𝑖𝑒𝑘 will be
used to rebuild back to a model and added to a candidate
set 𝑁 . Next, the accuracy of each model in the set 𝑁 will be
evaluated if there are corresponding test samples available
for the composite environment 𝑒𝑐 . The top 𝑟% of them will
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be selected and added to set 𝑁 ′. If there are no test samples
corresponding to the composite environment 𝑒𝑐 , then all
models in 𝑁 will be selected, i.e, 𝑁 ′ = 𝑁 . In the following
step, models in set 𝑁 ′ will be merged by averaging their
parameter values at corresponding positions. Algo. 7 shows
this process.

Algorithm 7: CAEFL: Derive Composite Models
with Tagged Model Updates
Parameters: tagged model updates {d𝑖𝑒𝑘 } from all
agents, unique identifiers 𝑢𝑒𝑘 , env. criteria sets
𝐶 = {𝐶𝑘 };
Input: requested criteria set 𝐶𝑐 ;
N← {d𝑖𝑒𝑘 |𝐶𝑐 partial matches 𝐶𝑘 ,𝐶𝑘 ∈ 𝐶};
N′←{top 𝑟% of N by acc., if has test samples for 𝑒𝑐

N, otherwise
;

w𝑐 ← averaged parameter value of all models in N′;
Output: w𝑐 ;

5.5 Elixir Implementation
First, the implementation of CAEFL will be discussed and
then the benefits of using Elixir will be highlighted in this
section.
For the Elixir implementation, each type of sensor will

have its dedicated module and implement callbacks defined
in Sensor to report data.

An Environmentmodule will be in charge of collecting all
data from those sensors in Environment.collect_data/1
and map data from each sensor into environment tags (either
nominal or numerical) in Environment.transform/2.
Next, the agent will have an Input module that acts as

a data source, e.g., a camera, for the NeuralNetwork mod-
ule. This paper uses numerical-elixir (nx) [30] to achieve all
neural network related functionalities. Each input sample
observed by the Inputmodule will be associated with an set
of environment tags. Then the sample and the tags can be
pattern matched when calling the predict function.
To train the model, we follow a similar process except

that the tags will be provided by the training dataset. The
train function will also perform pattern match for different
environment tags so that correct tagged model updates can
be calculated when submitting to the PS.
For the ParameterServer module there are functions to

store the uploaded tagged model gradients from agents, gen-
erate global specialized models and new composite models
with elite selection.

It is worth noting that Elixir supports hot-code-swapping
[15]. This feature enables CAEFL to dynamically change the
code logic on-the-fly. For example, adding finer tags for the
temperature sensor, and adding/changing/removing environ-
ment tags to be pattern matched when predicting the input

sample. This feature makes it more versatile not only for
the agents but also for the PS. For both sides, there is an op-
tion to control which model to use, and which tagged model
updates to send and merge without having any downtime.

6 Experiment Designs
6.1 Dataset and Pre-processings
The effectiveness of the CAEFL technique is evaluated using
two standard datasets: MNIST[12] and FashionMNIST [41].
Each data set has 10 classes, and the sample size is 28x28x1.

The architecture of the neural network used is the AlexNet
[21], which has three hidden layers with 300, 100 and 10
neurons respectively.
Six types of pre-processing techniques are applied to the

input images to simulate different environments. Three of
them are compositions of the basic ones. The three basic
pre-processing techniques are distortion, blurring, and salt-
and-pepper noise. They are used to simulate rainy, foggy
and snowy environments respectively. For the blur effect, a
Gaussian filter is applied. The radius of the Gaussian filter is
a random integer in [4, 8]. For salt-and-pepper noise, each
pixel has a 10% of probability being covered by noise. For
the distortion effect, the camera matrix is

12 + 𝑟 0 12 + 𝑟
0 12 + 𝑟 12 + 𝑟
0 0 1


where 𝑟 ∼ 𝑈 (0, 12), and the distortion coefficients are:

[
−0.340671 0.110427 −0.000868 0.000190 −0.016005

]
Some training samples from different environments are

presented in Fig. 3.

6.2 Sample Allocation
As a baseline, we generate and train a generic FL model that
we will refer to as type FL. Training data for FL are evenly
sampled from eight different environments, i.e., 12.5% of
training data from each environment regardless of the com-
plexity of the environment. This is to simulate that in stan-
dard FL the differences in agents’ environments are ignored
because standard FL updates the global model by randomly
selecting a group of agents to avoid biases towards some
specific classes.

For specialized models, two types (A and B) of sample allo-
cation are explored and evaluated to reflect different real-life
situations. For type A, samples from the same basic envi-
ronment will make up 64% of the total samples, and the rest
36% will be sampled randomly from complex environments.
This type is to simulate when different environments are
mainly geographically isolated. For example, autonomous
vehicles driving in forests, cities or deserts. Although they
are geographically isolated, there are many forests, cities and
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Figure 3. Pre-processed training images of digits 5, 0, 4 and
1 in seven different environments. In the following figures,
D, B, N will be used as abbreviations for distortion, blur
effect, and salt-and-pepper noise respectively. For images
with two or more pre-processing techniques, two or more
corresponding letters will be used, e.g, DB will be used for
images with distortion and blur effects.

deserts in the world. Thus, the resulting specialized models
will mainly focus on improving driving in areas that display
the same environmental conditions. Within this type, we
consider the four sample allocations (A1-A4) (Table. 1).
For type B, the portion of samples from occasional and

rare environments are increased. For the example use case of
autonomous vehicles, an intuitive explanation for this type
is that not all forests have the same amount of rainy or foggy
days all over the year.

6.3 Evaluation
There are three main evaluation experiments for type A. The
first evaluation for type A will show the specificity of the spe-
cialized models. The comparison is between the performance
of the generated specialized models, local models (before up-
dating local models from the PS), and the standard FL global
models in different environments. The second evaluation
will assess the impact on model accuracy when choosing dif-
ferent values for 𝑟 during the elite selection process. The last
one will show the performance of the composite models in
complex environments. The experiment will test composite

models for the complex environments DB, DN and BN using
specialized models and tagged model updates.

There is only one evaluation for type B, that is to compare
the specialized models generated by A2 and B. This evalua-
tion is to assess how the specialized model performs when
the agent observes more occasional events in an environ-
ment.
There will be 30 agents for types FL, B and each subtype

in type A. For all agents, their local models will be trained
for 100 epochs. Those experiments will be run 50 times with
random initializations.
All experiments were performed on a PC with a Ryzen 9

3900XT (12 Core 24 Threads) CPU, 128 GB DDR4 RAM and
an RTX 3090 GPU. All agents were spawned on the same
processor.

7 Results
7.1 Accuracy of the Generated Specialized Models
Fig. 4 shows how each model performs in different environ-
ments when using the MNIST dataset. Models shown in Fig.
4 include (1) local models on agents (before pulling special-
ized models from the PS), (2) specialized models when the
selected top 𝑟 = 25% elite models are rebuilt from tagged
model updates and (3) standard FL global models.

normal D B N normal D B N normal D B N
Environment

0.45
0.50
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0.80
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MNIST: Local vs. Specialized (Top 25%) vs. FL

Figure 4. Model accuracy comparison (MNIST). Specialized
models are generated with parameter 𝑟 = 25%.

For all environments, the highest accuracy of those spe-
cialized models is approximately 10% higher than the ones
given by standard FL global models, and the accuracy distri-
bution of specialized models also proves specialized models
generally perform better than standard FL models. It is worth
noting that for the normal, D, and N environments, the low-
est accuracy of those specialized models is about the same as
or even higher than the best accuracy of the corresponding
standard FL global models.

When switching to the FashionMNIST datset, the special-
ized models perform similarly as the FL global models (Fig. 5).
The reason for this is because samples in FashionMNIST are
harder to identify in order to train a relatively good model
to start with. The local models have significantly worse ac-
curacy (20-30%) compared to the MNIST dataset (44-64%).
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Table 1. Sample allocations for different subtypes. The total number of samples assigned to each agent is the same.

Frequency Frequent Occasional Rare
Subtype normal D B N DB DN BN DBN Simulation Description

FL 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% Baseline FL.

A1 65% 7% 7% 7% 4% 4% 4% 2% Sunny. Occasional rain / fog / snow.
A2 — 64% — — 16% 16% — 4% Forest. Occasional rain / fog / snow.
A3 — — 64% — 16% — 16% 4% City. Occasional rain / fog / snow.
A4 — — — 64% — 16% 16% 4% Desert. Occasional rain / fog / snow.

B — 35% — — 27% 27% — 11% Forest. But more rain / fog / snow.

The specialized models tend to perform better than FL global
models if the local models they based on have relatively good
accuracy (with an average of 30% in this case). This is veri-
fied again when looking at the performance in the normal
environment: the local models have 25-35% accuracy and
their corresponding specialized model shows better accu-
racy than its FL counterpart. This observation indicates that
the performance of CAEFL models could suffer from poorly
performing local models.
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Figure 5. Model accuracy comparison (FshionMNIST). Spe-
cialized models are generated with parameter 𝑟 = 25%.

Fig. 6 shows the accuracy of specialized models when
agents observe more occasional events in an environment.
The distribution shows that the specialized model generated
by type B tends to have better accuracy. This result proves
that the specialized model can capture more ‘’knowledge” if
more occasional events are observed.

7.2 Fine-tuned Elite Selection Hyper-Parameter 𝑟
To find out an optimal value for the hyper-parameter 𝑟
during the elite selection process we follow the standard
grid search approach [24]. This paper tested values of 𝑟 in
[10%, 15%, 20%, 25%, 30%, 35%]. Fig. 7 presents how the model
accuracy changes when different 𝑟 values are used in the
elite selection process for each environment.

In general, Fig. 7 shows that using any 𝑟 between 10− 20%
could be a good starting point for fine-tuning this parameter
in different environments because using 𝑟 in this range can

A2 B A2 B A2 B A2 B A2 B A2 B
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Figure 6. Type B agents can observe more occasional events
than type A2 (27% vs 16%).
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Accuracy Impact when Using Different Parameter r

Figure 7. Changes in accuracy when selecting different val-
ues for parameter 𝑟 in each environment. A smaller 𝑟 (≤ 20%)
tends to have higher accuracy while the highest 𝑟 (≥ 30%)
demonstrates the lowest accuracy without necessarily im-
proving the standard deviation of the distribution bell for
the violin plot.

generate specialized models that achieve higher accuracy.
Evidently, 𝑟 does not have a significant impact in terms of the
highest accuracy and the general distribution in the normal
environment while it can lower the highest accuracy in D
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and B, with the worst impact on the lowest accuracy for
environment N.

7.3 Accuracy of Composite Models
To validate the proposed composite function 𝑐 (·) in complex
environments, we evaluate the two specialized models in
the complex environment before the composition and then
evaluate the performance of the composite model. More-
over, to examine the impact of the hyper-parameter 𝑟 on the
composite function, a set of 𝑟 values is also considered. Fur-
thermore, the performance of the standard FL global model
is also shown as a baseline.

Fig. 8 shows the accuracy before and after the model com-
position in complex environment BN. In Fig. 8, the accuracy
of the specialized model B gradually decreases as the value
of 𝑟 increases. When 𝑟 is set to 35%, the performance of the
specialized model B is quite close to the FL baseline model.
Meanwhile, the specialized model N shows relatively good
accuracy around 71%, and its standard deviation is smaller
than specialized model B. Although its lowest accuracy also
decreases when 𝑟 increases.

When 𝑟 is set to values between 10% to 20%, the composite
model of B and N can achieve higher accuracy while model’s
B accuracy distribution is similar to the specialized model
N. When 𝑟 is set to 25%, the accuracy distribution begins to
spread out more evenly, and when choosing a larger value
for 𝑟 , despite the highest accuracy (the composite is still
higher than either specialized model) the distribution is more
concentrated at the lower end. This indicates a small value
of 𝑟 should be used, and in this case, choosing 𝑟 between
10 − 20% seems to be optimal.
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Figure 8. Model accuracy in complex environment BN.

The results for complex environment DB are plotted in Fig.
9. The results show that while the composite model DB can
achieve similar or higher accuracy than model D or B, the
relative range of the accuracy distribution is generally wider
than what we see in complex environment BN. However,
the 25 to 75 percentile of the accuracy of the composite
model follows closely the specialized model D that has better
accuracy than specialized model B. This shows that while the
composite model may be affected by the worse specialized

model resulting in a wider range of accuracy, it can maintain
similar accuracy as the better performing specialized model
in the complex environment.
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Figure 9. Model accuracy in complex environment DB.

Fig. 10 presents the results for complex environment DN.
Though both specialized models can already perform rela-
tively well in the complex environment, the composite model
pushes the highest accuracy and distribution higher.

In summary, for all three complex environments, the com-
posite model can generally achieve higher accuracy than the
specialized models used in the composition. Additionally, in
every case the composite model performs better than the
baseline FL global model. Also, in the case that one of the
specialized models performs much worse than the other in
the complex environment, the composite model still achieves
similar accuracy or outperforms the better one.
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Figure 10.Model accuracy in complex environment DN.

8 Limitations
A limitation of the proposed approach is that the model size
is fixed. Even if we can design some mechanism so that the
agents can update to a newer model with a different archi-
tecture, the previous calculated and stored model updates
will all be invalidated. As a result, CAEFL is only applicable
as long as the neural network architecture remains static
for all agents contributing to the federated learning model.
However, this is a limitation that is true for all federated
learning approaches proposed so far in the literature.
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Another limitation is that sending tagged model updates
adds the communication overhead. The communication over-
heads can be reduced by increasing the gap time before sub-
mitting to the PS.

9 Conclusion & Future Work
In summary CAEFL sends tagged model updates to the PS
where the conventional approach sends overall gradients.
Sending tagged model updates enables CAEFL to be versatile
and to adapt to deal with complex environments.
The elite selection improves the accuracy of generated

models and avoids the impact of model updates with poor
accuracy. In experiments, CAEFL models are observed to be
more accurate than a single global model by 7-10% for the
MNIST dataset and 2% for the FashionMNIST dataset.

There are several avenues for future work. Different envi-
ronments, {𝑒𝑘 }, can be identified with the help of an expert
or obtained from other machine learning approaches such as
a decision tree where we treat each leaf as an environment.
The availability of environment tags may depend on what
information that the agent can, and is allowed to, observe.
Some tags can be automatically generated from the sensors
on the agent, e.g., time, temperature and humidity because
the model and the output of those sensors are known at
the time of building the agent. It is relatively easy to define
tags derived from such known data. Semantic tags, such as
near a river, are more challenging. For geolocated semantic
tags information from a GPS locator could be used. If the
GPS component is not allowed or unavailable, it is possible
to fallback to use cameras to infer some environment tags.
Furthermore, if a complex environment arises frequently the
PS can cache the combined model, and prompt the user to
promote it to a dedicated environment.
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