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ABSTRACT
For an Enriques surface S, the non-degeneracy invariant nd(S) retains information on the elliptic fibrations
of S and its polarizations. In the current paper, we introduce a combinatorial version of the non-degeneracy
invariant which depends on S together with a configuration of smooth rational curves, and gives a lower
bound for nd(S). We provide a SageMath code that computes this combinatorial invariant and we apply it in
several examples. First we identify a new family of nodal Enriques surfaces satisfying nd(S) = 10 which are not
general and with infinite automorphism group. We obtain lower bounds on nd(S) for the Enriques surfaces
with eight disjoint smooth rational curves studied by Mendes Lopes–Pardini. Finally, we recover Dolgachev
and Kondō’s computation of the non-degeneracy invariant of the Enriques surfaces with finite automorphism
group and provide additional information on the geometry of their elliptic fibrations.
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1. Introduction

For an Enriques surface S, the non-degeneracy invariant nd(S) was introduced in [3]. It can be defined as follows. Enriques surfaces
always have an elliptic pencil, and each elliptic pencil has exactly two non-reduced fibers of multiplicity 2. These fibers, taken with
their reduced structure, are called half-fibers. Then, nd(S) is defined to be the maximum number of half-fibers F1, . . . , Fm such that

Fi · Fj = 1 − δij (1)

(note that F2
i = 0 automatically for all i). We work over an algebraically closed field of characteristic different from 2 (see Remark 4.1

for characteristic 2). It is known that nd(S) ≤ 10 because Num(S), the group of divisors on S modulo numerical equivalence, has
rank 10. The inequality 3 ≤ nd(S) is a theorem of Cossec [6, Theorem 3], which was recently re-proven in [18] and improved to
4 ≤ nd(S) in [19].

If S is an unnodal Enriques surface, i.e., S does not contain a smooth rational curve, it is always possible to find such a sequence of
length 10 [6, Theorem 3.2]. The non-degeneracy invariant for a general nodal Enriques surface S, which means that the numerical
classes of smooth rational curves on S are congruent modulo 2 Num(S), is also known to be 10 (this is a consequence of [8, Section
4.2] combined with [5, Lemma 3.2.1]).

For non-general nodal Enriques surfaces the problem of understanding nd(S) is more subtle. Examples of such Enriques surfaces
are the ones with finite automorphism group, which were classified by Kondō into seven irreducible families [12]. The non-
degeneracy invariants of these surfaces are computed in [7, Section 8.9] as follows:

Type I II III IV V VI VII
nd 4 7 8 10 7 10 10

Another class of non-general nodal Enriques surfaces, but with infinite automorphism group, is the 4-dimensional family of
Hessian Enriques surfaces. These satisfy nd(S) = 10 (see [9, Sections 4.1–4.3]). At the moment, no Enriques surface with infinite
automorphism group is known to satisfy nd(S) < 10, and examples of Enriques surfaces with nd(S) = 5, 6, 9 are not known.

1.1. Main results

In this work, we outline an approach to studying the non-degeneracy invariant for an Enriques surface S. Suppose we have a
configuration R = {R1, . . . , R�} of smooth rational curves on S. Let C be a curve on S which appears in the Kodaira classification of
singular fibers of elliptic fibrations, and whose irreducible components are elements of R. By general theory, either C or 1

2 C is linearly
equivalent to a half-fiber. Denote by HF(S,R) the set of numerical equivalence classes of half-fibers which arise fromR in this way. We
can then define the combinatorial non-degeneracy invariant cnd(S,R) as the maximum m such that there exist f1, . . . , fm ∈ HF(S,R)

CONTACT Franco Rota franco.rota@glasgow.ac.uk School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QQ, UK.
© 2022 The Author(s). Published with license by Taylor & Francis Group, LLC.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1080/10586458.2022.2113576
https://crossmark.crossref.org/dialog/?doi=10.1080/10586458.2022.2113576&domain=pdf&date_stamp=2022-08-24
http://orcid.org/0000-0002-9138-4016
http://orcid.org/0000-0001-6934-0749
http://orcid.org/0000-0002-1496-7795
mailto:franco.rota@glasgow.ac.uk
http://creativecommons.org/licenses/by/4.0/


2 R. MOSCHETTI, F. ROTA, AND L. SCHAFFLER

satisfying (1). Since it only considers half-fibers supported on R, cnd(S,R) gives a lower bound for nd(S), and has the advantage
that its computation can be implemented with a computer.

In this direction, our main contribution is the creation of a piece of code, available at [20] and written in SageMath [24], which
computes cnd(S,R) given a configuration of smooth rational curves R on an Enriques surface S. The input of the algorithm is the
intersection matrix of the curves inR together with a basis for Num(S). The latter is used to determine if a given elliptic configuration
from R is a fiber or a half-fiber in S. Afterwards, the code recursively checks all the possible sequences of half-fibers and obtains
cnd(S,R). A by-product of the computation is also a list of all the sequences of elements in HF(S,R) satisfying (1) and which cannot
be further extended (we call such sequences saturated, see Section 3.2).

Then, we apply our computer code to several examples of interest (for simplicity, over C):

(1) In Section 5 we consider the 4-dimensional family of D1,6-polarized Enriques surfaces: these arise as the minimal resolution
of an appropriate Z2

2-cover of P2 branched along six general lines. We show that nd(S) = 10: this constitutes a new example
because these Enriques surfaces are not general nodal, have infinite automorphism group, and they are not of Hessian type (see
Remark 5.8);

(2) There are two families of Enriques surfaces with eight disjoint smooth rational curves [17]. Every such surface S comes with a
distinguished set R of 12 smooth rational curves, whose dual graphs are pictured in Figures 3 and 4. In Section 6 we compute
cnd(S,R) = 8 (resp. cnd(S,R) = 5) for the members of the first (resp. second) family.

(3) In Section 7 we revisit the Enriques surfaces with finite automorphism group. If S is one of these andR is the (finite) set of smooth
rational curves on S, then HF(S,R) contains all the classes of half-fibers (this follows from the work in [12]), so cnd(S,R) =
nd(S). In addition to recovering the computation of nd(S) in [7], we

• provide explicit sequences of half-fibers realizing nd(S);
• list all the saturated sequences;
• provide alternative views on the dual graphs of smooth rational curves in the Enriques surfaces of type III, IV, V, VI (see

Figures 7–10, respectively), which make the symmetries of the graphs more evident.

In the two examples from [17] discussed in Section 6, cnd(S,R) produces a lower bound for nd(S). In each example, we can use
the geometry of the K3 surface covering S to find explicit smooth rational curves on S not in R, and use these to define a new set
R′ � R. It turns out that our code computes cnd(S,R′) = cnd(S,R), and several attempts in this direction make us ask whether
cnd(S,R) = nd(S). Although we do not elaborate on this aspect in the current paper, we believe that it is worthwhile to understand
these examples as a first step toward determining criteria for equality of the invariants, which is an interesting and challenging
question. Additionally, it would be interesting to apply CndFinder to other examples of Enriques surfaces with a distinguished
configuration of smooth rational curves, such as the one in [10, Remark 3.9].

1.2. Applications

A sequence {fi}10
i=1 of classes in Num(S) satisfying (1) encodes rich geometric information about S. First of all, the quantity 1

3 (f1 +
· · ·+ f10) ∈ Num(S) is the class of a nef divisor � called Fano polarization, which defines a map from S to a normal surface of degree
10 in P5 called Fano model. We have that nd(S) = 10 if and only if S admits a very ample Fano polarization (see the discussion in [8,
Section 2.3]).

The non-degeneracy invariant also plays an important role in the study of the bounded derived category Db(Coh(S)) of coherent
sheaves on S, which is known to determine S up to isomorphism [2, 11]. It turns out that (f1, . . . , f10) defines a subcategory of
Db(Coh(S)), called Kuznetsov component. This subcategory determines S up to isomorphism, as proven in [14, Theorem A] for
nd(S) = 10. This was extended to any value of nd(S) in [15]. Remarkably, the Kuznetsov component is not intrinsic to the surface:
different choices of isotropic sequences may produce nonequivalent Kuznetsov components (see [15, Corollary 2.8]).

Further details on these constructions are given in Section 3.2, and explicit examples of non-isomorphic Fano models and
nonequivalent Kuznetsov components are given in Section 7.4.

2. Preliminaries

2.1. Enriques surfaces and lattices

Over an algebraically closed field of characteristic different from 2, an Enriques surface S is a connected smooth projective surface
satisfying 2KS ∼ 0 and h1(S,OS) = h2(S, ωS) = 0. Therefore, Pic(S) equals the Néron–Severi group NS(S), and after quotienting
by the 2-torsion element KS we obtain Num(S), the group of divisors on S modulo numerical equivalence. We have that Num(S)
equipped with the intersection product of curves is a lattice, i.e., a free finitely generated abelian group L equipped with a non-
degenerate symmetric bilinear form bL : L × L → Z. As a lattice, Num(S) is isometric to U ⊕ E8, where U denotes the hyperbolic
lattice

(
Z2,

( 0 1
1 0

))
and E8 is the negative definite root lattice associated with the corresponding Dynkin diagram.

Given an explicit example of Enriques surface S, it will be important for us to find a basis for Num(S). The idea for this is described
in Remark 2.1, but before stating it we need some preliminaries. Given a lattice L, denote by L∗ its dual HomZ(L,Z). This is naturally
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identified with

{v ∈ L ⊗ Q | bL(v, w) ∈ Z for all w ∈ L}.

As the bilinear form bL is assumed to be non-degenerate, the assignment v 
→ bL(v, · ) defines an embedding L ↪→ L∗, and the
quotient AL = L∗/L is called the discriminant group of L. If the lattice L is even, which means bL(v, v) ∈ 2Z for all v ∈ Z, then AL
comes equipped with a quadratic form

qL : AL → Q/2Z,
v + L 
→ bL(v, v) mod 2Z

called the discriminant quadratic form. A lattice M containing L as a finite index subgroup is called an overlattice of L. M gives rise
to the isotropic subgroup M/L of AL. More precisely, by [21, Proposition 1.4.1 (a)] there is a 1-to-1 correspondence between even
overlattices of L and subgroups of AL which are isotropic with respect to qL.

Remark 2.1. A possible strategy to determine a basis of Num(S) for an Enriques surface S is the following. Say we have curves
B1, . . . , B10 on S generating a sublattice L of Num(S) of rank 10. Then we have that L = Num(S) if and only if L is unimodular.
Otherwise, the elements x ∈ Num(S) \ L give rise to nonzero classes x + L ∈ AL which are isotropic with respect to qL. So one can
first list all the isotropic classes x + L, and then use the geometry of S to decide which of these satisfy x ∈ Num(S).

2.2. Elliptic fibrations on Enriques surfaces

We recall the following standard definitions and facts from [1, Chapter VIII, Section 17] and [4, Section 2.2].

Definition 2.2. Let f : S → P1 be an elliptic fibration on an Enriques surface S. Then f has exactly two multiple fibers 2F and 2F′.
The curves F and F′ are called the half-fibers of the elliptic fibration f .

We will often use the following standard results concerning half-fibers on Enriques surfaces. By a curve on a surface we mean a
connected effective 1-cycle.

Definition 2.3. Let S be an Enriques surface. An elliptic configuration on S is a curve C which is primitive in Num(S) and appears in
Kodaira’s classification of fibers of elliptic fibrations (see Table 1).

Remark 2.4. If the dual graph of Cred is Ãn or D̃n, then we must have that n ≤ 8 as Num(S) has signature (1, 9).

Lemma 2.5. Let C be an elliptic configuration on an Enriques surface. Then either |C| is an elliptic pencil or |2C| is an elliptic pencil of
which C is one of the two half-fibers.

Lemma 2.6. Let S be an Enriques surface and let f : S → P1 be an elliptic fibration. Let F1, F2 be the half-fibers and F a reduced fiber
of f . Let π : X → S be the universal K3 cover of S. Then π−1(F1), π−1(F2) are connected and π−1(F) is disconnected.

Lemma 2.7 ([3, Chapter V, Theorem 5.7.5 (i)]). Let F be a half-fiber on an Enriques surface. Then F is of type Ãn for 1 ≤ n ≤ 8 or a
smooth genus one curve. In particular, if an elliptic configuration C has dual graph D̃n or Ẽn, then C is a fiber.

2.3. Isotropic sequences and the non-degeneracy invariant

Here we recall some preliminary notions and the definition of the non-degeneracy invariant, as it was given in the introduction. We
follow [3, Chapter III].

Definition 2.8. An isotropic sequence is a sequence of primitive isotropic vectors (e1, . . . , en) in Num(S) satisfying ei · ej = 1 − δij.
Additionally, (e1, . . . , en) is called non-degenerate if every ei is the class of a nef divisor, and maximal if n = 10.

Remark 2.9. Note that if e ∈ Num(S) \ {0} is the class of a nef divisor E and e2 = 0, then E must be effective. To prove this, first
observe by Riemann–Roch that E or KS − E is effective, but not both. If by contradiction KS − E is effective, then one can show that
KS − E is numerically trivial, which implies e = 0.

Remark 2.10. If E1, . . . , En are half-fibers whose classes ei satisfy (1), then (e1, . . . , en) is a non-degenerate isotropic sequence in
Num(S). It is a standard fact that the converse also holds, however, we briefly review its proof for the interested reader.

Suppose (e1, . . . , en) is a non-degenerate isotropic sequence, so that each ei is the class of a nef divisor Ei. First note that Ei
intersects all of its components C trivially: as Ei is nef, Ei · C ≥ 0 and Ei · (Ei − C) ≥ 0, so 0 ≤ Ei · C ≤ 0. Let Ci1, . . . , Ci� be
the connected components of Ei, and write Cij = mijC′

ij for some positive integer mij and a curve C′
ij with primitive class. Then the
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Table 1. List of fibers of elliptic fibrations, indexed by their intersection graph in the notation of [1, Chapter V, Table 3]. The irreducible components are smooth rational
curves, except for the types I0, I1, II, where the single component is a curve of arithmetic genus 1. Fibers of type IV only occur for n = 3.

Dynkin
notation

Kodaira’s
notation

Irreducible
components Dual graph with multiplicities

0 I0, I1, II 1 1

Ã1 I2, III 2 1 1

Ãn−1, (n ≥ 3) In, IV n
1

1 1 . . . 1 1

D̃4+n, (n ≥ 0) I∗n 4 + n + 1

1 1

2 . . . 2

1 1

Ẽ6 IV∗ 7

1

2

1 2 3 2 1

Ẽ7 III∗ 8
2

1 2 3 4 3 2 1

Ẽ8 II∗ 9
3

2 4 6 5 4 3 2 1

C′
ij are indecomposable [3, Chapter III, Section 1], and using [3, Proposition 3.1.1] we can see that C′

ij is an elliptic configuration. So,
Lemma 2.5 combined with the fact that [C′

ij] is primitive imply that |2C′
ij| is an elliptic pencil of which C′

ij is a half-fiber. As the C′
ij

are disjoint, they are numerically equivalent, implying that ei = (
∑�

j=1 mij)[Ci1]. As ei is primitive, the only possibility is that � = 1
and m11 = 1. So Ei is connected, and it is the half-fiber of an elliptic pencil.

Definition 2.11. Let S be an Enriques surface. Define the non-degeneracy invariant of S, denoted by nd(S), as the maximum integer
n such that there exists a non-degenerate isotropic sequence of length n. Equivalently, nd(S) is the maximum n for which there exist
F1, . . . , Fn half-fibers on S such that Fi · Fj = 1 for all i �= j.

It is possible to give a geometric interpretation to degenerate isotropic sequences as well. Since two distinct smooth rational curves
on S cannot be numerically equivalent, we can identify the set R(S) of smooth rational curves on S with the subset of Num(S) given
by their classes. Moreover, every R ∈ R(S) satisfies R2 = −2 and intersects all the other R′ ∈ R(S) non-negatively. Therefore, R(S)
is a set of roots of Num(S). The associated Weyl group W acts on Num(S) by reflections across elements of R(S). Every W-orbit of
an isotropic sequence in Num(S) admits a (unique) representative, called canonical, which is geometrically meaningful:

Lemma 2.12 ([3, Lemma 3.3.1], [7, Proposition 6.1.5]). Suppose that (f1, . . . , fk) is an isotropic sequence in Num(S). Then there is a
unique w ∈ W such that, up to reordering:

• the sequence (f ′
1, . . . , f ′

k) := (w(f1), . . . , w(fk)) contains a non-degenerate subsequence (f ′
i1 , . . . , f ′

ic) with 1 = i1 < . . . < ic;
• for any is < i < is+1 there are rational curves Ris

1 , . . . , Ris
i−is such that

f ′
i = f ′

is + Ris
1 + · · · + Ris

i−is ∈ W · fis .

Here, Ris
1 + · · · + Ris

i−is is a chain of type Ai−is .

Any sequence which up to reordering has the form (f ′
1, . . . , f ′

k) is called a canonical isotropic sequence. Its non-degeneracy is
the number c of nef classes it contains. (Observe that by our definition all non-degenerate sequences are canonical. This is a slight
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discrepancy with [3, Chapter III, Section 3], but it should not cause confusion.) We conclude this section with the following result
about extensions of non-degenerate sequences.

Lemma 2.13 ([3, Corollary 3.3.1]). Let k �= 9. Then every non-degenerate isotropic sequence (f1, . . . , fk) can be extended to a canonical
maximal isotropic sequence (f1, . . . , fk, fk+1, . . . , f10) of non-degeneracy c ≥ k.

Remark 2.14. The extension (f1, . . . , fk, fk+1, . . . , f10) in Lemma 2.13 is in general not unique, as illustrated in Example 7.4.

3. A combinatorial version of the non-degeneracy invariant of Enriques surfaces

3.1. The combinatorial non-degeneracy invariant

We now introduce a purely combinatorial version of the non-degeneracy invariant, which applied to Enriques surfaces yields a lower
bound for nd(S).

Definition 3.1. Let G = (V , E, w) be a finite, undirected, simple graph with vertices V = {v1, . . . , vk}, edges E, and a weight function
w : E → Z>0. Let LG = ⊕n

i=1Zvi. An element x = ∑
i aivi ∈ LG will be called an elliptic vector if it satisfies the following conditions:

(1) the vertices vi with ai �= 0 induce a subgraph of G which is an extended Dynkin diagram of type Ãn, D̃n, or Ẽ6, Ẽ7, Ẽ8;
(2) the nonzero coefficients ai are as in Kodaira’s classification of singular fibers of elliptic fibrations.

We can endow LG with a symmetric bilinear form bG obtained by extending the following:

bG(vi, vj) =
⎧⎨
⎩

−2 if i = j
0 if i �= i and (vi, vj) /∈ E
w(vi, vj) if i �= j and (vi, vj) ∈ E.

If we let Null(bG) = {x ∈ LG | bG(x, y) = 0 for all y ∈ LG}, then LG = LG/Null(bG) is a free Z-module and bG induces on it
a well-defined non-degenerate symmetric bilinear form, making LG into a lattice. Let N be a fixed overlattice of LG. For an elliptic
vector v ∈ LG, define cN([v]) = 1

2 [v] if 1
2 [v] ∈ N and cN([v]) = [v] otherwise. Let

HF(G, N) = {cN([v]) | v ∈ LG is an elliptic vector} ⊆ N.

Then we define the combinatorial non-degeneracy invariant cnd(G, N) to be the maximum m such that there exist f1, . . . , fm ∈
HF(G, N) satisfying fi · fj = 1 − δij.

Proposition 3.2. Let S be an Enriques surface and let R = {R1, . . . , Rk} be a finite collection of smooth rational curves on S. Let G be
the graph dual to the configuration R with weights given by the intersection numbers Ri · Rj for i �= j. Then cnd(G, Num(S)) ≤ nd(S).

Proof. By construction, we have that the elliptic vectors in LG are classes of elliptic configurations on S and HF(G, Num(S)) is a
collection of classes of half-fibers on S. From this we obtain the claimed inequality, because nd(S) considers all the half-fibers on S,
while cnd(G, Num(S)) only the ones in HF(G, Num(S)).

Definition 3.3. Let S be an Enriques surface and R a finite collection of smooth rational curves R = {R1, . . . , Rk} on S with dual
graph G. We define E(S,R) as the set of elliptic fibrations |2F| on S for F ∈ HF(G, Num(S)). Moreover, in this case we denote
HF(G, Num(S)) and cnd(G, Num(S)) simply by HF(S,R) and cnd(S,R).

Remark 3.4. Notice that ifE(S,R) contains all the elliptic fibrations on S, then the combinatorial non-degeneracy invariant cnd(S,R)

equals nd(S).

Remark 3.5. Suppose we have an Enriques surface S and a finite collectionR of smooth rational curves on it. To determine cnd(S,R)

we first determine the set HF(S,R). So, for an elliptic configuration C with irreducible components in R, it will be important to
distinguish whether C is either a fiber or a half-fiber of an elliptic fibration (these are the only possibilities by Lemma 2.5). We have
two strategies:

(1) Apply Lemma 2.6 to the universal K3 cover of S.
(2) Say we have a basis {B1, . . . , B10} of Num(S). As the lattice Num(S) is unimodular, if (Bi · C)/2 is an integer for all i, then C is a

fiber. Otherwise, C is a half-fiber.

Therefore, given S, R, and either the universal cover of S or a basis for Num(S), the problem of evaluating cnd(S,R) can be
automatized with a computer. We implement this in Section 4.
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3.2. Saturated isotropic sequences

Definition 3.6. A non-degenerate isotropic sequence (f1, . . . , fk) is not saturated if it can be extended to a non-degenerate isotropic
sequence of length c > k. It is called saturated otherwise.

We also introduce a relative notion of saturatedness, for which we fix a collection R of smooth rational curves on S.

Definition 3.7. Let (f1, . . . , fk) be a non-degenerate isotropic sequence of classes in HF(S,R). Then, we say that (f1, . . . , fk) is not
R-saturated if it can be extended to a non-degenerate isotropic sequence of length c > k by adding classes in HF(S,R). It is called
R-saturated otherwise.

These definitions are motivated by the fact that saturated sequences in combination with Lemma 2.13 can be used to produce
examples of non-isomorphic Fano models and nonequivalent Kuznetsov components of S. Let us first recall these concepts. Suppose
that (f1, . . . , fc) is a non-degenerate isotropic sequence which is saturated. If c �= 9, then by Lemma 2.13 we can extend it to a
maximal canonical isotropic sequence (f1, . . . , fc, fc+1, . . . , f10) of non-degeneracy still equal to c. This means that, after appropriately
reordering f1, . . . , f10, there exist indices i1, . . . , ic such that fi1 , . . . , fic are classes of half-fibers, and fi for is < i < is+1 has
the form

fi = fis + Ris
1 + · · · + Ris

i−is ,

where the Ris
1 + · · · + Ris

is+1−is−1 form a chain of type Ais+1−is−1 (see Lemma 2.12). As mentioned in the introduction, the vector
1
3 (f1 + · · · + f10) ∈ Num(S) is the class of a nef divisor � called a Fano polarization. The linear series |�| maps S to a
normal surface of degree 10 in P5, called a Fano model of S. This morphism contracts exactly the rational curves of class Ris

k ,
k = 1, . . . , is+1 − is − 1, giving rise to singularities of type Ais+1−is−1. � is very ample if and only if all the fi are classes of half-fibers.
In other words, S admits a very ample Fano polarization if and only if nd(S) = 10 (we refer the interested reader to the discussion in
[8, Section 2.3]).

From the point of view of derived categories, one can use (f1, . . . , f10) as above to construct a subcategory of the bounded derived
category Db(Coh(S)) as follows. Let Fis , 1 ≤ s ≤ c, denote one of the half-fibers of the fibrations corresponding to fis . For is < i < is+1,
define Fi = Fis + Ris

1 + · · · + Ris
i−is . We have that L = (O(F1), . . . ,O(F10)) is an exceptional collection [14, Proposition 3.5] whose

orthogonal complement Ku(S,L) is called a Kuznetsov component of Db(Coh(S)).
Now, suppose that Q1, Q2 are two saturated sequences of length c1 �= c2, with c1 �= 9 �= c2. By Lemma 2.13, Q1 and Q2 can

be extended to canonical maximal isotropic sequences P1, P2 of non-degeneracy c1, c2, respectively. For � = 1, 2, P� defines a Fano
polarization �� and a Fano model S�. The singularities of S� are determined by the curves contracted by ��, which are precisely the
rational curves appearing among the vectors of P�, and there are 10 − c� of such smooth rational curves. Since c1 �= c2, we have that
S1 and S2 have different singularities, so they cannot be isomorphic.

Similarly, P� defines an exceptional collection L� and a Kuznetsov component Ku(S,L�). As shown in [15, Theorem 2.7], up to
shifts and isomorphism there are exactly c� objects in Ku(S,L�) that are 3-spherical or 3-pseudoprojective. Again, since c1 �= c2, we
conclude that Ku(S,L1) �� Ku(S,L2). The same strategy is used in [15, Corollary 2.8] to show that general nodal Enriques surfaces
always admit nonequivalent Kuznetsov components.

Explicit examples of the scenarios above are discussed in Section 7.4.

4. A SageMath code for computing the non-degeneracy invariant

In this section we present the SageMath code CndFinder, available at [20], which computes the set HF(S,R) and consequently
determines the combinatorial non-degeneracy invariant cnd(S,R) for an Enriques surface S and a collection of smooth rational
curves R on S.

4.1. Notation

In what follows and in the code, the objects involved in the computation of the combinatorial non-degeneracy invariant are
categorized according to their type. Here we make this notion precise and fix some notation. In particular, we define the type of
an elliptic configuration, of an elliptic fibration, and of an isotropic sequence.

In the code, we denote extended Dynkin diagrams with just their letter and rank. For instance D8 refers to D̃8. The type of an
elliptic configuration is the associated Dynkin diagram, together with the information of being a fiber or a half-fiber. For example,
A7HF refers to an elliptic configuration whose underlying diagram is Ã7 and which is a half-fiber. Throughout the paper, we use the
more compact notation ÃHF

7 .
Within the code, the type of an elliptic fibration is the formal sum of the types of its singular fibers supported in R. For instance,

in the code, (2 A1HF + 1 D6F) refers to the fibrations whose singular fibers are three elliptic configurations, two of type ÃHF
1

and one of type D̃F
6. Throughout the paper, we use the more compact notation (2ÃHF

1 + D̃F
6).
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Finally, the type of a non-degenerate isotropic sequence is the list of the types of the elliptic fibrations appearing in it. So sequences
of type

4 x (1 A1F + 1 A7F), 1 x (2 A1F + 2 A3HF), 1 x (2 A1HF + 1 D6F)

contain one half-fiber of each of four fibrations of type (ÃF
1 +ÃF

7), one half-fiber of a fibration of type (2ÃF
1 +2ÃHF

3 ), and one half-fiber
of a fibration of type (2ÃHF

1 + D̃F
6). Throughout the paper, we use the more compact notation

4 × (ÃF
1 + ÃF

7), (2ÃF
1 + 2ÃHF

3 ), (2ÃHF
1 + D̃F

6).

Input

The input required is a collection R = {R1, . . . , Rk} of smooth rational curves which span Num(S) over Q, together with a basis of
Num(S) consisting of Q-linear combinations of curves in R. The following command starts the calculation, saving all the data in the
variable named FinalResult.
from nd_sequences_finder import *
IntersectionMatrix=matrix([[...]])
BasisNum=[[...]]
FinalResult=CndFinder(IntersectionMatrix,BasisNum)

Here, IntersectionMatrix is the k × k intersection matrix of R. BasisNum is an array which specifies a basis of Num(S),
written in terms of the generating set R.

The main algorithm

The code proceeds as follows:

(Step 1)
The code identifies the elliptic configurations supported on R, grouped according to their type. As we start with a collection of
smooth rational curves on S, the possible types that can arise are Ã1, . . . , Ã8, D̃4, . . . , D̃8, Ẽ6, Ẽ7, Ẽ8 by Remark 2.4. If N denotes the
intersection matrix of an extended Dynkin diagram as above, then the code lists all the subsets X ⊆ R whose intersection matrix
equals N.

Note that Ã1 and Ã2 admit two distinct geometric realizations each, but their intersection matrices coincide. The code cannot
distinguish between them, but this does not affect the end result for cnd(S,R).

The output of step 1. For each extended Dynkin diagram N as above, this step lists all the subsets Xi ⊆ R with intersection
matrix N. We say that the Xi have type given by the Dynkin diagram associated to N. The code then groups the Xi together according
to their type.

(Step 2)
By construction, there is a unique elliptic configuration Ci supported on Xi. By Lemma 2.5, either Ci or 1

2 Ci is primitive in Num(S).
To decide this, the code applies strategy (2) of Remark 3.5. First, it assumes Ci is not primitive in Num(S), and stores in memory
the array of coefficients of 1/2 ∗ Ci. Then, the code decides whether 1

2 [Ci] ∈ Num(S) by intersecting 1/2 ∗ Ci with every element of
BasisNum. If all the intersections are integers, then 1

2 [Ci] ∈ Num(S). Otherwise, [Ci] is primitive in Num(S), and the code replaces
1/2 ∗ Ci with Ci. This is repeated for each subset Xi ⊆ R obtained in the previous step.

The output of step 2 is the list {C1, . . . , Cn}, where [Ci] is the unique class of a half-fiber associated with Xi. The Ci are grouped
together according to their type.

(Step 3)
The curves {C1, . . . , Cn} from step 2 may satisfy |2Ci| = |2Cj| for i �= j. This happens if and only if Ci · Cj = 0. Step 3 eliminates the
redundancy and lists distinct elliptic fibrations.

The output of step 3 is the list of elements of E(S,R) and HF(S,R) = {[F1], . . . , [Fm]}, together with the choice of the
representative Fi for each class [Fi]. This information is saved in the key EllipticFibrations in the output dictionary. Strictly
speaking, this step is not necessary to compute cnd(S,R), but it arranges the data in a more geometrically meaningful way and it
speeds up the computation significantly. The elliptic fibrations are grouped together depending on their type.

(Step 4)
For each type Ti of elliptic fibration which was found in the previous step, this step computes an integer mi = 1, . . . , 10. The number
mi equals the maximum number of elliptic fibrations of type Ti that can appear in the same isotropic sequence. Like step 3, step 4 is
not strictly necessary to compute cnd(S,R), but it improves the computing time.

The output of step 4 is the same as the output of step 3, with the additional information of the numbers mi associated with each
type of elliptic fibration.
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(Step 5)
This is a recursive step. Roughly, the code starts with a (initially empty) listL of isotropic sequences, and tries to add to each sequence
an element of HF(S,R). Afterward, the code calls the function again, and it stops when extending sequences inL is no longer possible.
This is described in more detail below.

More precisely, a class [Fi] ∈ HF(S,R) can be added to an isotropic sequence ([Fi1], . . . , [Fit ]) if and only if ([Fi1], . . . , [Fit ], [Fi])
satisfies (1). To check this condition efficiently, we introduce an ordering on the set HF(S,R) based on the type of half-fiber classes.

The possible types {T1, . . . , Tr} define a partition of HF(S,R): for i = 1, . . . , r let {[F(i)
j ]}ni

j=1 be the set of elements of HF(S,R) of

type Ti. Given F(i)
j , F(i′)

j′ ∈ HF(S,R), we declare that F(i)
j > F(i′)

j′ provided i > i′, or i = i′ and j > j′.

The isotropic sequences in L are in increasing order. Suppose that an (ordered) isotropic sequence ends with the class [F(ī)
j̄ ]. Then

the code tries to add to it all the elements F(ī)
j in Tī, with j > j̄, and all the elements F(i)

j in Ti with i > ī. If a class is successfully added
to the sequence, the extended sequence is added to L, and the function is called again. Otherwise, the recursion stops.

The output of step 5 is the list L of all isotropic sequences of elements in HF(S,R). In particular, the longest sequences in L have
length equal to cnd(S,R).

(Step 6)
If an isotropic sequence Q ∈ L is not R-saturated, there is another Q′ ∈ L containing all the elements of Q. In this case, Q is
discarded.

The output of step 6 is the list ofR-saturated sequences. In the output dictionary, it is saved in the key SaturatedSequences.

Remark 4.1 (Characteristic 2). The code produces the correct cnd(S,R) also for Enriques surfaces in characteristic 2. First of all, if
C is an elliptic configuration, |C| or |2C| is an elliptic pencil by [4, Theorem 2.2.8]. Moreover, if an elliptic or quasi-elliptic fibration
on an Enriques surface has a multiple fiber, that multiplicity is 2. The reason why we kept Enriques surfaces in characteristic 2
separate from our discussion is because for these the non-degeneracy invariant nd(S) behaves very differently. For instance, there
exist Enriques surfaces in characteristic 2 which satisfy 1 ≤ nd(S) ≤ 3, and all three possibilities occur (see [7, Chapter 6] and [19]).

Remark 4.2. Let D be a big divisor on an Enriques surface S. The function

�(D) = min{D · F | F is a half-fiber on S}
(see [4, Equation (2.4.7)]) encodes information about the linear system |D|. For instance, if D is also nef, then �(D) = 1 if and only if
|D| has at least one base point [4, Theorem 2.4.14]. We refer the reader to [4, Sections 2.4–2.6] for a general discussion. One can define
a version of this invariant which is relative to a configuration R of finitely many smooth rational curves on S. More precisely, we call
the combinatorial �-invariant of D with respect to R the minimum of D · F as [F] ∈ HF(S,R). The calculation of the combinatorial
�-invariant is then a variation of CndFinder (we thank the referee for suggesting this), which is also available at [20]. The function
is called by the following command:
CPhiFinder(IntersectionMatrix,BasisNum,DivisorsList)

The input is the same as CndFinder, with the addition of a list of (big) divisors D1, . . . , D� of which we want to compute the
combinatorial �-invariant. Each Di is specified as a linear combination with rational coefficients of the smooth rational curves in R.

5. Enriques surfaces which are Z2
2-cover of P2

We now begin our series of examples of Enriques surfaces where we apply the code described in Section 4. For simplicity, we work
over C.

Definition 5.1. Consider the blow up of P2 at three not-aligned points Bl3 P2, which comes with three distinct rulings πi : Bl3 P2 →
P1, i = 1, 2, 3. For each ruling πi, choose two distinct fibers �i, �′

i which are smooth lines, so that the overall arrangement
{�1, �′

1, �2, �′
2, �3, �′

3} of six lines on Bl3 P2 does not have triple intersection points. Write Z2
2 = {e, a, b, c}, where e is the identity

element. Let S → Bl3 P2 be the Z2
2-cover with the following building data [23, Definition 2.1]:

Da = �1 + �′
1, Db = �2 + �′

2, Dc = �3 + �′
3.

One can verify using tools in [23] that S is an Enriques surface (see [26, Definition 2.1] for details). Adopting the same name
introduced in [22], we call S a D1,6-polarized Enriques surface. D1,6 denotes the sublattice of 〈−1〉 ⊕ 〈1〉⊕6 of vectors with even
square, and the above Enriques surface S admits a primitive embedding of D1,6 into Pic(S) satisfying specific geometric properties
(see [22, Section 3.1] for details). We will not need such a lattice-theoretic characterization, and the covering construction given will
suffice for our purposes.

Remark 5.2. Compactifications of the moduli space of D1,6-polarized Enriques surfaces were studied in [22, 26]. The universal K3
covers of the D1,6-polarized Enriques surfaces were studied in [25] from the point of view of their automorphisms.
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Figure 1. Z
2
2-cover of the six (−1)-curves in Bl3 P2. The points correspond to the branching points.
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Figure 2. Dual graph of the 12 (−2)-curves on a D1,6-polarized Enriques surface.

Lemma 5.3. Let S be a D1,6-polarized Enriques surface and let S → Bl3 P2 be the corresponding Z2
2-cover. Then the preimage of the six

(−1)-curves in Bl3 P gives a configuration of (−2)-curves whose dual graph is in Figure 2.

Proof. The Z2
2-cover S → Bl3 P2 can be realized as the composition of two double covers S → S′ → Bl3 P2: the first double cover

is branched along �1 + �′
1 + �2 + �′

2, and the second one is branched along the preimage of �3 + �′
3 and the four A1 singularities

of S′. The preimage of the six (−1)-curves in Bl3 P2 is computed step by step in Figure 1, and on the right we can see the resulting
configuration on the Enriques surface S.

Lemma 5.4. Let S be a D1,6-polarized Enriques surface and let S → Bl3 P2 be the correspondingZ2
2-cover branched along

∑3
i=1(�i+�′

i).
Let Ei, E′

i ⊆ S be the preimages of �i, �′
i respectively. Then Ei, E′

i are half-fibers. Additionally, we have the following numerical equivalences:

E1 ≡ E′
1 ≡ 1

2
(R1 + R2 + R3 + R4) ≡ 1

2
(R7 + R8 + R9 + R10),

E2 ≡ E′
2 ≡ 1

2
(R3 + R4 + R5 + R6) ≡ 1

2
(R9 + R10 + R11 + R12),

E3 ≡ E′
3 ≡ 1

2
(R5 + R6 + R7 + R8) ≡ 1

2
(R11 + R12 + R1 + R2).

Proof. From the bi-double cover construction in the proof of Lemma 5.3 we can see that Ei, E′
i are genus one curves and that Ei ·Ej =

Ei · E′
j = E′

i · E′
j = 1 for i �= j. This guarantees that Ei, E′

i are half-fibers. The numerical equivalence can be understood as follows.
R1 + R2 + R3 + R4 is an arithmetic genus one curve which intersects E1 giving zero. So R1 + R2 + R3 + R4 ∈ |2E1| = |2E′

1|. The
other equivalences are analogous.

We now compute a Z-basis for Num(S).

Lemma 5.5. Let S be a D1,6-polarized Enriques surface, and consider the smooth rational curves R1, . . . , R12 as in Figure 2. Then a
Z-basis for Num(S) is given by

R1, R2, R3, R5, R7, R9,
1
2
(R1 + R3 + R5 + R7 + R9 + R11),
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E1 ≡ 1
2
(R1 + R2 + R3 + R4), E2 ≡ 1

2
(R3 + R4 + R5 + R6), E3 ≡ 1

2
(R5 + R6 + R7 + R8).

Proof. We follow the strategy of Remark 2.1 to determine a basis of Num(S). Let L be the sublattice of Num(S) generated by the
following elements:

R1, R2, R3, R5, R7, R9, R11, E1, E2, E3.
Let B be the 10 × 10 matrix of intersection of the above generators of L. As the determinant of B is nonzero, we have that the lattice
L has rank 10. As Num(S) is an even overlattice of L, it corresponds to an isotropic subgroup of the discriminant group L∗/L, which
we now compute. The rows of B−1 generate L∗, and to better identify a set of generators of L∗/L we compute the Smith normal form
of B−1. The function smith_form() in SageMath returns two matrices M1, M2 ∈ SL10(Z) such that M1B−1M2 is the diagonal
matrix diag

(
1, . . . , 1, 1

2 , 1
2
)
. This implies that L∗/L ∼= Z2

2, and the rows of M1B−1 give an alternative basis for L∗. Using these we can
find that the isotropic vectors of L∗/L are the classes of:

1
2
(R1 + R3 + R5 + R7 + R9 + R11),

1
2
(R2 + R3 + R5 + R7 + R9 + R11).

Note that these cannot both be in Num(S), otherwise 1
2 (R1 + R2) would be an element of Num(S), which is impossible as it has odd

square. Moreover, one of the two vectors above has to be in Num(S), so up to relabeling R1 and R2 we fix that 1
2 (R1 + R3 + R5 +

R7 + R9 + R11) ∈ Num(S), and together with L they generate Num(S). To obtain the claimed Z-basis, we can then drop the curve
R11, which became redundant.

Proposition 5.6. Let S be D1,6-polarized Enriques surface and letR be the configuration of 12 smooth rational curves on S as in Figure 2.
The elliptic fibrations in E(S,R) are

3 × (2ÃF
3), 24 × (ÃHF

3 ), 32 × (ÃF
5), 32 × (ÃHF

5 ), 12 × (D̃F
4), 24 × (D̃F

5), 48 × (D̃F
6).

We have that cnd(S,R) = 10, and therefore nd(S) = 10. An explicit isotropic sequence realizing cnd(S,R) = 10 is given by the
numerical equivalence classes of:

E1 ≡ 1
2
(R1 + R2 + R3 + R4) (ÃF

3)

E2 ≡ 1
2
(R3 + R4 + R5 + R6) (ÃF

3)

E3 ≡ 1
2
(R5 + R6 + R7 + R8) (ÃF

3)

1
2
(R1 + R3 + R5 + R8 + R9 + R12) (ÃF

5)

1
2
(R1 + R4 + R5 + R7 + R9 + R12) (ÃF

5)

1
2
(R1 + R4 + R5 + R8 + R9 + R11) (ÃF

5)

1
2
(R1 + R3 + R5 + R7 + R9 + R11) (ÃF

5)

1
2
(2R1 + R3 + R4 + R11 + R12) (D̃F

4)

1
2
(R3 + R4 + 2R5 + R7 + R8) (D̃F

4)

1
2
(R7 + R8 + 2R9 + R11 + R12) (D̃F

4).

Remark 5.7. cnd(S,R) = 10 can be realized exactly in 16 different ways, and these involve the same type of elliptic fibrations.

Remark 5.8. Let S be a D1,6-polarized Enriques surface. S is not general nodal because, for instance, the (−2)-curves R1, R3 are not
equivalent modulo 2 Num(S): if by contradiction R1−R3 ∈ 2 Num(S), then (R1−R3)·R2 should be even. However, (R1−R3)·R2 = 1.
Moreover, a general S does not have finite automorphism group because Enriques surfaces with finite automorphism group come at
most in a one-dimensional family. However, we have a 4-dimensional family of D1,6-polarized Enriques surfaces. Alternatively, the
automorphism group of a D1,6-polarized Enriques surface is infinite because the dual graph of smooth rational curves in Figure 2
is not a subgraph of the graphs in Figures 5–11. These are the dual graphs of all smooth rational curves on Enriques surfaces with
finite automorphism group, which are discussed in Section 7. Finally, a very general S is not Hessian. To prove this, let X → S be the
universal K3 covering. Then, by [25, Theorem 4.6 (iii)] we know that the discriminant group of NS(X) is isomorphic to Z2

2 ⊕Z2
4. On

the other hand, the Néron–Severi group of the K3 cover of a Hessian Enriques surface has discriminant group isomorphic to Z4
2 ⊕Z3

by [13, Section 4].
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Figure 3. Dual graph of the rational curves R1, . . . , R12 in [17, Example 1].

6. Enriques surfaces with eight disjoint smooth rational curves

In [17] Mendes Lopes and Pardini classified complex Enriques surfaces with eight disjoint smooth rational curves. These form two
2-dimensional families, both obtained from a product of two elliptic curves, A := D1 × D2, as the minimal resolution of a finite
quotient of A. We recall their constructions, which come with a distinguished configuration of smooth rational curves, and apply
our code to these configurations.

6.1. Example 1

Let a ∈ D1 and b ∈ D2 be 2-torsion points, and let e1, e2 be generators for Z2
2. Let e1, e2 act on A as follows:

e1 · (x1, x2) = (−x1, x2 + b),
e2 · (x1, x2) = (x1 + a, −x2).

The quotient of A by this Z2
2-action is a surface 	 with eight A1 singularities. Its minimal resolution S is an Enriques surface whose

universal cover X, a Kummer surface, is the resolution of A/(e1 + e2) at its 16 singular points. S admits two elliptic fibrations induced
by the projections pi : 	 → Di/Z

2
2

∼= P1, i = 1, 2. Each pi has two double fibers Fi, F′
i supported on two smooth rational curves. Four

of the A1 singularities lie on Fi, and the other four on F′
i . Moreover, each F1, F′

1 intersects each F2, F′
2 in exactly two A1 singularities.

Therefore, the elliptic fibration fi : S → 	
pi−→ P1 has two fibers of Kodaira type D̃4. The configuration of 12 smooth rational curves

R1, . . . , R12 on S which arises from the singular fibers of f1, f2 is pictured in Figure 3.

Proposition 6.1. For an Enriques surface S as above, let R1, . . . , R12 be the 12 smooth rational curves as in Figure 3. Then the lattice
Num(S) is generated by

R1, R2, R3, R4, R5, R7, R9,

A = 1
2
(R2 + R3 + R5 + R6), B = 1

2
(R2 + R3 + R11 + R12),

C = 1
2
(R1 + R2 + R4 + R5 + R7 + R8 + R10 + R11).

Proof. By Lemma 2.7, the elliptic configurations with dual graph D̃4 are divisible by 2 in Num(S). Hence, A and B are elements of
Num(S).

Now consider the Ã7-type diagrams in Figure 3 and assume by contradiction that they are all half-fibers. By Lemma 2.6, the
preimages of R1 + R2 + R4 + R5 + R7 + R8 + R10 + R11 and R1 + R3 + R4 + R5 + R7 + R8 + R10 + R11 are connected in the covering
K3, and this forces the preimage of F1 = R1 + R2 + R3 + R4 to be disconnected, which means that F1 is a fiber. On the other hand,
also F2 = R2 + R3 + 2R4 + R5 + R6 is a fiber, which creates a contradiction as F1 · F2 = 2 is not divisible by 4. This shows that there
exists a curve of type Ã7 which is a fiber. Up to relabeling R2 and R3, we can fix that R1 + R2 + R4 + R5 + R7 + R8 + R10 + R11 is a
fiber.

Finally, we can conclude that the elements in Num(S) in the statement form a basis, since their intersection matrix has
determinant 1.

Proposition 6.2. Let S be an Enriques surface as in Section 6.1 and let R be the configuration of 12 smooth rational curves on S as in
Figure 3. The elliptic fibrations in E(S,R) are

2 × (2ÃHF
3 ), 8 × (ÃF

7), 8 × (ÃHF
7 ), 2 × (2D̃F

4), 8 × (D̃F
6), 16 × (D̃F

8).
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Figure 4. Dual graph of the rational curves R1, . . . , R12 in [17, Example 2]. The colored edges joining the vetices 1, 12, and 6, 7 indicate intersection 2 between the
corresponding curves.

We have that cnd(S,R) = 8, and therefore nd(S) ≥ 8. An explicit isotropic sequence realizing cnd(S,R) = 8 is given by the
numerical equivalence classes of:

R1 + R2 + R3 + R4 (ÃHF
3 )

1
2
(R1 + R2 + R4 + R5 + R7 + R8 + R10 + R11) (ÃF

7)

1
2
(R1 + R2 + R4 + R5 + R7 + R9 + R10 + R12) (ÃF

7)

1
2
(R1 + R3 + R4 + R5 + R7 + R8 + R10 + R12) (ÃF

7)

1
2
(R1 + R3 + R4 + R5 + R7 + R9 + R10 + R11) (ÃF

7)

1
2
(R2 + R3 + 2R4 + R5 + R6) (D̃F

4)

1
2
(2R1 + R2 + R3 + R11 + R12) (D̃F

4)

1
2
(R2 + R3 + 2R4 + 2R5 + 2R7 + R8 + R9) (D̃F

6).

Remark 6.3. cnd(S,R) = 8 can be realized exactly by 8 different isotropic sequences, which all have the same type. There are three
other types of R-saturated sequences in Figure 3:

• 24 sequences of length 7 and type (2ÃHF
3 ), 4 × (ÃF

7), 2 × (2D̃F
4).

• 8 sequences of length 5 and type 4 × (ÃF
7), (ÃHF

7 ).
• 32 sequences of length 5 and type 2 × (ÃF

7), (D̃F
4), (D̃F

6), (D̃F
8).

6.2. Example 2

Let ai ∈ D1 and bi ∈ D2, i = 1, 2, 3, denote the points of order 2, and let e1, e2, e3 be the standard generators for Z3
2. Let Z3

2 act on A
by

e1 · (x1, x2) = (x1 + a1, x2 + b1),
e2 · (x1, x2) = (x1 + a2, −x2),
e3 · (x1, x2) = (−x1, x2 + b3).

Again, we denote by π : A → (D1 × D2)/Z
3
2 =: 	 the quotient map. One shows that 	 has eight A1 singularities and

its minimal resolution S is an Enriques surface with eight disjoint smooth rational curves. The projections of A onto the
two factors descend to elliptic fibrations fi : S → 	

pi−→ P1. For i = 1, 2, pi has two double fibers Fi, F′
i , each pass-

ing through four A1 singularities of 	. F1 intersects F2 in the four A1 singularities, and F′
2 in two smooth points of 	. F′

1
intersects F′

2 in the four A1 singularities, and F2 in two smooth points of 	. Therefore, each elliptic fibrations fi has two
fibers of type D̃4. The dual graph of the rational curves R1, . . . , R12 arising from the singular fibers of f1, f2 is depicted in
Figure 4.
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Proposition 6.4. For an Enriques surface S as above, let R1, . . . , R12 be the 12 smooth rational curves as in Figure 4. Then the lattice
Num(S) is generated by

R1, R2, R3, R4, R7, R8,

A = 1
2
(R2 + R3 + R4 + R5), B = 1

2
(R1 + R2 + R3 + R6), C = 1

2
(R7 + R8 + R9 + R12),

1
2
(R1 + R2 + R5 + R8 + R10) + 1

4
(R2 + R3 + R4 + R5).

Proof. The elliptic configurations of type D̃4 on S guarantee that R2 + R3 + R4 + R5 and R8 + R9 + R10 + R11 are elements of
2 Num(S). We can determine more elliptic configurations in 2 Num(S) as follows. Consider the elliptic configurations of type Ã3 on
the right-hand side of Figure 4, and assume by contradiction that these are all half-fibers. Then, by Lemma 2.6, the preimages of
R1 +R2 +R3 +R6 and R1 +R2 +R4 +R6 are connected. This forces the preimage of R1 +R3 +R4 +R6 to be disconnected, which is a
contradiction. As there exist elliptic configurations of type Ã3 on the right-hand side of Figure 4, we can assume up to relabeling that
R1 + R2 + R3 + R6 ∈ 2 Num(S). An analogous argument for the elliptic configurations of type Ã3 on the left-hand side of Figure 4
yields R7 + R8 + R9 + R12 ∈ 2 Num(S).

Now, define L ⊆ Num(S) to be the rank 10 sublattice with basis given by

R1, R2, R3, R4, R7, R8, R10, A, B, C.

The discriminant group of L is Z2
2, so L � Num(S) and we look for an element in Num(S) \ L by studying the isotropic elements in

L∗/L. Using the same strategy as in the proof of Lemma 5.5, we find that the isotropic vectors in L∗/L are the classes of

1
2
(R1 + R2 + R5 + R8 + R10) + 1

4
(R2 + R3 + R4 + R5),

1
2
(R1 + R3 + R5 + R8 + R10) + 1

4
(R2 + R3 + R4 + R5).

These cannot simultaneously be in Num(S), but one of them must be. So, up to relabeling R2, R3 we fix that the first one is in Num(S).
Adding this vector to the generating set of L and dropping R10, which is now redundant, gives the claimed basis.

Proposition 6.5. Let S be an Enriques surface as in Section 6.2 and let R be the configuration of 12 smooth rational curves on S as in
Figure 4. The elliptic fibrations in E(S,R) are

1 × (2ÃHF
1 ), 4 × (ÃF

3), 8 × (ÃHF
3 ), 2 × (2D̃F

4).

We have that cnd(S,R) = 5, and therefore nd(S) ≥ 5. An explicit isotropic sequence realizing cnd(S,R) = 5 is given by the
numerical equivalence classes of:

1
2
(R1 + R2 + R3 + R6) (ÃF

3)
1
2
(R1 + R4 + R5 + R6) (ÃF

3)

1
2
(R7 + R8 + R9 + R12) (ÃF

3)
1
2
(R7 + R10 + R11 + R12) (ÃF

3)

R1 + R12 (ÃHF
1 ).

Remark 6.6. The only other isotropic sequences realizing cnd(S,R) = 5 are obtained by replacing R1 + R12 with either 1
2 (2R1 +

R2 + R3 + R4 + R5) or 1
2 (2R6 + R2 + R3 + R4 + R5). There is another type of R-saturated sequences which has length 3 and has

type 2 × (ÃF
3), (ÃHF

3 ).

7. Enriques surfaces with finite automorphism group, revisited

In this section, we revisit the Enriques surfaces with finite automorphism group. These were classified in [12] into seven types,
and their non-degeneracy invariants were computed in [7]. Our code re-computes these non-degeneracy invariants and provides
additional geometric information as outlined in the introduction. We work over C. For the realizability of these examples in positive
characteristic we refer to the discussion in [16].

We will not review the constructions of Kondō’s examples because we only need the (finite) dual graphs of all smooth rational
curves R one these surfaces. We recall these graphs in Section 7.5. For each Enriques surface S with finite automorphism group, we
provide a basis B of Num(S) using Q-linear combinations of elements in R. Afterwards, we run our computer code with R and B
to compute cnd(S,R), E(S,R), and the R-saturated sequences. As all the half-fibers are supported on R by [12], this recovers nd(S)
and all the elliptic fibrations, and computes the saturated sequences.
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7.1. Bases for the lattices Num(S)

Lemma 7.1. Let S be an Enriques surface with finite automorphism group and consider the configuration of smooth rational curves on
S in the corresponding figure in Section 7.5. Then, for each type, a basis for Num(S) is given by the numerical classes of the curves in
Table 2.

Proof. We first need to verify that for each type, the Q-cycles listed in the second column of Table 2 are actual elements of Num(S).
This is immediate for type VI. In type I, we have that A, B, C are elements of Num(S) because 2A, 2B, 2C are elliptic configurations
with dual graphs D̃8, D̃8, Ẽ7, respectively, which cannot be half-fibers by Lemma 2.7. A similar argument applies in type V. In type
IV we have that R3 + R4 + R13 + R16 + R19 is a fiber by [7, Proposition 8.9.16]. In type VII, all the elliptic configurations with dual
graph Ã4 are fibers by [7, Proposition 8.9.28], so R1 + R2 + R3 + R4 + R15 is divisible by 2 in Num(S).

For type II, 2A is an elliptic configuration with dual graph D̃5, hence A ∈ Num(S). Consider the arrangements of nine curves
among R1, . . . , R12 whose dual graph is Ã8. By [7, Proposition 8.9.9] we know that among these eight possible configurations, four
are fibers and the other four are half-fibers. So, up to relabeling, we can assume that

R1 + R2 + R3 + R5 + R6 + R7 + R9 + R10 + R11

is a fiber, hence B ∈ Num(S).
For type III, the subgraph 
 induced by the vertices R1, . . . , R12 is isomorphic to the graph in Figure 3. We fix the following

bijection between the curves in Figure 3 and Figure 7:

[7], Type III (Figure 7) 1 2 3 4 5 6 7 8 9 10 11 12
[17], Example I (Figure 3) 1 2 4 6 7 9 10 11 3 12 5 8

Moreover, the group of symmetries of the diagram in Figure 7 is isomorphic to that of 
 [7, Section 8.9], and the transposition
(R2 R9) on 
 corresponds to the product of transpositions

σ := (R2 R9)(R15 R16)(R19 R20).
Then, the same argument as that of Proposition 6.1 applies: the only subtlety is the choice of C up to a relabeling of R2 and R9,
which corresponds to a choice between C and σ(C). Since σ does not affect any other element in Table 2, type III, we can choose
C ∈ 2 Num(S).

To conclude the proof, it is enough to check for each type that the determinant of the 10 × 10 intersection matrix associated with
the corresponding 10 curves is equal to ±1.

7.2. Output of the code: isotropic sequences

The next proposition follows by running our code with R and the bases of Num(S) given in Table 2.

Proposition 7.2. Let S be the Enriques surface with finite automorphism group. Then, for each type, Table 3 gives an isotropic sequence
realizing nd(S), together with the number of non-degenerate isotropic sequences of length nd(S). For the labeling of the curves, we refer
to the figures in Section 7.5.

7.3. Geometric considerations from the output data

We report some geometric considerations based on the data output of the code. This complements the data of [7, Section 8.9]. In
particular, the saturated sequences of each example are collected in Tables 4–10.

7.3.1. Type I
The Enriques surface S has the following elliptic fibrations (this agrees with [7, Proposition 8.9.6]):

1 × (ÃF
1 + ÃHF

7 ), 2 × (ÃHF
1 + ẼF

7), 2 × (D̃F
8), 4 × (̃EF

8).
The unique fibration of type ÃF

1 +ÃHF
7 is (1/2(R10 +R11), R1 +R2 +R3 +R4 +R5 +R6 +R7 +R8). The two fibrations of type ÃHF

1 + ẼF
7

are (R9+R10, 1/2(R2+2R3+3R4+4R5+3R6+2R7+1R8+2R12)) and (R11+R12, 1/2(4R1+3R2+2R3+1R4+R6+2R7+3R8+2R9)).

7.3.2. Type II
We first recover that S has the following elliptic fibrations, agreeing with [7, Proposition 8.9.9]:

4 × (ÃHF
8 ), 4 × (ÃF

8), 6 × (D̃F
8), 3 × (ÃHF

3 + D̃F
5).

The three fibrations of type ÃHF
3 + D̃F

5 are (R1 +R2 +R3 +R4, 1/2(R6 +2R7 +R8 +2R9 +R10 +R12)), (R5 +R6 +R7 +R8, 1/2(2R1 +
R2 + R4 + R10 + 2R11 + R12)) and (R9 + R10 + R11 + R12, 1/2(R2 + 2R3 + R4 + 2R5 + R6 + R8)).
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Table 2. Bases of Num(S) for each type of Enriques surface with finite automorphism group. The labeling of the curves refers to that of the figures in Section 7.5.

Type Basis of Num(S)

I

R1, R2, R3, R4, R5, R6, R7,
A = 1

2 (2R1 + R2 + R4 + 2R5 + 2R6 + 2R7 + 2R8 + R9 + R12),
B = 1

2 (2R1 + 2R2 + 2R3 + 2R4 + 2R5 + R6 + R8 + R9 + R12),
C = 1

2 (4R1 + 3R2 + 2R3 + R4 + R6 + 2R7 + 3R8 + 2R9).

II
R1, R2, R3, R4, R5, R7, R9, R10,
A = 1

2 (R2 + 2R3 + R4 + 2R5 + R6 + R8),
B = 1

2 (R1 + R2 + R3 + R5 + R6 + R7 + R9 + R10 + R11).

III
R1, R2, R3, R5, R6, R9, R11,
A = 1

2 (R2 + R4 + R9 + R11), B = 1
2 (R2 + R8 + R9 + R10),

C = 1
2 (R1 + R2 + R3 + R5 + R7 + R8 + R11 + R12).

IV
R1, R2, R3, R5, R6, R9, R11, R13, R19,
1
2 (R3 + R4 + R13 + R16 + R19).

V
R1, R2, R3, R4, R5, R7, R9, R17,
A = 1

2 (2R1 + R2 + 2R4 + 4R5 + 3R6 + 3R7 + 2R8 + R9),
B = 1

2 (R1 + R3 + 2R4 + 3R5 + 2R6 + 2R7 + R8).

VI R1, R2, R3, R4, R5, R7, R11, R12, R14, R17.

VII
R1, R2, R3, R4, R5, R6, R7, R9, R11,
1
2 (R1 + R2 + R3 + R4 + R15).

7.3.3. Type III
As computed in [7, Proposition 8.9.13], S has the following elliptic fibrations:

8 × (ÃHF
1 + ÃHF

7 ), 8 × (ÃF
1 + ÃF

7), 16 × (D̃F
8), 2 × (2D̃F

4), 8 × (2ÃHF
1 + D̃F

6), 2 × (2ÃF
1 + 2ÃHF

3 ).

The two fibrations of type (2ÃF
1 + 2ÃHF

3 ) are (1/2(R13 + R17), 1/2(R14 + R18), R1 + R2 + R3 + R9, R5 + R6 + R7 + R12) and
(1/2(R15 + R19), 1/2(R16 + R20), R1 + R7 + R8 + R10, R3 + R4 + R5 + R11). The eight fibrations of type (ÃF

1 + ÃF
7) and the eight

fibrations of type (ÃHF
1 + ÃHF

7 ) are given by a choice of one of the blue edges in Figure 7, together with a suitable ÃF
7 or ÃHF

7 . The
eight fibrations of type (2ÃHF

1 + D̃F
6) are given by the following pairs of ÃHF

1 together with a suitable D̃F
6: (R2 + R15, R9 + R16),

(R2 +R20, R9 +R19), (R4 +R17, R11 +R14), (R4 +R18, R11 +R13), (R6 +R19, R12 +R16), (R6 +R20, R12 +R15), (R8 +R13, R10 +R14),
(R8 + R18, R10 + R17).

7.3.4. Type IV
S has the following elliptic fibrations (this agrees with [7, Proposition 8.9.19]):

10 × (2D̃F
4), 40 × (ÃHF

3 + D̃F
5), 16 × (2ÃF

4), 16 × (2ÃHF
4 ), 5 × (2ÃHF

1 + 2ÃF
3).

The five fibrations of type (2ÃHF
1 +2ÃF

3) are (R2 +R10, R4 +R9, 1/2(R5 +R7 +R11 +R12), 1/2(R13 +R14 +R19 +R20)), (R5 +R15, R7 +
R16, 1/2(R9 +R10 +R17 +R18), 1/2(R1 +R3 +R13 +R14)), (R17 +R19, R18 +R20, 1/2(R5 +R6 +R7 +R8), 1/2(R1 +R2 +R3 +R4)),
(R6 +R13, R8 +R14, 1/2(R11 +R17 +R12 +R18), 1/2(R2 +R15 +R4 +R16)), (R1 +R11, R3 +R12, 1/2(R6 +R9 +R8 +R10), 1/2(R15 +
R19 + R16 + R20)). There are in total 64 diagrams of type Ã4, 32 of them are fibers and 32 are half-fibers. In the notation of [7], they
can be listed by choosing an element in

{R1, R3} × {R2, R4} × {R15, R16} × {R20, R19} × {R13, R14},

or an element in

{R11, R12} × {R9, R10} × {R5, R7} × {R17, R18} × {R6, R8}.

Using the basis of Num(S) in Table 2 it is possible to check which one of them is a fiber and which an half-fiber.
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Table 3. Examples of isotropic sequences realizing nd(S) for the Enriques surfaces with finite automorphism group. The third column reports the number of non-degenerate
isotropic sequences of length nd(S). For each isotropic class [C], in bold we give the dual graph of the elliptic configuration C or 2C.

Type nd # Example of isotropic sequence

I 4 2

1
2 (R10 + R11) (ÃF

1)(ÃF
1)(ÃF
1), R9 + R10 (ÃHF

1 )(ÃHF
1 )(ÃHF
1 ),

1
2 (R1 + R2 + R4 + R5 + R6 + R7 + R8 + R9 + R12) (D̃F

8)(D̃F
8)(D̃F
8),

1
2 (R1 + R2 + R3 + R4 + R5 + R6 + R8 + R9 + R12) (D̃F

8)(D̃F
8)(D̃F
8).

II 7 1

R1 + R2 + R3 + R4 (ÃHF
3 )(ÃHF
3 )(ÃHF
3 ), R5 + R6 + R7 + R8 (ÃHF

3 )(ÃHF
3 )(ÃHF
3 ),

R9 + R10 + R11 + R12 (ÃHF
3 )(ÃHF
3 )(ÃHF
3 ),

1
2 (R1 + R2 + R3 + R5 + R6 + R7 + R9 + R10 + R11) (ÃF

8)(ÃF
8)(ÃF
8),

1
2 (R1 + R2 + R3 + R5 + R7 + R8 + R9 + R11 + R12) (ÃF

8)(ÃF
8)(ÃF
8),

1
2 (R1 + R3 + R4 + R5 + R6 + R7 + R9 + R11 + R12) (ÃF

8)(ÃF
8)(ÃF
8),

1
2 (R1 + R3 + R4 + R5 + R7 + R8 + R9 + R10 + R11) (ÃF

8)(ÃF
8)(ÃF
8).

III 8 8

R1 + R2 + R3 + R9 (ÃHF
3 )(ÃHF
3 )(ÃHF
3 ), 1

2 (R2 + 2R3 + R4 + R9 + R11) (D̃F
4)(D̃F
4)(D̃F
4),

1
2 (2R1 + R2 + R8 + R9 + R10) (D̃F

4)(D̃F
4)(D̃F
4),

1
2 (R1 + R2 + R3 + R4 + R5 + R6 + R7 + R8) (ÃF

7)(ÃF
7)(ÃF
7),

1
2 (R1 + R2 + R3 + R4 + R5 + R7 + R10 + R12) (ÃF

7)(ÃF
7)(ÃF
7),

1
2 (R1 + R3 + R4 + R5 + R7 + R8 + R9 + R12) (ÃF

7)(ÃF
7)(ÃF
7),

1
2 (R1 + R3 + R4 + R5 + R6 + R7 + R9 + R10) (ÃF

7)(ÃF
7)(ÃF
7),

1
2 (R2 + 2R3 + 2R4 + 2R5 + R6 + R9 + R12) (D̃F

6)(D̃F
6)(D̃F
6).

IV 10 16

R1 + R11 (ÃHF
1 )(ÃHF
1 )(ÃHF
1 ), R2 + R10 (ÃHF

1 )(ÃHF
1 )(ÃHF
1 ), R5 + R15 (ÃHF

1 )(ÃHF
1 )(ÃHF
1 ),

R6 + R13 (ÃHF
1 )(ÃHF
1 )(ÃHF
1 ), R17 + R19 (ÃHF

1 )(ÃHF
1 )(ÃHF
1 ), 1

2 (R1 + R2 + R14 + R15 + R19) (ÃF
4)(ÃF
4)(ÃF
4),

1
2 (R1 + R2 + R13 + R15 + R20) (ÃF

4)(ÃF
4)(ÃF
4), 1

2 (R1 + R2 + R13 + R16 + R19) (ÃF
4)(ÃF
4)(ÃF
4),

1
2 (R1 + R4 + R13 + R15 + R19) (ÃF

4)(ÃF
4)(ÃF
4), 1

2 (R2 + R3 + R13 + R15 + R19) (ÃF
4)(ÃF
4)(ÃF
4).

V 7 20

1
2 (R11 + R12) (ÃF

1)(ÃF
1)(ÃF
1), 1

2 (R11 + R13) (ÃF
1)(ÃF
1)(ÃF
1), 1

2 (R11 + R20) (ÃF
1)(ÃF
1)(ÃF
1),

1
2 (R14 + R17) (ÃF

1)(ÃF
1)(ÃF
1), 1

2 (R15 + R18) (ÃF
1)(ÃF
1)(ÃF
1), 1

2 (R16 + R19) (ÃF
1)(ÃF
1)(ÃF
1),

R8 + R11 (ÃHF
1 )(ÃHF
1 )(ÃHF
1 ).

VI 10 1
R1 + R20 (ÃHF

1 )(ÃHF
1 )(ÃHF
1 ), R2 + R12 (ÃHF

1 )(ÃHF
1 )(ÃHF
1 ), R3 + R17 (ÃHF

1 )(ÃHF
1 )(ÃHF
1 ),

R4 + R18 (ÃHF
1 )(ÃHF
1 )(ÃHF
1 ), R5 + R13 (ÃHF

1 )(ÃHF
1 )(ÃHF
1 ), R6 + R19 (ÃHF

1 )(ÃHF
1 )(ÃHF
1 ),

R7 + R14 (ÃHF
1 )(ÃHF
1 )(ÃHF
1 ), R8 + R11 (ÃHF

1 )(ÃHF
1 )(ÃHF
1 ), R9 + R15 (ÃHF

1 )(ÃHF
1 )(ÃHF
1 ), R10 + R16 (ÃHF

1 )(ÃHF
1 )(ÃHF
1 ).

VII 10 5

1
2 (R16 + R17) (ÃF

1)(ÃF
1)(ÃF
1), 1

2 (R16 + R18) (ÃF
1)(ÃF
1)(ÃF
1),

1
2 (R16 + R19) (ÃF

1)(ÃF
1)(ÃF
1), 1

2 (R16 + R20) (ÃF
1)(ÃF
1)(ÃF
1),

1
2 (R1 + R2 + R3 + R4 + R15) (ÃF

4)(ÃF
4)(ÃF
4), 1

2 (R1 + R2 + R9 + R10 + R12) (ÃF
4)(ÃF
4)(ÃF
4),

1
2 (R1 + R7 + R8 + R9 + R14) (ÃF

4)(ÃF
4)(ÃF
4), 1

2 (R1 + R5 + R6 + R14 + R15) (ÃF
4)(ÃF
4)(ÃF
4),

1
2 (R2 + R3 + R7 + R13 + R14) (ÃF

4)(ÃF
4)(ÃF
4), 1

2 (R2 + R6 + R10 + R11 + R14) (ÃF
4)(ÃF
4)(ÃF
4).

7.3.5. Type V
S has the following elliptic fibrations (this agrees with [7, Proposition 8.9.23]):

4 × (ÃHF
1 + ÃF

2 + ÃHF
5 ), 12 × (ÃHF

1 + ẼF
7), 6 × (ÃF

1 + ÃHF
1 + D̃F

6), 3 × (ÃF
1 + ÃF

7), 4 × (ÃF
2 + ẼF

6).
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Table 4. Saturated sequences on the Enriques surface [12, (3.1) Example I].

Length Fibrations in the sequence Cardinality

4 (ÃF
1 + ÃHF

7 ), (ÃHF
1 + ẼF

7), 2 × (D̃F
8) 2

3 (ÃHF
1 + ẼF

7), (D̃F
8), (̃EF

8) 4

Table 5. Saturated sequences on the Enriques surface [12, (3.2) Example II].

Length Fibrations in the sequence Cardinality

7 3 × (ÃHF
3 + D̃F

5), 4 × (ÃF
8) 1

5 2 × (ÃHF
3 + D̃F

5), 2 × (ÃF
8), (D̃F

8) 6

4 3 × (ÃF
8), (ÃHF

8 ) 4

Table 6. Saturated sequences on the Enriques surface [12, (3.3) Example III].

Length Fibrations in the sequence Cardinality

8 4 × (ÃF
1 + ÃF

7), (2ÃF
1 + 2ÃHF

3 ), (2ÃHF
1 + D̃F

6), 2 × (2D̃F
4) 8

7 4 × (ÃF
1 + ÃF

7), (2ÃF
1 + 2ÃHF

3 ), 2 × (2D̃F
4) 24

5 4 × (ÃF
1 + ÃF

7), (ÃHF
1 + ÃHF

7 ) 8

5 2 × (ÃF
1 + ÃF

7), (2ÃHF
1 + D̃F

6), (2D̃F
4), (D̃F

8) 32

Table 7. Saturated sequences on the Enriques surface [12, (3.4) Example IV].

Length Fibrations in the sequence Cardinality

10 5 × (2ÃHF
1 + 2ÃF

3), 5 × (2ÃF
4) 16

9 5 × (2ÃHF
1 + 2ÃF

3), 4 × (2ÃF
4) 40

9 4 × (2ÃHF
1 + 2ÃF

3), 4 × (2ÃF
4), (2D̃F

4) 160

8 2 × (2ÃHF
1 + 2ÃF

3), (ÃHF
3 + D̃F

5), 4 × (2ÃF
4), (2D̃F

4) 80

6 5 × (2ÃF
4), (2ÃHF

4 ) 16

The four fibrations of type (ÃHF
1 + ÃF

2 + ÃHF
5 ) are determined by a choice of a ÃHF

1 , given by a vertex of the tethrahedron
{R11, R12, R13, R20} and the adjacent curve in {R1, R5, R6, R8}. As an example we have (R1 + R12, 1/2(R15 + R16 + R17), R3 + R4 +
R5 + R7 + R8 + R9).

The six fibrations of type (ÃF
1 + ÃHF

1 + D̃F
6) are determined by a choice of a ÃF

1 being one of the red edges of the tethrahedron
{R11, R12, R13, R20}. As an example we have (1/2(R11 + R12), R10 + R15, 1/2(R2 + 2R3 + 2R4 + 2R5 + R6 + R7 + R9)).

The three fibrations of type (ÃF
1 + ÃF

7) are determined by a choice of a ÃF
1 being a diagonal of the octahedron {R14, R15, R16, R17,

R18, R19}. As an example we have (1/2(R14 + R17), 1/2(R1 + R2 + R3 + R4 + R5 + R7 + R8 + R10)).

7.3.6. Type VI
S has the following elliptic fibrations (this agrees with [7, Proposition 8.9.27]):

12 × (ÃF
4 + ÃHF

4 ), 10 × (ÃHF
1 + ÃF

2 + ÃF
5), 15 × (ÃF

3 + D̃F
5), 20 × (ÃHF

2 + ẼF
6).

The subgraph of Figure 10 induced by the rational curves R1, . . . , R10 is a Petersen graph, which implies that nd(S) = 10 (we direct
the interested reader to Example 6.4.19 and Section 8.9 of [7]). Observe that the half-fibers listed above are numerically equivalent
to fibers of type Ã5 divided by 2 supported on the Petersen graph. For example, R1 + R20 ≡ 1/2(R3 + R4 + R5 + R7 + R8 + R9).
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Table 8. Saturated sequences on the Enriques surface [12, (3.5) Example V].

Length Fibrations in the sequence Cardinality

7 3 × (ÃF
1 + ÃHF

1 + D̃F
6), 3 × (ÃF

1 + ÃF
7), (ÃHF

1 + ÃF
2 + ÃHF

5 ) 4

7 3 × (ÃF
1 + ÃHF

1 + D̃F
6), 3 × (ÃF

1 + ÃF
7), (ÃF

2 + ẼF
6) 4

7 2 × (ÃF
1 + ÃHF

1 + D̃F
6), 3 × (ÃF

1 + ÃF
7), (ÃHF

1 + ÃF
2 + ÃHF

5 ), (ÃF
2 + ẼF

6) 12

5 2 × (ÃF
1 + ÃHF

1 + D̃F
6), (ÃF

1 + ÃF
7), (ÃHF

1 + ẼF
7), (ÃF

2 + ẼF
6) 12

In fact, our computation shows that there is no other sequence of isotropic nef classes realizing nd(S) = 10. Equivalently, S admits a
unique ample Fano polarization.

Table 9. Saturated sequences on the Enriques surface [12, (3.6) Example VI].

Length Fibrations in the sequence Cardinality

10 10 × (ÃHF
1 + ÃF

2 + ÃF
5) 1

9 8 × (ÃHF
1 + ÃF

2 + ÃF
5), (ÃF

3 + D̃F
5) 15

9 7 × (ÃHF
1 + ÃF

2 + ÃF
5), 2 × (ÃF

3 + D̃F
5) 30

9 6 × (ÃHF
1 + ÃF

2 + ÃF
5), 3 × (ÃF

3 + D̃F
5) 10

8 5 × (ÃHF
1 + ÃF

2 + ÃF
5), 2 × (ÃF

3 + D̃F
5), (ÃF

4 + ÃHF
4 ) 60

7 3 × (ÃHF
1 + ÃF

2 + ÃF
5), (ÃHF

2 + ẼF
6), 3 × (ÃF

3 + D̃F
5) 20

7.3.7. Type VII
As also computed in [7, Proposition 8.9.28], S has the following elliptic fibrations:

20 × (ÃF
8), 15 × (ÃHF

1 + ÃF
7), 6 × (2ÃF

4), 10 × (ÃF
1 + ÃHF

2 + ÃF
5).

Table 10. Saturated sequences on the Enriques surface [12, (3.7) Example VII].

Length Fibrations in the sequence Cardinality

10 4 × (ÃF
1 + ÃHF

2 + ÃF
5), 6 × (2ÃF

4) 5

9 4 × (ÃF
1 + ÃHF

2 + ÃF
5), (ÃHF

1 + ÃF
7), 4 × (2ÃF

4) 15

9 3 × (ÃF
1 + ÃHF

2 + ÃF
5), 6 × (2ÃF

4) 10

7 3 × (ÃF
1 + ÃHF

2 + ÃF
5), 3 × (2ÃF

4), (ÃF
8) 20

7 2 × (ÃF
1 + ÃHF

2 + ÃF
5), (ÃHF

1 + ÃF
7), 3 × (2ÃF

4), (ÃF
8) 60

7.4. Geometry of Fano models and Kuznetsov components

With reference to Section 3.2, using the computational data produced in Section 7.3 we can exhibit explicit examples of non-
isomorphic Fano models and Kuznetsov components. We specifically focus on the Enriques surfaces with finite automorphism group
of Type I and IV, but one can construct analogous examples in all types.

Example 7.3. Consider the Enriques surface with finite automorphism group of type IV. It follows from the data of Table 7 and from
the discussion at the end of Section 3.2 that S admits at least three non-isomorphic Fano models and three nonequivalent Kuznetsov
components. These are obtained from sequences of length 10, 8, and 6.
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Figure 5. Configuration of 12 smooth rational curves on the Enriques surface [12, (3.2) Example I].
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Figure 6. Configuration of 12 smooth rational curves on the Enriques surface [12, (3.2) Example II].
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Figure 7. Dual graph of the rational curves R1, . . . , R20 in the Enriques surface of type III in [7]. Every vertex in {R15, R16, R19, R20} is connected to every vertex in
{R13, R14, R17, R18} via the blue edges.

While we only give a simple example in this work, the problem of classifying Fano models and Kuznetsov components (and with
them, canonical isotropic sequences) may provide interesting insights into the nature of S, and is left for future research.

Additionally, note that one can obtain non-isomorphic Fano models for an Enriques surface S also by considering two different
extensions to maximal canonical isotropic sequence of the same saturated non-degenerate sequence as the following example
shows.
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Figure 8. Dual graph of the rational curves R1, . . . , R20 in the Enriques surface of type IV in [7].
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Figure 9. Dual graph of the rational curves R1, . . . , R20 in the Enriques surface of type V in [7].

Example 7.4. Consider an Enriques surface with finite automorphism group of type I. From Table 3 we know that S admits a saturated
isotropic sequence of length 4 given by
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Figure 10. Dual graph of the rational curves R1, . . . , R20 in the Enriques surface of type VI in [7].
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Figure 11. Dual graph of the rational curves R1, . . . , R20 in the Enriques surface of type VII. The picture combines [7, Figure 8.16] and [7, Figure 8.17].

f1 := 1
2
[R10 + R11], f3 := 1

2
[2R1 + R2 + R4 + 2R5 + 2R6 + 2R7 + 2R8 + R9 + R12],

f2 := [R9 + R10], f4 := 1
2
[2R1 + 2R2 + 2R3 + 2R4 + 2R5 + R6 + R8 + R9 + R12].

By Lemma 2.13, (f1, f2, f3, f4) can be extended to a canonical maximal isotropic sequence. A computer assisted inspection yields the
following extensions of (f1, f2, f3, f4) to canonical maximal isotropic sequences:
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P := (f1, f1 + R12, f2, f2 + R1, f3, f3 + R3, f3 + R3 + R4, f4, f4 + R7, f4 + R6 + R7),
Q := (f1, f1 + R9, f2, f3, f3 + R3, f3 + R2 + R3, f4, f4 + R7, f4 + R6 + R7, f4 + R5 + R6 + R7),

where, for simplicity of notation, we identified the rational curves Ri with their class in Num(S). Observe that the two sequences
P, Q define non-isomorphic Fano models SP and SQ. In fact, SP has 4 singular points, two of type A1 and two of type A2, obtained
by contracting the curves R1, R3, R4, R6, R7, R12. The Fano model SQ has three singular points of type A1, A2, and A3, obtained
contracting R2, R3, R5, R6, R7, R9.

7.5. Configurations of smooth rational curves

Figures 5–11 recollect the dual graphs of the smooth rational curves on the seven types of Enriques surfaces with finite automorphism
group. In the figures, we adopt the following convention: a black (resp. colored) edge between two vertices indicates that the
intersection of the corresponding curves equals 1 (resp. 2). For consistency of notation within this paper, the curves denoted by
Ei in [7] will be denoted by Ri instead. For the Enriques surface of type VII, the curves denoted by Ki, i = 1, . . . , 5, in [7], will be
denoted by Ri+15.
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