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Microsporidia: a promising
vector control tool for residual
malaria transmission

Tullu Bukhari1*, Roland Pevsner2 and Jeremy Keith. Herren1

1Human Health Theme, International Centre of Insect Physiology and Ecology (icipe), Nairobi,
Kenya, 2MRC-University of Glasgow Centre for Virus Research, University of Glasgow,
Glasgow, United Kingdom
Long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) have

resulted in a major decrease in malaria transmission. However, it has become

apparent that malaria can be effectively transmitted despite high coverage of

LLINs/IRS. Residual transmission can occur due to Plasmodium-carrying

Anopheles mosquitoes that are insecticide resistant and have feeding and

resting behavior that reduces their chance of encountering the currently

deployed indoor malaria control tools. Residual malaria transmission is likely

to be the most significant hurdle to achieving the goal of malaria eradication

and research and development towards new tools and strategies that can

control residual malaria transmission is therefore critical. One of the most

promising strategies involves biological agents that are part of the mosquito

microbiome and influence the ability of Anopheles to transmit Plasmodium.

These differ from biological agents previously used for vector control in that

their primary effect is on vectoral capacity rather than the longevity and fitness

of Anopheles (which may or may not be affected). An example of this type of

biological agent is Microsporidia MB, which was identified in field collected

Anopheles arabiensis and caused complete inhibition of Plasmodium

falciparum transmission without effecting the longevity and fitness of the

host. Microsporidia MB belongs to a unique group of rapidly adapting and

evolving intracellular parasites and symbionts called microsporidia. In this

review we discuss the general biology of microsporidians and the inherent

characteristics that make some of them particularly suitable for malaria control.

We then discuss the research priorities for developing a transmission blocking

strategy for the currently leading microsporidian candidate Microsporidia MB

for malaria control.
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Introduction

Malaria continues to be a major health issue across sub-

Saharan Africa, with this region accounting for 93% of the global

malaria deaths (1). The core preventive strategies for malaria

control are the use of insecticide treated nets (ITNs), indoor

residual spraying (IRS) and in some situations larval source

management. As a result of improved coverage of these

interventions, an estimated 170 million cases and 938,000

deaths were averted in 2020, compared to the estimated

burden if case incidence and mortality rate had remained at

the levels of 2000 (1). By 2020, 65% of households in sub-

Saharan Africa had at least one ITN, increasing from about 5%

in 2000. ITN use reduces child mortality and also survival to

adulthood (2–4). IRS is another proven method to control

malaria transmission (5, 6). However, its use reduced globally

from 5.8% in 2010 to 2.6% in 2020 (1). The effectiveness of ITNs

and IRS relies on several factors including susceptibility of

mosquitoes to the class of insecticide used, adequate coverage

rates, quality and timely implementation, and user acceptance or

compliance. Some of the factors that limit the effectiveness of

ITNs and IRS can be addressed but even full implementation
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of these core interventions cannot entirely halt malaria

parasite transmission across all settings (7). Residual malaria

transmission is the actual maintained inoculation of

Plasmodium, either in mosquitoes or humans, despite a well-

designed and executed vector control program and is of great

concern for malaria elimination (Figure 1). As the core

interventions include ITNs and IRS, the term residual malaria

transmission is defined as all forms of malaria transmission that

persist after full universal coverage with effective ITNs and/or

IRS interventions has been achieved (8). Although it may vary

according to location, the main mosquito-related characteristics

of residual malaria transmission include shift in resting and

biting place, biting preference, biting time and species

composition (8–10). Some of the vector control methods that

have been proposed to eliminate residual malaria transmission

include, improved implementation of larval source

management, attractive toxic sugar baits, zooprophylaxis,

reducing mosquito entrance into houses (e.g. screened eave

tubes), personal protection (repellents) and outdoor insecticide

use (treated hammocks and sheets) (8–10). However, there is a

need for novel and improved strategies that target outdoor

mosquitoes, do not involve insecticides, are effective against
FIGURE 1

Residual malaria transmission and Plasmodium-susceptible Anopheles population in relation to the different epidemiological phases towards
eradication and characteristics required in control tools for residual malaria transmission and during pre-elimination and elimination phases.
Elimination phase may lead to (A) increase in malaria transmission intensity if only indoor insecticide-based tools are used or (B) maintained low
transmission intensity if complementary tools that target outdoor and low densities of insecticide-resistant Anopheles population are used.
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lower densities of Anopheles and are scalable and sustainable.

Many biological and genetic control technologies are

theoretically suitable for this and are at various stages of

design either to suppress, replace or modify Plasmodium-

susceptible Anopheles populations (Figure 1) (11, 12).

Biological malaria mosquito control agents include a diverse

range from organisms such as viruses, bacteria, fungi and

microsporidia, nematodes and fish (12, 13). Earlier studies

investigating the potential of biological control agents focused

mainly on the ability of these organisms to kill mosquitoes.

However, over the last few decades a variety of naturally

occurring biological agents, mostly microbial, have been

identified in mosquitoes that are not overtly pathogenic. Many

of these microbes can be expected to enhance their spread

through host populations by contributing to keeping their host

mosquitoes alive.

Anopheles mosquitoes host a diverse community of living

microbes in their intestinal tract that form the intestinal

microbiota. The Anopheles intestinal microbiota has been

investigated for the capacity to block Plasmodium

transmission. Studies generally point to Anopheles having a

simple yet highly dynamic and variable bacterial microbiome

(14–17). While there are clades that are consistently found, it is

not evident that a ‘core’ bacterial community exists (18).

Inoculation of bacterial strains isolated from Anopheles

mosquitoes can result in mosquitoes becoming refractory to

Plasmodium infection (19–21), however, these experiments are

limited by the fact that inoculation is unlikely to recapitulate the

natural infection process, since microbes inoculated from pure

cultures are at concentrations significantly higher than they

would be encountered under natural conditions. This artificial

inoculation may elicit a response (immune or physiological) in

the mosquito that is different from their effects under natural

conditions (22, 23). There is, however, some recent evidence that

an intestinal microbiome member of Anopheles can interfere

with Plasmodium vivax transmission under more natural

conditions (24). Members of the bacterial intestinal microbiota

have also been genetically modified to induce Plasmodium

refractoriness (24–26), which may maximize transmission

blocking independent of high bacterial concentrations. In

addition to the bacterial microbiota, the fungal microbiota has

also been explored for transmission blocking potential, with

studies predominately focusing on the yeast Wickerhamomyces

(27) and Metarhizium, which has been modified to produce

scorpine (an anti-microbial protein) and shown to reduced

Plasmodium sporozoite intensity by 98% (28, 29). However,

the application and use of transgenic microbes is challenged by

low acceptance from the public, wild type strains outcompeting

genetically modified strains, chances of horizontal gene transfer

to other microbes and possibility of irreversible unintended

outcomes (30). Therefore, despite a number Anopheles

intestinal microbiome members having been associated with

Plasmodium refractoriness, the potential routes towards the
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development of transmission blocking strategies are not

very straightforward.

Specialized members of the mosquito microbiome, known as

endosymbionts, have the capacity to enter the bodies and cells of

their host mosquitoes. From the standpoint of transmission

blocking strategies, endosymbionts are of significant interest.

By virtue of their intracellular niche, these microbes can affect

host biology with higher levels of precision. Generally,

endosymbionts are host specific and have evolved strategies to

be spread directly between hosts, often by mother to offspring

transmission. By far the most comprehensively studied example

is Wolbachia, an intracellular bacterial symbiont found in the

majority of insect species. Wolbachia is transmitted vertically

from parent to offspring and Wolbachia infection can reach a

high prevalence in natural insect populations, often through the

manipulation of host reproduction. One of the most common

forms of Wolbachia-induced reproductive manipulation is

cytoplasmic incompatibility, which occurs as a consequence of

the modification of sperm in Wolbachia-infected males (31). As

a result of this modification, the infected males are unable to

form viable offspring when eggs of uninfected females are

fertilized (32). This results in a selective advantage for

Wolbachia-infected lineages and the potential for Wolbachia

to spread through host populations. Natural Wolbachia

infections are rare in Anopheles mosquitoes and had not been

reported prior to the last decade. Trans-infection was established

by artificial infection in Anopheles stephensi and Anopheles

gambiae, with subsequent vertical transmission but this was

linked to a high fitness cost, particularly in the presence of

members of the microbiome (33, 34).Wolbachia infections have

been reported in wild Anopheles gambiae populations (35–38),

however, these natural infections are very low density and have

been linked to contamination of samples in Anopheles gambiae

(32, 39). Wolbachia infections associated with high density have

recently been found in Anopheles species that are not primary

vector species (40). Ongoing efforts to transfer these infections

into Anopheles gambiae will be important for determining if

Wolbachia can play a role in malaria transmission blocking.

Recent studies showed that a naturally occurring

endosymbiont, Microsporidia MB, is found in all the primary

malaria vectors in Africa (41–43). In addition,Microsporidia MB

impairs the development of Plasmodium in Anopheles

arabiensis. Anopheles arabiensis plays an important role in

residual malaria transmission as an exophilic species that has

proportionally increased in east Africa with the decrease in the

more endophilic An. coluzzii and An. gambiae (42).

Microsporidia MB is known to be transmitted vertically from

mother to offspring and horizontally through mating, with no

apparent fitness cost in the infected male or female mosquitoes

(42, 43), characteristics that are associated with symbionts

that can spread to high prevalence in insects (44). Studies on

Microsporidia MB have led to renewed interest in microsporidia

for vector control, mainly as a transmission blocking strategy
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suitable for the control of residual malaria transmission during

the control as well as the pre-elimination phases, when mosquito

populations will be low (Figure 1). Microsporidia are highly

specialized organisms that have a well-developed ability to

influence their host’s biology host from their niche inside the

host cell. As obligate intracellular symbionts, microsporidians

can have intimate and intricate interactions with their hosts at

the cellular level (45), in a manner that is similar to other

symbionts that occupy a cellular niche, such asWolbachia. Also,

like Wolbachia and other insect endosymbionts, Microsporidia

MB is vertically transmitted (42), which can play an important

role in sustaining the symbiont in the host insect population.

Unlike many other endosymbiotic microbes, microsporidians

form spores and often retain the capacity to be horizontally

transmitted.Microsporidia MB has an efficient sexual horizontal

transmission route (43), which could play an important role in

its spread through populations. A high natural prevalence of

Microsporidia MB has been observed in certain populations of

An. arabiensis mosquitoes. This together with their ability to

prevent transmission of malaria in An. arabiensis makes them

promising candidates for malaria control. In this review we

discuss the unique biology of microsporidia, the advantage that

microsporidia have over other biological control agents and our

outlook for research priorities in this field with the overall aim to

highlight the potential of microsporidia as a sustainable

transmission-blocking strategy for the control of residual

malaria transmission.
Microsporidia: pathogens
and endosymbionts

Microsporidia were first identified in 1857 by Carl Wilhelm

von Nägeli as the cause of pébrine, a disease that ravaged the

European silkworm industry (46, 47). Nägeli called the

microsporidian Nosema bombycis (47). At that time several

researchers worked on this disease, among them the most

prominent was Louis Pasteur. Pasteur was able to determine

that N. bombycis is transmitted vertically through egg and

described methods for identifying, controlling and preventing

of pébrine disease in silkworms (48). Soon after this

microsporidia became well known as pathogens in many non-

human hosts, particularly invertebrates and fish (47).
Frontiers in Tropical Diseases 04
Microsporidia can also be pathogens of humans, with the first

case of human infection with microsporidia reported in 1985,

and mainly associated with immune-compromised HIV-

infected population (49). In invertebrates, Microsporidia are

often transmitted from mother to offspring (maternal) which

is associated with lower virulence and high host specificity.

When maternal transmission is the dominant form of

transmission, microsporidian can induce a variety of

reproductive manipulations commonly associated with insect

endosymbionts. For example, sex ratio distortion towards

females has been reported in Dictyocoela, a microsporidian

that infects Amphipod crustaceans (50). Overall, microsporidia

forms a myriad of intimate associations with their hosts ranging

from intracellular pathogen to endosymbiont (Box 1) (52).
Taxonomy and phylogeny
of microsporidia

The phylum microsporidia contains nearly 1300 described

species distributed in 220 genera (58). This probably represents

only a fraction of the real diversity of microsporidia. The position

of the microsporidia lineage on the tree of life has undergone

radical changes (59). When Nägeli first identified Nosema

bombycis, he described it as a yeast-like fungus and included it

in the Schizomycetes, which is very close to the currently accepted

position of the microsporidia (46, 59). Following taxonomic work

based on morphological characters, microsporidia were later

relocated to a primitive amitochondrian group called Archezoa

due to the perceived absence of cell organelles especially

mitochondria. With the increase in molecular data, it became

widely accepted that microsporidia are in fact close relatives to

fungi. However, the exact phylogenetic position of microsporidia

relative to fungi still remains a debate amongst taxonomists (59,

60). Currently, Microsporidia are considered as basal fungi and

are included as part of the Opisthosporidia superphylum,

consisting of Microsporidia, Cryptomycota and Aphelida phyla.

Although they share the evolutionary origins of true fungi

(Eumycota), these sister phyla separate themselves from true

fungi through shared morphological features, including dual

layered chitinous spore walls and electron-dense anchoring

disks. Despite these conserved features, the separation of

Microsporidia from the other phyla of the Opisthosporidia is
Box 1: Relevant definitions and concepts
Parasitism is the association between two different organisms wherein one benefits at a high expense of the other (51)

Symbiosis is any permanent or semi-permanent interactions between two different organisms that may have no benefit or cost to either, or a low
cost for one with benefit to the other (52).

Endosymbionts are symbionts that are present inside the body or cell of hosts. They can be obligate, in most cases providing nutrients otherwise
not available to the host (53) or facultative, not ubiquitous but possibly still having important evolutionary consequences for the host (54).

Merogony is asexual reproduction whereby intracellular microbe replicates its own nucleus inside its host’s cell and then induces cell segmentation.

Sporogony is asexual reproduction by multiple fission of a zygote to produce spores.
Equilibrium prevalence is themaximumprevalence level a microbe can reach in nature at a given time. Prevalence depends on transmissionmodes

(55) and environmental factors (56, 57). As environmental factors may change, this equilibrium is dynamic.
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defined by the presence of unique organelles, such as the polar

tube, and significant reductions with essential metabolic pathways

(60). Further studies on early branching microsporidia will help in

establishing this (61).

There are five major clades in the phylogenetic tree of

canonical microsporidia based on ssrRNA sequences. The five

clades largely correspond to the hosts and habitats associated

with members of the clade, with a number of exceptions. Clade I,

II and V consists of microsporidia found in fresh water (Class

Aquasporidia), clade III of marine microsporidia (Class

Marinosporidia) and clade IV of terrestrial microsporidia

(Class Terresporidia) (Figure 2) (62). Some exceptions to the

association between clades and host habitats include species

from marine environments being present in all clades. This

classification, which is widely cited, has been criticized on the

basis of ecological heterogeneity across major lineages (63) and

is still debated (58, 64).
Microsporidia life cycles

Microsporidia are obligate intracellular eukaryotic parasites

and can only survive outside host cells in the form of a spore.
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Spores are the mature, infectious stage of the life cycle and are

often basis for morphological identification (Figure 3). Some

species of microsporidia can produce different types of spores

during their life cycle e.g. Edhazardia aedis, a parasite of Aedes

aegypti produces four types of spores (65, 66). Spores sizes vary

considerably from about 1 mm (human parasite Enterocytozoon

bieneusi) in length to 40 mm (freshwater oligochaetes parasite

Bacillidium filiferum) (67). The spore shape of most species is

oval or pyriform, but rodlike, spherical, and other shapes are not

unusual. The spore coat consists of two layers: an outer

glycoprotein layer called exospore and inner chitinous layer

called endospore. The plasma membrane lines the inside of

endospore surrounding the sporoplasm. Sporoplasm consists of

one or two nuclei, an anterior extrusion apparatus and a

posterior vacuole. The extrusion apparatus consists of

vesiculotubular polaroplast, lamellar polaroplast, the anchoring

disk, manubrium and a polar tube that coils around the

sporoplasm (68, 69). The polar tube is unique to

microsporidia and infects the host cell during germination by

injecting sporoplasm through the cell membrane and into the

host cell or if a spore is phagocytosed by a host cell, polar tube

pierces the phagocytic vacuole, delivering the sporoplasm into

the host cell cytoplasm (68).
FIGURE 2

Phylogenetic tree of Microsporidia adapted from Herren et. al., (2020) and Vossbrinck and Vossbrinck (2005) (42, 62).
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The general microsporidian life cycle starts with a spore

infection followed by merogony (Box 1) and sporogony

(Figure 3). Spores can be ingested, acquired through contact

or mating, or in the case of vertical transmission can infect

developing embryos or eggs. The spores germinate causing

extrusion of the polar tube and the injection of the sporoplasm

into the host cell or spores can be phagocytised by the host cell

(70, 71). The sporoplasm develops into meronts in the host cell

(72). This is the proliferative stage and depending on the

species division can be by binary fission or multiple fission

with the formation of multinucleate plasmodial forms (70).

Sporogony (Box 1) starts with the thickening of the meront cell

membranes to form sporonts. Sporonts after subsequent

division, give rise to sporoblasts that develop into mature

spores without additional multiplication (70). Production of

different types of spores is indicative of adaptation by

microsporidia to their host and may either be because of the

different hosts through which the microsporidia completes its

life cycle, or as an outcome of different life cycle paths or tissue

colonization patterns occurring in the same host (73). Once

sporogony is complete, the host cell ruptures, releasing mature

spores into the environment and completing its life cycle.

However, there are exceptions to this and exocytosis can

occur with the spores coming out of the host cell covered

with the host apical membrane (e.g. Nematocida parisii) or the

spores simply push out (e.g. Enterospectra longa), both causing

minimal damage to the host cell (74). As both merogony and

sporogony result in multiplication, microsporidia can have

high reproductive potential (69). In some case multiple hosts

are involved in the lifecycle e.g. Amblyospora connecticus is a

parasite of mosquito Ochlerotatus cantator mosquito and

copepod Acanthocyclops vernalis (66, 75).
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Microsporidia transmission

Microsporidia are well adapted to a diversity of transmission

routes involving either or both horizontal and vertical modes

(Figure 4). Horizontal transmission appears to be the most

common mode of transmission of microsporidia. However,

vertical transmission is probably under-reported because of the

low virulence or symbiotic nature of vertically transmitted

microsporidia which allows them to go undetected especially

prior to the advent of molecular techniques for identifying

infected hosts.

Horizontal transmission is usually through the ingestion of

environmental spores and sexual transmission as hosts mate but

also has been shown in laboratory to occur through ovipositional

act iv i t ies of hymenopterous paras i to ids (76) . For

microsporidians that rely entirely or predominately on

horizontal transmission, infections are usually chronic and

adversely affect host’s fecundity and longevity. Generally,

microsporidia that are horizontally transmitted produce many

spores and have higher virulence (Figure 5) (77). To achieve a

high number of spores, in some cases there is intra-host

transmission from the focal point of infection (often the

intestine) to other nutrient-dense host tissues such as fat body.

In some microsporidians, intra-host transmission is well-

developed and characterized by production of more than one

type of spore. “Early” spores have shorter polar tubes and

thinner spore walls, likely to save time and material in their

production. These spores infect other tissues in the same host.

Another mechanism by which some species of microsporidia

spread within the host is restructuring multicellular host tissues

to form a syncytia (78). “Environmental” or “late” spores have

thicker spore wall and longer polar tubes to survive outside the
A B

FIGURE 3

General structure of spore (A) and life cycle of microsporidians. The spore (A) infects a cell with its protruding polar tube (B) and injects the
sporoplasm (C) into the cell. Within the cell microsporidia go through merogony (D-F) and sporogony (G) which can result in more than one
type of spores (Hi, Hii). Structure of spore adapted from Wittner M, Weiss LM, ed. The Microsporidia and Microsporidiosis. Washington, DC: ASM
Press; 1999 (65).
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host and transmit infection to another host. While horizontal

transmission via ingestion and inhalation is clearly effective, as

the sole mode of transmission it requires a high population

density of hosts (79).

Horizontal transmission through mating occurs when

Microsporidia are transmitted between gonads of hosts of the

opposite sex during copulation (80). This mode of transmission

likely more efficient and allows the infected hosts with lower

spore loads to still transmit to new hosts, however, it reduces the

host range of the Microsporidia since sexual contact of hosts

occurs only within a species, eventually leading to the evolution

of host-specificity (79). For horizontal transmission through

mating, the host’s mating behavior contributes substantially to

the transmission rate, with transmission rate being higher in

more promiscuous hosts. Overlapping host generations are

required for the persistence of a strictly sexually transmitted

microsporidian (44).

Vertical transmission occurs when a microsporidian

infection is transferred from gonad tissue to the developing

eggs. This mode of transmission limits the negative effects that

the microsporidian can have on its host, since the reproductive

output of the host becomes linked to its own transmission

success (55). As the offspring only inherits cytoplasm from the

egg, vertical transmission is predominately uniparental. For
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vertically transmitted microsporidians, non-transmitting male

hosts are less important relative to their female counterparts as

vehicles for transmission. In many endosymbionts, including

Microsporidia, this has resulted in the evolution of sex-specific

effects on hosts. If the microsporidian is also horizontally

transmitted, it would be selected for higher rates of spore

production and pathogenicity in males, in some cases killing

them to release infectious spores into the environment (late male

killing). In the case of strict maternal transmission, males can be

selectively killed as embryos to prevent them competing with

sibling females (early male killing), essentially increasing

infected female host fitness at the expense of infected male

fitness (81). Another reproductive manipulation caused by

vertically transmitted microsporidians is feminization, whereby

genetic male individuals are converted into a functional

phenotypic female that is able to transmit the infection (82).

Vertical transmission is largely maternal and through cytoplasm

in Microsporidia, however there may be exceptions. Paternal

transmission would be possible whenMicrosporidia are found in

the semen e.g. Nosema apis and N. ceranae (83). Non-

cytoplasmic infections of offspring have been shown for

Encephalitozoons (transplacental) in mice (84). Formation of

syncitia by Nematocida parisii to bridge between host tissues

may offer another non-cytoplasmic mean for Microsporidia to
FIGURE 4

Schematic diagram of the diverse routes of horizontal and vertical mode of transmission in Microsporidia [Adapted from Becnel and Andreadis (76)].
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infect host gametes or offspring (78). Exclusive vertical

transmission is, however, considered an evolutionary end

point that is irreversible because of the negative genetic effects

(accumulation of mutations and gene loss) which a strict vertical

transmission may have on the parasite (85). This is probably the

reason for mixed patterns of horizontal and vertical

transmission in microbes including Microsporidia (80).

Mixed patterns of horizontal or vertical transmission involve

trade-offs between them. A higher rate of horizontal

transmission e.g. a large number of spores would adversely

affect the longevity and fecundity of the host (Figure 5). This

in turn causes lower rate of vertical transmission. At low host

densities, contact rates between host and pathogen may drop

below the threshold necessary for persistence of the parasite.

Persistence is more likely if the pathogen can be vertically

transmitted and has low virulence allowing the host to survive

till reproduction (79). Example of the consequences of these

tradeoffs are found in male-killing Microsporidia such as

Amblyospora sp., which kills male mosquitoes following

infection through horizontal transmission of spores released

after death of intermediary hosts (various copepode species) in

the water. However, when spores infect female mosquitoes, the

same parasite is largely avirulent and vertically transmitted to

offspring (75). Ecological factors also influence the tradeoffs

between horizontal and vertical transmission. In the context of

a co-infection with two microsporidians Vavraia culicis and
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Edhazardia aedis, Aedes aegypti larval mortality increased with

low food availability, thus, increasing horizontal transmission

for V. culicis (86). Presence of intermediate host also influences

the transmission pattern e.g., when copepods are present in

breeding sites, Amblyospora sp. are mainly transmitted

horizontally in Ochlerotatus cantator mosquito larvae.

However, when these copepods are not available either

because of not being at the stage that is susceptible to

Microsporidia infection or in low numbers due to natural

population oscillations, Amblyospora sp. are mainly

transmitted vertically by the mosquitoes (75).
Microsporidia in mosquitoes

Microsporidia, to a large extent, are insect specialist parasites

and symbionts; a 100 of the 220 described microsporidian genera

have insects as their hosts. Entomogenous Microsporidia were

the first to be studied in detail and form the base of our

knowledge on Microsporidia biology in general (62, 76). Most

Microsporidia that infect insects are found in Class

Aquasporidia and Terresporidia (62). Dipterans serve as host

to almost half of the entomogenous genera (76).

Microsporidia have been reported in all the medically

important genera of mosquitoes i.e. Aedes, Culex and

Anopheles mosquitoes (87–89). The host-parasite relationship
FIGURE 5

Pathogenicity of microbes in relation to transmission modes.
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of mosquitoes and microsporidia can be categorized into two

types. The first type includes Microsporidia like Anncaliia

algerae and Vavraia culicis that produce one type of spores

that are transmitted horizontally, mainly by ingestion and

complete their life-cycle in one mosquito filial generation.

These Microsporidia are highly pathogenic and not host or

tissue specific (66). These Microsporidia belong to Clade III in

the phylogenetic tree and generally do not have co-evolutionary

histories with their host, which renders them less mosquito-

specific (Figure 2) (62, 90). The second type of Microsporidia

includes Edhazardia aedis that produce multiple spore types for

either horizontal or vertical transmission. They are known to

complete their life cycle in two mosquitoes generations and may

or may not require an intermediate host. These Microsporidia

are host and tissue specific (66). They belong to Clade I in the

phylogenetic tree and generally have longer co-evolutionary

histories with hosts and as a result are very specific to their

mosquito-host (Figure 2) (62, 66, 90).

Anncaliia algerae (syn. Nosema algerae, syn. Brachiola

algerae), was reported in field Anopeheles gambiae mosquito in

1959 (88). In 1970, A. algerae was identified as a pathogen in

colonized An. stephensi (91). Laboratory infection showed a

reduction in fecundity and adult mortality which despite being

slow (12 ± 1.7 days) was considered enough to effect malaria

transmission (92, 93). Mass production of a biological control

agent is a key step towards its utilization. Therefore, spore

proliferation of A. algerae on a different host, corn earworm,

Heliothis zea (Lepidoptera: Noctuidae), was encouraging (93).

Vavraia culicis was originally isolated from field populations

Culex pipiens in the Czech Republic. Studies indicated that this

microsporidian had a relatively broad host range and could be

transmitted by the ingestion of spores. Vavraia culicis was found

to infect a range of mosquito species and have late-acting

pathogenicity and, therefore, explored as a possible

biopesticide (94).

One of the best studied examples of the second type of

microsporidian is Edhazardia aedis, which infects Aedes

aegypti. Edhazardia aedes spores can infect mosquito larvae

via ingestion. After infecting the gut epithelial cells, secondary

spores are released that result in the infection of additional

tissue, especially the oenocytes (95). In adult females, an

additional round of sporulation occurs leading to the

infection of ovaries and vertical transmission. Vertically

infected male larvae build up high infection loads in their fat

body which ultimately leads to death and mass release of

spores. Infected females generally survive and are able to

continue the vertical component of the transmission cycle

(96). Microsporidians with similar complex life cycles are

also associated with Anopheles mosquitoes. Among them is

the microsporidian species in the genera Parathelohania.

Parathelohania spp. undergo vertical and horizontal

transmission in several species of Anopheles mosquitoes and

generally have an intermediate copepod host (97). Several of
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their potential use as biological control agents. Biological

control was largely investigated in several clade III

microsporidians that are horizontally transmitted, have

monomorphic spores and simple lifecycles in a single host

(Figure 2) (58).

Recently, a novel microsporidian that was discovered in

Anopheles arabiensis, Microsporidia MB. Microsporidia MB is

in clade IV and therefore not closely related to any of the two

types of mosquito associated microsporidians but have

characteristics that makes it more suitable for malaria control

(42). Microsporidia MB was shown to be transmitted vertically,

bear ing some s imi lar i t i es to mosqui to assoc ia ted

microsporidians in clade I (42). However, in addition to

vertical transmission, Microsporidia MB are also sexually

transmitted (43). Both vertical and sexual transmission are

associated with lower pathogenicity and the therefore the

potential to maintain a higher equilibrium prevalence (44).

Tissue specificity is also known for Microsporidia MB and

correlates with the observed transmission routes, with

Microsporidia MB being present in male and female gonads in

An. arabiensis as well as the adult gut (42, 43).
Desirable characteristics of
symbiotic Microsporidia as microbial
malaria control agent

The potential role of microbes as disease transmission

blockers has been widely investigated in recent years. This

includes genetically modified and unmodified microbes that

may be pathogenic or symbiotic. In general, highly pathogenic

microbes transmit horizontally, microbes with moderate to low

virulence tend towards mixed asexual-horizontal, sexual-

horizontal and vertical transmission while microbes that are

symbionts are transmitted with sexual-horizontal and vertical

transmission (Figure 5) (79). From the standpoint of disease

blocking, mixed sexual-horizontal and vertical transmission is

likely to be the combination that enables feasible dissemination

while maximizing equilibrium population prevalence and

persistence. These transmission patterns need to be coupled

with an ability to block the transmission of Plasmodium through

the host mosquito.

The ability to naturally confer Anopheles resistance to

Plasmodium infection gives Microsporidia MB an advantage

over genetically modified microbes (68). Other advantages of a

Microsporidia-based control strategy are transmission modes

that favor low fitness cost, high host specificity and self-

dissemination, environmental spores that are stable and can be

used as inoculum and the intracellular niche that reduces

competition with other microbes has renewed interest

in Microsporidia.
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Microsporidia, Anopheles and
Plasmodium interaction

The interaction between Microsporidia and Plasmodium in

mosquitoes was first reported in 1959 (88). Studies with A.

algerae and another V. culicis showed that in addition to the

moderate impact on Anopheles mortality and fecundity, there

was also a priming effect that influenced the susceptibility of the

mosquitoes to Plasmodium (89, 98, 99). This priming has been

reported in An. stephensi, An. gambiae and Ae. aegypti. Adults

that emerged from An. stephensi larvae exposed to A. algerae had

70% fewer oocysts of Plasmodium yoelli in the midgut after 14

days (99). Similar outcome was reported in An. gambiae exposed

to V. culicis during the larval stage with a reduced likelihood

(59% vs 82%) and intensity (8.9 vs 20.7 oocysts) of P.

berghei (98).

Since both A. algerae and V. culicis are highly pathogenic, it

is likely that Plasmodium protection is a consequence of

activation of systemic immune response in the host or an over

proliferation of Microsporidia potentially outcompeting

Plasmodium for resources. From an applied standpoint these

Microsporidia would be more useful for population control than

transmission blocking. In contrast, Microsporidia MB showed a

complete inhibition of Plasmodium transmission with little to no

effect on the fitness of hosts, suggesting a more targeted

Plasmodium protection mechanism. Possible mechanisms

include priming of the mosquito immune system or changes

in host metabolism that inturn influence vector capacity (42,

100). The Microsporidia MB Plasmodium transmission blocking

effect occurs in the midgut prior to the formation of oocysts (42).

The ability to naturally make Anopheles mosquitoes resistant to

Plasmodium infection gives Microsporidia MB an advantage

over genetically modified biopesticides (28).
Host and tissue specificity

Host and tissue specificity are related as both result from

evolution and co-speciation with the original hosts. This

specificity is typically restricted to a single host species or to a

group of affiliated species (73, 101). Microsporidia are host

specific to the extent that some studies consider the host an

important taxonomic character (62, 76). Host specificity

prevents non-target effects of an intervention and therefore a

key requirement before introduction of the control agent in

nature. Anncaliia algerae and V. culicis both infect multiple

mosquito genera (102). Microsporidia MB to date has been

identified in An. arabiensis, An. funestus, An. gambiae s.s and

An. coluzzii (41–43). Microsporidia MB was not detected in

Aedes, Culex, Culicoides, cyclops or Daphnia associated with

habitats where Microsporidia MB infected An. arabiensis were

found (43). However, a recent study investigating microbes
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relative of Microsporidia MB in culex mosquitoes (103).

Although this may indicate lack of an intermediate host and

host specificity of Microsporidia MB, more studies are needed

to confirm.

Tissue specificity or tropism is advantageous for parasites, in

general, because it allows them to avoid the host’s immune

response and increase transmission while avoiding over

proliferation. Microsporidia are intracellular and in arthropods

found mainly in gut, fat body and male and female reproductive

tissues (104). Anncaliia sp. and Vavraia sp. infect a range of

insect tissues including fat body, gut, malpighian tubules,

muscle, nerve, salivary glands (102). Microsporidia MB was

mainly detected in midgut and reproductive tissues (42). This

contrasts with entomopathogenic fungi that grow in the

hemocoel and invade almost all the tissues. Tissue specificity

is, therefore, characteristic of symbionts to ensure their

transmission while avoiding a high fitness and survival cost on

the host (73). These characteristics also make microsporidians

suitable for a sustainable control strategies (12, 94).
Microsporidia persistence and
prevalence in nature

Microsporidia includes parasites and symbionts that can be

vertically and/or horizontally transmitted. Each of these

combination may lead to a different potential evolutionary

outcome (55). Vertical transmission selects for less virulent

strains of pathogens which in turn have low fitness cost for

the host and in case of symbionts may also benefit the host (55,

79, 105). When a pathogen/symbiont is only transmitted

vertically, they can evolve to parasitize only the male hosts or

to not benefit the male host (106). However, this would not be

the case if the pathogen or symbiont is also transmitted

horizontally through mating. Horizontal transmission is also

important for the introduction of the pathogen or symbiont into

a susceptible population, however, vertical transmission

becomes increasingly important as the parasite spreads in the

host population and susceptible hosts are depleted (107).

Therefore, theoretically a microsporidian that is symbiotic and

is transmitted vertically and horizontally has the potential to

reach high prevalence levels in nature under favorable

environmental conditions.

Very few surveys have been carried out on natural

prevalence of Anopheles microbiota and and those that do

often focus on specific pathogens of interest. Service (1977)

looked at the parasite and predator prevalence in pools, ponds

and rice paddies after insecticide spray to highlight the non-

target effects of insecticide in Kenya. This study can also be used

to observe the persistence and natural buildup of parasites in

Anopheles larvae after a population crash. A fungus
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Coelomomyces sp. was found in 15.9% and 2.1%, microsporidian

(Parathelohania sp.) were found in 8.8% and 6.7% and

mermithid nematodes in 0.5% and 6.9% of the larvae in the

rice paddies and ponds respectively (108). This study indicates

that microsporidians maintain some of the highest prevalence of

mosquito pathogens in certain mosquito populations in Kenya.

Microsporidia MB prevalence has been found to be on average

6-8% in blood-fed An. arabiensis in Kenya, however seasonal

fluctuations resulted in prevalence up to 23% (42). A

microsporidian pathogen of grasshoppers, Paranosema locustae,

is one of the few microsporidians that has been successfully

commercialized to control rangeland grasshoppers (109). P.

locustae is horizontally transmitted and causes a chronic low

virulence infection associated with reduced feeding, development,

and fecundity, increased mortality rates and a behavioral shift

from gregarious form to the less damaging solitary form. P.

locustae is native to North America but was introduced to

Argentina in the late seventies-early eighties and mid-nineties.

A study found that over 20 years after any further introductions,

grasshoppers were still infected at prevalences ranging from 10-

50% in sites in the Pampas and Patagonia regions of Argentina

and that sites with P. locustae had not experienced grasshopper

outbreaks (110). Another microsporidian that has demonstrated

potential as self-sustaining biopesticide is Nosema pyrausta, which

infects the European corn borer, Ostrinia nubilalis. Nosema

pyrausta causes a chronic, generally nonlethal, debilitation and

has efficient vertical transmission. N. pyrausta was not widely

implemented due to the widespread adoption of transgenic corn

expressing insecticidal proteins of Bacillus thuringiensis which

resulted in effective control of the European corn borer. In

addition, the lack of in vitro mass spore production methods

limited the development and implementation of N. pyrausta as a

biopesticide. These examples illustrating the capacity of certain

microsporidians to remain at a prevalence up to 50% for more

than 20 years after dissemination is indicative that they could

provide more sustainability and economical control (104, 110).

Current research gap in the
development of Microsporidia-
based malaria control strategy

Microsporidia MB has been shown to completely impair the

transmission of Plasmodium without effecting mosquito

survival. This together with the ability to transmit both

horizontally and vertically makes Microsporidia MB a

promising candidate as a resistance-proof and self-sustainable

malaria control tool (44). However, our knowledge of

microsporidia biology is not up to par with other biological

control agents such as entomopathogenic fungi and Wolbachia.

Fortunately, the technological advancement in research over the

last few decades provides an unprecedented opportunity to

understand the biology, life cycle, strain diversity, genetics,
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impair Plasmodium development (Figure 6). Also, there is a

lot of knowledge that can be borrowed from the “laboratory to

field” development of genetically modified mosquitoes and

Wolbachia-infected mosquitoes as mosquito control strategies

(Figure 7) (111, 112). This will contribute to the potential for

‘fast-tracking’ the development of Microsporidia MB-based

control strategy for malaria transmission.
Better understanding of transmission and
life cycle of Microsporidia MB

Vertical transmission and horizontal transmission through

mating has been shown forMicrosporidia MB but the exact route

of transmission and whether additional transmission routes exist

still needs to be determined (Figure 6). For example,

Microsporidia MB transmission from mother to offspring may

be transovarial (inside the egg) or transovum (on the egg

surface). There is a large range in transmission efficiency,

suggesting that vertical transmission may be influenced by the

mother’s infection intensity and age. The finding that

Microsporidia MB density is high in the mosquito intestine

(43) suggests there may be more routes of horizontal

transmission apart from mating (Figure 6). Intestinal

infections could be linked to an environmental transmission

route e.g. by ingesting spores from the water or faeces of an

infected larvae (79). Understanding these routes will also

improve our understanding of the life cycle of Microsporidia

MB . Microscopic techniques , ut i l ized to diagnose

microsporidiosis can be adapted to understand the infection

routes and dynamics ofMicrosporidia MB infection in Anopheles

mosquitoes (Figure 6) (113).

Further investigation will be required to determine if

Microsporidia MB has alternate hosts. Cyclops and Daphnia

collected from the field sites that had approx. 10%Microsporidia

MB prevalence in Anopheles, were found to be uninfected (43).

Also, phylogenetically, Microsporidia MB belongs to clade IV

that has not co-evolved with mosquitoes. Both suggest a simple

life cycle without an intermediate host (42, 43, 62, 66). However,

Microsporidia MB is closely related to a non-biting midge

microsporidia Crispospora chironomid which is also found in

clade IV (114). This indicates a certain extent of co-evolution

and, therefore, the transmission and life cycle of Microsporidia

MB will need to be studied further.
Spore culture, infection methods and
persistence of spores

Currently, experimentation relies solely on the progeny of

field collected Microsporidia MB-infected mosquitoes. This is a

tedious process, involving field collection of blood-fed females,
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forced oviposition, screening for Microsporidia MB-infection,

and rearing of the progeny. This work can be significantly

reduced by propagation of spore cultures. Proliferative stages

of Microsporidia spores are intracellular which makes it difficult

to culture them. The spores of A. algerae were successfully

produced on a non-host corn earworm, however, for
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Microsporidia MB the preference would be to identify in vivo

culture techniques (93, 115, 116). Cell cultures have been used to

propagate Wolbachia (117) and mammalian-infecting

microsporidians and it should be possible to adapt these for

Microsporidia MB (115, 116). This will involve research on

methods for extraction of spores from the host tissue,
FIGURE 6

Current status of Microsporidia MB research highlighting the areas that have been investigated, partially investigated or yet to be investigated in
the laboratory.
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purification of spores and storage conditions for spores before

use for cell culture, host-infection or dispersal (118). Cell

cultures will also allow study of life cycle and molecular

studies including improved genome sequencing (116). Spores

obtained from cultures will be key in carrying out standardised

infections of mosquitoes for experiments. This would involve

determining suitable infection methods such as oral,

microinjections or mechanical inoculation of the genitalia.

Spores could also be used to test the persistence under various

temperature and humidity regimes and, if needed, select for

strains that are more persistent in nature and the optimum

storage conditions (76). Apart from experimentation, spore

production is essential for Microsporidia MB-based malaria

control which may involve spore dispersal into the

environment to infect wild Anopheles populations or to infect

and rear Microsporidia MB-infected mosquitoes for

release (Figure 7).
Microsporidia MB strains and Anopheles
background

Many strains of Microsporidia MB may be circulating in

nature given that microsporidians are a rapidly evolving group.

Strains can vary in transmission modes, virulence, and host

resulting in a range of outcomes on host range, fecundity,

longevity and immunity (55, 79, 94). Therefore, it is essential to

identify theMicrosporidia MB strains that are most suitable for

malaria transmission blocking in mosquitoes with Plasmodium
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intensity within the natural range. A precursor to this will be

the assembly of a complete/near-complete draft genome of the

Microsporidia MB.

Host background may influence the prevalence and intensity

of Microsporidia MB and, therefore, the transmission blocking

phenotype. An. gambiae complex (An. gambiae s.s. and An.

coluzzii) mosquitoes homozygous for the 2La+ allele were found

to be more susceptible to Plasmodium but not to M. anisopliae

(119). Gene mapping of Microsporidia-infected and uninfected

Anopheles can reveal genotypes that are more susceptible to

Microsporidia MB. This may lead to identification of Anopheles

populations best suited to Microsporidia MB-based malaria

control interventions.

The proportion of insecticide resistant Anopheles

mosquitoes will increase over time due to the use of

insecticide-based vector control tool. Insecticide resistance has

been shown to be influenced by gut microbiota in Anopheles as

well as other insects with certain bacteria protecting the

mosquito (120, 121). In the context of host background, it is

therefore important to also look at the prevalence of

Microsporidia MB in insecticide resistant and susceptible

populations. This would identify any antagonism of a

Microsporidia MB-based strategy with current control

strategies. Irrespective of the insecticide resistance status,

mosquito microbiome interact and can effect microbial

transmission and host fitness e.g. Asaia prevents Wolbachia

transmission and increases blood-feeding induced mortality in

Anopheles (33). These interactions are therefore important to

investigate for Microsporidia MB.
FIGURE 7

Research priorities for the application of Microsporidia MB-based malaria control strategy.
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Standardised semi-field tests and
operational scalability

Standardised semi-field testing needs to be carried out to

determine the spreading potential of Microsporidia MB in

Anopheles population in close to natural conditions (122).

Data obtained from these tests will provide an insight into

scalability and used in theoretical models to make informed

decisions while developing the Microsporidia MB- based

control strategy.

Depending on the outcome of ongoing research, the control

strategy may involve dispersal of environmental spores,

Microsporidia MB positive male and/or female mosquitoes or

both. The operational aspects of larval source management can

be used as an analogy to understand the advantages and

challenges of spore dispersal. Spore dispersal would be suitable

for places that have few, fixed and findable breeding sites (123).

It will target exophilic, insecticide-resistant and multiple species

of Anopheles collectively. In general, biocontrol efforts with

microsporidians need small amounts of infective spores

introduced at relatively large temporal intervals which is an

advantage, logistically (124). However, if this is not the case

frequent dispersal of Microsporidia MB spores may be required

to increase its prevalence in nature. Rainfall may affect the

efficacy of the intervention by producing new and temporary

breeding sites as well as flushing out the Microsporidia spores

from the treated breeding sites (125, 126). Spore dispersal will

therefore need to be timed accordingly. The most common and

productive breeding sites are vegetated, as a result the spores will

need to be either formulated or applied so that the spores enter

and spread across the water surface and are not lost on the

vegetation. This may require formulating the spores to ensure

their uniform spread in vegetated breeding sites e.g. with surface

films (127). Focal point spore infection, by attracting ovipositing

Anopheles to breeding site with semiochemicals, may eliminate

the need to treat majority of the breeding sites. Targeting adults,

for example using attractants and spores added to sugar baits, is

also a possible dissemination approach.

Release of Microsporidia MB positive males or both sexes

involves mass production of Anopheles mosquitoes. Much work

has been done to determine the conditions suitable for the

production of large number of mosquitoes that are not inferior

to the natural population in terms of fitness or longevity (128–

130). However, it will be essential to test this withMicrosporidia

MB-infected mosquitoes following the established guidelines for

mass rearing of Anophelesmosquitoes (131). This strategy unlike

the spore dispersal will be species-specific and in locations where

two or more malaria vectors exist will require the mass

production and release of all the vector species. Release of only

males may be more acceptable in this regard given they are non-

biting, but efficiency of vertical transmission in the field
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determined as this will be a critical factor (43). However, male

only or male-biased releases involve a step for sex separation for

which there is currently no established method (132). Sexing

pupae based on size is not suitable for An. arabiensis and

development of a genetic sexing strain will add a layer of

regulatory requirements to an otherwise natural control

strategy (133). Addition of toxicants e.g. ivermectin or

malathion to blood meals to selectively kill the females would

probably be the most suitable method to develop selecting

Microsporidia MB positive males for release, although this will

preclude the release of newly eclosed males (132).

Community sensitization and stakeholder involvement is

important for any intervention but especially for release of

Anopheles mosquitoes (Figure 7). In 1975, irradiated males

were planned for release to suppress populations of Culex and

Ae. aegypti in India, but the media and negative public opinion

resulted in failure of the program (133, 134). Over the past few

years successful releases of Wolbachia-infected mosquitoes have

been carried out with careful community consultation and there

is wide acceptance for these programs (135, 136). However,

creating awareness on the released mosquitoes being unable to

transmit malaria, and acceptance from the community and

stakeholders remains essential for each release (133, 137).

The Microsporidia MB release programs would initially

involve community engagements, mass rearing (and/or spore

production in case of Micropsoridia MB based strategy) and

release of mosquitoes (Figure 7). Post-release surveillance will be

required to monitor the prevalence rates of Microsporidia MB

positive Anopheles mosquitoes and inform decision-making on

whether further top-up releases are required (133). Cost

estimates for use of Micropsoridia MB in urban and rural

settings with either spore dispersal or mosquito release, as was

carried out for Wolbachia Ae. aegypti releases, will inform the

development of the control strategy (138).
Conclusion

Identification of the high transmission blocking potential of

Microsporidia MB has resulted in a renewed interest in

microsporidians for malaria control, now as a transmission

blocking strategy rather than for population suppression.

Microsporidians are a unique clade of highly specialized parasites

and symbionts which have evolved a variety of strategies to ensure

transmission; as a result they have inherent characteristics,

comparable to Wolbachia, that make them attractive for

developing malaria control approaches. Microsporidia MB has

considerable potential to be a sustainable strategy for control of

residual malaria, as well as pre-elimination phase of malaria control

provided that the major research gaps are addressed.
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128. Mamai W, Lobb LN, Bimbilé Somda NS, Maiga H, Yamada H, Lees RS,
et al. Optimization of mass-rearing methods for anopheles arabiensis larval stages:
Effects of rearing water temperature and larval density on mosquito life-history
traits. J Econ Entomol (2018) 111:2383–90. doi: 10.1093/jee/toy213

129. Carvalho DO, Nimmo D, Naish N, McKemey AR, Gray P, Wilke ABB,
et al. Mass production of genetically modified aedes aegypti for field releases in
Brazil. J Vis Exp (2014) 183:e3579. doi: 10.3791/3579

130. Soma DD, Maïga H, Mamai W, Bimbile-Somda NS, Venter N, Ali AB,
et al. Does mosquito mass-rearing produce an inferior mosquito? Malar J (2017)
16:357. doi: 10.1186/s12936-017-2012-8

131. IAEA. Guidelines for standardised mass rearing of anopheles mosquitoes.
Vienna: : Joint FAO/IAEA Division of Nuclear Techniques in Food and
Agriculture (2017).

132. Mashatola T, Ndo C, Koekemoer LL, Dandalo LC, Wood OR, Malakoane
L, et al. A review on the progress of sex-separation techniques for sterile insect
technique applications against anopheles arabiensis. Parasites Vectors (2018)
11:137–71. doi: 10.1186/s13071-018-3219-4

133. Ritchie SA, Staunton KM. Reflections from an old Queenslander : can rear
and release strategies be the next great era of vector control? Proc R Soc B Biol Sci
(2019) 286:1–8. doi: 10.1098/rspb.2019.0973

134. Anonymous. Oh, New Delhi; oh, Geneva. Nature (1975) 256:355–7.
doi: 10.1038/256355a0.

135. Pinto SB, Riback TIS, Sylvestre G, Costa G, Peixoto J, Dias FBS, et al.
Effectiveness of wolbachia-infected mosquito deployments in reducing the
incidence of dengue and other aedes-borne diseases in niterói, Brazil: A quasi-
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