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We consider the hydrodynamic quantum field theory proposed by Dagan and Bush,

a model of quantum dynamics inspired by Louis de Broglie and informed by the

hydrodynamic pilot-wave system discovered by Couder and Fort. According to this

theory, a quantum particle has an internal vibration at twice the Compton frequency

that generates disturbances in an ambient scalar field, the result being self-propulsion

of the particle through a resonant interaction with its pilot-wave field. Particular attention

is given here to providing theoretical rationale for the geometric form of the wave field

generated by steady, rectilinear particle motion at a prescribed speed, where signatures

of both the de Broglie and Compton wavelengths are generally evident. While focus is

given to the one-dimensional geometry considered by Dagan and Bush, we also deduce

the form of the pilot wave in two dimensions. We further consider the influence on

the pilot-wave form of the details of the particle-induced wave generation, specifically

the spatial extent and vibration frequency of the particle. Finally, guided by analogous

theoretical descriptions of the hydrodynamic system, we recast the particle dynamics

in terms of an integro-differential trajectory equation. Analysis of this equation in the

non-relativistic limit reveals a critical wave-particle coupling parameter, above which

the particle self-propels. Our results provide the foundation for subsequent theoretical

investigations of hydrodynamic quantum field theory, including the stability analysis of

various dynamical states.

Keywords: Klein-Gordon equation, de Broglie relation, matter waves, Compton scale, hydrodynamic

quantum analogs

1. INTRODUCTION

In his double-solution pilot-wave theory [1–4], Louis de Broglie proposed a physical picture of
quantum dynamics, according to which quantum particles move in concert with a guiding or
“pilot” wave. In its rest frame, a particle of mass m0 was imagined to have an associated vibration
at a frequency prescribed by the Einstein-de Broglie relation, m0c2 = h̄ωc, an internal clock with
the Compton frequency, ωc = m0c2/h̄, where h̄ = h/(2π) is the reduced Planck constant and
c the speed of light. This vibration was imagined to be responsible for generating a wave form,
the particle’s “pilot wave,” φ, responsible for propelling the particle. It was hoped, though never
demonstrated, that the resulting particle dynamics would give rise to statistical behavior consistent
with the predictions of the standard quantum formalism, as described by the wavefunction, 9 .
Owing to the distinct forms of φ and 9 in de Broglie’s original conception, this is widely referred
to as his double-solution pilot-wave theory [5].
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De Broglie’s theory had a number of successes, including the
Einstein-de Broglie relation, the de Broglie relation, p = h̄kB,
between particle momentum, p, and its associated wavenumber,
kB, and his prediction of electron diffraction, the experimental
confirmation of which [6] earned him the Nobel Prize in 1929.
Nevertheless, his double-solution theory was incomplete on
several fronts [5]. First, he did not specify the physical nature of
the pilot wave. Second, he failed to specify either the mechanism
for pilot-wave generation or its resulting form. Initially, he
posited that the pilot wave be monochromatic, from which
p = h̄kB follows directly. Subsequently, he followed the lead
of Bohm [7, 8] in asserting that the pilot wave, φ, is linearly
related to the wavefunction, 9 . This concession was made with
the caveat that there is an unspecified singularity in φ in the
vicinity of the particle; however, it otherwise reduced de Broglie’s
double-solution theory to Bohmian mechanics, hence, the two
are often conflated into the so-called ‘de Broglie-Bohm’ theory.
In Bohmianmechanics, themechanism for pilot-wave generation
is also absent: particles move in response to both the classical
potential and the quantum potential, whose form is uniquely
prescribed by the wavefunction, 9 . The possibility of the particle
playing a more active role, specifically acting as the source of
its own pilot wave as originally proposed by de Broglie, was
discussed by Holland [9].

The most substantial efforts to extend de Broglie’s mechanics
have come from workers in stochastic electrodynamics (also
known as SED) [10, 11], according to which de Broglie’s pilot
wave may be sought in the electromagnetic quantum vacuum
field [12, 13]. The geometry of the pilot-wave field in SED is
relatively difficult to characterize, as it requires consideration of
the vector electromagnetic field. Nevertheless, de la Peña and
Cetto [10] assert that the de Broglie wave may be understood in
terms of the Lorentz-transformedDoppler shifting of a pilot wave
with the Compton frequency. Kracklauer [14] also speculated as
to the form of the pilot wave in SED. We here adopt a simpler
approach by following de Broglie in assuming that the pilot wave
may be characterized in terms of a single scalar field. Doing so
allows us to characterize the form of the resulting pilot-wave field,
and somake clear the geometric significance of the de Broglie and
Compton wavelengths on its structure.

In the hydrodynamic pilot-wave system discovered by Couder
et al. [15], a bouncing droplet self-propels along the surface of a
vertically vibrating fluid, guided by the pilot-wave form generated
by its resonant interaction with the bath. This pilot wave is
the superposition of two distinct wave forms generated at each
impact: a traveling disturbance propagating radially outward
from each impact, and an axisymmetric standing Faraday wave
form centered on the point of impact [16]. The spatio-temporal
extent of both the propagating and stationary wave forms is
limited by the fluid viscosity. Consequently, the number of prior
impacts that influence the droplet is limited by viscous damping.
The most striking quantum features arise in the limit of weak
viscous damping, also referred to as the “high-memory” limit,
where the critical non-Markovian nature of the droplet dynamics
is most pronounced [17]. In this limit, the walking droplet is
dressed by a quasi-monochromatic wave form with the Faraday
wavelength; the pilot wave propagates with the particle, as may

be seen by strobing the system at the Faraday frequency [18]. The
quantum-like features of the system emerge owing to the quasi-
monochromatic form of the pilot wave deduced by superposing
the standing wave forms generated at impact, and are only weakly
influenced by the traveling waves [17].

Informed by the walking-droplet system, Dagan and Bush
[19] presented a model of quantum dynamics, the so-
called hydrodynamic quantum field theory (henceforth HQFT),
inspired by de Broglie’s double-solution pilot-wave theory [1,
4]. Specifically, they adopted de Broglie’s notion that quantum
particles have an internal clock, a vibration at the Compton
frequency that interacts with a scalar background field that
satisfies the Klein-Gordon equation. To describe the particle
propulsion, de Broglie considered a guidance equation in which
the particle velocity is proportional to the gradient of the phase of
the monochromatic guiding wave. Dagan and Bush [19] explored
a variant of this guidance equation, according to which the
particle moves at a velocity proportional to the gradient of the
pilot wave. As de Broglie did not specify the precise manner in
which the particle vibration generates its associated pilot wave,
Dagan and Bush [19] followed the physical analogy between
pilot-wave hydrodynamics and de Broglie’s mechanics proposed
by Bush [20]. Specifically, they considered particle vibration at
2ωc to serve as a localized disturbance, acting over the scale of
the Compton wavelength, λc = h/(m0c), of a scalar field, φ, that
evolves according to the Klein-Gordon equation.

Dagan and Bush [19] restricted their attention to a one-
dimensional geometry: the particle motion was restricted to
a line. Nevertheless, their simulations revealed two striking
features. First, the particle moves in concert with its pilot wave
in such a way that its mean momentum satisfies the de Broglie
relation, p = h̄kB. Second, the free particle is characterized
by in-line speed oscillations at the frequency ckB, over a length
scale comparable to the de Broglie wavelength. Here, we shall
rationalize the emergence of the de Broglie relation by elucidating
the precise form of the wave field in the immediate vicinity of
the particle.

In the special case of prescribed particle motion at a constant
speed, the simulations of Dagan and Bush [19] also indicated
the form of the emergent pilot-wave field, which had two
salient features. First, the leading and trailing forms were
significantly different. Second, the relative prominence of the de
Broglie and Compton wavelengths was seen to depend markedly
on the particle speed. These two features, and their analogs
arising for a two-dimensional pilot wave, will be rationalized
through the theoretical developments presented herein. Finally,
our theoretical developments allow us to derive an integro-
differential trajectory equation for the particle motion, which
we analyze in the non-relativistic limit. As in the hydrodynamic
system, this integro-differential form will provide the theoretical
basis for examining the stability of various dynamical states,
including the in-line speed oscillations of the free particle
reported by Dagan and Bush [19].

This paper is arranged as follows: In section 2, we review
the theoretical model proposed by Dagan and Bush [19]. We
also highlight a number of fundamental features of the Klein-
Gordon equation that form the foundations of our analysis. In
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section 3, we derive an analytic solution of the pilot wave for the
kinematic case of steady particle motion at a prescribed speed.
Particular attention is given to rationalizing the salient features
reported by Dagan and Bush [19]. Our theoretical developments
are then extended to describe the two-dimensional pilot wave
generated by rectilinear particle motion in the plane. Finally, in
section 4, we derive an integro-differential trajectory equation
for the particle motion, analysis of which indicates the onset
of self-propulsion for sufficiently strong wave-particle coupling.
This trajectory equation represents the starting point for future
investigations of this new pilot-wave system.

2. HYDRODYNAMIC QUANTUM
FIELD THEORY

2.1. Formulation
We examine the model of one-dimensional quantum dynamics
proposed by Dagan and Bush [19], according to which the pilot
wave, φ(x, t), and particle position, xp(t), evolve according to:

∂2φ

∂t2
− c2

∂2φ

∂x2
+ ω2

cφ = ǫpf (t)g(x− xp(t)), (1a)

γ (x′p)x
′
p = −α

∂φ

∂x

∣

∣

∣

∣

x=xp

, (1b)

where primes denote differentiation with respect to time, t, and
φ satisfies φ → 0 as x → ±∞. The pilot wave, φ(x, t), evolves
according to the Klein-Gordon equation subject to a localized,
periodic forcing, and the particle moves in response to the local
gradient of its pilot-wave field. We note that the novelty of HQFT
is the wave-particle coupling, as manifest in the forcing of the
Klein-Gordon equation and the particle trajectory equation. It
is this coupling that distinguishes our work from the numerous
studies of the Klein-Gordon equation with a potential [21, 22].
The strength of the wave-particle coupling is governed by the
free parameter α. The standard Lorentz factor is defined in terms
of the particle velocity, v = x′p, via γ (v) = (1 − (v/c)2)−1/2.

We define ǫp = φ0ω
2
c /kc, where φ0 is a characteristic value of

φ and kc = 2π/λc is the Compton wavenumber. We recall that
the Compton wavelength, λc, is the distance light travels in one
Compton period, τc = 2π/ωc; thus, λc = cτc and ωc = ckc.

Following the suggestion of Schrödinger [23], and in order
to achieve wave-particle resonance, Dagan and Bush [19]
considered the special case of particle vibration at twice the
Compton frequency, f (t) = sin(2ωct). They further localized
the influence of the particle-induced forcing to the Compton
wavelength by choosing

g(x) = 1√
πa2

e−(x/a)2 , (2)

with a = λc/2. For the numerical examples presented herein,
we adopt these two forms; however, we note that our analysis
is not specific to these forms. In section 3, we investigate the
influence of the forms of f (t) and g(x) on the resultant pilot wave.
Specifically, we consider a more general periodic vibration, f (t),

with dominant angular frequency ω0, and g(x) corresponding
to any symmetric function exhibiting a peak about x = 0 and
decaying as |x| → ∞, normalized such that

∫

R
g = 1.

2.2. The Klein-Gordon Equation
To aid our analysis of the periodically-forced Klein-Gordon
equation (Equation 1a), we first recall some of the fundamental
features of the unforced Klein-Gordon equation,

∂2φ

∂t2
− c2

∂2φ

∂x2
+ ω2

cφ = 0. (3)

The ω2
cφ term in Equation (3) renders this wave equation

dispersive: the propagation speed of a wave depends on
its wavelength. This dispersion relation is derived through
consideration of traveling wave solutions to Equation (3) of the
form φ(x, t) = ei(ωt−kx), where i is the imaginary unit. (As the
wave form is unchanged under the mapping ω → −ω and
k → −k, we consider ω > 0 without loss of generality). We
thus obtain the dispersion relation

ω2(k) = ω2
c + c2k2 ⇒ ω(k) =

√

ω2
c + c2k2,

which relates the wave angular frequency, ω, and the
wavenumber, k.

Since the group velocity, dω
dk , increases monotonically from

−c to +c as k is increased, for any prescribed particle velocity,

v ∈ (−c, c), there is a unique wavenumber satisfying dω
dk = v.

This wavenumber is precisely the de Broglie wavenumber, kB(v),
defined as

kB = v/c
√

1− (v/c)2
kc =

v

c
γ (v)kc. (4)

As such, the particle is accompanied by a moving wave packet
with wavelength λB = 2π/|kB| in the vicinity of the particle.
We note that the de Broglie wavelength, λB, and the Compton
wavelength, λc, differ in general, but are identical when the
particle speed is such that |v/c| = 1/

√
2. The dependence of

kB on the particle velocity, v, is illustrated in Figure 1, where
asymptotes are evident as the particle speed approaches the speed
of light. Notably, the de Broglie wavelength is infinite for a
stationary particle. Finally, we remark that the phase speed,

Cp(k) =
∣

∣

∣

∣

ω(k)

k

∣

∣

∣

∣

=
√

(ωc/k)2 + c2,

is superluminal for any wavenumber, k; in particular, the de
Broglie phase speed is Cp(kB) = c2/|v|. However, as the
propagating crests do not carry energy, the principle of relativity
is not violated.

2.3. The Form of the Pilot Wave
Dagan and Bush [19] considered two forms of particle motion:
kinematics, in which the particle motion is prescribed as steady
translation at a fixed velocity, v; and dynamics, where the particle
is free to move in response to the gradient of the pilot wave
according to Equation (1b). Our study of the pilot wave, φ, is

Frontiers in Physics | www.frontiersin.org 3 August 2020 | Volume 8 | Article 300

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Durey and Bush HQFT: The Pilot-Wave Form

-4 -2 0 2 4

1

2

3

4A

-4 -2 0 2 4

1

2

3

4B

-1 -0.5 0 0.5 1
-4

-2

0

2

4
C

FIGURE 1 | The wavenumbers excited by a particle moving at a prescribed, constant velocity, v, and vibrating at an angular frequency ω0 = 2ωc. Here kB is the de

Broglie wavenumber (Equation 4) and k± are the wavenumbers of the traveling waves [see Equation (9)]. (A,B) The curve
√

1+ (k/kc)2 and line (ω0 + kv)/ωc intersect

at k+ > 0 and k− < 0, and have equal slope at kB. The dotted line also has slope v/ωc. (A) v/c = 0. (B) v/c = 0.4. (C) Dependence of k± (solid curves) and kB

(dashed curve) on v.

similarly split into consideration of particle kinematics (section
3) and particle dynamics (section 4).

To demonstrate the richness and variety in the form of the
pilot wave, we present snapshots of φ(x, t) for particle kinematics
in Figure 2. These wave forms are similar to those deduced
numerically by Dagan and Bush [19] and possess a number of
intriguing features. First, there is a clear manifestation of the de
Broglie wavelength, λB, most visible in advance of the particle:
however, upon closer inspection, this wavelength modulates
weakly in space, as is most apparent in Figure 2A, and the
amplitude of this wave decreases as the particle speed increases.
Second, we see the emergence of an additional wavelength,
comparable (but not equal) to the Compton wavelength, λc.
Such waves are visible only in the wake of the particle, and
the amplitude of these waves increases with particle speed. We
proceed by rationalizing these wave forms through a systematic
theoretical analysis of the periodically-forced, one-dimensional
Klein-Gordon equation, before demonstrating numerically that
these salient features are also apparent in two dimensions.

3. PILOT-WAVE KINEMATICS

We first consider the kinematic case in which particle motion

is prescribed, so we need not consider the partial trajectory

equation (Equation 1b). Specifically, we consider the particle
trajectory xp(t) = vt, where v > 0 corresponds to motion in
the x-direction. The form of the pilot-wave field is thus described
by the periodically-forced Klein-Gordon equation,

∂2φ

∂t2
− c2

∂2φ

∂x2
+ ω2

cφ = ǫpf (t)g(x− vt). (5)

Example wave forms are presented in Figure 2. We consider the
initial conditions φ = ∂tφ = 0 at t = 0 (for all x) and explore the
dynamics of the waves generated in the vicinity of the particle
after a long time. Our analysis in sections 3.1 and 3.2 is for a

one-dimensional wave form. In section 3.4, we demonstrate that
the salient features of the one-dimensional pilot wave persist in
two dimensions. For simplicity, we consider the forcing f (t) =
sin(ω0t) in the following analysis, but the wave form for a more
general periodic forcing may be derived similarly through the
linear superposition of the harmonics nω0, for any integer n. Our
analysis coincides with the simulations of Dagan and Bush [19]
for ω0 = 2ωc.

As the Klein-Gordon equation is linear, we decompose the
solution of Equation (5) into two parts: the time-periodic
particular solution, φp, which arises due to the periodic
particle forcing; and the homogeneous solution, φh, whose
initial wave form is chosen so that, when combined with the
particular solution, the initial conditions for φ = φp + φh

are satisfied. Our analysis reveals that the particular solution
gives rise to emitted waves that propagate away from the
particle, where the wavelengths in advance of and behind the
particle differ and depend on the particle speed. However,
both the leading and trailing propagating waves oscillate
with the angular frequency, ω0, of the particle vibration.
The homogeneous solution appears as a slowly decaying
carrier wave whose local wavelength and angular frequency
in the vicinity of the particle are precisely the de Broglie
wavelength, λB, and the reduced angular frequency ωc/γ . In
general, the propagating and carrier waves thus oscillate at
different frequencies.

3.1. The Propagating Waves
We first derive the particular solution, φp, to the periodically-
forced Klein-Gordon equation (Equation 5) for a prescribed
particle velocity, v. To allow for generality in the spatial form,
g(x), we first seek the Green’s function, φ̄p, satisfying

∂2φ̄p

∂t2
− c2

∂2φ̄p

∂x2
+ ω2

c φ̄p = ǫp sin(ω0t)δ(x− vt), (6)
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FIGURE 2 | Snapshots of the pilot wave, φ, generated by a particle (black dot) moving at a prescribed velocity, v, such that (A) v/c = 0.1, (B) v/c = 0.4, (C)

v/c = 0.7. The wave field oscillates in time and is sampled at t/τc = 600. The arrow denotes the direction of particle motion. The gray bar (top right of each panel)

indicates the ratio λB/λc, which decreases as the particle speed increases, in accord with Equation (4). The solution was found analytically via a Fourier transform on

an infinite domain (see Appendix 1), where the inversion was performed numerically using a Gauss-Kronrod quadrature routine built into MATLAB.

where δ(x) is the Dirac delta function, yielding the following
spatial convolution for φp:

φp(x, t) =
∫ ∞

−∞
g(x− y)φ̄p(y, t) dy. (7)

We find that this particular solution corresponds to emitted plane
waves that propagate away from the moving particle, and that the
form of g(x) determines the far-field amplitude of these waves.

To derive φ̄p, we first consider periodic solutions to the
unforced Klein-Gordon equation (Equation 3) of the form

φ(x, t) = ei(ωt−k(x−vt)) = ei((ω+kv)t−kx).

In the frame of reference moving with the particle, the angular
frequency shifts according to ω 7→ ω + kv, yielding the
dispersion relation

(ω + kv)2 = ω2
c + c2k2. (8)

When the angular frequency is that of the vibrating particle,
ω = ω0, Equation (8) yields two corresponding wavenumbers,

k± = 1

c2 − v2

[

vω0 ±
√

c2(ω2
0 − ω2

c )+ v2ω2
c

]

. (9)

The dependence of k± on the particle velocity, v, is presented in
Figure 1 for the special case of ω0 = 2ωc considered by Dagan
and Bush [19].

We now utilize the dispersion relation (Equation 8) in order
to determine the wave forms of the particular solution, φp,
when the angular frequency of the particle vibration exceeds
the Compton angular frequency, ω0 > ωc, which encompasses
the special case ω0 = 2ωc explored by Dagan and Bush [19].
(We shall demonstrate in section 3.3 that unphysical wave forms
arise in the case of ω0 ≤ ωc). Equation (9) indicates that
k+ > 0, corresponding to wave propagation in the positive x-
direction, while k− < 0, corresponding to wave propagation

in the negative x-direction. It thus follows that, for the case of
v > 0 considered here, the leading and trailing wavenumbers
are k+ and k−, respectively. Moreover, as k+ > |k−| for v > 0,
the trailing wavelength is longer than the leading wavelength, a
feature characteristic of a Doppler shift. Finally, we note that the
phase speed, ω0/|k±|, of these propagating waves is comparable,
but not precisely equal, to the de Broglie phase speed, Cp(kB) =
c2/|v|, as was evident in the simulations of Dagan and Bush [19].

We demand that the waves propagate away from the vibrating
particle. This radiation condition suggests that φ̄p has the form

φ̄p(x, t) = A+ cos
(

ω0t− k+(x− vt)
)

+B+ sin
(

ω0t− k+(x− vt)
)

for x > vt. When x < vt, the form is similar, but k+ is replaced by
k− (and similarly for A+ and B+). The coefficients, A± and B±,
are determined by the assumed continuity of φ̄p at x = vt and the
jump condition

∂xφ̄p(vt
+, t)− ∂xφ̄p(vt

−, t) = −
ǫp

c2
sin(ω0t),

which follows from (6). The Green’s function is then

φ̄p(x, t) =
ǫp

c2(k− − k+)
cos

(

ω0t − K(x− vt)
)

, (10)

where K = k+ for x > vt and K = k− for x < vt.
For a stationary particle (v = 0), Equation (9) determines

k± = ±k0 (where ck0 =
√

ω2
0 − ω2

c ) and the Green’s function

(Equation 10) reduces to

φ̄p(x, t) =
−ǫp

2k0c2
cos(ω0t − k0|x|).

Since k0 6= kc, the wavelength of the propagating waves differs
from the Compton wavelength. Instead, k0 depends on the
vibrational angular frequency, ω0. For the special case of interest,
ω0 = 2ωc, the propagating waves are shorter than the Compton
wavelength, with k0 =

√
3kc.

Frontiers in Physics | www.frontiersin.org 5 August 2020 | Volume 8 | Article 300

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Durey and Bush HQFT: The Pilot-Wave Form

When the particle moves at a constant speed, symmetry is
broken and the propagating waves exhibit a Doppler shift: shorter
waves propagate ahead of the particle and longer waves are
emitted in its wake. Since k+/kc → ∞ as v → c, we conclude that
waves ahead of the particle are further compressed as the particle
speed increases. Conversely, the waves behind the particle are
stretched: the wavelength λ− = 2π/|k−| has the limiting form

λ−
λc

→ 2ω0ωc

ω2
0 − ω2

c

as v → c.

In the special case of interest, ω0 = 2ωc, the far-field wavelength
behind the particle approaches 4λc/3 in this limit.

The effect of the convolution (Equation 7) is to diminish rapid
spatial oscillations arising in Equation (10).We define the Fourier
transform of g(x) as

ĝ(k) =
∫ ∞

−∞
g(x)eikx dx, (11)

where the symmetry of g(x) implies that ĝ is a real and
even function of k. Combining Equations (7) and (11), and
applying the convolution theorem, reveals that, far from the
particle, the trailing (−) and leading (+) propagating waves are
approximated by

φp(x, t) ≈ ĝ(k±)φ̄p(x, t)

for v > 0, since φ̄p is sinusoidal and g(x) acts over a localized
region in space. For the case where g(x) is a Gaussian function
[19], ĝ(k) is also a Gaussian; thus, short waves are diminished in
amplitude to a greater extent than long waves. The amplitude of
φp is thus less ahead of the particle, where waves are shorter, than
in its wake, where waves are longer, as is evident in Figure 3.

3.2. The Carrier Wave
We now deduce the accompanying homogeneous solution,
φh(x, t), to Equation (5), from which we demonstrate that the
de Broglie wavelength is the local wavelength of a carrier wave
propagating at the particle speed. As shown in Appendix 1,
the homogeneous solution, φh, may be expressed as the inverse
Fourier transform

φh(x, t) = 1

2π

∫ ∞

−∞

(

a(k) cos
(
√

ω2
c + c2k2 t

)

+ b(k) sin
(
√

ω2
c + c2k2 t

)

)

e−ikx dk, (12)

where the functions a(k) and b(k) are defined in Appendix 1.
Evaluating this integral analytically is intractable. However, we
may proceed by exploiting the highly oscillatory form of the
integrand for ωct≫ 1 in order to derive the integral’s asymptotic
behavior using themethod of stationary phase [24], as outlined in
Appendix 2. By applying this asymptotic procedure to Equation
(12), we obtain that the long-time form of the carrier wave is

φh(x, t) ∼ A(x/ct)
sin(

√

ω2
c t

2 − k2cx
2 + π/4)√

ωct
, (13)
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FIGURE 3 | The propagating waves. (A,B) The Gaussian shape function, g(x),

defined in (2), and its Fourier transform, ĝ(k) = e−a
2k2/4. (C) The Green’s

function, φ̄p, at t = 0 for v/c = 0.3. (D) The particular solution, φp = φ̄p ∗ g,
yields the form of the propagating waves at t = 0. The arrow denotes the

direction of particle motion. The white circles in (B) at k = k± determine the

trailing (−) and leading (+) wavelength of φ̄p, where φp ≈ ĝ(k±)φ̄p far from

the particle.

an approximation valid for |x| < ct and ωct ≫ 1. The form of
the slowly varying envelope,A(x/ct), depends only weakly on the
particle speed [see Appendix 2].

We present the carrier wave, φh, in Figure 4, where its
envelope,A(x/ct), may be seen to exhibit weak asymmetry about
the origin. Notably, the wavelength of the carrier wave varies
significantly in space, with compression ahead of the particle and
elongation in its wake, characteristic of a Doppler shift.Moreover,
we note that φh decays algebraically in time, so the significance
of the carrier wave decreases as ωct → ∞. Nevertheless, this
algebraic decay is sufficiently slow for the amplitude of φh to
remain appreciable at finite time and so be evident in the pilot-
wave forms presented in Figure 2.

We now elucidate the manifestation of the de Broglie
wavelength in the carrier wave, φh. For a particle moving with
velocity v, we define χ = x − vt as the displacement from the
particle. As the envelope, A, is slowly varying, the dominant
spatial oscillations in φh arise from the sinusoid in Equation
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FIGURE 4 | The carrier wave. The asymptotic homogeneous solution, φh [blue

curve, see Equation (13)], for v/c = 0.3 and t/τc = 100, corresponding to a

particle position xp/λc = 30 (black dot). In the vicinity of the particle, waves are

contracted ahead of the particle and elongated behind it. The dotted curve

denotes the slowly varying envelope, ±A(x/ct)/
√

ωct, where A is defined

in Appendix 2.

(13), whose argument we expand in the vicinity of the particle
(|χ/vt| ≪ 1). Specifically, we obtain

√

ω2
c t

2 − k2cx
2 = ωct

√

1− (v/c)2 −K(χ)χ , (14)

where the slowly varying wavenumber is

K(χ) = kc

[

kB
kc

+ χ/vt

2(1− (v/c)2)3/2
+ O((χ/vt)2)

]

, (15)

and kB is the de Broglie wavenumber (Equation 4). The first
term on the right-hand side of Equation (14) corresponds to the
temporal oscillation of the carrier wave at the reduced angular
frequency ωc/γ . At the particle position (χ = 0), the local
wavenumber, K, of the carrier wave is precisely the de Broglie
wavenumber, as might have been anticipated by the relationship
dω
dk (kB) = v [see Equation (4)]. Moreover, the local wavenumber
varies slowly in space, as described by the correction term of size
O(|χ/vt|) in Equation (15). This variation serves to compress the
wavelength ahead of the particle and elongate it in the particle’s
wake (see Figures 2, 4). This wavenumber modulation decreases
over time, and is also reduced for faster moving particles.

We may also infer why the local amplitude of the carrier
wave decreases as the particle speed increases, a trend evident
in Figure 2. We first recall from Equation (4) that |kB| increases
with the particle speed. Moreover, the variations from the de
Broglie wavelength in the vicinity of the particle become weaker
as the particle speed increases, a trend due to the aforementioned
correction term of size O(|χ/vt|). Consequently, there is a strong
signature of the de Broglie wavelength in the vicinity of the
particle, where the amplitude of this wave is governed by the
value of ĝ(kB), akin to the dependence of the amplitude of the
propagating waves on ĝ(k±) discussed in section 3.1. As |kB|
increases with |v|, and ĝ(k) decreases with |k| (when g(x) is a
Gaussian function), the local amplitude of the carrier wave is
thus diminished with increasing particle speed, consistent with
the trend apparent in Figure 2.

3.3. Summary
By combining the foregoing results, specifically superposing the
propagating (Equation 7) and carrier (Equation 13) wave forms,
we deduce that the one-dimensional wave form generated by
particle motion at uniform speed is

φ(x, t) ∼
∫ ∞

−∞
g(x− y)φ̄p(y, t) dy

+ A(x/ct)
sin(

√

ω2
c t

2 − k2cx
2 + π/4)√

ωct
, (16)

an approximation valid for ωct ≫ 1 and |x| < ct. The Green’s
function, φ̄p, is defined in Equation (10), and the envelope,
A(x/ct), is defined in Appendix 2. As the asymptotic temporal
decay of the carrier wave is algebraic, the signature of the de
Broglie wavelength becomes imperceptible only at very large
times. It is thus apparent why λB is evident in Figure 2 and
the finite-duration simulations of Dagan and Bush [19], but is
expected to vanish in the long-time limit.

In Figure 5, we present an example of the superposition
φ = φp + φh, representing the full pilot-wave field. The
particular solution, φp, describes waves that propagate away
from the moving particle, where the approximate trailing (−)
and leading (+) form is φp ≈ ĝ(k±)φ̄p for v > 0. The
shorter propagating waves ahead of the particle are imperceptible,
but the longer propagating waves in the particle’s wake remain
appreciable. The homogeneous solution, φh, represents a carrier
wave exhibiting local wavelength contraction and elongation
ahead of and behind the particle, respectively. At the particle
position, the local wavelength of the carrier wave is precisely the
de Broglie wavelength. The asymptotic approximation (Equation
16) of the full pilot-wave field, φ, is in excellent agreement with
the numerical solution of Equation (5), lending credence to our
analytic approach.

We proceed by examining the effects of changing the form
of the spatial forcing, g(x). For Gaussian forcing of the form
given in Equation (2), increasing the breadth, a, of the spatial
forcing diminishes the amplitude of the propagating waves, φp,
both ahead of and behind the moving particle, as the far-field
wave amplitudes, φp ≈ ĝ(k±)φ̄p, accordingly decrease due to the

form ĝ(k) = e−a2k2/4. When the particle forcing is localized to
a point (a → 0), we obtain φ̄p = φp, whose form, portrayed in
Figure 3C, has leading and trailing propagating waves of equal
amplitude. When g(x) is other than Gaussian, the far-field wave
amplitudes, φp ≈ ĝ(k±)φ̄p, may vary in a more complex manner
as a function of the localization breadth, a, or particle speed,
|v|. Nevertheless, since k+ → ∞ as v → c, and ĝ(k) → 0 as
k → ∞, the amplitude of the propagating waves far ahead of
the particle approaches zero as the particle speed approaches the
speed of light.

We next examine the influence of the angular frequency,
ω0, of the particle vibration, f (t) = sin(ω0t), on the form of
the propagating waves. We first consider the case in which this
frequency exceeds the Compton frequency, ω0 > ωc, which
incorporates the case of resonant superharmonics of the form
ω0 = nωc for integers n > 1. We recall that Dagan and Bush [19]
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FIGURE 5 | Wave forms accompanying a particle moving at constant velocity

v = 0.1c after a time 600τc. (A) The analytic particular solution, φp [see

Equations (7) and (10)], corresponding to propagating waves. (B) The

long-time asymptotic approximation (Equation 13) of the homogeneous

solution, φh, corresponding to the carrier wave. (C) The total wave field

deduced analytically, φ = φp + φh (blue curve), coincides with the numerical

solution (gray curve) shown in Figure 2A. The gray bar indicates the ratio

λB/λc. The arrow indicates the direction of particle motion.

restricted their attention to the case n = 2. As ω0 is increased,
the wavenumbers k+ and k− both increase monotonically in
magnitude [see Equation (9) and Figure 1], resulting in a
decrease in the far-field amplitude of the propagating waves,
φp ≈ ĝ(k±)φ̄p. Consequently, the inclusion of higher harmonics
results in a relatively small change in the form of the propagating
waves, justifying the decision of Dagan and Bush [19] to consider
only the superharmonic n = 2.

For the special case arising when the angular frequency of the
particle vibration is equal to the Compton angular frequency,
ω0 = ωc, it follows from Equation (9) that k− = 0 and
k+ = 2γ kB for v > 0. In this case, the wavelength of the
propagating wave is infinite in the particle’s wake and at most half
the de Broglie wavelength in advance of the particle, giving rise to
markedly different wave forms from those presented in Figures 2,
5. However, since k− = 0, the propagating waves generated
in this special case of harmonic forcing exhibit the unphysical
feature of an infinite-wavelength oscillation in the particle’s wake.

Finally, we consider the case where the angular frequency of
the particle vibration is less than the Compton angular frequency,

ω0 < ωc, such as for the subharmonic vibration ω0 = 1
2ωc.

Then, Equation (9) indicates that the wavenumbers k± are real
for |v| > v∗, where v∗/c = 1 − ω2

0/ω
2
c , and complex for |v| <

v∗. For fast-moving particles, |v| > v∗, waves thus propagate
ahead of the particle over two distinct length scales and no waves
propagate in the particle’s wake. Conversely, for slow-moving
particles, |v| < v∗, waves grow exponentially in space ahead of
the particle (over a length scale determined by the imaginary
part of k±), which renders the case ω0 < ωc unsuitable for the
generation of a finite-amplitude pilot wave.

As a caveat, we note that our analysis is only valid within
the light cone: the particular solution, φp, extends beyond the
light cone at any finite time since φp is sinusoidal in the
far field. Our analytic results are therefore invalid beyond a
distance O((c − |v|)t) from the particle. Nevertheless, since we
are chiefly interested in the wave form in the vicinity of the
particle, as is necessarily responsible for guiding the particle, this
limitation does not undermine the key results of our study as they
pertain to HQFT.

3.4. The Two-Dimensional Pilot Wave
The approach developed here may be extended to higher spatial
dimensions. We do so here in order to briefly characterize the
two-dimensional pilot wave emerging for rectilinear particle
motion in the plane x = (x, y), with particle velocity v = (v, 0).
We restrict our attention to the case of superharmonic forcing,
ω0 = 2ωc. Notably, the salient features of the one-dimensional
pilot wave, specifically the propagation of waves away from
the particle and the emergence of the de Broglie wavelength
in the carrier wave, persist in two dimensions. In Appendix 3,
we analytically determine the two-dimensional wave form of
the periodically-forced Klein-Gordon equation [the equivalent of
Equation (5)] in Fourier space, before inverting back to physical
space numerically.

Figures 6, 7 both indicate that, as in one dimension, two clear
length scales emerge, comparable to the Compton and de Broglie
wavelengths. The separation in scales between λc and λB is most
evident at low speeds, consistent with Equation (4). Figure 6
illustrates the wave form in the transient case, for which the
particle is initialized at the origin, where the carrier wave forms
about the particle’s initial position. For a stationary or slowly
moving particle, the particle is surrounded by its pilot wave.
However, for faster particles, the amplitude of the waves ahead
of the particle is diminished, as is evident in Figure 6F. Figure 7
illustrates the long-time form of the pilot wave, composed of
propagating waves of characteristic wavelength λc emitted by
the particle, and a carrier wave of the de Broglie wavelength
propagating at the particle speed. Notably, the carrier wave ahead
of the particle approaches a plane wave with the de Broglie
wavelength as ωct → ∞. A more extensive exploration of HQFT
in two dimensions will be left for future consideration.

4. PILOT-WAVE DYNAMICS

We proceed by transforming the coupled system (Equation
1) into an integro-differential trajectory equation governing
the particle position. We do so by following Oza et al.’s [25]
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FIGURE 6 | The two-dimensional wave forms generated by particle motion along the x-axis at a prescribed velocity, v = (v, 0), initiated at t = 0, when φ = ∂tφ = 0.

The normalized wave amplitude, φ/φ0, is color-coded. The cross section of the wave form along the particle path (y = 0) is shown below. (A–C) A particle moves

along the x-axis with v/c = 0.2, with snapshots at (A) t/τc = 10, (B) t/τc = 20, and (C) t/τc = 30. (D–F) The wave field generated at time t/τc = 20, where the

propagation velocity is such that (D) v/c = 0, (E) v/c = 0.3, and (F) v/c = 0.6. The black dot denotes the particle position and the gray bar (top right of each panel)

denotes λB/λc, which is necessarily infinite for v = 0. The wave forms were obtained by numerically inverting the Fourier transform solution of the two-dimensional

periodically-forced Klein-Gordon equation, as described in Appendix 3.

theoretical description of walking droplets, wherein the memory
of the pilot-wave system is manifest in the wave force, and
appears in the form of an integral over the particle path.
This formulation has two principal benefits. First, the integro-
differential equation provides a framework for mathematical
analysis of the particle dynamics, including an assessment of the
stability of various dynamical states. Second, since the influence
of the pilot wave is felt only along the particle trajectory, one
need not solve the Klein-Gordon equation numerically for all
space, which will be particularly beneficial in higher dimensions.
One may thus side-step the requirement of an increasingly
large computational domain when the simulation duration is
increased, a shortcoming of the numerical approach of Dagan
and Bush [19]. We proceed by using the Green’s function of the
Klein-Gordon equation in order to derive a trajectory equation
valid for arbitrary particle speed. We then simplify the resulting

trajectory equation in the non-relativistic limit, |v| ≪ c. Analysis
of the resulting dimensionless equation allows us to deduce the
critical wave-particle coupling parameter required to support
sustained particle self-propulsion.

4.1. The Green’s Function
By definition, the Green’s function, ϕ0(x, t), for the Klein-Gordon
equation is the solution of

∂2ϕ0

∂t2
− c2

∂2ϕ0

∂x2
+ ω2

cϕ0 = δ(x)δ(t).

Its form may be determined exactly using standard analytic
methods. To obtain the solution, φ(x, t), to the forced Klein-
Gordon equation (Equation 1a), one then convolves (in space and
time) ϕ0(x, t) with the right-hand side of Equation (1a). To side-
step the complexity of the resulting double integral, we instead
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FIGURE 7 | The two-dimensional pilot-wave field generated by particle (black

dot) motion along the x-axis at a prescribed velocity, v = (0.1c, 0), after a time

300τc. The dimensionless wave amplitude, φ/φ0, is color-coded.

Compton-scale propagating waves are evident in the particle’s wake, and a de

Broglie-scale, quasi-planar carrier wave propagates at the particle speed.

seek a modified Green’s function (valid for ωct≫1) that accounts
for the form of the spatial forcing, allowing for a convolution in
time only.

Specifically, we seek ϕ(x, t) satisfying

∂2ϕ

∂t2
− c2

∂2ϕ

∂x2
+ ω2

cϕ = ǫpg(x)δ(t), (17)

with ϕ(x, 0) = ∂tϕ(x, 0−) = 0. For initial conditions φ = ∂tφ =
0 at t = 0, the solution, φ(x, t), of (1a) is then given by the
temporal convolution

φ(x, t) =
∫ t

0
f (s)ϕ(x− xp(s), t − s) ds, (18)

where we have used translational invariance to recenter ϕ about
the particle position.

To determine ϕ, we apply a Fourier transform in
space to Equation (17), yielding an evolution equation for
ϕ̂(k, t), specifically

ϕ̂′′ + (ω2
c + c2k2)ϕ̂ = ǫpĝ(k)δ(t),

with ϕ̂(k, 0) = ϕ̂′(k, 0−) = 0. This equation is readily
solved, yielding

ϕ̂(k, t) = ǫpĝ(k)
sin(

√

ω2
c + c2k2 t)

√

ω2
c + c2k2

.

To obtain ϕ, we must then apply the inverse Fourier transform
to ϕ̂: this process is simplified for ωct ≫ 1, where the highly

FIGURE 8 | The Green’s function. (A) Space-time wave evolution of ϕ,

normalized by φ0ωc, as computed numerically. The dashed lines correspond

to the profiles presented in (B,C). (B,C) ϕ (blue dash-dotted curve) and its

asymptotic approximation (Equation 19) (red solid curve) at times (B) t/τc = 3

and (C) t/τc = 7.

oscillatory integrand may be approximated using the method
of stationary phase [24], akin to the procedure outlined in
Appendix 2. For |x| < ct, the asymptotic result is

ϕ(x, t) ∼
ǫp

c
√
2π

sin(
√

ω2
c t

2 − k2cx
2 + π/4)

(ω2
c t

2 − k2cx
2)1/4

ĝ(k∗),

where k∗ = kc/
√

(tc/x)2 − 1. At any given time, the local
wavelength is longest at x = 0 and decreases as the light cone is
approached (|x| → ct). Moreover, the function ĝ(k∗) modulates
the amplitude of the wave, and the decay of ĝ(k) as |k| → ∞
ensures that ϕ is not singular at |x| = ct.

To further simplify the form of ϕ, we recall that the Bessel
function of the first kind with order zero has asymptotic form
J0(z) ∼

√
2/πz sin(z + π/4) as |z| → ∞. As the large-argument

decay of ĝ diminishes the amplitude of ϕ for |x| . ct (see
Figure 8), we may modify the asymptotic Green’s function to the
more tractable form

ϕ(x, t) ∼
ǫp

2c
J0

(
√

ω2
c t

2 − k2cx
2
)

ĝ

(

kc
√

(tc/x)2 − 1

)

. (19)
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The validity of this approximation is demonstrated in Figure 8,
where we see an excellent agreement between the evolution of
the asymptotic and numerical forms of ϕ.

4.2. The Trajectory Equation
We proceed by combining Equations (1b), (18), and (19) in order
to obtain the following integro-differential trajectory equation
describing the evolution of the particle position, xp(t):

γ (x′p)x
′
p = −α

∫ t

−∞
f (s)∂xϕ(xp(t)− xp(s), t − s) ds. (20)

The only difference between this integral formulation (Equation
20) and the differential formulation (Equation 1) considered
by Dagan and Bush [19] is the approximation of the Green’s
function, ϕ, by its asymptotic form (Equation 19). However, as
in the stroboscopic model of walking droplets [25], the integral
is extended to account for the particle’s entire history, specifically
its trajectory for t < 0.

We next derive a reduced trajectory equation, valid in the non-
relativistic limit, in which |x′p(t)|/c < η for all time, t, where
0 < η ≪ 1. Equivalently,

|xp(t)− xp(s)|
c(t − s)

< η

for all time, t, and all s < t. To derive the non-relativistic
trajectory equation, we expand Equation (20) in powers of η,
where γ (x′p) ∼ 1+ O(η2) and

∂ϕ

∂x
(x, t) ∼

ǫpkc
2c

[

J1(ωct)
x

ct
+ O(|x/ct|3)

]

,

for |x/ct|≪1. In this latter expansion, we have used the symmetry
and normalization of g(x) to exploit that ĝ(k) ∼ 1 + O(a2k2)
for |ak| ≪ 1. As a result, the precise form of the localized
particle forcing, g, only appears as a higher-order correction to
the near-field slope of ϕ.

By combining the foregoing expansions and introducing
the dimensionless variables t̂ = ωct, x̂p(t̂) = kcxp(t) and

f̂ (t̂) = f (t), we reduce Equation (20) to the non-relativistic
trajectory equation

dx̂p

dt̂
= −κ

∫ t̂

−∞
f̂ (s)

(

x̂p(t̂)− x̂p(s)
) J1(t̂ − s)

t̂ − s
ds, (21)

where the resultant terms are all of size O(η) and we have
neglected the correction terms of size O(η3). The dimensionless
parameter, κ = αǫp/2c3, determines the strength of the wave-
particle coupling, with larger κ resulting in higher particle speeds.
We thus require κ > 0 to be sufficiently small that relativistic
effects remain negligible. The non-relativistic trajectory equation
(Equation 21) represents a convenient form for exploring non-
relativistic pilot-wave dynamics in one dimension: We proceed
by characterizing the onset of motion at the critical threshold
κ = κc.

4.3. The Onset of Particle Motion
For the special case of superharmonic forcing, f̂ (t̂) = sin(2t̂), we
determine the critical wave-particle coupling parameter, κc > 0,
beyond which the particle rest state, x̂p = constant, is unstable
and the system supports sustained particle self-propulsion. We
first recast Equation (21) in the form

1

κ

dx̂p

dt̂
+ x̂p(t̂)

[ ∫ ∞

0
sin(2(t̂ − s))

J1(s)

s
ds

]

=
∫ ∞

0
sin(2(t̂ − s))x̂p(t̂ − s)

J1(s)

s
ds. (22)

By noting that the coefficient of x̂p(t̂) on the left-hand side is
periodic with period π , we deduce that this linear trajectory
equation is of Floquet form. We thus expect, and may verify
numerically, that the onset of motion at κ = κc arises through
lateral particle oscillation that is subharmonic relative to the
particle’s vibration, with a period of 2π corresponding precisely
to the Compton period in our non-dimensionalization.

To determine κc, we expand x̂p(t̂) using the Floquet ansatz

x̂p(t̂) =
∞
∑

n=−∞
n odd

Xne
int̂ , (23)

where the reality condition for x̂p is X−n = X∗
n for all n,

and ∗ denotes complex conjugation. We substitute the Floquet
ansatz (Equation 23) into (22) and evaluate the resultant integrals

analytically, before grouping together powers of eit̂ to form
an infinite-dimensional system of equations for the unknown
coefficients, Xn. The critical threshold, κc, is the value of κ at
which the Xn coefficients have a non-trivial solution, for which
the determinant of the corresponding matrix vanishes. Following
the procedure outlined by Kumar and Tuckerman [26] and
Kumar [27] for the study of the Faraday wave instability, we
then truncate this system to a specified number of leading-
order harmonics, at which we evaluate an approximation of
κc numerically.

After substituting Equation (23) into (22), following the
aforementioned procedure and evaluating integrals using the
identity [28]

∫ ∞

0
e±iµs J1(s)

s
ds = ±i[µ −

√

µ2 − 1] for µ ≥ 1,

we obtain the infinite-dimensional, tridiagonal system

Xn−2(cn − c2)−
2in

κ
Xn − Xn+2(cn + c2) = 0

for all odd n, where cn = sgn(n)[−|n| +
√
n2 − 1]. We

truncate this system to (N + 1) dimensions for the terms
X−N ,X−N+2, . . . ,XN , where N ≥ 1 is an odd integer, and we
set Xn = 0 for |n| > N. We define the corresponding critical
threshold, κN , as the value of κ at which the truncated system is
singular, where κN → κc ∼ 2.97579 . . . as N → ∞. Since a
satisfactory approximation of κc is afforded by κ3 ∼ 2.97894 . . .,
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we deduce that the particle oscillation is dominated by the two

leading-order harmonics, e±it̂ and e±3it̂ , corresponding to lateral
perturbations at ωc and 3ωc, respectively.

As may be confirmed numerically by direct simulation of
Equation (22), the static state is stable for 0 < κ < κc
and unstable for κ > κc. Similar lateral oscillations were
observed in the simulations of Dagan and Bush [19], who
described free particle motion in terms of lateral oscillations at
the Compton frequency, superimposed on a slowly varying net
drift. Our analytic results lend support to their inference that
lateral oscillations at the Compton frequency are a fundamental
feature of particle motion in HQFT. A fruitful avenue of future
research may thus be to exploit the disparity between the time
scale of particle translation and lateral oscillation, with a view to
further simplifying the trajectory equation.

5. DISCUSSION

The wave forms deduced herein have a number of striking
similarities with those arising in pilot-wave hydrodynamics.
The propagating waves arising in HQFT are similar to the
traveling disturbances in the walker system, which typically play
a relatively minor role in the hydrodynamic system, particularly
in the guidance of a single droplet. In both systems, the
moving particle is dressed in a quasi-monochromatic wave form,
which has proven to be the critical feature for the emergence
of quantum-like behavior in the hydrodynamic system [17,
20]. Both systems exhibit a Doppler shift, in which the pilot
wavelength is compressed ahead of the moving particle, and
elongated in the particle’s wake [16, 29–31]. Strobing the carrier
wave in the walking-droplet system at the Faraday frequency
reveals a steady, quasi-monochromatic wave form with the
Faraday wavelength, propagating with the droplet: strobing
the carrier wave in HQFT at the reduced Compton angular
frequency, ωc/γ , reveals a quasi-steady, quasi-monochromatic
wave form with the de Broglie wavelength, propagating with
the particle.

The wave forms explored herein also differ substantially
from those arising in the walking-droplet system [15]. Most
notably, the carrier waves in the two systems take markedly
different forms. For rectilinear particle motion in HQFT, the
carrier wave of local wavelength λB is centered on the particle’s
initial position (see Figure 6) and so may be considered as
a relic of the initial conditions. However, in the vicinity of
the particle, this carrier wave propagates at the particle speed,
qualifying it as a viable candidate for a pilot wave in the
fully dynamic treatment. In two spatial dimensions, the carrier
wave approaches, in the long-time limit, a plane wave whose
wavelength is precisely the de Broglie wavelength at the particle
position. We note that a similar pilot-wave form was deduced by
Andersen et al. [32], who described a quantum particle in terms
of a wave packet solution to the forced Schrödinger equation
subject to Galilean invariance. In the hydrodynamic system,
the quasi-monochromatic carrier wave instead consists of the
superposition of the stationary Faraday wave forms generated
at each impact, giving rise to its characteristic horseshoe-like

form [16]. Finally, the Faraday waves in the walker system
decay exponentially in time owing to the influence of viscosity.
In HQFT, the carrier wave is relatively long lived, exhibiting
algebraic temporal decay; specifically, in one spatial dimension,
the amplitude of the carrier wave decreases over time according
to (ωct)−1/2. One expects this relatively slow decay to result in a
relatively pronounced influence of the particle’s past trajectory on
the instantaneous wave form in HQFT.

The dependence of the pilot-wave form on the particle
speed elucidated here is both intriguing and encouraging. In
the non-relativistic limit, the pilot-wave form is effectively
monochromatic, with the de Broglie wavelength. Our analysis
has shown that, in the special case of rectilinear motion, the
carrier wave is a transient, dependent on the initialization of
the system, and decays algebraically as ωct → ∞. While the
form of this carrier wave was derived only for the special case
of rectilinear particle motion at a prescribed speed, we anticipate
that similar wave forms will arise for free particle dynamics
[19]. Moreover, for different dynamical configurations, such as
for in-line speed oscillations of the free particle [19] or orbital
dynamics, the carrier wave form may in fact be more persistent
than the case of rectilinear motion, producing a robust signature
of the de Broglie wavelength in the pilot wave. The dynamics
and emergent statistics might then be similar to those arising in
pilot-wave hydrodynamics, where the Faraday wavelength plays a
role analogous to the de Broglie wavelength in numerous settings,
including orbital pilot-wave systems [33–36] and corrals [37, 38].

While the nonrelativistic trajectory equation (Equation 21)
yields a convenient mathematical form, preliminary simulations
have revealed that the particle has a propensity for speed
fluctuations on the Compton time scale, at speeds approaching
the speed of light [19]. These relativistic speed fluctuations are
similar in form to the jittering modes arising in generalized
pilot-wave hydrodynamics [39], the Zitterbewegung predicted
in early models of quantum dynamics [23, 40], and the speed
fluctuations evident in simulations of the free particle in HQFT
[19]. Thus, while the mean particle speed may be slow relative
to the speed of light, relativistic effects may still be significant on
the Compton time scale, necessitating alternative simplifications
of the relativistic trajectory equation (Equation 20). In the
hydrodynamic system, one may average the droplet trajectory
over one bouncing period, giving rise to a stroboscopic trajectory
equation that requires no consideration of the droplet’s vertical
motion [25]. Analogous averaging of Equation (20) over the
Compton period of lateral oscillations might give rise to a
reduced trajectory equation for HQFT, similar in spirit to
the stroboscopic model of pilot-wave hydrodynamics. Another
potentially fruitful direction would be to consider the limit in
which the intrinsic particle vibration, f (t), is characterized in
terms of a periodically applied delta function. One might thus
deduce a discrete-time iterative map similar in form to the
hydrodynamic pilot-wave model of Durey Milewski [29].

Our theoretical developments have shown that, in the
relativistic limit, |v| → c, the pilot-wave form is dominated by the
Compton wavelength, suggesting the possibility of quantization
arising on this scale. A tantalizing possibility thus presents
itself of HQFT being able to capture structure on the scale of
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the Compton wavelength. For example, while hydrodynamic
spin states are known to be unstable in the laboratory [41,
42], their analog in HQFT may correspond to the classical
model of the electron, wherein a charge executes a circular
orbit with the Compton frequency on a radius corresponding
to the Compton wavelength [43]. HQFT thus promises the
possibility of accounting for the emergence of both quantization
and quantum statistics on the de Broglie wavelength for non-
relativistic dynamics, and structure on the Compton scale for
relativistic dynamics.

6. CONCLUSION

We have performed a detailed analysis of the one-dimensional
pilot-wave model proposed by Dagan and Bush [19], an attempt
to advance de Broglie’s double-solution theoretical program [1–
4] by exploiting insights gained from the walking-droplet system
[15, 20]. Particular attention has been given to rationalizing the
forms of the emergent pilot-wave fields reported by Dagan and
Bush [19]. Our analysis has shown that the pilot wave is the
combination of short, Compton-scale waves that propagate away
from the moving particle, and a de Broglie-scale carrier wave.
The wavelength of the carrier wave is precisely the de Broglie
wavelength at the particle position, independent of the particle
speed, which is consistent with the validity of the de Broglie
relation, p = h̄kB. Moreover, in the vicinity of the particle, the
frequency of the carrier wave is ωc/γ and the local wavelength
exhibits a Doppler shift: this carrier wave thus has features
of the pilot wave described by de la Peña and Cetto [10] in
the context of stochastic electrodynamics. Notably, as the local
wavelength is precisely the de Broglie wavelength, the gradient of
the wave phase is simply proportional to the gradient of the wave
amplitude, indicating that the wave-particle coupling considered
by Dagan and Bush [19] is consistent with that proposed by de
Broglie [1–4].

Our study of particle kinematics (section 3.3) has shown
that increasing the spatial extent of the localized forcing of
the particle on its pilot wave decreases the amplitude of both
the propagating and carrier waves, thus presumably decreasing
the efficacy of particle self-propulsion. Furthermore, the form
of the pilot wave also varies significantly with the angular
frequency, ω0, of the particle vibration. In the hydrodynamic
system, resonance between the droplet’s vertical motion and its
subharmonic Faraday wave field is a prerequisite for a quasi-
monochromatic wave field and the concomitant emergence of
quantum-like behavior [17, 20]. We therefore expect that a
similar resonance between particle and wave vibration will be
necessary in HQFT: ω0 must be an integer multiple of ωc. Our
deductions in section 3.3 indicate that the amplitude of the pilot
wave is decreased when ω0 is large compared to ωc. To maximize
the particle’s propensity for self-propulsion, the choice ω0 =

2ωc considered by Dagan and Bush [19] thus appears to be the
most propitious.

Finally, we have laid the foundations for deeper study of
HQFT through the derivation of an integro-differential trajectory
equation (Equation 20) similar in form to that derived for
walking droplets [25, 44]. This formulation will enable more
efficient simulation of the associated pilot-wave dynamics in a
range of one-dimensional settings. Moreover, it will allow for the
analysis of the stability of various dynamical states, including the
free self-propelling state [19] and the oscillatory particle motion
arising in the presence of a harmonic potential [45]. Of particular
interest is the stability of the free self-propelling state to speed
oscillations with the de Broglie wavelength [39], as may result in
a commensurate statistical signature [46]. The extension of our
analysis to two dimensions, as outlined in section 3.4, follows
through a similar procedure, and has allowed for a comparison
between the wave forms in HQFT and those arising in pilot-
wave hydrodynamics. We expect the extension of HQFT to three
dimensions to be straightforward, and to open up exciting new
vistas in pilot-wave modeling.
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