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Abstract—Mobile crowd sensing (MCS) is a promising
paradigm which leverages sensor-embedded mobile devices to
collect and share data. To perform a sensing task in MCS,
appropriate participating users are selected first, and efficient
data sensing and transmission policies are then designed for
data aggregation. In mobile edge networks, network resource
availability affects how to select the participating users, and the
bandwidth allocated to a user affects its process of data sensing
and transmission. Since user selection, bandwidth allocation, data
sensing and transmission are closely coupled issues in a resource
constrained MCS system, we focus on designing a joint sensing
and communication framework in this paper, by jointly optimiz-
ing the aforementioned four policies under resource constraints.
Specifically, the optimal data sensing and transmission policies are
first derived under a given user selection and bandwidth allocation
scheme. Then the user selection and bandwidth allocation are op-
timized based on dynamic programming. Simulation results show
that the proposed mechanism significantly outperforms several
baseline solutions without considering wireless link vulnerability
and/or resource limitations.

Index Terms—Mobile crowd sensing, joint sensing and commu-
nication, user selection, bandwidth allocation.

I. INTRODUCTION

Mobile crowd sensing (MCS) is an emerging sensing
paradigm where human-carried devices are exploited to sense
and collect various environmental information [1]. Compared
to traditional sensing systems, MCS provides lower deployment
cost, broader coverage and higher scalability. These advantages
have enabled a wide range of MCS applications such as traffic
planning, environment monitoring and commercial recommen-
dations.

An MCS system consists of multiple mobile users acting as
sensing service providers and an agent platform for sensing
task allocation and sensed data aggregation. A typical MCS
system is shown in Fig. 1, where the agent is deployed
with the base station (BS) [2]. In MCS, a sensing task is
fulfilled in the following three phases. Phase 1 is user selection
(or task allocation), i.e., the agent assigns the sensing task
to an appropriate set of mobile users based on certain task
requirement. The selected users then sense the environment,
collect and transmit the sensed data to the agent in phases 2
and 3 respectively.

In recent years, researchers have designed various strategies
for user selection, data sensing and transmission in MCS [2]–
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Fig. 1. Illustration of an MCS system.

[7]. For example, the user selection strategy is designed based
on task requirement such as temporal and spacial coverage in
[3] [4], or based on the remaining energy of device in [5]. In
[6] [7], the data sensing and transmission policies are designed
based on the incentive payments obtained or the movement
trajectory of mobile users, while the process of sensing and
transmission is optimized in [2] by finding the optimal sensing
data size and transmit power for the sensing task. However,
most of existing works focus on designing the user selection,
data sensing and transmission policies separately, while assum-
ing ideal network model without considering wireless resource
constraints and link vulnerability.

In practice, wireless bandwidth and energy resources are
always limited, which significantly affects the process of MCS.
Since the sensed data is transmitted for aggregation via wireless
links, the limited bandwidth affects how many users can be
selected for a sensing task, and the bandwidth allocated to a
selected user affects its specific design of data sensing and
transmission policies. Moreover, the available energy at the
device determines whether to participate in the sensing task,
and the data sensing and transmission policies at the device, in
turn, affect the energy consumption.

From the process of MCS, we notice that sensing user
selection, bandwidth allocation, data sensing and transmission
jointly affect the resource efficiency and MCS performance and



are thus coupled issues. Intuitively, separate design of the four
individual policies cannot achieve optimality of system perfor-
mance. This observation inspires us to develop a joint sensing
and communication framework in a resource constrained MCS
system, by jointly designing the aforementioned four policies.
Such a co-design of sensing and communication has not been
well addressed in existing works. Especially, resource limitation
is not considered in most of relevant investigations. Although
some works such as [2] [5] [6] have taken energy limitation into
consideration, the wireless bandwidth limitation and allocation
are not considered. Our key contributions are summarized as
follows.

• We design a joint sensing and communication framework
for implementing crowd sensing over resource-constrained
wireless networks, where the wireless bandwidth con-
straint, bandwidth allocation, and energy limitation are
jointly considered in designing the MCS system.

• In the developed framework, a joint optimization problem
is formulated to simultaneously find the optimal set of
participants for each sensing task, the bandwidth allocated
to each participant, the data sensing and transmission
policies at each participant (determined by the sensing data
size and transmit power), with the aim of maximizing the
performance of sensing task.

• To solve the optimization problem, we first derive the
optimal sensing data size and transmit power under a
given user selection and bandwidth allocation scheme.
The original optimization problem is then transformed
to a resource allocation problem, and dynamic program-
ming is then used to optimize the user selection and
bandwidth allocation. Simulation results demonstrate that
the proposed mechanism provides significant performance
improvements as compared to several baseline solutions.

II. SYSTEM MODEL

We consider an MCS system consisting of a cellular BS and
and N mobile users, where an MCS agent is deployed at the
BS, as shown in Fig. 1. The system model is detailed below.

A. MCS Operation

In underlying model, each mobile user periodically reports its
parameters including channel gain and available energy to the
agent [2] [8]. For each sensing task arrived, the policies of user
selection, bandwidth allocation, data sensing and transmission
will be jointly determined by the agent based on the sensing
task requirement, available network resources and users’ current
state. The process of performing a sensing task consists of three
phases, i.e., task allocation, data sensing and transmission, as
shown in Fig. 1.

In the task allocation phase, the agent selects a set of
users for the sensing task, allocates certain amount of wireless
bandwidth to these users, and informs each selected user its
sensing data size and transmit power for this task. The objective
is to maximize the performance of sensing task, or the utility
of sensed data contributed by all participants.

In the data sensing phase, the selected users collect the
data via their sensor-deployed devices in parallel. The energy
consumed at a user for data sensing is proportional to the size
of data collected by the user. That is why the agent optimizes
the sensing data size based on devices’ energy budget in the
task allocation phase.

Finally, in the data transmission phase, each selected user
transmits its sensed data to the agent based on the allocated
bandwidth and optimized transmit power. Parallel data trans-
mission is enabled via some channel partitioning scheme, such
as frequency division multiple access (FDMA) technique.

There are three constraints in MCS, namely time, energy and
bandwidth constraints. We consider time sensitive sensing tasks
[2]–[4] where data sensing and transmission must be completed
within a given threshold T . Let the time used for data sensing
and transmission at user i be tsi and tti, respectively. Then the
time constraint is expressed as

tsi + tti ≤ T, (1)

where the time required for the agent to inform the selected
users their sensing and transmission parameters can be ignored
since the size of these control messages is small. The second
constraint is the energy limitation at the device, i.e.,

Es
i + Et

i ≤ Ei, (2)

where Ei, Es
i and Et

i are the available energy, the energy con-
sumed for data sensing and transmission at user i, respectively.

Finally, the bandwidth constraint is that the total bandwidth
allocated to the users cannot exceed the total available band-
width B in the wireless network, or∑

i

Bi ≤ B, (3)

where Bi is the bandwidth allocated to user i.

B. Bandwidth Allocation Model

Let binary variable li denote whether or not user i is
selected for the sensing task. When li = 1, certain amount of
wireless bandwidth must be allocated to it for data transmission.
Since it is impossible to allocate arbitrary bandwidth to a
user [9], we define a minimum bandwidth unit Bmin and
require the bandwidth allocated to user i (i.e., Bi) is an integer
multiple of Bmin. In other words, Bi = ki · Bmin, where
ki = 0, 1, 2, · · · , ⌊B/Bmin⌋.

The value of ki determines the number of bandwidth units
allocated to user i, and the relationship between ki and li is

li = ⌈ki/B⌉, (4)

which indicates that li = 0 if ki = 0, and li = 1 if ki > 0.
To guarantee the total bandwidth allocated to the users do not
exceed the total available bandwidth B, we have that

N∑
i=1

ki ·Bmin ≤ B, (5)

0 ≤ ki ≤ ⌊B/Bmin⌋, ki ∈ Z+
0 . (6)



C. Data Sensing Model

When user i is selected for the sensing task (i.e., li = 1), its
specific sensing data size zi for this task will be informed by
the agent, and the relationship between zi and li is

0 ≤ zi ≤ λli, (7)

which indicates that zi = 0 if li = 0 and zi ≥ 0 if li = 1.
Let oi denote the output data rate of user i [2]. Given the

sensing data size zi, the sensing time duration tsi at user i is

tsi = zi/oi, (8)

and the energy consumed at user i for data sensing (or Es
i ) is

Es
i = ei · zi, (9)

where ei is the sensing energy consumption per bit [2].

D. Data Transmission Model

In MCS, each selected user needs to transmit its sensed data
to the agent. Let the allocated transmit power of user i be Pi

(in W), which determines the transmission policy of the user.
With the allocated bandwidth and optimized transmit power,
the achievable transmission rate (in bits/s) is given by

ri = ki ·Bmin · log2(1 +
Pigi

N0 · ki ·Bmin
), (10)

where gi = hid
−α
i is the channel gain between user i and the

BS, hi is the Rayleigh fading parameter, α is the path loss
exponent, and di is the distance between user i and the BS.

Given sensing data size zi, the transmission time at user i is

tti = zi/ri, (11)

and the transmission energy consumption Et
i is thus given by

Et
i = Pi · tti. (12)

E. MCS Performance Metric

Similar to the work in [2], we use the utility of sensed data
contributed by all the participants as our performance metric.
A commonly-used logarithmic function ci · log(1 + zi) [2] is
adopted to represent the utility of zi-bit sensed data delivered
by user i, where ci is a weighting factor depending on the
type of data. Due to the fact that more information-bearing
data can contribute higher data utility, the utility function
is monotonically increasing. Since a diminishing return is
observed as the increase of data size (because of the repeated
and redundant data), the utility function is modeled based on
logarithmic function. Our objective function is thus given as

max

N∑
i=1

ci · log(1 + zi). (13)

III. JOINT USER SELECTION, BANDWIDTH ALLOCATION,
SENSING AND TRANSMISSION

As user selection, bandwidth allocation, data sensing and
transmission are closely coupled issues in MCS, we focus
on jointly optimizing the aforementioned four policies under
resource constraints in this section. Specifically, an optimization
problem is formulated to jointly determine the user selection
variable li, bandwidth allocation variable ki, sensing data size
zi and transmit power Pi, as shown below.

max
li,ki,zi,Pi

N∑
i=1

ci · log(1 + zi), (14)

s.t.
zi
oi

+
zi

kiBminlog2(1 +
Pigi

N0kiBmin
)
≤ T, ∀i, (14a)

ei · zi +
Pi · zi

kiBminlog2(1 +
Pigi

N0kiBmin
)
≤ Ei, ∀i,

(14b)
N∑
i=1

kiBmin ≤ B, (14c)

li = ⌈ki/B⌉, ∀i (14d)
0 ≤ zi ≤ λli, ∀i, (14e)
0 ≤ Pi ≤ Pmax, ∀i, (14f)

li ∈ {0, 1}, 0 ≤ ki ≤ ⌊B/Bmin⌋, ki ∈ Z+
0 , ∀i.

(14g)

where (14a) and (14b) represent the time and energy constraints
respectively. (14c), (14d) and (14g) are the user selection and
bandwidth allocation constraints. (14e) indicates that the sensed
data is valid only when the user is selected for the sensing task,
and (14f) is the transmit power constraint.

From (14d), we notice that user selection variable li is only
determined by bandwidth allocation variable ki. As a result, we
can simplify the problem in (14) by removing variable li. li is
obtained when the optimal bandwidth allocation is found.

A. Optimal Transmit Power and Sensing Data Size

When a user is selected for the sensing task and allocated
a certain amount of bandwidth for transmitting the sensed
data, the optimal transmit power and sensing data size can be
determined by the following proposition.

Proposition 1: Given the uplink bandwidth kiBmin allocated
to user i, where ki > 0 (or li =1), the optimal transmit power
of user i is given by

P ∗
i (ki) =


Pi,min, if Ei

Ai(ki,Pi,min)
≤ T

Bi(ki,Pi,min)

Pmax, if Ei

Ai(ki,Pmax)
≥ T

Bi(ki,Pmax)

Pi,opt, otherwise

(15)

and the optimal sensing data size of user i is given by

z∗i (ki) =


Ei

Ai(ki,Pi,min)
, if Ei

Ai(ki,Pi,min)
≤ T

Bi(ki,Pi,min)
T

Bi(ki,Pmax)
, if Ei

Ai(ki,Pmax)
≥ T

Bi(ki,Pmax)
Ei

Ai(kibi,Pi,opt)
, otherwise

(16)



where Ai(ki, Pi) = ei+
Pi

kiBminlog2(1+
Pigi

N0kiBmin
)
, Bi(ki, Pi) =

1
oi

+ 1

kiBminlog2(1+
Pigi

N0kiBmin
)
, Pi,min = 10

SNRmin
10 ·kiBminN0

gi
,

and Pi,opt satisfies Ei

Ai(ki,Pi,opt)
= T

Bi(ki,Pi,opt)
.

Proof: Based on constraints (14a) and (14b), we get that

zi ≤ Ei/Ai(ki, Pi), (17)

zi ≤ T/Bi(ki, Pi). (18)

Since our objective is to maximize
∑N

i=1 ci · log(1 + zi),
which is equivalent to maximizing the sensing data size zi of
each selected user i, the optimal sensing data size is thus given
by

z∗i (bi) = max
Pi

(min{Ei/Ai(ki, Pi), T/Bi(ki, Pi)}). (19)

We first consider the first derivative of Ai(ki, Pi) with respect
to Pi, which is given by

∂Ai(ki, Pi)

∂Pi

=
ln 2 · kiBmin

1+xn
i Pi

((1 + xn
i Pi) ln(1 + xn

i Pi)− xn
i Pi)

(kiBmin ln(1 + xn
i Pi))2

, (20)

where xn
i = gi/(N0B

n). When li = 1, 0 < Pi ≤ Pmax

must be guaranteed. As (1 + xn
i Pi) ln(1 + xn

i Pi) − xn
i Pi is

always positive when Pi > 0, we then get ∂Ai(ki,Pi)
∂Pi

> 0.
In other words, Ai(ki, Pi) is monotonically increasing with
Pi. Since Bi(ki, Pi) is monotonically decreasing with Pi,
Ei/Ai(ki, Pi) is then a monotonically decreasing function of
Pi, and T/Bi(ki, Pi) is a monotonically increasing function of
Pi.

To find the optimal transmit power that maximizes function
min{Ei/Ai(ki, Pi), T/Bi(ki, Pi)}, we first derive the feasible
set of Pi. In practice, in order to successfully decode the
received signal, the received signal-to-noise ratio SNR =
10 · log10(Pigi/(N0B

n)) (in dB) needs to be no smaller than
a minimum value SNRmin. The minimum acceptable value of

Pi is then obtained, or Pi,min =
10

SNRmin
10 ·

∑R
n=1 bni N0B

n

gi
Since Pi ∈ [Pi,min, Pmax], we then get the maxi-

mum and minimum value of Ei/Ai(ki, Pi) with respect
to Pi, i.e., max

Pi

(Ei/Ai(ki, Pi)) = Ei/Ai(ki, Pi,min) and

min
Pi

(Ei/Ai(ki, Pi)) = Ei/Ai(ki, Pmax). Similarly, the max-

imum and minimum value of T/Bi(ki, Pi) with respect to
Pi are obtained, where max

Pi

(T/Bi(ki, Pi)) = T/Bi(ki, Pmax)

and min
Pi

(T/Bi(ki, Pi)) = T/Bi(ki, Pi,min)

Case 1: max
Pi

(Ei/Ai(ki, Pi)) ≤ min
Pi

(T/Bi(ki, Pi))

In this case, Ei/Ai(ki, Pi) ≤ T/Bi(ki, Pi) is al-
ways guaranteed for Pi ∈ [Pi,min, Pmax]. As a result,
min{Ei/Ai(ki, Pi), T/Bi(ki, Pi)} = Ei/Ai(ki, Pi). We then
get z∗i (ki) = max

Pi

(Ei/Ai(ki, Pi)) = Ei/Ai(ki, Pi,min), and

P ∗
i (ki) = Pi,min

Case 2: min
Pi

(Ei/Ai(ki, Pi)) ≥ max
Pi

(T/Bi(ki, Pi))

In this case, Ei/Ai(ki, Pi) ≥ T/Bi(ki, Pi) is al-
ways guaranteed for Pi ∈ [Pi,min, Pmax]. Therefore,
min{Ei/Ai(ki, Pi), T/Bi(ki, Pi)} = T/Bi(ki, Pi), z∗i (ki) =
max
Pi

(T/Bi(ki, Pi)) = T/Bi(ki, Pmax), and P ∗
i (ki) = Pmax.

Case 3: max
Pi

(Ei/Ai(ki, Pi)) > min
Pi

(T/Bi(ki, Pi)) and

min
Pi

(Ei/Ai(ki, Pi)) < max
Pi

(T/Bi(ki, Pi))

Since Ei/Ai(ki, Pi) monotonically decreases with Pi, and
T/Bi(ki, Pi) monotonically increases with Pi, then it is pos-
sible that Ei/Ai(ki, Pi) = T/Bi(ki, Pi) when Pi increases
from Pi,min to Pmax in this case. Therefore, z∗i (ki) =
Ei/Ai(ki, Pi,opt) = T/Bi(ki, Pi,opt), where Pi,opt satisfies the
equality Ei/Ai(ki, Pi,opt) = T/Bi(ki, Pi,opt). ■

B. Optimal User Selection and Bandwidth Allocation

Based on Proposition 1, the optimization problem in (14) can
be transformed as

max
ki

N∑
i=1

ci · log(1 + z∗i (ki)), (21)

s.t.

N∑
i=1

kiBmin ≤ B, (21a)

0 ≤ ki ≤ ⌊B/Bmin⌋, ki ∈ Z+
0 , ∀i. (21b)

where z∗i (ki) is obtained based on Proposition 1 if ki > 0;
otherwise, z∗i (ki) = 0.

The optimization problem in (21) is to decide the number of
bandwidth units (i.e., ki) allocated to individual users such that
the data utility contributed by all the users (or sum data utility)
is maximized, where the total number of bandwidth units is
M = ⌊B/Bmin⌋. To solve the problem, dynamic programming
[10] is adopted. Specifically, we number the set of candidate
users in the network as user 1, 2, · · · , N . Let si denote the
number of bandwidth units allocated to the first i users in the
network (1 ≤ i ≤ N ), and ki be the number of bandwidth
units allocated to user i. We then have si−1 = si − ki. Let
fi(si) denote the maximum sum data utility obtained when we
allocate si bandwidth units to the first i users. We then have
the following state transition equation:

fi(si) = max
0≤ki≤si

(fi(si), fi−1(si − ki)+

ci · log(1 + z∗i (ki)))
fi(0) = 0

(22)

With (22), the maximum sum data utility (or
fN (⌊B/Bmin⌋)) as well as the optimal bandwidth units
allocated to each user can then be calculated, as summarized
in Algorithm 1, with computational complexity of O(N ·M2).

In conclusion, the optimal bandwidth allocation variable ki is
first obtained based on Algorithm 1, and then the optimal user
selection is determined by li = ⌈ki/B⌉. The optimal transmit
power and sensing data size of each selected user are then
determined by Proposition 1. Thus far, the optimal joint sensing
and communication scheme is obtained.



Algorithm 1 Optimal Bandwidth Allocation

Input: B,Bmin

1: M = ⌊B/Bmin⌋ /*the total number of bandwidth units*/
2: f, p, c = [[0 for i = 0 : M ] for j = 0 : N ]
3: U = [0 for i = 1 : N ]
4: for i = 1 : N do
5: for j = 1 : M do
6: P, z = Proposition 1(j)
7: c[i][j] = ci · log(1 + z)
8: for i = 1 : N do
9: for j = 1 : M do
10: num = 0
11: for k = 0 : j do
12: if f [i][j] < f [i− 1][j − k] + c[i][k]
13: f [i][j] = f [i− 1][j − k] + c[i][k]; num = k
14: p[i][j] = num
15: s = p[N ][M ] /*bandwidth units allocated to the last user*/
16: r = M − s /*remaining bandwidth units*/
17: for i = N : −1 : 1 do
18: U [i] = s; s = p[i− 1][r]; r− = s
18: return U /*return the allocated result of each user*/

IV. SIMULATION RESULTS

In this section, the effectiveness of our proposed framework
is evaluated through experimental simulations on a typical
computer with 3.2 GHz Intel CPU 6500.

A. System Parameters

We consider an MCS system consisting of one agent-
deployed BS and N mobile users, where N ranges from 20 to
200. The parameters used in the MCS system are listed in Table
I. Since there are few existing works concentrating on joint
design of sensing and communication in a resource constrained
MCS, we consider the following four baseline policies as
comparison references. The first one is random user selection
(RUS) policy, which jointly optimizes the bandwidth allocation,
sensing data size and transmit power given the user selection
policy. The second one is random bandwidth allocation (RBA)
policy that randomly determines user selection and bandwidth
allocation, while optimizing the sensing data size and transmit
power (similar to that in [2]). The third one is fixed sensing
duration (FSD) policy which allocates fixed time duration (e.g.,
half of T ) for data sensing. The last one is random transmit
power (RTP) policy where each selected user chooses a random
transmit power for data transmission.

B. Performance Comparison

Fig. 2 illustrates the total data utility obtained versus the
total number of users under different policies with T = 10s.
We can see that the data utility obtained always increases
with the total number of users (except for RBA policy). This
is because more mobile users in the network indicates that
more users can be selected for the sensing task if the wireless
bandwidth is adequate, and more mobile users also increases the
chance of having higher data utility contributed by new users,
resulting in an increased sum data utility. We also find that our
proposed policy provides the best performance, followed by
RTP, FSD, RUS and RBA policies. RBA policy provides the
worst performance as it not only determines the set of users

TABLE I
MCS SYSTEM PARAMETERS

Notation Description Value

N # of mobile users 20-200
Pmax Maximum transmit power 23 dBm [9]
Ei Energy of user ui 0.01-0.1 J [2]
T Sensing task’s time requirement 1-10 s
B Total wireless bandwidth 20 MHz [8]

Bmin Minimum bandwidth unit 200 KHz
di Distance between BS and user i 10-200 m
oi Sensing data rate of user i 105 − 106 bits/s [2]

ei
Sensing energy consumption

per bit 10−12 − 10−11 J/bit [2]

N0 Noise power density -174 dBm/Hz [8]
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Fig. 2. Data utility obtained vs. total number of users

for the task randomly, but also allocates the bandwidth to the
set of selected users randomly.

Fig. 3 shows how the total data utility obtained changes with
the available bandwidth B. We set T = 10s, N = 120 and
Emax = 0.1J in Fig. 3. We can observe that the data utility
increases with B. This is because more available bandwidth
in the network can always lead to more users being selected
for the sensing task and/or an increased amount of bandwidth
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Fig. 3. Data utility obtained vs. the available wireless bandwidth
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Fig. 5. Data utility obtained vs. sensing task’s time requirement

allocated to the selected user. The improvement of RUS policy
is small because we fix the set of (randomly) selected users
in Fig. 3 when the available bandwidth varies. As a result,
although more available bandwidth can increase the amount of
bandwidth allocated to the user and increase the amount of
data sensed by the user, the improvement on data utility can
be small due to the repeated and redundant data sensed by the
same user.

In Fig. 4, the total data utility obtained is shown versus the
maximum energy of users (denoted as Emax) with T = 10s
and N = 120. Emax varies from 0.01J to 0.1J, and the
energy of each user (Ei) is uniformly distributed in the range
[Emax/10, Emax]. Again, we can see that the proposed policy
provides the best performance. In particular, our proposed
policy provides performance gain of about 14%, 47%, 88%
and 111% as compared with RTP, FSD, RUS and RBA policies,
respectively. We also find that the data utility increases with the
maximum energy of users, but the improvement is small under
our proposed policy, RUS and RBA policies. This is because
although the increase of energy can lead to an increased amount
of sensed data, the improvement on data utility can be small
when the amount of data sensed is large enough.

In Fig. 5, the total data utility obtained is illustrated versus
task requirement T with N = 120. We can see that the data
utility increases with T for all policies except for FSD policy.
This is because the sensing duration of FSD is fixed to half of
T . The energy consumption for sensing under FSD policy is
thus increased with T . Since the available energy of each user
is fixed in Fig. 5, the energy allocated for data transmission
is then reduced, resulting in a reduced data utility for FSD
policy. We further find that the performance gap between our
proposed policy and RTP policy increases with T . This is
because RTP policy determines the transmit power of each user
randomly, resulting in a non-optimal energy allocation for data
transmission. As a result, when the available energy of user
is insufficient, or the sensing time requirement T is large, the
performance gap due to such a non-optimal energy allocation
becomes non-negligible.

V. CONCLUSION

In this paper, we have designed a joint sensing and commu-
nication framework over resource constrained MCS systems.
An optimization problem is formulated and solved to jointly
perform the user selection, bandwidth allocation, data sensing
and transmission involved in the system, with the aim of
maximizing the performance of sensing task. Numerical results
show that our proposed policy can achieve up to 14%, 47%,
88% and 111% performance improvement as compared with
four baseline policies, i.e., RTP, FSD, RUS and RBA policies.
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