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Summary

� Plant adaptation to a desert environment and its endemic heat stress is poorly understood

at the molecular level. The naturally heat-tolerant Brassicaceae species Anastatica hie-

rochuntica is an ideal extremophyte model to identify genetic adaptations that have evolved

to allow plants to tolerate heat stress and thrive in deserts.
� We generated an A. hierochuntica reference transcriptome and identified extremophyte

adaptations by comparing Arabidopsis thaliana and A. hierochuntica transcriptome responses

to heat, and detecting positively selected genes in A. hierochuntica.
� The two species exhibit similar transcriptome adjustment in response to heat and the A. hie-

rochuntica transcriptome does not exist in a constitutive heat ‘stress-ready’ state. Further-

more, the A. hierochuntica global transcriptome as well as heat-responsive orthologs, display

a lower basal and higher heat-induced expression than in A. thaliana. Genes positively

selected in multiple extremophytes are associated with stomatal opening, nutrient acquisition,

and UV-B induced DNA repair while those unique to A. hierochuntica are consistent with its

photoperiod-insensitive, early-flowering phenotype.
� We suggest that evolution of a flexible transcriptome confers the ability to quickly react to

extreme diurnal temperature fluctuations characteristic of a desert environment while positive

selection of genes involved in stress tolerance and early flowering could facilitate an oppor-

tunistic desert lifestyle.

Introduction

Plant species inhabiting extreme environments – so-called
extremophytes – are able to thrive in the most inhospitable envi-
ronments on Earth that are characterized by severe abiotic
stresses. These stresses include drought and temperature extremes
in deserts, intense cold in the Antarctic, and saline terrestrial and
marine habitats (Amtmann, 2009; John et al., 2009; Dassanayake
et al., 2010; Oh et al., 2012; Lawson et al., 2014; Farrant
et al., 2015; Kazachkova et al., 2018; Oscar et al., 2018).

Understanding the molecular mechanisms by which extremo-
phytes adapt to their stressful environments could aid in
identifying targets for molecular breeding to improve crop
stress tolerance (Bressan et al., 2013; Shabala, 2013; Cheeseman,
2015). While tolerance to salt stress has been extensively inves-
tigated in halophytes that are adapted to highly saline
environments (Flowers et al., 2015; Kazachkova et al., 2018;
G. Wang et al., 2021), our understanding of molecular adapta-
tions to stresses characteristic of desert habitats is still in its
infancy (Granot et al., 2009; Yates et al., 2014; Oh et al., 2015;
Obaid et al., 2016; Eshel et al., 2021; Wan et al., 2021). Yet,
desert species could represent a treasure trove of molecular*These authors contributed equally to this work.
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determinants that confer tolerance to multiple stresses such as
drought, salinity, low soil nutrient levels, and heat stress. With
global temperatures projected to continue rising (IPCC, 2021),
plant adaptation to heat stress is of particular importance due to
its negative effects on plant physiology, particularly at the repro-
ductive stage, leading to severe reductions in yield (Mittler &
Blumwald, 2010; Lesk et al., 2016; Chaturvedi et al., 2021; Y.
Wang et al., 2021). Indeed, tolerance to heat stress in wheat at
the reproductive stage has been identified as a key trait to increase
yield potential under projected climate change (Stratonovitch &
Semenov, 2015).

To gain insight into genetic adaptations that facilitate an
extremophyte lifestyle, comparative physiological and molecular
analyses of stress-sensitive Arabidopsis thaliana and extremophyte
Brassicaceae have proven to be a powerful approach (Kramer,
2010; Koenig & Weigel, 2015; Kazachkova et al., 2018). Indeed,
these extremophyte Brassicaceae are becoming premier models for
understanding plant adaptation to extreme environments with
the development of genetic resources including chromosome-
level genome assemblies, natural accession collections, transfor-
mation protocols, and web resources ( http://extremeplants.org/)
(Zhu et al., 2015; Kazachkova et al., 2018; Wang et al., 2019).
Yet, an extremophyte Brassicaceae model that represents desert
species has not hitherto been developed. Such a model could
leverage the functional genomics knowledge that exists for
A. thaliana thereby facilitating comparative analyses to reveal
plant adaptations to the extreme desert environment. We have
therefore been studying the A. thaliana relative, Anastatica hie-
rochuntica L. (‘True Rose of Jericho’), a Saharo-Arabian desert
species (Fig. 1a) which also occupies the uppermost, driest zones
of wadies or runnels of the Israeli Negev desert (Friedman &
Stein, 1980; Friedman et al., 1981; Fig. 1b). This arid region has
temperatures varying between �3.6°C and 46°C, an annual rain-
fall between 25 and 200 mm, and soil nitrate levels ranging from
0.4 to 4 mM (Gutterman, 2002; Ward, 2009; Eshel et al., 2017).
We have demonstrated that A. hierochuntica is highly tolerant to
heat and low soil nitrogen, and moderately tolerant to salt stress
(Eshel et al., 2017). Moreover, the plant exhibits salt-resilient
photochemistry and displays constitutively higher levels of
metabolites that have a role in scavenging reactive oxygen species,
than A. thaliana (Eppel et al., 2014; Eshel et al., 2017).

In the current study, we assembled an A. hierochuntica refer-
ence transcriptome and used this resource for two approaches
to identify adaptations to an arid environment in a desert
annual extremophyte. In the first approach, comparative analy-
sis of heat-response transcriptomes revealed an A. hierochuntica
transcriptome that is more reactive to heat than that of
A. thaliana. In the second approach, positive selection analysis
identified genes that could contribute to adaptation to extreme
conditions in general, and those that could facilitate an oppor-
tunistic desert lifestyle.

Materials and Methods

For all analyses, detailed methods are provided in Supporting
Information Methods S1.

Plant material and growth conditions

A. hierochuntica plants for de novo reference transcriptome
sequencing were grown on Murashige–Skoog (Murashige &
Skoog, 1962) plates for 5 d in the growth room (16 h
(150 lmol photons m�2 s�1) : 8 h, light : dark; 22°C). For Illu-
mina sequencing, plate-grown seedlings were directly used. For
Roche 454 sequencing, plate-grown seedlings were transferred to
pots containing A. thaliana soil growth medium (Weizmann
Institute of Science, Rehovot, Israel) and kept in the growth
room until plants developed four true fully-expanded leaves.
These plants were then treated as follows: (1) Control (field-
capacity, 22°C); (2) Drought stress (25% field capacity for 1 wk);
(3) Salt shock (200 mM sodium chloride (NaCl) in the fertilizer
solution), harvested after 1, 3 and 6 h; (4) Heat shock (45°C),
harvested after 0.5, 1, and 2 h. Roots, shoots and flowers (where
available) from these soil-grown plants, were harvested separately
and snap-frozen in liquid nitrogen. In addition, mature seeds,
were imbibed in water for 8.5 h.

For RNA-sequencing (RNA-Seq) heat stress experiments,
A. thaliana and A. hierochuntica were grown on plates until
cotyledons were fully expanded before transfer to pots containing
Arabidopsis nitrogen-less soil (Weizmann Institute of Science)
and irrigation to field capacity with a custom-made fertilizer solu-
tion (Methods S1). After 6 d in the growth room, uniform plants
were transferred to two growth chambers (KBWF 720; Binder
GmbH, Tuttlingen, Germany) (16 h : 8 h, light : dark; 23°C;
60% relative humidity; sunrise, 0.5 h at 100 lmol pho-
tons m�2 s�1; daytime, 250 lmol m�2 s�1; sunset, 0.5 h at 150
lmol photons m�2 s�1). Ten days after transfer to soil, heat treat-
ment was initiated in one chamber comprising 3 d at
40°C : 25°C, day : night temperatures, followed by 2 d recovery
at control conditions (Fig. 2a). The other chamber was kept as
the control (23°C). For each condition, three biological replicates
comprising six pooled plants per replicate (54 samples in total)
were used for downstream analyses.

Reference transcriptome and RNA-Seq

RNA libraries were prepared using samples suitable for either the
A. hierochuntica reference transcriptome or the RNA-Seq tran-
scriptome analysis:
(1) For the reference transcriptome, equal amounts of total
RNA from all samples (i.e. control, various stresses, tissues, time
points, see section ‘Plant material and growth conditions’) were
pooled and sent to the GenePool genomics facility at the Univer-
sity of Edinburgh, UK for 454 sequencing of a normalized com-
plementary DNA (cDNA) library. In addition, total RNA from
plate-grown seedlings was sent to the Glasgow Polyomics Facility
at the University of Glasgow, UK for Illumina sequencing. The
reference transcriptome was assembled using a hybrid assembly
approach that utilized both Illumina and 454 reads and was
annotated based on public databases (Dataset S1; Methods S1).
(2) For RNA-Seq, total RNA was extracted from control and
heat-treated samples (Fig. 2a) and delivered to the Roy J. Carver
Biotechnology Center, University of Illinois, Urbana-
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Fig. 1 Geographic distribution of Anastatica
hierochuntica and de novo reference
transcriptome. (a) Geographic distribution
data are based on Anastatica L. in the Global
Biodiversity Information Facility (GBIF)
database (GBIF.org [06 March 2021] GBIF
Occurence Download https://doi.org/10.
15468/dl.a52s3x). Average temperature
data for this region are from 1948 to
February 2021 acquired by the Physical
Sciences Laboratory (Fan & van den
Dool, 2008). (b) Laboratory-grown and
wildA. hierochuntica plants. Panels: (i) 40 d-
old laboratory-grown plant (note the axillary
inflorescence at each branch point); (ii) large
mature plant from the Ovda valley
population in the Negev desert. Ruler
length = 30 cm; (iii) young seedlings growing
near the dead mother plant from a Neot
Smadar population in the Negev desert; (iv) a
large population ofA. hierochuntica in the
Ovda valley with high variation in plant size
due to spatial and temporal variations in
water availability; (v) A. hierochuntica
seedling already beginning to flower after
producing four true leaves (Neot Smadar);
(vi) two tiny dead plants (white arrows) from
a population near the Dead Sea valley,
having already dispersed their few seeds. A
coin is included in the photograph to provide
a visualization of scale. (c) Transcript length
distribution andA. hierochuntica assembly
descriptive statistics. (d) Assessment of
reference transcriptome assembly
completeness using the Benchmarking
Universal Single-Copy Orthologs (BUSCO) tool
(Sim~ao et al., 2015). The percentages of
1375 single-copy genes, conserved among
land plants, identified in the A. hierochuntica
transcriptome are shown.

Fig. 2 Arabidopsis thaliana and Anastatica hierochuntica exhibit similar transcriptome adjustment to heat stress. (a) Experimental design forA. thaliana
and A. hierochuntica control and heat stress conditions. Control plants were harvested the day before the initiation of heat stress and on the last day of the
experiment (indicated by vertical arrows) from a parallel 23°C control chamber. Red and blue circles represent samples harvested 1.5 h (morning) or 7 h
(afternoon) respectively, after onset of light : heat. Each circle represents three independent experiments, each comprising six pooled plants. (b, c) Effect of
heat stress on A. thaliana and A. hierochuntica leaf area (b) and fresh weight (c). Data are mean� SD (n = 5) and are representative of two independent
experiments. Letters above bars indicate significant difference at P < 0.05 (Tukey’s HSD test). Blue shading, control conditions; Pink shading, heat
conditions. (d) Principal component analysis (PCA) of A. thaliana and A. hierochuntica transcript levels. Each point represents one biological replicate and
the three replicates for each condition are depicted with the same symbol. Symbols are explained in the legend box and refer to the experimental design
shown in (a). (e) Comparison of the abundance of 27 416 and 30 670 protein-coding A. thaliana and A. hierochuntica transcripts, respectively. Asterisks
represent significant difference at P < 0.05 (Wilcoxon rank sum test) between the treatment compared to its respective control. Black vertical line within
plots is median expression. (f) Percent of A. thaliana andA. hierochuntica differentially expressed genes (DEGs) in response to heat stress. In total,
17 989A. thaliana and 19 443 A. hierochuntica genes were differentially expressed in response to heat stress in at least one condition (Supporting Informa-
tion Dataset S2), and percent DEGs was calculated based on 27 416 and 30 670 protein-coding genes for A. thaliana andA. hierochuntica, respectively.
CM, control morning; CN, control afternoon; HW1M, heat wave 1 morning; HW1N, heat wave 1 afternoon; HW2N, heat wave 2 afternoon; HW3N, heat
wave 3 afternoon; R1N, day 1 recovery from heat stress afternoon; CR2N, control plants parallel to the R2N time point afternoon; R2N, day 2 recovery
from heat stress afternoon; Union, DEGs identified under either HW1M or HW1N or HW2N or HW3N.
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Champaign, IL, USA for Illumina sequencing (Methods S1).
Single-end reads (100 bp) were uniquely mapped to A. thaliana
TAIR 10 or the A. hierochuntica reference transcriptome using
the Trinity align_and_estimate_abundance.pl script, which
applies the RSEM program (Grabherr et al., 2011; Li & Dewey,
2011) with the BOWTIE aligner.

Differentially expressed genes (DEGs) were identified using
DESEQ2 (Love et al., 2014; Methods S1). For raw read counts

and DEGs identified in each species and for various functional
groups, see Dataset S2.

Ortholog pairs (17 962; Methods S1) were assigned to the five
idealized modes of expression in response to heat stress (Fig. 3a),
using Weighted Gene Co-expression Network Analysis
(WGCNA; Langfelder & Horvath, 2008) to cluster normalized
and quantified expression data into modules containing genes
with similar expression profiles (Fig. S3; Dataset S3; Methods
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S1). For direct comparison of absolute orthologous transcript
levels, transcripts per kilobase million (TPM) values of minimum
or maximum expression were analyzed for statistically significant
difference (P ≤ 0.05) with a Student t-test.

Phylogenomics and positive selection analysis

To identify orthologous genes among species and generate a max-
imum likelihood phylogenomic tree, we used coding sequences
of the A. hierochuntica reference transcriptome and 16 sequenced
Brassicaceae species (Methods S1) with the AGALMA phyloge-
nomics pipeline (Dunn et al., 2013).

To detect positive selection, we used the Branch-Site model in
the PAML v.4.8, CODEML program (Yang, 1997, 2007). Ortholog
groups with sequence representation in at least two of the five
extremophytes, were selected to ensure sufficient statistical power
(Anisimova et al., 2001). The tested branch(s) were labeled (fore-
ground), and the log likelihood of two models (M1a and M2a),
were calculated for each ortholog group. A Likelihood Ratio Test
was performed (with v2 distribution), to identify genes with log
likelihood values significantly different between the two models,
indicative of deviation from neutral selection. Ortholog groups
with a portion of sites in the foreground branches, that had an
estimated dN : dS ratio > 1, were considered under positive selec-
tion. To account for multiplicity, a Benjamini–Yekutieli false dis-
covery rate (FDR) correction (Benjamini & Yekutieli, 2001) was
applied using the ‘QVALUE’ R package, with a q-value < 0.05 cut-
off for a gene to be considered as positively selected. Sites under
positive selection were identified using the empirical Bayes
approach with a posterior probability P > 0.95.

For each analysis, different branches on the tree were tested (la-
beled as foreground) compared with all other branches (back-
ground): (1) labeling the external branches of all five
extremophyte species as the foreground (4723 ortholog groups);
(2) labeling the A. hierochuntica external branch as the fore-
ground (3093 ortholog groups); (3) labeling the Eutrema salsug-
ineum external branch as the foreground (4457 ortholog groups);
(4) labeling the Schrenkiella parvula external branch as the fore-
ground (4369 ortholog groups); and (5) labeling the A. thaliana
external branch as the foreground (5513 ortholog groups). Ara-
bidopsis thaliana was considered as a control/comparator species
sensitive to abiotic stresses (Kazachkova et al., 2018). The Venn

diagram comparing positively selected genes (see later, Fig. 6b)
was generated using the VENN online tool: http://bioinformatics.
psb.ugent.be/webtools/Venn/.

Significant positively selected genes (PSGs) as well as all DEGs
were tested for enriched gene ontology (GO) terms (Fisher’s exact
test, with a q-value < 0.05 cut-off) using AGRIGO (Du et al.,
2010), where the A. thaliana genome served as background.
GOMCL (Wang et al., 2020) was used to summarize nonredun-
dant functional groups.

Results

De novo assembly and annotation of the A. hierochuntica
reference transcriptome

To generate a high-quality A. hierochuntica reference transcrip-
tome that maximizes coverage of genes, we sequenced and
assembled transcripts using RNA pooled from multiple plant
organs, plants at different developmental stages, and under
control, heat, drought and salinity stresses (Fig. S1; Methods
S1). We identified 30 670 putative protein-coding genes out of
the high-confidence 36 871 assembled transcripts (Fig. 1c;
Methods S1), and the distribution of transcript lengths was
similar to that of A. thaliana cDNAs (Fig. 1c). Detection of
93.6% BUSCOs indicated high completeness of the reference
transcriptome (Fig. 1d; Sim~ao et al., 2015), comparable to
other de novo assembled Brassicaceae transcriptomes (Lopez
et al., 2017). These data, together with 88% reads mapping
back to the assembled transcriptome, indicate a high-quality
reference transcriptome appropriate for downstream analyses.
Using sequence similarity to protein databases including
NCBI, InterPro, and KEGG (Dataset S1), we annotated of
96% of our assembled transcripts to a known sequence in the
reference databases (Methods S1).

A. thaliana and A. hierochuntica global transcriptomes
exhibit similar adjustment in response to heat stress

The transcriptomes of halophytic Brassicaceae models exist in a
‘stress-ready’ state (Kazachkova et al., 2018; G. Wang et al.,
2021). However, it is unknown whether a ‘stress-ready’ tran-
scriptome is the default for all extremophytes or whether plants

Fig. 3 The Anastatica hierochuntica transcriptome does not exist in a ‘stress-ready’ state but exhibits a lower basal expression and higher fold-change
expression than Arabidopsis thaliana in response to heat stress. (a) Modes of expression of ortholog pairs between A. thaliana and A. hierochuntica in
response to heat stress. WGCNA followed by DESEQ2 was used to assign orthologs to response modes (Supporting Information Fig. S3; Dataset S3). Differ-
ences in absolute transcripts levels were identified by comparing transcripts per kilobase million (TPM) minimum or maximum expression values (Student’s
t-test, P ≤ 0.05). The green (A. thaliana) and orange (A. hierochuntica) lines indicate idealized expression patterns of the ortholog pairs in each species
under control and heat conditions, compared to the A. thaliana control (dashed line). Ctrl, control; + heat, heat stress treatment; Numbers under graphs,
no. of ortholog pairs assigned to each response mode; Numbers in parentheses, percent of ortholog pairs relative to the total number of orthologs (11 890)
assigned to a response mode. (b) Transcript abundance of 17 962 A. thaliana and A. hierochuntica ortholog pairs under control conditions. (c) Combined
violin and box plots showing absolute log2 fold-changes of A. thaliana and A. hierochuntica differentially expressed genes (DEGs) in response to heat stress
(Dataset S2). The median log2 fold-change is shown as a black square inside each box plot. (d) Number of DEGs, median log2 fold-change values and P-
values for (c). CM, control morning; CN, control afternoon; CR2N, control plants parallel to the R2N (day 2 recovery from heat stress afternoon) time point;
HW1M, heat wave 1 morning; HW1N, heat wave 1 afternoon; HW2N, heat wave 2 afternoon; HW3N, heat wave 3 afternoon; Union, DEGs identified
under either HW1M or HW1N or HW2N or HW3N. Asterisks represent significant difference at P < 0.05 (Wilcoxon rank sum test) between A. thaliana and
A. hierochuntica.
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evolving under different extreme environments exhibit alternate
modes of adaptation. Therefore, to test whether a desert species
exists in a ‘stress-ready state’, we performed a comparative anal-
ysis of the A. thaliana and A. hierochuntica transcriptome

response to heat stress in young plants at similar developmental
stages. Israel Meteorological Service temperature data near
A. hierochuntica populations during their growing season
showed diurnal minimum : maximum night : day temperatures

Condition No. DEGs Median log2 fold-change P-value
A. thaliana A. hierochuntica A. thaliana A. hierochuntica

HW1M 10 595 12 109 0.68 0.82 4.35E-63

HW1N 11 635 11 988 0.72 0.75 1.26E-05

HW2N 12 636 14 057 0.76 0.85 5.12E-33

HW3N 12 343 12 612 0.76 0.79 3.38E-02

Union 17 989 19 433 0.89 0.98 2.37E-34
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of c. 25°C and c. 40°C, respectively (Fig. S2). Thus, to simulate
an ecologically relevant scenario with heat treatments that
A. thaliana plants could also survive (Hayes et al., 2021), plants
were exposed to similar three consecutive daily heat waves cov-
ering the early heat response and acquired heat tolerance phases
(Lindquist, 1986; Hong & Vierling, 2000), with day : night
temperatures of 40°C : 25°C followed by 2 d recovery at 23°C
(Fig. 2a). To minimize shocks, temperatures were gradually
ramped up and down at sunrise and sunset, respectively (Meth-
ods S1). Control plants were maintained at 23°C. Plants were
harvested either in the morning (1.5 h after the onset of the
light : heat period, red circles in Fig. 2a) or in the afternoon (7 h
after the onset of the light : heat period, blue circles in Fig. 2a).
Plants were well-watered throughout the entire experiment to
avoid any dehydration effects that could arise due to the heat
treatment.

Heat stress had no significant effect on A. hierochuntica leaf
area in contrast to A. thaliana where growth in leaf area was sig-
nificantly retarded by heat stress although it had almost recovered
to control levels, 2 d after the end of the heat treatment (Fig. 2b).
Arabidopsis thaliana shoot fresh weight was also significantly
reduced by heat stress but did not recuperate after 2 d recovery
under control conditions while A. hierochuntica fresh weight was
not affected by heat stress (Fig. 2c). These results illustrate
that A. hierochuntica is highly tolerant to heat stress and confirm
our previous in vitro experiments (Eshel et al., 2017).

Transcriptomes of both species under elevated temperature
were clearly distinct from those in control conditions (Fig. 2d).
The control and heat-stressed samples harvested in the morn-
ing were positioned separately from the samples harvested in
the afternoon, possibly due to differences in early vs late heat-
mediated gene expression or/and diurnal changes in gene
expression. Transcriptomes of plants recovering from heat
stress clustered near control noon samples suggesting that,
overall, the transcriptomes return to pre-stress conditions.
Because both species underwent transcriptional adjustment in
response to heat stress, we examined the median expression
level across the whole transcriptome for each condition. Com-
pared to their respective controls (CM, CN, CR2N), the med-
ian transcript abundance (and total abundance as depicted by
the distribution) of both species decreased under heat stress in
the morning samples, increased in response to heat treatments
in the noon samples, and decreased during recovery (Fig. 2e).
Furthermore, the percentage of DEGs (out of the total number
of protein-coding genes) was similar for both species under all
heat conditions (Fig. 2f; Dataset S2). These data show that the
A. thaliana and A. hierochuntica global transcriptomes adjust to
heat stress with a similar magnitude.

The A. hierochuntica heat-response transcriptome does not
exist in a ‘stress-ready’ state

To test our contention that A. hierochuntica transcriptome is
not ‘stress-ready’, we used WGCNA to identify five types of
idealized transcriptional response modes among the expression
patterns of 17 962 orthologous pairs from each species (G.

Wang et al., 2021; Fig. S3; Dataset S3): (1) ‘Stress-ready’ where
transcript level under control conditions in one species is equal
to the ortholog transcript level under heat in the other species;
(2) ‘Shared response’ where expression of both orthologs exhibit
a similar response to heat (i.e. both upregulated or downregu-
lated by heat); (3) ‘Unique response’ where expression of an
ortholog exhibits a heat response specifically in one species but
not in the other; (4) ‘Opposite response’ where expression of
the ortholog in one species shows the opposite response in the
other species; (5) ‘No response’ where expression of both ortho-
logs does not respond to heat. Of the orthologs categorized
within the five response modes, only 4.4% of the orthologs
belonged to the ‘No response’ mode (Fig. 3a). The majority
(82%) of orthologs displayed a shared response mode while
about 5% exhibited a unique response and 2.1% showed an
opposite response. Importantly, while 535 (4.5%) genes did
exhibit a ‘stress-ready’ mode in A. hierochuntica, we also detected
221 (1.9%) A. thaliana genes displaying a ‘stress-ready’ mode.
Taken together, our data showing that the global transcriptomes
of both species adjust to heat stress with a similar magnitude
and that they only exhibit a low proportion of ‘stress-ready’
genes, do not support a globally ‘stress-ready’ A. hierochuntica
transcriptome.

A. hierochuntica heat-regulated genes display a higher
fold-change and/or lower basal expression compared to
A. thaliana

Under control conditions, we observed that median basal
expression of the A. hierochuntica transcriptome was signifi-
cantly lower than in A. thaliana (Fig. 3b). Moreover, DEGs
from the extremophyte displayed a greater heat-mediated fold-
change in expression than A. thaliana DEGs (Fig. 3c,d) sug-
gesting a more reactive heat-response transcriptome. To sup-
port these findings, we compared orthologous expression of
specific functional groups that exhibited either a shared or
unique response mode to heat stress (Dataset S2). Orthologs
associated with GO-terms for abiotic stress whose expression
displayed shared upregulation by heat exhibited an average
lower basal expression in A. hierochuntica compared
to A. thaliana and no significant difference in average percent
induction of expression (Fig. 4a). Abiotic stress-associated
orthologs showing shared heat-mediated downregulated expres-
sion displayed both a lower basal and higher percent reduction
in expression in A. hierochuntica compared to A. thaliana
(Fig. 4b). Similarly, both heat-mediated upregulated/downregu-
lated abiotic stress-associated, unique-expressed orthologs
showed lower basal and higher percent induction/reduction in
expression in the extremophyte (Fig. 4a,b).

Plants actively reduce their growth independently of photo-
synthesis, early in response to stress via a reduction in both cell
size and cell elongation that can be linked to downregulation
of cell cycle-associated genes (Aguirrezabal et al., 2006; Skirycz
et al., 2011; Kazachkova et al., 2013). Subsequently, expression
of photosynthesis-related genes is downregulated under stress
(Rizhsky et al., 2002; X. Zhang et al., 2018; Huang et al.,
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2019). We observed that the majority of shared- and unique-
expressed orthologs associated with photosynthesis or the cell
cycle were downregulated by heat stress in both species
(Dataset S2). However, for both shared- and unique-expressed
orthologs associated with photosynthesis, A. hierochuntica
exhibited a similar basal, but greater percent reduction in

expression than A. thaliana (Fig. 4c). Orthologs encoding pro-
teins involved in the cell cycle that possessed shared heat-
mediated downregulated expression showed a lower basal and
higher percent reduction in expression in the extremophyte
while unique-expressed cell-cycle orthologs exhibited lower
basal expression in A. hierochuntica (Fig. 4d).
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Fig. 4 Anastatica hierochuntica shared- and unique-expressed orthologs in specific functional groups display lower basal and greater heat-mediated per-
cent change in expression than in Arabidopsis thaliana. All genes used in this analysis possess a unique AGI code (putative A. hierochuntica orthologs were
assigned A. thaliana AGI codes). Genes were chosen based on their association with gene ontology (GO) terms for their respective categories (Supporting
Information Methods S1). Basal expression levels were based on CM (control morning) conditions. Percent change in expression from basal level was calcu-
lated based on the maximum rlog expression levels of upregulated genes (abiotic stress (a)) or minimum rlog expression levels of downregulated genes (abi-
otic stress (b), photosynthesis (c), cell cycle (d)) in response to heat stress over the three heat waves. Basal and percent change in expression values for all
genes in each category are in Dataset S2. For box and whisker plots, the median (thick black line), the mean (cross below the median line) and interquartile
range (IQR) of the observed differences are shown. Whiskers indicate the maximum/minimum range. Open circles correspond to extreme observations
with values > 1.5 times the IQR. Underlined numbers above the circles indicate the number of shared or unique expressed genes. Letters above the circles
indicate significant differences at P < 0.05 (Student’s t-test). Numbers next to boxes are median values.
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Using WGCNA to cluster genes with similar expression pro-
files over all conditions, we detected 22 A. thaliana and 21 A. hie-
rochuntica co-expression modules (Fig. S3). In both species, two
modules covered early heat-induced genes (1.5 h (morning) and
7 h (afternoon) after onset of heat stress) (Fig. 5a; Datasets S4–
S8). The morning heat-response modules of both species were
enriched in GO biological terms such as ‘response to heat’, ‘re-
sponse to high light intensity’ and ‘response to reactive oxygen
species’ (Dataset S9; Methods S1), while the afternoon heat-
response modules were not enriched in any GO-terms. Impor-
tantly, both shared- and unique-expressed A. hierochuntica genes
associated with GO terms for abiotic stress in the early heat-
response modules exhibited the same or lower basal expression,
and higher heat-mediated percent induction of expression than
their A. thaliana orthologs (Fig. 5b).

To provide functional support for a more reactive A. hie-
rochuntica heat-response transcriptome, we identified 10 653
A. hierochuntica genes that exhibited significantly higher heat-
mediated percent change in expression than their A. thaliana
orthologs (Dataset S10). These genes were enriched in biological
processes related to abiotic stress including oxidative, water, and
salt stresses, response to radiation (including genes involved in
defense against UV light), and the response to DNA damage
(Fig. 5c; Dataset S11). Additionally, the ‘protein folding’ gene list
contained heat shock protein-encoding genes.

To validate our gene expression comparisons, we showed
(Fig. S4; Methods S1; Datasets S12, S13): (1) no significant dif-
ference between the species in the proportion of the top 10 most
highly expressed genes out of the total transcripts sequenced
across all treatments; (2) similar comparative basal expression
results as observed with DESEQ2, when we used a new between-
species Scale-Based Normalization method (Zhou et al., 2019);
(3) relative and quantitative PCR analysis confirmation of the
RNA-Seq fold-change and basal gene expression patterns of
selected genes.

Furthermore, we examined the basal expression of 15 ortholo-
gous housekeeping genes from both species and found that the
average ratio of basal expression of A. thaliana to A. hierochuntica
housekeeping genes was 1.0� 0.34 (Fig. S5). Thus, the average
lower basal gene expression observed in A. hierochuntica

compared to A. thaliana was not due to lower metabolic activity
in the extremophyte.

Brassicaceae extremophytes possess positively selected
genes associated with surviving harsh environments

As a second approach to identifying adaptations to an extremo-
phyte lifestyle, in general, and to desert conditions in particular,
we pinpointed PSGs that might be indicative of adaptive evolution
of stress tolerance. We first used phylogenomics to infer evolution-
ary relationships between 16 Brassicaceae species including A. hie-
rochuntica and representing all major lineages in this family
(Dataset S14). Tarenaya hassleriana (Cleomaceae) was used as an
outgroup. This led to a selection of 13 806 ortholog groups found
in 17 taxa. The phylogenomic tree partitioned the species in con-
cordance with their previously assigned lineages (LI, LII, and LIII),
where Aethionema arabicum is considered to belong to a basal clade
within the Brassicaceae (Fig. 6a; Franzke et al., 2011; Kiefer et al.,
2014). Anastatica hierochuntica (Anastaticeae) was assigned to LIII
(Franzke et al., 2011). It is important to note that A. hierochuntica
is the single representative species used for LIII due to this lineage
being sparsely represented in publicly available genomic databases
unlike transcriptomes available for LI and LII species. Thus, to the
best of our knowledge, we provide the first substantial genetic
resource that enables exploration into adaptive traits that have
evolved in a representative LIII species.

Comparative Brassicaceae transcriptome analysis has revealed
that A. hierochuntica underwent a mesopolyploid event followed
by diploidization (Mandakova et al., 2017). We therefore exam-
ined the orthologous groups for any bias towards A. hierochuntica
using ORTHOFINDER (Emms & Kelly, 2019). Anastatica hie-
rochuntica displayed a number of protein-coding transcripts, and
a number and percent of genes present in orthogroups, that were
close to the average observed over all 17 species (Fig. S6). These
data also suggest that the number of A. hierochuntica protein-
coding gene models in the curated reference transcriptome is not
artificially inflated due to inclusion of a high proportion of
alternatively-spliced transcripts.

The tree contains five extremophyte species (Fig. 6a, red aster-
isks): the halophytes E. salsugineum and S. parvula (tolerant to

Fig. 5 The Anastatica hierochuntica early heat response transcriptome displays lower basal and greater heat-mediated percent change in expression than in
Arabidopsis thaliana. (a) Expression profiles of A. thaliana (left two panels) andA. hierochuntica (right two panels) morning and afternoon early heat-
response modules. These modules were assigned standard color-based names byWGCNA (e.g. Thistle, Ivory etc.; Supporting Information Fig. S3;
Datasets S4–S8). Transcript levels were scaled to visualize patterns of expression. The relative intensity of gene expression (magenta, upregulated; green,
downregulated) is shown in the scale bar. Gene expression in each condition represents the average of three biological replicates. The number of genes in each
module is shown under the respective module. CM, control morning; CN, control afternoon; HW1M, heat wave 1 morning; HW1N, heat wave 1 afternoon;
HW2N, heat wave 2 afternoon; HW3N, heat wave 3 afternoon; R1N, day 1 recovery from heat stress afternoon; CR2N, control plants parallel to the R2N time
point afternoon; R2N, day 2 recovery from heat stress afternoon; Blue lines above heat map, control conditions; pink lines, heat conditions. (b) Expression of
orthologs associated with abiotic stress gene ontology (GO) terms (Dataset S2; Methods S1) Underlined numbers above the circles indicate the number of
shared- or unique-expressed genes. Letters above the circles indicate significant differences at P < 0.05 (Student’s t-test). Numbers next to boxes are median
values. (c) Functional clusters enriched among A. hierochuntica orthologous genes exhibiting a higher heat-induced percent change in expression than
A. thaliana. For full reactive gene list see Dataset S10. Clustering was performed with the GOMCL tool (https://github.com/Guannan-Wang/GOMCL) (Wang
et al., 2020; Methods S1) Clusters are colored differently and labeled with the representative functional term (Dataset S11). Each node represents a GO term
and node size signifies the number of genes in the test set assigned to that functional term; the number of genes in each cluster is in parentheses. The shade of
each node represents the P-value assigned by the enrichment test (false discovery rate (FDR)-adjusted P < 0.05) with darker shades indicating smaller P-
values. GO-terms sharing > 50% of genes are connected by edges. Only selected clusters are highlighted, the rest are grayed out.

New Phytologist (2022) 236: 1006–1026
www.newphytologist.com

� 2022 The Authors

New Phytologist� 2022 New Phytologist Foundation.

Research

New
Phytologist1014

 14698137, 2022, 3, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.18411 by U

niversity O
f G

lasgow
, W

iley O
nline L

ibrary on [11/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/Guannan-Wang/GOMCL


high salinity and multiple other stresses; Kazachkova et al., 2018;
G. Wang et al., 2021), Thlaspi arvense (freezing-tolerant; Sharma
et al., 2007), A. hierochuntica (heat-, salt-, low nitrogen-tolerant;
Eshel et al., 2017) and Arabidopsis halleri (heavy metal hyperac-
cumulator, semi-alpine conditions; Hanikenne et al., 2008;

Honjo & Kudoh, 2019). Therefore, to identify genes under com-
mon positive selective pressure in the extremophytes, we used the
branch-site model (Yang, 1997, 2007) to test the external
branches (foreground) of the five extremophyte species against all
the other branches (background). We then repeated this
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procedure to test for PSGs in three specific extremophytes – the
well-studied halophyte models, E. salsugineum and S. parvula,
and A. hierochuntica – by labeling each species’ external branch as
the foreground. Overall, we identified 194, 120, 130 and 99
PSGs in the ‘all extremophyte species’, A. hierochuntica, E. salsug-
ineum, and S. parvula runs, respectively (Datasets S15–S18). We
also tested A. thaliana as an abiotic stress-sensitive control, and
identified 112 PSGs (Dataset S19).

While we could not detect a clear convergence in the use of
common PSGs in the extremophytes (Fig. 6b), the functional
attributes shared by those PSGs in each extremophyte exhibited
convergence (Figs 6c, S7; Datasets S20–S24). Notably, orthologs
associated with the GO-term ‘response to stress’ (GO:0006950)
were highly enriched in the extremophytes suggesting major
selective pressure for stress tolerance imposed by their extreme
environments.

Positively selected genes from the ‘all extremophyte species’,
supported association with adaptations to harsh environments.
For instance, AKS2, MYB52, WRKY75, ASF1B and PHR1/
UVR2 that have known functions in abscisic acid (ABA)
responses, phosphate starvation, heat stress, and UV-B radiation
stress, respectively (Table 1, and references cited therein), were
among the PSGs in the extremophytes. Interestingly, the PSGs
bZIP1 (salt/drought tolerance, and nitrogen signaling) and APX6
(reactive oxygen species-scavenging) were unique to A. hie-
rochuntica (Table 1), which is highly tolerant to low nitrogen and
oxidative stresses, and moderately tolerant to salt stress (Eshel
et al., 2017). Positively selected genes unique to S. parvula
included CAX11/CCX5 and RAB28 that are involved in high-
affinity potassium ion (K+) uptake and sodium ion (Na+) trans-
port, and lithium ion (Li+) toxicity, respectively (Table 1; Borrell
et al., 2002; Zhang et al., 2011). The pinpointing of these two
genes added validity to our positive selection analysis because the
native soils of S. parvula contain highly toxic levels of Li+ and K+

(Helvaci et al., 2004; Ozfidan-Konakci et al., 2016), and this spe-
cies displays extreme tolerance to both Li+ and K+ toxicity (Oh
et al., 2014; Pantha et al., 2021). In contrast to the extremophyte
species, PSGs in A. thaliana were related to biotic stress responses
(Table 1). Of the PSGs in the ‘all extremophyte species’ or A. hie-
rochuntica-specific sets, AKS2, bZIP1 and PHR1/UVR1 expres-
sion displayed significantly higher transcript levels
in A. hierochuntica compared to A. thaliana whereas the expres-
sion of APX6 exhibited lower transcript levels in A. hierochuntica
(Fig. 7a).

Exclusively in A. hierochuntica, we identified, CYP71, FAS1,
FBH2, SBI1/LCMT1, and VIP5 as PSGs related to photoperi-
odic flowering, regulation of meristems, and control of morphol-
ogy including shoot branching (Table 1). Furthermore, AhFAS1
expression was highly upregulated by heat stress while AtFAS1
expression was downregulated (Fig. 7b). AhSBI1/LCMT1 expres-
sion was unaffected by heat stress whereas AtSB1/LCMT1 expres-
sion was highly upregulated by heat. Moreover, AhSBI1/LCMT1
transcript levels were lower than AtSBI1/LCMT1 over all time
points. Notably, genes involved in organ development and flow-
ering time were more reactive to heat in A. hierochuntica than
in A. thaliana (Fig. 5c). Considering that A. hierochuntica

ontogeny is very different from A. thaliana, E. salsugineum and
S. parvula – it exhibits a multi-branched sympodial shoot struc-
ture supporting multiple axillary inflorescences that flower inde-
pendent of day length (Fig. 1b; Gutterman, 1998; Eshel et al.,
2017) – positive selection of these genes could indicate an impor-
tant adaptation to the desert environment.

Discussion

The A. hierochuntica transcriptome does not exist in a heat
‘stress-ready’ state and is more reactive to heat stress than
A. thaliana

Our finding that A. thaliana and A. hierochuntica exhibit similar
transcriptome adjustment in response to heat stress and during
recovery (Fig. 2e,f) distinguishes A. hierochuntica from other
extremophyte relatives. The extent of transcriptomic, proteomic
and metabolic adjustment in response to ionic stress in the halo-
phytes E. salsugineum and S. parvula, is much lower than in
A. thaliana (Kazachkova et al., 2018; G. Wang et al., 2021). This
lower adjustment reflects their ‘stress-ready’ state whereby tran-
script and metabolite accumulation that is induced or repressed in
A. thaliana in response to ionic stress, is constitutively high or low,
respectively, in the halophytes. A ‘stress-ready’ transcriptome is
exemplified in S. parvula where basal expression of over 1000
‘stress-ready’ orthologs matches the post-boron stress expression
levels observed in A. thaliana (G. Wang et al., 2021). In contrast,
the great majority of A. hierochuntica and A. thaliana orthologs
exhibit a shared response mode (Fig. 3a). Furthermore, many
stress-related A. hierochuntica genes show lower basal and/or higher
fold-change gene expression compared to A. thaliana (Figs 3–5).
Indeed, almost one-third of A. hierochuntica genes display a higher
heat-mediated fold-change in expression compared to A. thaliana
and are enriched in abiotic stress-associated functions (Fig. 5;
Datasets S10, S11). Taken together, our findings support a para-
digm whereby the A. hierochuntica transcriptome is more reactive
to heat stress than A. thaliana.

The contrasting global transcriptome responses of A. thaliana,
E. salsugineum and A. hierochuntica to stress also emphasize the
importance of generation and maintenance of new cis-acting ele-
ments in the adaptive evolution of plants to extreme habitats (Oh
et al., 2014; He et al., 2021).

A possible reason for the divergent transcriptome responses
between A. hierochuntica and its halophytic relatives relates to the
type of stress each species encounters. Eutrema salsugineum and
S. parvula habitats possess levels of ions such as Na+ and borate
ion (BO3

3�) that are toxic to most plant species and the two
halophytes are constantly exposed to ionic stress throughout their
life cycle. This situation might have led to the evolution of a
stress-associated transcriptome that is continuously ‘switched-
on’. Conversely, A. hierochuntica is generally exposed to heat
stress later in its life cycle and on a diurnal basis thus favoring a
more reactive transcriptome.

A second reason is that A. hierochuntica thrives in an environ-
ment with seasonal temperatures ranging from �3.6°C to 46.8°C
(Eshel et al., 2017), with diurnal maximum variations exceeding
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18°C (Israeli Meteorological Services). However, E. salsugineum
can be found in locations such as China’s Shandong peninsula
where temperatures range from �5°C in the winter to 32°C in the
summer and with diurnal temperature differences rarely exceeding
10°C (Guedes et al., 2015). Furthermore, diurnal temperature dif-
ferences in the cold, spring-growing period of E. salsugineum are
likely more moderate than those experienced by A. hierochuntica
during the warm Negev desert spring. Thus, evolution of a flexible
transcriptome that confers a strong reaction to extreme diurnal
temperature fluctuations could be advantageous for adaptation to a
desert environment. Moreover, a transcriptome with globally lower
basal expression levels would require less energy to be expended in
the low nutrient desert environment.

Our results, notwithstanding, it is important to consider that we
only analyzed transcriptome responses to heat stress alone to pre-
vent masking of its effect by other stresses. In its natural desert
habitat, A. hierochuntica can be exposed to multiple stresses includ-
ing low relative humidity and drought, particularly in years of low
precipitation. Combinations of stresses can cause unique morpho-
physiological states, gene sets and expression patterns that cannot
be predicted from responses to single stresses (Zandalinas et al.,
2021; Zandalinas & Mittler, 2022). For example, interactions
between stresses can be synergistic, additive, or antagonistic
whereby the effect of combined stresses is greater, equal to, or less,
respectively, than the sum of effects of the respective single stresses
(Shaar-Moshe et al., 2017). Nevertheless, because a heat stress–
drought stress combination generally leads to an additive or syner-
gistic effect, it unlikely that this combination of stresses would
reprogram the global ‘stress-reactive’ A. hierochuntica transcrip-
tome to one resembling a nonresponsive ‘stress-ready’ transcrip-
tome. However, stress combinations might cause a change in
enriched functional GO-terms in the A. hierochuntica ‘stress-
reactive’ gene set (Fig. 5c). Thus, it will be important in future
studies to examine A. hierochuntica under different single and com-
bined stresses to gain a better understanding of global transcrip-
tome responses to conditions that mimic the natural desert habitat.

Another limitation of our study is that the A. hierochuntica glo-
bal ‘stress-reactive’ transcriptome response may not reflect that of
the proteome and metabolome. However, evidence suggests that
this is not the case because similar salt ‘stress-ready’ transcrip-
tomes, proteomes and metabolomes are observed in E. salsug-
ineum compared to A. thaliana (Kazachkova et al., 2018).

Brassicaceae extremophytes possess common PSGs that are
indicative of adaptation to harsh environments

Extremophytes are present in all three Brassicaceae lineages
(Fig. 6a; Franzke et al., 2011) illustrating that adaptation to
stressful habitats has occurred independently, multiple times
within the Brassicaceae and is indicative of convergent evolution
(Fig. 6a; Birkeland et al., 2020). Consistent with this notion, we
identified 194 PSGs across the five extremophyte species that
could commonly contribute to plant adaptation to extreme envi-
ronments. Other studies with extremophyte Brassicaceae have
also detected PSGs that function in stress tolerance (Zhou et al.,
2009; Jarvis et al., 2014; Birkeland et al., 2020). For instance,

stress-associated PSGs were detected in three Arctic Brassicaceae
species (Birkeland et al., 2020). Similar to our findings (Figs 6b,
c, S7) there was little overlap of PSGs between the Arctic
extremophytes but considerable overlap in functional pathways.
Taken together, these data do not support adaptive molecular
convergence but rather indicate evolution of similar adaptations
via distinct evolutionary pathways.

Among the PSGs across the five extremophyte species in the
current study, we identified two genes encoding ABA-responsive
transcription factors (TFs), AKS2 and MYB52 (Table 1), illus-
trating the importance of the ABA response networks in adaptive
evolution of stress tolerance (Xia et al., 2010; Fischer et al., 2011;
Bondel et al., 2018). In particular, the basic helix–loop–helix
(bHLH) TF, ABA-RESPONSIVE KINASE SUBSTRATE 2
(AKS2) activates transcription of K+ channels in guard cells in an
ABA-dependent manner thereby enhancing stomatal opening
(Takahashi et al., 2013). It is intriguing that a regulator of stom-
atal aperture has undergone positive selection across the extremo-
phytes because alterations in stomatal aperture is a crucial early
response to multiple abiotic stresses (Brugnoli & Lauteri, 1991;
Chaves et al., 2009; Stepien & Johnson, 2009; Devireddy et al.,
2020). Thus, positive selection of nonsynonymous amino acid
changes in the coding region of AKS2 (plus differences in heat-
mediated regulation of A. thaliana and A. hierochuntica AKS2
expression (Fig. 7a)), suggest that this gene may have been natu-
rally selected for survival in extreme environments.

WRKY75 was also positively selected across the extremophytes
(Table 1). In A. thaliana, this TF regulates the expression of several
key phosphate starvation-induced genes (Devaiah et al., 2007).
Extremophytes often exist on soils with low inorganic phosphate
(Pi) availability (Thompson et al., 2006; Holzapfel, 2008; Guevara
et al., 2012). For instance, the E. salsugineum Yukon ecotype grows
in the low Pi soils of the Yukon region in Canada (Guevara et al.,
2012) and is highly tolerant to Pi deficiency compared to
A. thaliana. This tolerance is associated with higher basal expres-
sion of several Pi starvation genes including WRKY75 (Velasco
et al., 2016). Both E. salsugineum and A. hierochuntica exhibit sig-
nificantly higher basal levels of Pi than A. thaliana (Gong et al.,
2005; Kazachkova et al., 2013; Velasco et al., 2016; Eshel et al.,
2017). Thus, positive selection of WRKY75 across the five
extremophyte plants, and differential expression of A. thaliana and
E. salsugineum WRKY75 suggests that selection for more efficient
extraction of soil Pi is a common evolutionary adaptation to
extreme environments.

Extremophytes are often exposed to UV-B radiation that can
cause direct damage to DNA (Kimura & Sakaguchi, 2006).
PHOTOLYASE1/UV-RESISTANCE2 (PHR1/UVR2) and
ANTI-SILENCING FUNCTION 1B (ASF1B) that are crucial
for repairing UV-B-induced DNA damage were positively
selected across the five extremophytes (Table 1; Ahmad et al.,
1997; Jiang et al., 1997; Landry et al., 1997; Lario et al., 2013;
Nie et al., 2014). PHR1/UVR2 is also the major mechanism
maintaining transgenerational genome stability in A. thaliana
continuously exposed to UV-B (Willing et al., 2016) while
ASF1B is also involved in the regulation of basal and acquired
thermotolerance (Weng et al., 2014). Additionally, PHR1/UVR2
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Fig. 6 Phylogenomic and comparative positive selection analyses of Anastatica hierochuntica and other representative Brassicaceae genomes. (a) Maximum-
likelihood tree topology based on supermatrix analysis of 13 806 ortholog groups that contain an amino acid sequence from at least four taxa. All nodes are 100%
supported by 100 rapid bootstrapping repeats. Red asterisks, extremophyte species. (b) Comparison of the number of positively selected genes (PSGs) among spe-
cies. Positively selected genes in each species were identified using the AGALMA-PAML pipeline. (c) Comparative gene ontology (GO)-term enrichment analysis of
PSGs. The red color intensity corresponds to the number of PSGs assigned with that GO term (the numbers are indicated within the cells). Cells with a white color
correspond to GO terms that were not significantly enriched. The Arabidopsis thaliana genome was used as the background gene set and significance (q-
value < 0.05) of enrichment was assessed via the Fisher’s exact test. For the full list of enriched GO-terms see Supporting Information Fig. S7; Datasets S20–S24).
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Table 1 Positively selected genesa with a potential role in adaptation to extreme environments.

Positively selected gene Function References

All extremophyte species (Anastatica hierochuntica, Eutrema salsugineum, Schrenkiella parvula, Thlaspi arvense and Arabidopsis halleri)
AKS2 (At1g05805) Transcription factor (TF); facilitates stomatal opening, abscisic acid (ABA)

response
Takahashi et al. (2013)

ASF1B (At5g38110) Histone H3/H4 chaperone; repair of UV-B-induced DNA damage, basal and
acquired thermotolerance

Lario et al. (2013); Nie
et al. (2014); Weng et al. (2014)

MYB52 (At1g17950) TF; ABA response, drought tolerance, involved in the regulation of secondary
wall formation, seed mucilage

Park et al. (2011); Cassan-Wang
et al. (2013); Shi et al. (2018)

PHR1/UVR2 (At1g12370) Photolyase enzyme; repair of UV-B-induced DNA damage Ahmad et al. (1997); Jiang
et al. (1997); Landry et al. (1997)

WRKY75 (At5g13080) TF; inorganic phosphate starvation, root development, GA-mediated
flowering, defense response

Devaiah et al. (2007); Velasco
et al. (2016); Guo et al. (2017); L.
Zhang et al. (2018)

Anastatica hierochuntica

APX6 (At4g32320) Hydrogen peroxide-scavenging enzyme; alleviation of reactive oxygen species
damage

Chen et al. (2014)

bZIP1 (At5g49450) TF, light and nitrogen sensing, salt and drought tolerance Obertello et al. (2010); Sun
et al. (2012); Para et al. (2014)

CYP71 (At3g44600) Cyclophilin; silencing of homeotic genes; meristem development, interacts
with FAS1 and the floral repressor LHP1

Li et al. (2007); Li & Luan (2011)

FAS1 (At1g65470) Subunit of CaF-1; organization of apical meristems, cellular differentiation,
DNA repair

Leyser & Furner (1992); Kaya
et al. (2001); Hisanaga
et al. (2013)

FBH2 (At4g09180) TF; photoperiodic flowering Ito et al. (2012)
SBI1/LCMT1 (At1g02100) Leucine carboxylmethyltransferase; brassinosteroid signaling; flowering, stress

responses
Di Rubbo et al. (2011); Wu
et al. (2011); Creighton
et al. (2017)

VIP5 (At1g61040) PAF1c component; activates floral repressors and photoperiodic pathway
regulators. Regulation of nitrogen uptake

Oh et al. (2004); Yu & Michaels
(2010); Crevillen & Dean (2011);
Widiez et al. (2011); Lu
et al. (2017)

Eutrema salsugineum

ATCES1/ACER (At4g22330) Alkaline ceramidase; sphingolipid homeostasis, disease resistance, salt
tolerance

Wu et al. (2015)

GRXS13 (At1g03850) Glutaredoxin; chilling and photooxidative stress tolerance Laporte et al. (2012); Hu
et al. (2015)

NCA1 (At3g54360) Chaperone; regulates catalase 2 (reactive oxygen species-scavenging
enzyme) activity, salt, cold, high pH stresses

Li et al. (2015)

PSRP2 (At3g52150) Plastid-specific ribosomal protein; RNA chaperone activity, negative regulator
of seed germination under abiotic stress

Xu et al. (2013)

SLK2 (At5g62090) Transcriptional adaptor; embryogenesis, organ development, repression of
stress-responsive gene transcription

Bao et al. (2010); Lee et al. (2014);
Shrestha et al. (2014)

Schrenkiella parvula

Atrab28 (At1g03120) LEA protein; Li+ tolerance Borrell et al. (2002)
CAX11/CCX5 (At1g08960) Cation calcium exchanger; K+ uptake, Na+ transport in yeast Zhang et al. (2011)
PER1 (At1g48130) Peroxiredoxin; reactive oxygen species scavenging, enhances primary seed

dormancy
Chen et al. (2020)

Arabidopsis thaliana

ATG6 (At3g61710) AuTophGy‑related protein; autophagy, pathogen defense Patel & Dinesh-Kumar (2008)
ATL2 (At3g16720) RING-H2 zinc-finger protein; pathogen defense Serrano & Guzm�an (2004)
ERDJ3B (At3g62600) ER-localized DNAJ chaperone; anther development under heat stress,

pathogen defense
Nekrasov et al. (2009); Yamamoto
et al. (2020)

RST1 (At3g27670) ARM-repeat protein; RNA exosome cofactor, vacuolar trafficking, cuticular
wax production, embryo development, pathogen defense

Chen et al. (2005); Mang
et al. (2009); Lange et al. (2019);
Zhao et al. (2019)

XLG2 (At4g34390) Heterotrimeric G protein; pathogen defense Liang et al. (2016)

Selected genes from five CODEML branch-site model analyses are indicated based on their A. thaliana ortholog identifier.
aFor log-likelihood values of the alternative and null models, log-likelihood ratio tests and P-values, see Supporting Information Datasets S15–S19.
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displays higher basal expression in A. hierochuntica compared
to A. thaliana, and while heat leads to downregulation of the gene
in both species, expression is reduced to a lesser extent in the
extremophyte (Fig. 7a).

Collectively then, our data suggest common selective pres-
sures in extremophyte plants that target key components in
stomatal opening, nutrient acquisition, and UV-B-induced

DNA repair. On the other hand, we found that A. thaliana
PSGs were principally involved in defense against pathogens
(Table 1). This supports the hypothesis that because
A. thaliana evolved in temperate regions where pathogen den-
sity is relatively high compared to extremophyte habitats, it
encountered greater evolutionary pressures for adaptation to
biotic stresses (Oh et al., 2014).
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Fig. 7 Expression of positively selected genes (PSGs) in response to heat stress. Gene expression was assessed by RNA-sequencing transcriptome analysis of
Arabidopsis thaliana and Anastatica hierochuntica plants grown under control conditions or exposed to heat stress (see Fig. 2a for experimental design).
Expression is expressed as transcripts per kilobase million (TPM) normalized gene expression. (a) PSGs from the ‘all extremophyte species’ andA. hie-
rochuntica analyses that are associated with abiotic stress responses (Table 1). (b)A. hierochuntica PSGs that function in photoperiodic flowering, regula-
tion of meristems, and control of morphology (Table 1). Data are mean� SD (n = 3) Asterisks indicate significant difference at P < 0.05 between A. thaliana

and A. hierochuntica at the same time point and condition (Student’s t-test). CM, control morning; CN, control afternoon; HW1M, heat wave 1 morning;
HW1N, heat wave 1 afternoon; HW2N, heat wave 2 afternoon; HW3N, heat wave 3 afternoon; R1N, day 1 recovery from heat stress afternoon; CR2N,
control plants parallel to the R2N time point afternoon; R2N, day 2 recovery from heat stress afternoon; Blue shading, control conditions; Pink shading,
heat conditions.
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A. hierochuntica PSGs suggest adaptive evolution for an
opportunistic desert lifestyle

We pinpointed a number of PSGs specifically in A. hierochuntica
indicating adaptation to the desert environment (Table 1; Fig. 7b).
Intriguingly, several of these genes function in A. thaliana in the
transition from vegetative to reproductive growth and meristem
development: (1) VERNALIZATION INDEPENDENCE 5
(VIP5) enhances transcription of the floral repressor FLOWERING
LOCUS C (FLC) gene and other MADS AFFECTING FLOWER-
ING (MAF) gene family members (Oh et al., 2004; Yu &
Michaels, 2010; Crevillen & Dean, 2011; Lu et al., 2017) and
A. thaliana vip5 mutants exhibit early flowering; (2) FLOWER-
ING BHLH 2 (FBH2) activates transcription of the CONSTANS
gene, a central regulator of photoperiodic flowering. FBH2 overex-
pression causes photoperiod-independent early flowering (Ito
et al., 2012); (3) FASCIATA1 (FAS1) appears to function in the
organization of shoot and root apical meristems, and in cellular
differentiation (Kaya et al., 2001; Exner et al., 2006). Mutations in
fas1 cause stem fasciation, abnormal leaf and flower morphology,
and defects in the organization of apical meristems (Leyser &
Furner, 1992; Kaya et al., 2001); (4) CYP71 plays a critical role in
regulating meristem development, including the floral meristem
(Li et al., 2007). Furthermore, CYP71 physically interacts with
FAS1 thereby targeting FAS1 to the KNAT1 locus (Li &
Luan, 2011). KNAT1 is essential for maintenance of apical meris-
tems (Hake et al., 2004). In addition, CYP71 interacts with LIKE
HETEROCHROMATIN PROTEIN 1 (LHP1), which is
involved in repressing expression of flowering time and floral iden-
tity genes (Gaudin et al., 2001; Kotake et al., 2003). Thus, lhp1
mutations cause strong early flowering; (5) SUPPRESSOR OF
BRI1 (SBI1)/LEUCINE CARBOXYLMETHYLTRANSFERASE
(LCMT1) regulates components of the brassinosteroid signaling
pathway (Di Rubbo et al., 2011; Wu et al., 2011) and the sbi1/lcmt
mutant is early flowering in both long and short days consistent
with the role of brassinosteroids in flowering (Li & He, 2010;
Nolan et al., 2020).

The discovery of positively selected flowering and meristem
development genes specifically in A. hierochuntica is consistent
with its very different developmental program compared to many
other Brassicaceae including the additional four extremophyte
plants included in our analysis. A. hierochuntica does not display
the distinctive transition from the vegetative rosette leaf stage to
the reproductive bolting stage, which is accelerated in long-day
conditions (Pouteau & Albertini, 2009; Song et al., 2013).
Instead, regardless of photoperiod, the shoot repeatedly bifurcates
from the four true-leaf stage onwards, developing an axillary
inflorescence at each branch point thereby leading to a multi-
branched shoot morphology (Fig. 1b, panel (i); Eshel et al.,
2017). Most interestingly, mutation in the A. thaliana FAS1 gene
(whose A. hierochuntica ortholog is under positive selection) can
induce stem bifurcation and enlargement (Leyser &
Furner, 1992). The shoot bifurcation, multi-branch,
photoperiod-insensitive, early flowering traits could maximize fit-
ness in the unpredictable desert environment where plants need
to ensure development of seeds but might not survive until a

critical day length induces flowering. This idea is supported by
our observations of A. hierochuntica populations in the Dead Sea
valley of Israel, where tiny dead plants that have still managed to
produce a few seeds can be seen alongside much larger plants pre-
sumably from a year with higher rainfall (Fig. 1b).

In conclusion, we have shown that A. hierochuntica possesses a
more reactive heat-response transcriptome, and stress-related
genes that have undergone positive selection. Genes that could be
associated with its multi-branch, early flowering phenotype also
exhibit signatures of positive selection. Together, these evolution-
ary adaptations could allow survival in a hot desert environment
with unpredictable precipitation. Our study furthermore pro-
vides rich gene sets that will facilitate comparative and functional
genomics studies to reveal additional molecular mechanisms for
plant tolerance to heat stress in a desert habitat.
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Dataset S8 Anastatica hierochuntica early heat module (Floral-
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ules.
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Dataset S11 Gene ontology-term enrichment of genes that are
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Dataset S19 CODEML positive selected genes (q < 0.05) in Ara-
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Dataset S20 Gene ontology-terms overrepresented in the all
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flow.
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Fig. S5 Basal (control) expression of 15 orthologous Arabidopsis
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Fig. S7 Gene ontology-term enrichment analysis of positively
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Methods S1 Additional information regarding methods used in
this study.
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