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Abstract—Blockchain has been regarded as one of the promising
technologies to address trust concern in data-driven mobile
crowdsensing (MCS), due to its auditability, immutability and
decentralization. However, simply applying blockchain in MCS
while ignoring possible abnormal saboteurs hidden in numer-
ous devices may mislead the normal operation of blockchain,
resulting in untruthful off-chain data and untrustworthy on-chain
interactions. Consequently, it is highly desirable to build a trust-
preserving mechanism (TPM) to bridge the gap between MCS
and blockchain. To this end, in this paper we first resort to
a probabilistic trust assessment model inferred from auditable
interaction outcomes in blockchain, to incentivize normal nodes
to maintain trustworthiness of on-chain interactions. Assisted by
the trust assessment, trust decision is further made to filter
untrusted nodes from participating in blockchain process and
improve the authenticity of off-chain data. Simulation experiments
are conducted to validate the effectiveness and efficiency of the
proposed TPM-enabled blockchain in terms of contribution rate
and consensus accuracy.

Index Terms—Blockchain, mobile crowdsensing, trust-
preserving mechanism, trust decision.

I. INTRODUCTION

Leveraging ubiquitous devices for big data sensing, mobile
crowdsensing (MCS) [1] provides data analysis and computa-
tion to customers with common interests under centralized coor-
dination. As a large amount of data is generated from numerous
devices, existing MCS system usually needs a centralized
authority to provide authentication of participating devices [1],
[2]. This centralized mechanism brings trust concern about
data monopoly and disclosure, since an individual is hard to
trace and manage decisions throughout the system lifecycle
[3]. Additionally, malicious manipulation further hinders data
trading, analyzing and sharing across systems.

Recently, the emerging blockchain-based distributed ledger
technology [4] has been becoming a promising solution to
eliminate the necessity for centralized authority in data-driven
MCS system. According to specific consensus protocols, inter-
action nodes can effectively and reliably publish transactions to
exchange data among them without a third party. By allowing
interaction nodes to verify the integrity of data, blockchain
records any changes of data in the global ledger and ensures
its integrity and immutability. Although blockchain can ensure
the authenticity of sensed data once it is confirmed on the
chain, it still lacks an effective supervision over data sources off
the chain. Meanwhile, abnormal behaviors of nodes inevitably
affect the normal operation process on the chain. For example,

malicious nodes may launch byzantine faults [5] or do not
respond to other nodes in time, thus impeding the consensus
process. It means that the authenticity and trustworthiness of
any data and interactions cannot be guaranteed before they are
confirmed by blockchain.

Incorporating trust-preserving mechanism (TPM) into
blockchain is a way not only to create a chain of blocks
that records sensed data in an unforgeable manner but also to
establish a chain of trust of data and interaction itself. In this
paper, we focus on designing a TPM for blockchain-assisted
MCS, with aim of providing guidance for trust decision-making
in blockchain process. Specifically, the proposed TPM consists
of the trust assessment for measuring the belief level of nodes
and the trust decision for filtering untrusted nodes. In this way,
TPM-supported trust decision helps prevent abnormal nodes
from participating in the blockchain, whereas blockchain en-
sures the authenticity of history interactions, thereby effectively
supervising the data and interactions on and off the chain.
In particular, to accurately quantify the trust assessment, we
develop a probabilistic multi-class trust model to assess the
outcomes of interaction in blockchain as a multinomial distribu-
tion, and express the trust assessment as ternary outcomes, i.e.,
belief, disbelief and uncertainty. Then, we derive the knowledge
defects affecting trust assessment to measure the limitations
of interaction experiences and calculate direct and indirect
trust based on the Dirichlet model and the Dempster-Shafer’s
combination rule.

II. FRAMEWORK OF TPM IN BLOCKCHAIN-ASSISTED MCS

As shown in Fig. 1, the framework of TPM in blockchain-
assisted MCS is built on a hierarchy of IoT systems, composed
of Sensing layer, Trust-Chain layer and Application layer from
left to right. The main functions deployed in the framework
include trust assessment and decision, transaction generation
and dissemination, block generation, and block validation, and
the corresponding workflow of blockchain interaction process
and TPM is illustrated in Fig. 1.

Sensing Layer: The interaction nodes at sensing layer are
responsible for realizing transaction generation and dissem-
ination. At this layer, some interaction nodes, such as het-
erogeneous smart devices, act as working nodes to publish
transactions. We consider that the interaction nodes in the
system constitute G non-overlapping and non-empty groups,
which can be formed according to the regions where nodes are
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Fig. 1: The framework of TPM in blockchain-assisted MCS, where red dashed
box represents the malicious transactions published by abnormal nodes.

located [6]. In transaction generation stage, the sensed data with
some additional information will be filled into a transaction
Tx = (Hash, ID, Trust,Data, T imestamp), where Hash
is the hash digest of Tx, ID is the assigned identity, Trust is
the trust assessment of the publisher, Data is the transaction
data, and Timestamp is the update time of transaction gen-
eration. In the subsequent transaction dissemination stage, the
signed transaction should be transmitted to the associated leader
node within a group for further validation and computation.

Trust-Chain Layer: The Trust-Chain layer, constituted by
leader and follower nodes, is served by verifiers to validate
transactions. This layer is mainly responsible for trust assess-
ment and decision, block generation and block validation. For
trust assessment and decision, each node infers the trust level
according to TPM and makes trusted decisions to encourage
nodes to participate in the blockchain. The trust assessment and
decision functionality ensures that only the trusted transactions
of well-behaved nodes could be added into a block, so as to
decrease interaction behaviors of abnormal nodes.

For block generation, according to the votes of follower
nodes in each group, a trusted leader first performs transaction
validation, and then endows the right to create a block for
received transactions, and initiates the consensus process. In
this paper, we can reasonably expect that the trusted nodes
have more chances to be elected.

For block validation, the verifiers in a group validate the
correctness of received blocks, including hash digest, trust
assessment, signature, timestamp, etc. The verified candidate
block will be added to the ledger and wait to be confirmed as
a block until the preset policy is met.

In this paper, we resort to directed acyclic graph (DAG)-
based blockchain to drive MCS. In DAG, some published and
yet unapproved candidate blocks (called tips) should be ap-
proved by incoming blocks, yielding a forking-chain topology.
After that, the incoming block also becomes a tip waiting for
subsequent approvals. With the continuous arrival of incoming
blocks, the cumulative weight of a tip eventually becomes a
valid block when a predefined threshold is met. Note that the

cumulative weight of a tip is calculated as the sum of the weight
of the tip itself and the weights directly and indirectly approved
by all blocks in DAG. According to the TPM in blockchain-
assisted MCS, the incoming block prefers to approve Top-k tips
with the highest trust from a set of visible tips. In Fig. 1, we
depict the DAG ledger when there exist abnormal nodes, where
an abnormal tip (depicted by red box) cannot be approved by
incoming blocks with the assistance of TPM, and thus it will
be eventually isolated.

Application Layer: The application layer is at the top and
uses application programming interfaces (APIs) to allow pub-
lishers to access. According to the requirements of APIs, nodes
will be identified and interface the appropriate group and
corresponding smart contracts. With the initialization operation,
the smart contract will be installed and instantiated at the
targeted leaders and conduct sensing tasks.

III. TRUST ASSESSMENT OF TPM IN
BLOCKCHAIN-ASSISTED MCS

By interacting with each other, nodes are interlinked by their
trust relationship. The resulted interaction outcome (typically
positive/negative) can be used as the first-hand observation to
infer a trust assessment. For example, to mitigate counterparty
risk, Bitcoin-otc marketplace infers the trust level of a user
by aggregating the number of positive and negative ratings1.
Considering the uncertain interaction outcomes, we express the
general trust assessment as a ternary trust T = (Tb, Td, Tu)
in [0, 1], where Tb is the belief degree of normal interaction
outcome b, Td is the disbelief degree of abnormal interaction
outcome d and Tu is the uncertainty degree of uncertain
interaction outcome d [7].

A. Trust Assessment Process

In order to accurately assess trust, the TPM operates in two
phases: trust behavior-awareness and trust assessment.

1) Trust behavior-awareness: The trust behavior-awareness
provides a series of interaction behaviors required for conduct-
ing trust assessment. Owing to the auditability and immutability
of blockchain, trust behavior-awareness can identify interaction
outcomes b, d and u from transaction generation and dissem-
ination, block generation and block validation.
• The interaction behavior results in outcome b if the

transaction generated by a node is successfully added
to DAG ledger through a leader, i.e, the transac-
tion is confirmed from trust assessment and deci-
sion to block validation. This can be detected as
Hash(PreHash,Merkle,Nonce) ≤ Target, where
Hash(· ) is the hash operation, PreHash is the hash value
of the previous block, Merkle is the root of the Merkle
tree containing transactions in the block, and Target is
a numeric value that a valid block must be less than or
equal to.

• The interaction behavior results in outcome d if any of
the functions from trust generation to block validation

1https://bitcoin-otc.com/viewratings.php



fails. The abnormal interactions are typically caused by
Byzantine failures, i.e., some of the nodes fail in re-
sponding or interact maliciously. This can be detected as
Hash(PreHash,Merkle,Nonce) > Target.

• The interaction behavior results in outcome u if the gener-
ated transaction cannot be included in DAG ledge due to
some uncontrollable reasons. In this regard, we consider
that some leaders cannot complete an interaction during
their term due to lazy behavior, resource constraints, etc,
recorded as outcome u.

In the following, we use ai,j = (ab,i,j , ad,i,j , au,i,j) to denote
the direct interaction outcome from node i to node j, where
ab,i,j , ad,i,j and au,i,j represent the number of interaction
outcomes b, d and u from node i to node j, respectively.
Accordingly, the total interaction outcome from node i to
node j can be expressed as ai,j =

∑
o∈{b,d,u} ao,i,j . In

addition, the interaction outcome of node i can be expressed
as ai = (ab,i, ad,i, au,i), where ab,i, ad,i and au,i represent
the number of interaction outcomes b, d and u of node i,
respectively. The total interaction outcome of node i can be
calculated as ai =

∑
o∈{b,d,u} ao,i.

2) Trust assessment: Trust assessment aims to infer trust
level between a pair of interaction nodes from history interac-
tions. For ease of representation, we use a = (ab, ad, au) as
a specific example to represent ai,j or ai, where ab, ad and
au represent the number of interaction outcomes b, d and u,
respectively. In addition, in order to measure the impact of
heterogeneous interaction outcomes on trust assessment, we
use the weight τ = (τb, τd, τu) to indicate the importance
of interaction outcomes b, d and u, respectively. To punish
abnormal behaviors and prevent the proportion of normal
outcomes b from increasing rapidly, τd and τu are usually larger
than τb.

To assess trust for different interaction outcomes, the Dirich-
let distribution can be used to map the multi-class interactions
into a probability distribution [8]. Hence, the probability distri-
bution of each possible outcome b, d and u can be regarded as a
multinomial distribution Θ = (Θb,Θd,Θu), where Θb, Θd and
Θu are unknown prior probability of each possible outcome b,
d and u, respectively, and

∑
o∈{b,d,u}Θo = 1. According to the

Bayesian theory, the Dirichlet distribution is the conjugate prior
of multinomial distribution Θ = (Θb,Θd,Θu). Based on the
above analysis, we can express the probability density function
(PDF) of the Dirichlet distribution [9] as

Dir (Θ|a) =
Γ
(∑

o∈{b,d,u} τoao

)
∏
o∈{b,d,u} Γ (τoao)

∏
o∈{b,d,u}

Θτoao−1
o , (1)

where Γ(·) is Gamma function. In addition, the expectation of
Θ is EDir(Θ|a) (Θo) = τoao∑

o∈{b,d,u} τoao
.

Furthermore, we use a′ = (a′b, a
′
d, a
′
u) to denote the possible

interaction outcome for the subsequent interaction, where a′b,
a′d and a′u represent the possible outcomes of belief b, disbelief
d and uncertainty d, respectively. As the conjugate prior of
multinomial distribution, the fact is if the prior distribution

of multinomial follows the Dirichlet distribution, so does the
posterior distribution. Therefore, for the o-th possible outcome,
its weighted expectation under the posterior distribution can be
expressed as ED(Θo|a′) (Θo) =

∫
Θo

ΘoD (Θo|a′) dΘo.
According to the expectation of the Dirichlet distribu-

tion, the trust assessment To can be represented as To =
τoao+τoa

′
o∑

o∈{b,d,u}(τoao+τoa′o) (o ∈ {b, d, u}). However, using an insuf-
ficient number of observations to assess trust can easily lead
to knowledge defects, resulting in inaccurate trust assessment.
To remedy this defect, we consider the impact of imperfect
interaction knowledge on trust assessment by exploiting the
definition of certainty in [10]. For the multinomial distribution
considered in this paper, we further derive its certainty related
to knowledge defects c (a′) as below.

To obtain c (a′), we first express the conditional PDF
of Θ given a′ as f (Θ|a′). Due to the mean value(∫ 1

0
f (Θ|a′) dΘ

)
/ (1− 0) = 1, the idea of the certainty c (a′)

is to use mean absolute deviation (MAD) to count the number
of increases and decreases from mean value 1 [10]. Given the
observed interaction space a′ = (a′b, a

′
d, a
′
u) and corresponding

probability Θ = (Θb,Θd,Θu), the certainty c (a′) can be calcu-
lated based on MAD, expressed by c (a′) = 1

2

∫∫∫ 1

0
|f (Θ|a′)−

1|dΘ, where 1
2 is a scaling factor to eliminate double counting.

To obtain f (Θ|a′), we should calculate PDF f (Θ) and proba-
bility distribution Prob (a′|Θ). In fact, f (Θ) follows Dirichlet
distribution Dir (Θ|a′) and Prob (a′|Θ) is multinomial distri-
bution, i.e., Prob (a′|Θ) =

(
a′

a′b,a
′
d,a
′
u

)∏
o∈{b,d,u}Θ

a′o
o . Substi-

tuting D (Θ|ãi,j) and Prob (a′|Θ) into c (a′), we can get the
certainty related to knowledge defects c (a′) as

c (a′) =
1

2

∫∫∫ 1

0

|f (Θ|a′)− 1| dΘ

=
1

2

∫∫∫ 1

0

∣∣∣∣∣ Prob (a′|Θ) f (Θ)∫∫∫ 1

0
Prob (a′|Θ) f (Θ) dΘ

− 1

∣∣∣∣∣ dΘ,

=
1

2

∫∫∫ 1

0

∣∣∣∣∣∣
∏
o∈{b,d,u}Θ

ao+a′o−1
o∫∫∫ 1

0

∏
o∈{b,d,u}Θ

ao+a′o−1
o dΘ

− 1

∣∣∣∣∣∣ dΘ.

(2)

Based on ED(Θo|a′) (Θo) =
τoao+τoa

′
o∑

o∈{b,d,u}(τoao+τoa′o) and c (a′),
the general trust assessment can be calculated as T =

(Tb, Td, Tu), where Tb = c (a′)
τbab+τba

′
b∑

o∈{b,d,u}(τoao+τoa′o) , Td =

c (a′)
τdad+τda

′
d∑

o∈{b,d,u}(τoao+τoa′o) and Tu = 1− Tb − Td.

B. Direct and Indirect Trust Assessment
Substituting the direct interaction outcome

ai,j = (ab,i,j , ad,i,j , au,i,j) into the general trust
assessment T and certainty related to knowledge defects
c (a′), we can calculate the direct trust assessment as
DTi,j = (DTb,i,j , DTd,i,j , DTu,i,j) with the corresponding

certainty c
(
a′i,j
)
, where DTb,i,j =

c(a′i,j)(τbab,i,j+τba
′
b,i,j)∑

o∈{b,d,u}(τoao,i,j+τoa′o,i,j)
,

DTd,i,j =
c(a′i,j)(τdad,i,j+τda

′
d,i,j)∑

o∈{b,d,u}(τoao,i,j+τoa′o,i,j)
and DTu,i,j =

1−DTb,i,j −DTd,i,j .



After obtaining direct trust assessment, the indirect trust
assessment IT

i
x−→j

from node i to node j can be calculated
based on the recommendation of common neighbors. Here we
use i x−→ j (x ∈ Ψi,j) to denote an interaction path from node i
to node j through neighbor node x, Ψi,j = N(i)

⋂
N(j) is the

set of common neighbors of nodes i and j, N(i) and N(j) are
the neighbors of nodes i and j respectively. For fairness and
motivation, the common relationship between nodes should be
considered in indirect interaction paths. For example, the nodes
in a community of common interest tend to contribute more
than those of an irrelevant community. Let ωi,j be the common
relationship weight between nodes i and j, typically reflecting
common-distance, common-neighbors, etc., given by

ωi,j =

{
Dis (i, j) /maxi′,j′∈Gg Dis (i′, j′), co-distance,
Ψ, co-neighbors,

(3)
where Dis(i, j) is the distance between nodes i and j, and Ψ
is the number of common neighbors. By associating ωi,j , the
indirect trust assessment can be calculated as

IT
i

x−→j
=

{
DTi,x, if v == i,

DTx,j , if v == j,
(4)

where v ∈ arg min{i,j} (ω̄i,xDTb,i,x, ω̄x,jDTb,x,j), ω̄i,x and
ω̄x,j are the normalized weights respectively.

So far we have obtained indirect trust assessment IT
i

x−→j

from multiple interaction paths i
x−→ j (x ∈ Ψi,j). Next,

the fusion mechanism is needed to combine multiple indirect
interaction paths. To achieve this, Dempster-Shafer’s rule can be
used to effectively tackle the combination problem of multiple
indirect trust [11]. Following the Dempster-Shafer’s rule, the
aggregated indirect trust assessment IT i,j can be calculated as

IT i,j =



ITb,i,j =

∑
l1∩l2···∩lΨ={b}

IT
l1,i

1−→j
···IT

lΨ,i
Ψ−→j

1−
∑

l1∩l2···∩lΨ=∅
IT

l1,i
1−→j
···IT

lΨ,i
Ψ−→j

,

ITd,i,j =

∑
l1∩l2···∩lΨ={d}

IT
l1,i

1−→j
···IT

lΨ,i
Ψ−→j

1−
∑

l1∩l2···∩lΨ=∅
IT

l1,i
1−→j
···IT

lΨ,i
Ψ−→j

,

ITu,i,j =
IT

u,i
1−→j
···IT

u,i
Ψ−→j

1−
∑

l1∩l2···∩lΨ=∅
IT

l1,i
1−→j
···IT

lΨ,i
Ψ−→j

.

(5)

C. Final Trust Assessment

To sum up, the final trust assessment Ti,j from node i to
node j can be further obtained by combining DT i,j and IT i,j
based on the Dempster-Shafer’s rule, which can be expressed
as

Ti,j =


Tb,i,j =

DT b,i,jIT b,i,j+DT b,i,jITu,i,j+DTu,i,jIT b,i,j

1−DT b,i,jITd,i,j−DTd,i,jIT b,i,j
,

Td,i,j =
DTd,i,jITd,i,j+DTd,i,jITu,i,j+DTu,i,jITd,i,j

1−DT b,i,jITd,i,j−DTd,i,jIT b,i,j
,

Tu,i,j =
DTu,i,jITu,i,j

1−DT b,i,jITd,i,j−DTd,i,jIT b,i,j
.

(6)

Similarly, substituting the total interaction outcome ai =
(ab,i, ad,i, au,i) into the general trust assessment T and cer-
tainty c (a′), the trust assessment of node i can be cal-

culated as Ti, i.e., Ti = (Tb,i, Td,i, Tu,i), where Tb,i =
c(a′i)(τbab,i+τba

′
b,i)∑

o∈{b,d,u}(τoao,i+τoa′o,i)
,

c(a′i)(τdad,i+τda
′
d,i)∑

o∈{b,d,u}(τoao,i+τoa′o,i)
and Tu,i =

1− Tb,i − Td,i.

IV. TRUST DECISION IN BLOCKCHAIN

Through the trust assessment, an effective collaborative su-
pervision can be realized first, and then trust decisions can
be made to encourage nodes to participate in the blockchain
process normally.

A. Block Generation

In each consensus group, the leader node generates a block
by iteratively executing PoW, until a nonce that satisfies the
difficulty requirements is found. Once the leader is elected,
other nodes in the associated consensus group, called followers,
must trust any requests from the leader. However, leader
election brings a concern that abnormal nodes may pose threats
to consensus process. To ensure randomness and democracy,
any node can start leader election, but abnormal nodes can
slow down the system progress or even interrupt the current
consensus process. To reduce the adverse impact of abnormal
behaviors on block generation, trust assessment can guide nodes
to make trust decision, so that highly-trusted nodes have more
opportunities to be elected leaders.

For leader-based consensus protocols, PBFT [5] and Raft
[12] are efficient ways to achieve consistency of distributed
nodes for consortium and private networks. Because Raft has
high transaction throughput and low communication complexity
compared with PBFT [13], we resort to Raft to perform trusted-
leader election in this paper. Note that trusted-leader election
can also be applied to PBFT with appropriate modifications.
Different with randomized leader election based on Raft and
PBFT, the decision to elect a trusted leader can be made
according to the following majority rule:

vj = majority
i,j∈Gg

(Ti,j , vi,j), (7)

where vi,j is the voting strategy related to the trust assessment
Ti,j from the i-th follower to the j-th candidate leader, and vj
is the number of votes won by the j-th candidate leader. As
such, the candidate leader with majority votes can be elected
as a leader node.

In Raft, one or more candidate nodes attempt to trigger leader
election using randomized election timeouts for fairness. Let
the timeout interval be [t1, t2], the timeout of each node t
can be randomly set in t ∈ [t1, t1 + Td,j(t2 − t1)]. Obviously,
this simple way makes highly-trusted nodes have the larger
probability to be candidate nodes, while ensuring randomness.
In summary, the followers start the leader election process
based on the following steps:

Step 1: If any follower does not receive heartbeats from
leader after a timeout, the node that finishes the timeout first
becomes the candidate leader, votes itself and sends a voting
request to other followers.

Step 2: When the followers receive the voting request, they
close the local timeout. Meanwhile, the followers validate the



consistency and integrity of DAG snapshot of candidate leader.
If the DAG is verified successfully, each follower calculates the
trust assessment Ti,j based on the interaction history. According
to validation results and trust assessment, each node votes with
a ternary-opinion 〈1, 0,−1〉, expressed as

vi,j =


1, if Ti,j ≥ τ,
0, if Ti,j < τ,

−1, if validation fails,

(8)

where τ is a trust assessment threshold, which can be deter-
mined by the average trust level over the consensus group.

Step 3: After the candidate leader obtains the majority
of votes, it wins the election and sends heartbeats to other
followers. In the subsequent duration, the leader node selects
some transactions according to descending order of transaction
publishers’ trust Ti,b, and packetizes them into a candidate
block.

B. Block Validation

To include a candidate block in DAG, the TPM in
blockchain-assisted MCS should process the below stages:

Stage 1: Once a candidate block is generated, the leader node
first randomly selects some candidate tips (not exceeding the
size of the set of visible tips).

Stage 2: Then the leader node validates the integrity of the
candidate tips, while executing trust assessment for the valid
candidate tips and sorting them in descending order of trust.

Stage 3: Next the candidate block chooses the top-k tips with
the highest trust assessment from the valid candidate tips, and
references the hash of k tips in DAG.

Stage 4: In addition to containing transactions, timestamp,
leader ID and trust assessment of the leader, the hashes of the k
tips are added into the candidate block. After that, the candidate
block will be propagated to other consensus groups for cross-
validation.

Through the above process, the successfully validated block
can be added into the DAG as a new tip. As subsequent blocks
arrive at the DAG for continuous approvals, the candidate block
will eventually become a block till until cumulative weight
reaches a defined threshold. It is worth noting that a set of
visible tips should be determined for trust assessment and block
validation. To improve the diversity and freshness of trust, we
regard the tips that the timestamp of tips plus the maximum
visible timespan does not exceed the current time as the visible
tips. Based on such mechanism, the tips of highly-trusted nodes
can be assessed and validated by more nodes within such a
maximum visible timespan, while the tips of abnormal nodes
can be isolated due to the less selection.

V. NUMERICAL RESULTS

In this section, we validate the effectiveness of the proposed
TPM in blockchain-assisted MCS and evaluate several critical
metrics, including contribution rate, consensus accuracy, trans-
action throughput and tips stability.

A. Experimental Settings

We consider that the 10 groups are constructed randomly and
independently, the network coverage of each group is set to
150 square meters, and 100 nodes are randomly located in this
area. Considering the existence of untrusted nodes, abnormal
nodes may poison transaction data by forging data from other
nodes, so as to publish malicious transactions and blocks. Since
abnormal nodes may behave normally to defraud trust, we
assume that abnormal nodes publish malicious transactions or
blocks with a probability p. In this paper, we set p to 2/3 and
the number of abnormal nodes to 30.

In the process of TPM in blockchain-assisted MCS, we
set the rate at which each node publishes transactions to 1/2
transactions per unit time. To ensure that the tips from trust-
worthy nodes get more approvals, we set the maximum visible
timespan to 20. In the visible timespan, the new incoming
blocks should select 10 tips to authenticate, and two of them
will be referenced by incoming blocks. In addition, the SHA-
256 hash function is used to generate data hash in this paper.

B. Performance Comparisons

In this subsection, we conduct three experiments to compare
the performance of TPM in DAG-based blockchain (called
TPM-BlockDAG) with three baseline schemes as follows:
• Dirichlet-BlockDAG: In [8], the authors propose to use

blockchain to record historical trust information. To rep-
resent the trust, the Dirichlet distribution is adopted to
classify the behaviors of participants into several ranks
and use it as the trust assessment.

• Poof of reputation-based BlockDAG (PoR-BlockDAG): In
[14], the authors propose a reputation-based consensus
protocol to promote successful interaction. Essentially,
PoR in this paper uses the sigmoid function to assess trust
and elects a leader who has the highest trust assessment.

• Poof of work-based BlockDAG (PoW-BlockDAG): It is
an original PoW-based BlockDAG without relying on a
trust/reputation-based incentive mechanism [15].

1) Impact of the number of tip approval times on contribu-
tion rate: In the process of TPM BlockDAG, we regard the
blocks whose tip approval times are less than a certain number
as untrusted blocks, and these blocks will be considered isolated
without any contribution. Therefore, the contribution rate is
evaluated by the proportion of transactions that are approved
above a threshold in the total number of published transactions.

As shown in Fig. 2, we can observe that the contribution
rate of abnormal leaders and publishers decreases with the
number of tip approvals, where the thresholds for the number
of tip approvals is set to be 1, 2 and 3, respectively. On the
one hand, increasing the threshold for tip approvals makes it
more difficult to approve tips from abnormal nodes, because
the proposed TPM can incentivize the tips from trustworthy
nodes to get more approvals. On the other hand, we can see
that the contribution rate of abnormal leaders and publishers
keeps stable over time, which indicates that the blocks and
transactions published by abnormal nodes can be isolated as
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(a) Abnormal leaders.
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(b) Abnormal publishers.

Fig. 2: Impact of tip approvals on contribution rate of abnormal nodes.
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(a) Normal leaders.

0 200 400 600 800 1000

time

0

0.1

0.2

0.3

0.4

0.5

0.6

C
o
n
tr

ib
u
ti

o
n

 r
at

e

1 tip approval

2 tip approvals

3 tip approvals

(b) Normal publishers.

Fig. 3: Impact of tip approvals on contribution rate of normal nodes.

much as possible in the case of 3 tip approvals. Furthermore,
Fig. 3 illustrates the contribution rate of normal leaders and
publishers. Obviously, the contribution rate of normal leaders
and publishers in Fig. 3 is greater than that of abnormal ones
in Fig. 2, while the contribution rate of normal leaders and
publishers gradually increases monotonically.

2) Consensus accuracy comparisons: This experiment eval-
uates the consensus accuracy, which measures the proportion
of normal node in the total number of elected nodes.

Fig. 4 demonstrates the consensus accuracy under abnormal
behaviors. Obviously, TPM-BlockDAG significantly outper-
form other schemes in terms of the consensus accuracy. In
particular, the consensus accuracy of TPM-BlockDAG can
quickly approach 1 compared to other schemes. This is be-
cause all schemes can use trust assessment to motivate normal
nodes to be elected as leaders and punish abnormal nodes to
some extent, but the proposed TPM can more accurately and
comprehensively characterize the trust relationship of nodes. In
addition, PoW-BlockDAG chooses a leader randomly, resulting
in significantly lower consensus accuracy under malicious and
lazy behaviors.

VI. CONCLUSIONS

In this paper we have proposed to integrate TPM in
blockchain-assisted MCS to solve the problem of off-chain
data authenticity and on-chain interactions trustworthiness. The
TPM infers trust level of participating nodes for characteriz-
ing and motivating the underlying interactions in blockchain-
assisted MCS. To achieve trust supervision and promote suc-
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Fig. 4: Consensus accuracy.

cessful interaction, trust decision is made followed by trust
assessment, so as to filter some abnormal node and avoid
participating in the blockchain process. The experimental re-
sults demonstrate that the proposed TPM can help blockchain
resist abnormal behaviors and outperform trust/reputation based
blockchains, as well as the blockchain without trust.
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