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Collaborative Filtering recommendation algorithms (CF) are a popular solution to the information overload
problem, aiding users in the item selection process. Relevant research has long focused on refining and improv-
ing these models to produce better (more effective) recommendations, and has converged on a methodology
to predict their effectiveness on target datasets by evaluating them on random samples of the latter. However,
predicting the efficiency of the solutions – especially with regards to their time- and resource-hungry training
phase, whose requirements dwarf those of the prediction/recommendation phase – has received little to no
attention in the literature. This paper addresses this gap for a number of representative and highly popular CF
models, including algorithms based on matrix factorisation, k-nearest neighbours, co-clustering, and slope one
schemes. To this end, we first study the computational complexity of the training phase of said CF models and
derive time and space complexity equations. Then, using characteristics of the input and the aforementioned
equations, we contribute a methodology for predicting the processing time and memory usage of their training
phase. Our contributions further include an adaptive sampling strategy, to address the trade-off between
resource usage costs and prediction accuracy, and a framework which quantifies both the efficiency and
effectiveness of CF. Finally, a systematic experimental evaluation demonstrates that our method outperforms
state-of-the-art regression schemes by a considerable margin, with an overhead that is a small fraction of the
overall requirements of CF training.

CCS Concepts: • Information systems→ Recommender systems; Evaluation of retrieval results.

Additional Key Words and Phrases: Recommendation systems, efficiency evaluation, effectiveness evaluation,
sampling-based time and memory prediction.

1 INTRODUCTION
Recommendation systems have been extensively used to aid users in the item selection process
by producing tailored content in line with the users’ tastes and needs [66]. This, in turn, has also
impacted the way providers deliver content to the users, as they need to strike a balance between
revenue maximisation and the users’ satisfaction [7]. An important class of recommendation
systems are Collaborative Filtering-based recommendation systems (CF), which recommend items
to a user based on similar users’ preferences. CF models can rely on explicit feedback datasets,
where the users’ tastes are captured through ratings given by users to items (e.g., the ratings could
be in the range of 1 to 5, where a higher rating value indicates that the user enjoyed the item), or
on implicit data (e.g., users interacting with items – watching a movie, reading an article, etc. –
without providing explicit feedback).

One of the challenges in building CF engines is the selection of the algorithms to be used.
While there is a growing body of literature that focuses on developing novel and better algorithms
for attaining users’ satisfaction [54, 84] and producing accurate recommendations [69, 86], less
attention and efforts have been allocated for studying the prediction of the efficiency and resource
consumption of CF models, particularly during their highly expensive training phase. Focusing
only on the nominal accuracy of the CF algorithms is a fallacy, as there is an inherent trade-off



between the efficiency of the system (training phase resource consumption) and the effectiveness
(accuracy) of the recommendations [63, 64].

1.1 Motivation
It is often the case that a one-CF-model-fits-all solution becomes unfeasible due to the dynamic
relationship between users and items, and the rate at which new algorithms are proposed in the
literature. At the same time, the models need to be periodically retrained to capture the latest user
preferences and needs [7]. Companies then have to decide whether and when to retrain their CF
models, since the training time and memory usage are often quite high (surely several orders of
magnitude higher than the time it takes to produce a recommendation given a trained CF [7, 74]),
while high training times/resource utilisation also translate to expensive energy and monetary
costs for the content providers [74], and even raise concerns for damage to the environment as a
result of increased amounts of CO2 emissions [76]. These problems are further exacerbated by the
ongoing data generation growth, identified by a recent study released by Amazon [74] as one of
the key factors which impact the scalability of CF algorithms.

From the point of view of effectiveness, the problem of choosing a model is routinely addressed
by drawing random samples from the target dataset, training and evaluating the candidate models
on these samples, then using the resulting effectiveness figures as proxies for the effectiveness of
the model on the complete dataset [1, 18, 24]. Throughout the paper, we will refer to this approach
as the black-box performance evaluation. It is often the case that a model with higher time/space
complexity requires higher training time and also a higher rate at which the latter increases as a
function of the size of the input. This makes the above sampling-based approach quite appealing,
as the loss in accuracy is more than offset by the gain in processing time. However, extending it to
the prediction of efficiency (training time, memory usage, etc.) over the complete dataset is far from
straightforward. On one hand, the sampling strategies typically used in the relevant literature fail
to capture the characteristics of the input that define the model’s efficiency [1, 18, 24] (see also §3.4).
On the other hand, the very processing time/resource consumption scaling characteristics that
make this approach appealing, also make efficiency prediction challenging; one can no longer just
use the resulting efficiency figures as proxies for the complete dataset but rather needs to build a
regression model to predict these quantities. To this end, we propose developing regression models
(§3.3) that try to quantify the constant factors hidden by the time and space complexity analysis
of CF algorithms. We call this methodology the White-Box1 approach, as opposed to the black-
box technique described above. Finally, we revisit the sampling strategies used for effectiveness
prediction purposes, and propose a scheme whose output can be used to offer accurate predictions
for both effectiveness and efficiency purposes.
Predicting and modelling resource utilisation has always been a popular topic due to the ever-

growing data and the challenges associated with it (e.g., availability, security, consistency, etc.)
[58]. Over the years, different research communities have been working towards building and
optimising more efficient models to save energy [13, 43], and minimise resource consumption
[26, 87]. On this note, we channel our attention towards evaluating and predicting the CF models’
resource consumption, a topic that the literature has largely overlooked. Our work could be used
by users (e.g., companies that use and deploy CF engines) to allow for better planning of resources,
such as CPU and memory, to be provisioned for their applications in local clusters/data centres.
This, in turn, could be potentially extended to cloud-based providers, in the same vein as [50],
where a simple model can determine the optimal instance configuration based on the the workload,

1The term “white box” is also used to refer to simple predictive models, such as linear regression and decision trees, that are
easy to explain and interpret. The fact that our proposed solution utterly also uses linear regression is a lucky coincidence.
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hardware, and cost, to map the requested resources to physical resources better, maximising the
number of users who can use their services concurrently. Moreover, modelling the highly resource-
and time-consuming training stage of CF models is beneficial for both the research community and
industry, since these CF algorithms are frequently utilised in recommendation engines [81] and
evaluation studies [17, 18]2. Consequently, we formalise the research problem addressed in this
work, as described in the following paragraphs.

1.2 Problem Formulation
As discussed in previous section, the aim of this work is to estimate resource consumption, alongside
recommendations’ quality, for CF models using a white-box approach. In particular, determining
when a CF algorithm could have an expensive training time or memory usage is an essential
challenge, leading us to our problem formulation: given a CF algorithm A in the families of algorithms
considered in this work, and an input dataset B, predict the time andmemory required to train algorithm
A on B. This problem fits within system resource tracking and management topic, which has been
broadly studied in the context of computational performance [65, 77].
Our goal is to produce a framework and methodology, which allows the accurate prediction

of the processing time and memory usage during the training phase of CF models, based on
measurements acquired on samples of the input dataset. To this end, we focus on well-known
CF algorithms including singular value decomposition, k-nearest neighbours, slope-one schemes,
matrix factorisation, etc. [45]. In our study, we included all CF models implemented in the Surprise
framework [45] covering a wide area of the design space. The selection criterion for these CF
was based on their popularity and frequency in recent and related benchmarking works, such
as [17–19, 24]. Furthermore, we propose using the time and space complexity analysis of these
CF algorithms combined with curve fitting primitives as a reliable solution towards the accurate
prediction of their training times and memory usage. Then, we sample the input (i.e., the user-item
rating matrix – URM) and extract characteristics of each sample (e.g., number of users/items/ratings,
density of the rating matrix, etc.). As part of the sampling process, we investigate what sampling
strategies could be used to make the resource utilisation prediction problem viable (i.e., how many
samples are enough for accurate predictions of processing time or memory usage versus the
processing cost of training a given algorithm on those samples). To this end, we formulate the
following central research question:

RQ: Given the processing times and memory usage of a CF algorithm on a subset of the data,
how can we quantify its expected time/memory consumption for the full dataset?

As part of the central RQ, we have examined the following secondary RQs: (a) How can we use
complexity analysis to estimate the resource consumption of a CF algorithm? (b) Can the efficiency
of a CF model on the full dataset be predicted using solely characteristics of the input (i.e., URM)
and the efficiency of the CF model on a set of samples? (c) Given an upper sample size S%, how
do we determine when to stop sampling based on the number of samples for which we obtain
consistent resource usage measurements (i.e., the time/memory values are in a tight interval)? (d)
How should we sample the base data, such that the quality of the predicted efficiency/effectiveness
of a CF model is not harmed?

2These challenges were also discussed with industry professionals (e.g., Amazon, Netflix), as part of the Doctoral Symposium
in ACM RecSys 2020 [63], who highlighted the importance of model selection, training, and deployment based on the
available resources and the targeted effectiveness/accuracy outcome.
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1.3 Contributions
As discussed in the next section, a large body of literature investigated the effectiveness of the
CF, including how the quality (i.e., precision, recall, accuracy) of the recommendations changes
with respect to different dataset characteristics [15, 24, 44]. Therefore, this does not fall within the
main scope of our work, but we refer to the relevant literature [14, 22, 42, 70, 78, 80, 83] and bench-
marks [45] for comparing the selected CF algorithms regarding their accuracy in recommendation
tasks. However, to demonstrate the flexibility of our sampling strategy (§3.4) for both efficiency
(e.g., training processing time and memory) and effectiveness estimation, we also incorporate
in our framework a component that predicts the quality of the recommendations based on the
characteristics of the input (§4.5).
To the best of our knowledge, this is the first study that explores the CF algorithms’ efficiency

performance, addressing the processing time and memory estimation problem through an adaptive
sampling-based strategy and different curve-fitting approaches. Our efforts led to the following
contributions:
C1: An adaptive sampling strategy that dynamically draws samples to jointly satisfy a user-

defined accuracy/error threshold and/or a predefined resource constraint (e.g., maximum
time quota);

C2: A methodology that assesses the efficiency of a CF algorithm through training processing
time and memory cost models based on its computational complexity;

C3: A tool and framework that predicts the training processing time and memory usage, and
effectiveness of the CF algorithms through sampling-based probabilistic analysis and charac-
teristics of the input;

C4: An extensive experimental evaluation, comparing our framework above against state-of-the-
art regression models.

Finally, although in this work we have focused on applying the above on CF models, we believe
that the proposed methodology and prediction tools are flexible enough to also be applicable to
other algorithms and use cases; exploring such directions is outside the scope of this work.

2 BACKGROUND AND RELATEDWORK
CF evaluation is a major area of interest, as numerous studies and projects tried to determine the
best metrics and practices in this field. So far, both efficiency and effectiveness have been established
as the critical areas towards assessing the CF performance [39]. While there are still ongoing debates
about online versus offline evaluation [35, 39], it is notably harder (if not impossible) to reproduce
online studies. Consequently, offline assessment has been used as a primary tool for establishing the
overall performance of a CF and gaining insights into its behaviour under certain constraints and
limitations [35, 39]. Traditionally, the evaluation of the CF focuses on splitting the dataset/input
into training and testing collections, which are then used to assess the output of the CF model.
The limitation of this approach is that often sparsity and popularity biases affect the evaluation
protocol [9]. This issue can be alleviated using “random” sampling.

Random sampling techniques have been intensively used in the past decades in various contexts
and applications. For example, in databases, the size of the results for a given query was predicted
using random sampling [36, 40, 55]. Other works focused on computing the optimal bound for
the number of samples needed for satisfying a predefined error metric [4, 21, 33]. Furthermore,
efficient sampling techniques have been developed to address the limited computational resources
availability for analysing large datasets [59]. All these efforts have contributed towards better ways
of drawing samples, which is critical for predicting a chosen quantity since the number of samples
and their distribution impacts the accuracy of the predictions [62].

4



One of the drawbacks of CF evaluation is that the studies only report the quality of the recom-
mendations through effectiveness metrics [35, 39]. However, recent work [56] also presents some
insights into the observed efficiency (processing time) of the models. Thus, and in the context of
environmental awareness [76], we speculate that as more complex models will be developed, the
community will move their attention and efforts to (a) report the (resource) cost of new models,
and (b) incorporate ways of minimising the hardware usage. This is yet another reason why it is
essential to be able to predict the efficiency cost of CF by performing the training of the models on
only small samples of the target datasets.

Recent interest has been shown towards investigating how dataset characteristics (e.g., number
of users, items, ratings density/sparsity) affect the quality of the recommendations and their impact
on the CF effectiveness. In [1, 24], the authors explore the effect of the structural properties of the
user-item rating matrices regarding the accuracy and robustness of the CF algorithms used in the
studies. Their results confirm a relationship between dataset characteristics and the CF models’
behaviour and highlight the standard practice of using samples to evaluate the effectiveness of CF
while alleviating the high processing costs of testing on the complete dataset. In [63], we argued
that properties of the input data further affect the inherent trade-off between the efficiency and
effectiveness of a CF and that the choice of the algorithm should be based on the latter as well.

Lately, CF have also been evaluated with respect to their accuracy using sampling-based proba-
bilistic analysis methods [17, 18]. To this end, the standard practice consists of training the selected
CF on a sample of the dataset and using its offline measured accuracy as a proxy for the effectiveness
over the complete dataset [24]. This approach could also be extended to quantify the efficiency
of these CF algorithms as discussed in [63, 64]. However, several challenges are associated with
sampling for efficiency and effectiveness prediction, as demonstrated in the experimental evaluation
(§4.5). Thus, we argue that this is a combination of two factors: (a) the samples produced by the
standard practice sampling strategies usually employed for effectiveness purposes do not lend
themselves well to efficiency predictions; and (b) due to the inherent (often) non-linear scaling of
computational requirements over the dataset size. This work aims to address these gaps, and the
resource consumption prediction problem, for a set of highly popular and impactful CF models.

In the past decades, algorithms’ processing time prediction problem has been extensively studied
across different communities with numerous results. For example, in parallel computing, linear
regression models have been used to predict the processing time of different library implementa-
tions for multiprocessors [11]. Other works focused on predicting the runtime of various planning
algorithms, for selecting which algorithm to run and for how long [28, 41, 68]. Predicting the
processing time of parameterised algorithms has drawn high interest from the research community,
with existing solutions incorporating the parameters as additional inputs for the prediction models
[6, 67]. Another area explored consists of runtime prediction applications, such as determining
instance hardness [52] and parameter optimisation/tuning [67]. Additionally, in Database Man-
agement Systems (DBMS), in the past 15 years, the number of potential database designs (e.g.
indexes, table partitions) and configurations (i.e., knobs to turn and fine-tune) has grown by 3×
for Postgres and by nearly 6× for MySQL [82] making the Database Administrators’ (DBAs) job
very challenging. The main issues with configuration knobs are that there is a large number of
parameters that have to be optimised and they control many aspects of the database system (e.g.,
disk I/O, memory, etc) [82]. To this end, existing solutions [82] focus on auto-tuning these knobs
and suggest configuration plans that are better than those derived by human experts. To further
optimise DBMS, other works [48, 53] focus on computing cost models for estimating the resource
consumption of processing different types of queries. We believe the same scenarios apply to CF,
as there are numerous algorithms which can be used, and each one has different configurations
and parameters to optimise/tune, resource usage costs, and accuracy rates as showcased in our
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experimental evaluation. Therefore, the problem of quantifying the performance of CF models w.r.t.
both resource consumption and effectiveness becomes more interesting.

3 THEWHITE-BOX APPROACH
When faced with the task of predicting the effectiveness of a CF on a dataset, based on its behaviour
on a sample of that dataset, the standard practice consists of building a regression model over
data points gathered through iteratively: (i) randomly sampling over all ratings in the dataset, (ii)
training the CF over the sample, (iii) evaluating its effectiveness over the sample [24]. We follow a
similar strategy with a few notable changes summarised in figure 1. The proposed pipeline covers
the steps that our users need to follow to estimate the processing time and memory usage for
training a CF algorithm on a chosen dataset. In the following subsections, we discuss each of the
steps in more depth, and show how using the expected complexity of a CF algorithm, samples of
the data, and a simple regression model, can lead to fast, accurate and interpretable predictions of
the efficiency and effectiveness of the CF model.

1a

1b 2

4b

3

5

4a
Predict resource usage (processing time, RAM).

Decide if more samples are required or we

terminate the process.

URM

Extract Features

Sample the URM

In
p

u
t

Train CF on the samples Record metrics

Output

More 

Samples ?

Y
es

No

Fig. 1. Overview of the proposed pipeline. Given the the input data (user-item rating matrix – URM), we:
(step 1a) extract features such as the number of users, items, ratings, the density of the matrix, etc.; and
(step 1b) sample the URM following the strategy described in §3.4. In step 2 we train the various classes
of CF models (§3.2) on the samples drawn, while (step 3) gathering efficiency metrics, such as processing
time and memory overhead, and effectiveness metrics for the quality of the recommendations (i.e., RMSE for
the predicted rating values). In steps 4a and 4b, we train our proposed prediction models, detailed in §3.3,
given the recorded metrics, then learn and predict the efficiency (processing time, memory) and effectiveness
(RMSE) of the CF on the full dataset. This process (steps 2–4) is repeated until the user-defined termination
condition (prediction accuracy, time budget, etc.) is met (step 5).

At the core of our method is the idea that if we understand the computational complexity of
each CF algorithm (captured using big-O time and space complexity analysis), we can predict
its efficiency (i.e., processing time and memory usage). Throughout the paper, we refer to time
complexity as the processing time taken by an algorithm to train on a particular input. Similarly,
we name space complexity the memory usage incurred when a CF model is trained on an input. For
all the CF analysed, we define the characteristics (1 step 1a) of their input (i.e., the user-item rating
matrix – URM), with respect to the number of users, m, the number of items, n, the total number
of ratings, 𝝆, and the density of the rating matrix, 𝜹 (= 𝜌

𝑚×𝑛 ).
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3.1 Algorithms
A CF algorithm is considered explicit if its input is based on fixed ratings (usually from 1 to
5) emerging from scores awarded by users to items. In this work, we analyse the following CF
categories:

(i) Basic algorithms; chosen representatives include a Baseline algorithm derived from [46], as
well as a Maximum Likelihood Estimation based Random approach [61].

(ii) Algorithms based on K-nearest neighbours; chosen representatives include Basic KNN
(KNN) [38], KNN taking into account the mean rating of each user (Centred KNN) [25], and
KNN taking into account a baseline rating (KNN Baseline) (formula (3), section 2.2 in [46]).
The former two use Mean Squared Difference (MSD) [16] as the distance metric, while the
latter uses Pearson correlation coefficients [38] centred using baseline scores.

(iii) Variants of matrix factorisation (MF); chosen algorithms include Non-negative Matrix
Factorisation (NMF) [57] and Singular Value Decomposition (SVD) derived from [66].

(iv) Slope-based algorithms; chosen representatives include the Slope One scheme [51].
(v) Co-clustering approaches; chosen representatives include the algorithm presented in [32].

For further details on these algorithms and their implementation, we refer interested readers to
the documentation of the popular Surprise framework [45], which was also used for our experiments.
Surprise is a Python-based CF engine that allows users to build and test CF algorithms, which
work on explicit feedback datasets. This framework allows researchers to quickly set up their
experimental evaluations, provides complete control over the experiments, and contains various
tool and metrics to assess the CFs’ performance. Surprise also allows users to experiment with
built-in datasets (e.g., Movielens [37]), but also to incorporate their bespoke collections. Surprise
engine comprises many ready-to-use traditional CF models, described in the previous paragraph,
for solving the rating prediction problem [2], and is frequently used as a benchmark in the research
community [85]. Our methodology naturally extends to implicit CF algorithms, which rely on
inferring users’ preferences based on their interactions with the items, such as which pages they
visited and for how long, where they clicked, etc.; we omit discussing them in this work due to
space constraints.

3.2 Complexity Analysis
Traditionally, the performance of an algorithm is captured through asymptotic worst-case com-
plexity equations using big-O notation [23]. This method allows us to determine an upper bound
to the way an algorithm’s processing time grows or declines as a function of characteristics of
its input. The CF models studied in this work are based on well-known algorithms, for which
big-O analysis has been provided by the relevant literature [14, 22, 42, 70, 78, 80, 83]. However,
it is often the case that design decisions may make the complexity characteristics of particular
implementations to diverge from the theoretical bounds – a fact often hidden behind constant
factors or terms ignored during big-O analysis [3]. We thus further formulate and propose time and
space complexity equations based on the actual implementation of said CF models. In the following
paragraphs, we list the algorithmic complexities based on (a) literature [14, 22, 42, 70, 78, 80, 83]
and (b) implementation. For the latter, we used Surprise’s [45] documentation and implementation,
and derived the expected time and space complexity of CF models captured through big-O notation
and the characteristics of the input outlined in §3. For the purpose of our approach, the numberf
of latent factors as well as the number e of epochs, where applicable, are considered constants set
to the predefined/recommended values by [45].
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The baseline CF is based on the ALS (Alternating Least Squares) algorithm, the naive solver3
version, which has a complexity of𝑂 (mnf). If we further fixf to a default/recommended number,
the complexity can be further abstracted to 𝑶 (mn) [42]. However, by examining the implemen-
tation of the baseline CF algorithm, for a given number of epochs e, firstly the users’ baseline is
computed in m2 steps, followed by the items’ baseline which takes n2 operations. If we fix e to a
predefined/recommended value, baseline’s overall time complexity is 𝑶 (m2 + n2). For memory
usage, apart from the size of the URM, which in all cases takes 𝑶 (𝝆) of memory, the baseline
algorithm stores the users’, items’ resp., baseline in an array of size 𝑶 (m), 𝑶 (n) resp.; since, both
baselines are used by this CF, the overall space complexity is 𝑶 (m + n).

The random algorithm, based on Maximum Likelihood Estimation (MLE), predicts the missing
ratings over a normal distribution, computed in maximum 𝑶 (mn) steps [80]. The implementation
reveals that the random CF computes a global mean and standard deviation during its training
phase. These are typically done in two stages (first, compute the mean, then the standard deviation),
each of which scans over all rating values. As such, the algorithm’s time complexity is in 𝑶 (𝝆). The
random CF does not require additional memory during its training phase as there are no auxiliary
data structures that need to be allocated for the computing of the mean and standard deviation.
Therefore, its space complexity matches the size of the URM, namely 𝑶 (𝝆).

For the neighbourhood based CF algorithms (i.e., KNN, centred KNN, and KNN baseline), the
training phase computes the distance of every user to every other user (or every item to every
other item, depending on whether the approach is user- or item-centric), taking into account only
the items (users, respectively) that are common across users (items, respectively). This leads to a
complexity of 𝑶 (m2n2) [83, 89]. However, at the implementation level, forKNNwe derived a time
complexity of 𝑶 (

𝝆2

x
+x2), where 𝒙 can be either m for user-based KNN, or n, for item-based KNN,

respectively. At the core of the KNN-based CF, the similarity function computes the distance across
the relevant users or items with respect to (a) the ratings they gave (for users) and (b) the rated
items. By investigating the rating frequency distribution of all datasets outlined in section §4.1, we
concluded that the number of per-user and/or per-item ratings follows a uniform distribution (i.e.,
𝜌

m
ratings per user, or 𝜌

n
ratings per items). We thus make the following simplifying assumption:

in the similarity function, the distances are computed in x × 𝜌2

x2 , which can be simplified to 𝜌2

x
.

Then, the distance is computed for pairs of common users/items in x2 time (m2 for users or n2

for items, respectively). Centred KNN has a similar complexity to KNN, as they use the same
similarity metric (MSD), but takes an extra (𝝆) step to compute the mean ratings of each user
(item, respectively), which brings the overall time complexity to 𝑶 (

𝝆2

x
+x2 + 𝝆). KNN Baseline

is also based on KNN, and computes distances across users (items, respectively) using Pearson
correlation coefficients [38], and takes into account baseline ratings. It’s overall time complexity, as
derived from its implementation, is the same as the one for Centred KNN - i.e., 𝑶 (

𝝆2

x
+x2 + 𝝆).

To compute the distances and similarities between pairs of users, items resp., the KNN-based CF
utilise additional matrices of size 𝑶 (m2), 𝑶 (n2) resp. Therefore, the memory usage for KNNs
during training is 𝑶 (m2) or 𝑶 (n2) depending on whether distances/similarities are computed
across users or across items.
The NMF model is based on the SGD algorithm, which achieves a computational complexity

of 𝑂 (em𝜌) [70]. If we fix the number of epochs, the complexity can be reduced to 𝑶 (m𝝆). In
the Surprise framework [45], for a fixed number of epochs and factors, NMF decomposes a given
user-item ratings matrix, with respect to the number of users (m), items (n), and ratings (𝜌).
Therefore, the missing ratings are computed in 𝑶 (𝝆 + m + n) (or 𝑶 (ef(𝝆 + m + n)), including

3Naive ALS is described in http://web.cs.ucla.edu/~chohsieh/teaching/CS260_Winter2019/lecture13.pdf
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the number of epochs, e, and factors, f). The implementation also reveals that during training
additional memory is allocated for twomatrices, one for the user latent factors, which takes𝑶 (mf)

of memory, and the other one for item latent factors, which is stored in 𝑶 (nf). This brings NMF’s
overall memory usage to 𝑶 (mf+ nf).

SVD, a popular CF-based approach, has been intensively used to produce recommendations
on explicit datasets. Over time, multiple variations of SVD have developed [22], leading to a
significant number of implementations. However, most of them converge to a complexity of
𝑶 (mn2), even though other studies, such as [47], claim that the overall complexity of SVD is
close to 𝑂 (n2m + m2n). The SVD’s implementation found in Surprise [45] uses the user-item
ratings matrix in 𝑶 (e𝝆f) time to factorise the corresponding user and item factors. SVD’s time
complexity can be simplified to 𝑶 (𝝆) for a fixed number of epochs (e) and factors (f). For memory
requirements, during training, SVD follows similar storage requirements as NMF, having a space
complexity of 𝑶 (mf+ nf).

For slope-based solutions, the Slope One algorithm has a generic time complexity of 𝑶 (mn2),
as it computes the average difference between pairs of relevant items as described in [78]. At
implementation level, Slope One firstly computes the frequency of the pairs of items (i, j), followed
by the deviation between item i’s ratings and item j’s ratings. This is achieved in 𝑂 ( 𝜌

2

m
+ n2).

Then, the relevant ratings are predicted using the users’ mean ratings combined with the afore-
mentioned frequency and deviation arrays, which means another 𝑂 (𝜌), leading to an overall time
complexity of 𝑶 (

𝝆2

m
+ n2 + 𝝆). For memory requirements, during training, Slope One allocates

two additional matrices to compute the frequency and deviation between pairs of items across the
dataset. Consequently, the expected memory usage is 𝑶 (n2).
Lastly, the Co-clustering CF with a fixed number of user-item clusters converges towards a

computation complexity of 𝑶 (mn) [14]. By examining its implementation, Co-clustering splits
users and items into clusters in 𝑂 (m) + 𝑂 (n) and co-clusters in 𝑂 (𝜌) steps, using an assignment
technique similar to K-means. This makes Co-clustering train in 𝑶 (m + n + 𝝆) time. During
training, the Co-clustering CF computes the users and items mean across the entire collection and
stores them in arrays of size 𝑶 (m), 𝑶 (n) resp. Then, users and items clusters and co-clusters are
built, which require another 𝑶 (m), 𝑶 (n), and 𝑶 (mn) resp. of memory. This brings the overall
space complexity to 𝑶 (m + n + mn).

3.3 Prediction Models
Knowing the worst-case (big-O) complexity can help determine the upper bound on the number
of resources used by an algorithm while being executed against all possible inputs [23]. However,
in practice, the likelihood of encountering inputs that elicit the worst-case processing time of an
algorithm is relatively low [23]. Therefore, the computational complexity theory has devised the
average-case complexity to measure the efficiency of an algorithm through its expected processing
time/memory averaged over all inputs. Computing average-case complexity is often a hard problem
since the distribution of all possible inputs is required to derive theoretical bounds analytically.
Instead, our methodology is based on approximating probabilistic analysis, through an adaptive
sampling strategy (1 step 1b), which predicts the expected processing time/memory of a given CF
algorithm over an input/dataset. We employ this strategy for determining both the processing time
and memory usage requirements.
Using the above algorithmic complexities, the processing times and memory usage measured

across different inputs (1 step 3), and the characteristics of the data, we propose building the follow-
ing types of models for time/memory prediction. Our approach is based on estimating the hidden
factors (or unknown parameters) in the time and space complexity equations derived from the
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algorithms’ implementations, mentioned in §3.2. Given that the processing time/memory estimation
is based on an overdetermined system, with more sets of equations than unknowns, we constructed
our models based on the least squares approach [10]. This technique is based on minimising the
sum of the squares of the residuals (i.e., the difference between the observed/measured processing
times/memory usage and the predicted/fitted values) computed in the equations.

3.3.1 Linear Models. Since for each sample of the input we know the fixed number of users,
items, and ratings, we encapsulate the performance (i.e., processing time and memory) of the CF
algorithms through complexity equations summarised as follows:

𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 𝑓 (𝑋 ) = 𝛼𝑋 + 𝛽 (1)

where 𝑋 is a combination of the independent variables𝑚, 𝑛, and 𝜌 , while 𝛼 and 𝛽 are the slope and
intercept that were computed using linear least-squares regression. For example, the equation for
computing processing time for baseline becomes 𝛼 (𝑚2+𝑛2)+𝛽 , that ofNMF becomes 𝛼 (𝜌+𝑚+𝑛)+𝛽 ,
etc. Similarly, for predicting memory usage of SVD, we compute 𝛼 and 𝛽 using 𝛼 (𝑚𝑓 + 𝑛𝑓 ) + 𝛽 .
This approach allows us to quickly compute the hidden factors of the complexity equations, while
capturing the characteristics of the URM, as evidenced by our experiments. Additionally, we also
compute the prediction error interval [27, 60], which quantifies the uncertainty of our predicted
time and memory usage. This allows us to provide upper and lower bounds on the estimates at
each sample size. Furthermore, we compute these intervals using a combination of the variance of
the outcome variable (i.e., time, memory) and the estimated variance of the model4 [27, 73].

3.3.2 Bayesian Models. Another approach that we explored was to estimate the performance of the
CF algorithms using a Bayesian inference [20]. In this setup, our aim is still to compute the hidden
coefficients of the complexity equations from §3.2, but using probability distributions rather than
point estimates. Therefore, our predicted variable (i.e., processing time, memory) will be drawn
from a probability distribution. To this end, we infer the performance of the CF using a normal
(Gaussian) distribution [20], characterised by mean and variance, as seen below:

𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒 ∼ N(𝛼𝑋 + 𝛽, 𝜎2) (2)

where 𝛼 , 𝛽 , 𝜎2 are also coming from distributions. Since 𝜎2 will always be a positive number, we
chose a prior distribution, which yields only positive values, such as the Exponential distribution
[20], where 𝜎2 ∼ 𝐸𝑥𝑝 (1). For 𝛼 and 𝛽 coefficients, we used normal (Gaussian) distributions and
restricted the parameter space using priors learnt with the previous linear regression models [31]. In
Bayesian inference, the main goal is to use sampling methods to draw samples from the posterior to
approximate the posterior [20]. According to the standard practice [20, 31], we can use Monte Carlo
methods [71] to draw random samples from a distribution to approximate the said distribution.
While there are several ways to perform Monte Carlo sampling, the most common and currently
used [20, 31] is Markov Chain Monte Carlo (MCMC) sampling [12]5. One of the challenges of fitting
the Bayesian models is to ensure that all parameters show convergence. This can be checked by
computing the potential scale reduction (𝑅), which should always have a value below 1.1 [20]. The
rule of thumb is that convergence has been achieved when 𝑅 is very close to 1.0 [31].

As with the linear regression models, for Bayesian regressors, we can compute the Monte Carlo
Standard Error (MCSE), which is an estimate of the inaccuracy of Monte Carlo samples in MCMC
algorithms [31]. MCSE can be used to quantify the uncertainty of the predictions for processing time
4An example on how to compute the prediction error intervals is provided in https://learnche.org/pid/least-squares-
modelling/least-squares-model-analysis#prediction-error-estimates-for-the-y-variable.
5In Python, MCMC is implemented using the PyMC3 library available at https://docs.pymc.io/. This is also what we used in
our experiments.
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and memory usage in MCMC models by computing the standard deviation and variance around
the posterior mean of the samples6 [31, 75].

3.3.3 Baselines and Contenders. We compare our proposed processing time and memory predic-
tion models (white-box approach) against two types of baselines: (i) a hard baseline using linear
regression to learn the hidden factors in the complexity equations described in the literature; and
(ii) a soft baseline, which assumes that the complexity of the algorithms is unknown, and therefore
the processing time and memory predictions will be computed using just the characteristics of
the input (black-box method). The latter was tested using several off-the-shelf state-of-the-art
regression algorithms available through the H2O analytics platform7. A few examples of the tested
regressors include Random Forest, Deep Neural Net, Support Vector Machine (SVM), and Adaptive
Boosting. In the experimental evaluation, we only report on the results of the best performer with
regards to prediction accuracy (i.e., lowest RMSE), namely Gradient Boosting Machine (GBM) [30].
GBM was ranked as the best state-of-the-art regression model since it acquired the lowest RMSE,
following the K-fold cross-validation procedure described in [49].

In our experimental evaluation (§4.5), we also predict the effectiveness (i.e., quality of the recom-
mendations) of the CF given a sample of the input data and characteristics of the URM. To this end,
we have employed state-of-the-art regressors, which include Gradient Boosting Machine (GBM)
[30], AdaBoost Regressor (ABR) [29], and Support Vector Regressor (SVR) [5]. These models were
selected by running the H2O AutoML tool [49] in a process similar to the one described in the
previous paragraph. Since the effectiveness of the CF algorithms is a well-studied area [1, 8, 24], it
is not within the main scope of this paper. However, as demonstrated in our results (§4.5), by using
our adaptive sampling technique (§3.4), we do not need to employ different sampling strategies to
draw samples for predicting efficiency and effectiveness. Consequently, using the sampler in one
go, we gain information about the recommendations’ quality and the performance and resources
used while training the CF algorithms.

3.4 Adaptive Sampling
The standard practice of drawing samples for assessing the effectiveness of the recommendations
involves choosing random triplets of the form (𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚, 𝑟𝑎𝑡𝑖𝑛𝑔) from the input, and then filtering
them based on a predefined characteristic of the URM (e.g., the density of the sample needs to be
above/below a certain threshold) [1, 24]. However, this approach does not work well for drawing
samples to predict the efficiency (i.e., processing time, memory) of the CF algorithms; see §4.3 for
the related results. Instead, we propose a simple yet reliable sampling strategy, which provides
good samples that can be used for predicting both the efficiency and effectiveness of the CF at the
same time. It should be noted that drawing samples from a dataset is not for free, and therefore, we
believe that it is essential to use a strategy that can be used not only to determine the accuracy of
the recommendations, but also reflects the complexity characteristics of the input data.

When sampling the URM, we asked ourselves how many samples and how large should they be
to get a representative measure of the CF algorithms’ performance. To this end, we propose the
following sampling strategy (figure 1 step 1b) described in algorithm 1. Initially, the user of our
system provides us with an upper sample size – say 𝑆 (%) – as well as with a time budget 𝑇 for our
method; however, if these are not provided or unknown the default values, as outlined in §4.3, will
be used for sampling the URM. We then draw an initial sample by uniformly at random selecting a
𝑆% subset of the users and 𝑆% subset of the items, and including in the sample all associated ratings.

6A practical example for quantifying uncertainty can be found in https://towardsdatascience.com/pymc3-and-bayesian-
inference-for-parameter-uncertainty-quantification-towards-non-linear-models-a03c3303e6fa.
7Fro the list of regressors and documentation of H2O, see: http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
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We then use a strategy similar to Monte Carlo rejection sampling [79], to recursively subsample to
produce even smaller samples. This strategy has two key characteristics: (a) sub-sampling allows
us to produce a number of samples at different sampling rates at a fraction of the cost of sampling
the complete dataset; and (b) by sampling user/item IDs, the sample better reflects the complexity
characteristics of the base data. For each sample drawn, we train the CF models and record its
training time (figure 1 steps 2 and 3); we then decide whether to proceed with more samples
given the so-far cumulative execution time of the above process and the time budget 𝑇 (1 step 5).
Furthermore, the number of samples we draw using algorithm 1 should be dynamic and based on
(a) a user-defined upper limit and (b) a user-defined accuracy/error threshold. Ideally, we would like
to have a number of samples that provides good accuracy for the processing time and memory
prediction models. However, we should not use too many samples, such that their total processing
time would be larger than the training time of the entire dataset (see §4.5 for the related results).

Algorithm 1: Adaptive Sampling Algorithm
Input :Dataset D, Algorithm A, max sample size S, max time budget T, accuracy_threshold.
Output :The required samples and their stats.

1 train_samples = []; stats = [];
2 T’ = T; S’ = S; D’ = D;
3 do

/* Compute sample size and time budget for current iteration */

4 (T_cur, S_cur) = adapt(T’, S’);
/* sample D’ with the constraints */

5 d = sample(D’, S_cur);
6 train_samples.push(d’);
7 t = 0;
8 do
9 t_start = time();

/* measure processing time, memory by training A on d */

10 stats.push(get_memory_and_processing_time(A, d));
/* disregard high-end outliers */

11 m = stats.smart_mean();
/* compute confidence interval */

12 c = stats.smart_confidence_interval();
13 t_end = time();
14 t += (t_end - t_start);
15 while (c/m >= accuracy_threshold and t <= T_cur);
16 T’ -= t; D’ = d; S’ = S_cur;
17 while (T’ > 0);
18 return (train_samples, stats)

For sampling the URM using the proposed algorithm, the user-defined upper limit is captured
through a maximum time budget 𝑇 and a maximum sample size 𝑆 . As each sample is drawn, the
remaining time budget and sample size are (re)calculated for each iteration through the adapt()
function, which takes into account the previous time budget 𝑇 ′ and sample size 𝑆 ′. The adapt()
function gradually reduces the next sample size that will be drawn (e.g., in decrements of 10%) and
the amount of time allocated for this operation, based on the time 𝑡 spent so far on drawing the
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current sample and the available time budget. The measurements are repeated multiple times for
each (sub)sample to compute the average𝑚 of the resource usage (processing time or memory
overhead) values recorded while training on the current sample, and the confidence interval 𝑐
selected by the user (or default 99%). In this computation, we discard the measurement for the first
iteration to avoid effects of cold caches and overheads of the language runtime. Thus, the algorithm
is filtering high-end outliers that can skew the accuracy of the processing time and memory
prediction models. The proposed sampling algorithm stops drawing sub-samples for a given sample
size if either there is not enough time left within the time budget 𝑇 or the 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 has
been met. Furthermore, our sampling algorithm can also use a user-defined 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
as part of its input. This 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 controls the variance of the measurements of the
processing times recorded by training the CF on the sub-samples within a sample size. The iterative
execution on a single sample then may terminate early if the ratio 𝑐/𝑚 satisfies said threshold.
Thus we ensure that the processing times or memory overhead measured on the samples have
low variance (i.e., the recorded time/memory values are in a tight interval). This is an important
aspect to be considered while sampling, as the quality of the samples can impact the accuracy of
the resource cost models as demonstrated in §4.5.

The proposed adaptive sampling algorithm allows us to minimise the number of samples needed
for processing time and memory overhead prediction without sacrificing the accuracy of the
resource cost models. Moreover, using an accuracy threshold and a fixed confidence interval
lead to a reliable stopping strategy for drawing random samples and collecting time and memory
measurements. Another idea that we investigated for determining when we have acquired a large
enough sample is to analyse the prediction error interval in LR models and/or the uncertainty in
Bayesian models described in §3.3 and showcased in §4.5. However, as this method depends on
the resource prediction model used (i.e., works only with LR and Bayesian models), we prefer and
propose a model-agnostic sampling strategy based on an upper limit for time and sample size, as
well as an accuracy/error threshold which reflects the quality of the samples.

Moreover, this tool can be easily customised by the users, allowing them to determine the optimal
bounds for the number of needed samples based on how much variance is allowed to be present in
the generated samples. In our experiments, we used a 0.1 accuracy threshold, corresponding to
10% - 15% variance and 99% confidence interval (as described in §4.3). However, depending on the
constraints imposed on the random samples, the users could alter the accuracy threshold values to
be in line with their needs and requirements. We note that a smaller accuracy threshold will map
to less variance in the processing time values, and hence the predictions are more accurate.

4 EXPERIMENTAL EVALUATION
This section describes our experimental evaluation methodology and discusses our results. In brief,
our extensive experiments show that by using a relatively small subset of a dataset,Ds, and the
time it takes to train a CF algorithmA onDs, we can accurately predictA’s expected processing
time and memory usage on the full dataset D. Additionally, we show that there is an inherent
efficiency-effectiveness trade-off between the quality of the predictions and their procurement
cost. Further, we provide insights into the cost of sampling compared to the cost of training the CF
models, as well as the cost of running our prediction models on the base data. Lastly, we discuss
the advantages of the proposed sampling strategy compared to current standard practices.

4.1 Datasets and Recommendation Task
For this study, we used the MovieLens (ML) 100K, 1M, and 20M collections [37], as well as the
GoodBooks (GB) 10K dataset [88]. Each of these datasets consists of explicit ratings, from 1 to 5,
given by users to items (i.e., films for ML and books for GB). While ML 100K (610 users and 9724
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items) and 1M (6040 users and 3706 items) are smaller collections with densities of 0.017 and 0.045,
respectively, GB 10K (53424 users and 10000 items) is a larger collection with a density of 0.012. In
addition, we also probed our efficiency cost models with ML 20M, a very large dataset containing
138493 users, 26744 items, and a density of 0.0043. The different datasets characteristics and sizes
allowed us to experiment with our proposed performance prediction tool andmethodology, showing
that it can be successfully used on collections with different properties.
The recommendation task investigated in this paper refers to predicting the usefulness or

relevance of a given item to a user [72]. In short, after an item is selected, the CF model estimates
the rating the user would give to this item, and if the rating is above a particular threshold value,
then the item is presented to the user as a recommendation.

4.2 Evaluation Protocol
All experiments were carried out on Linux servers, each having 2 Intel Xeon E5-2660 CPUs (8 phys-
ical cores each with 2-way hyper-threading (HT)) and 64GB of RAM, running Ubuntu Linux 14.04.6.
As the GoodBooks dataset is significantly larger and denser, we ran the corresponding experiments
on a higher-spec Linux server with 4 Intel Xeon E7-4870 v2 CPUs (15 physical cores each with
2-way HT) and 512 GB of RAM, running Ubuntu Linux 16.04.7. During the experimental evaluation,
all resource-intensive processes were suspended to avoid interference with our measurements.

We measured the processing times of the various CF algorithms on inputs sampled as described
above. To this end, we utilised the getrusage method from Python’s resource module, with the
overall training time for each sample computed as the sum of the time spent executing in user mode
(ru_utime) and system mode (ru_stime) 8. To retrieve the memory usage of the CF, we recorded the
information from the proc filesystem via the “/proc/ [pid]/status” file9, which contains the utilised
memory by the current process (identified by pid) reported directly by the Linux kernel. From this
file, we based our memory usage computations on the “VmSize” field, which returns the overall
memory used by a specific process. To cross-check our approach regarding memory measurements,
we also recorded the memory usage while training the CF model using a memory profiler. For this
task, we used the memory-profiler10 module from Python, and ensured that the results reported by
the profiler match the ones recorded using the proc filesystem.

We gathered measurements for samples as provided by our sampling strategy, trained our models
on the produced statistics, and used them to predict the respective resource usage over the complete
dataset. We evaluated our predictions using normalised RMSE (NRMSE) computed as:

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑦
(3)

where 𝑦 is the mean of the actual time/memory values in the corresponding sample. As KNN
Baseline and Centred KNN followed the same time and space complexity and showed similar
processing time and memory usage behaviour in all experiments, we only show results for the
latter.

4.3 Sampling Strategy
We gathered measurements for values of 𝑆 (upper limit to the sample size) ranging from 10% all
the way to 100% in increments of 10% (i.e., 10%, 20%, . . ., 100%) using algorithm 1. For each draw,
we also used a fixed random seed s from a predefined set of seeds to ensure reproducibility. For
the scope of our experimental evaluation, in algorithm 1, we set the confidence to 99%, and use a
8Please see https://docs.python.org/3/library/resource.html for further information.
9More information about the proc filesystem can be found at https://man7.org/linux/man-pages/man5/proc.5.html.
10Memory-profiler is available at https://pypi.org/project/memory-profiler/.
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predefined variance of the processing times and memory overhead in each sample size (e.g., 10%,
. . ., 100% of the data) in the range of 10% to 15% coupled with the default accuracy threshold of
0.1. Last, we set the overall time quota 𝑇 to the default values of 50000, 2000, 500, 100 seconds per
sample for ML20M, GB 10K, ML 1M, and ML 100K, respectively. The results (§4.5) indicate that
this setup offered a good trade-off between the number of samples needed and their quality. Other
values were explored but led to comparable results and are omitted for space reasons. Furthermore,
to highlight the performance of our resource consumption prediction models we sampled the input
data all the way to 100%, which accounts for the full dataset; however, our empirical findings (§4.5)
indicate that a default sample size of 30-40% produces accurate predictions of the processing time
and memory overhead of CF required during training.
Finally, we also analyse whether the standard practice sampling strategy [1, 24] used for de-

termining the effectiveness of a CF, performs for predicting its efficiency (i.e., training time and
memory), and we show that our proposed sampling approach leads to good accuracy for both
efficiency and effectiveness prediction purposes.

4.4 Contenders
For RQ (a) and (b), we investigated whether the dependent variable (i.e., the expected training time
and memory usage of a CF algorithm on a dataset D) can be predicted using samples of D and the
characteristics of the input representing the independent variables as described in §3. As part of RQ
(a), we conducted an extensive experimental evaluation of our White-Box approach, as discussed
in §3.2 (denoted in the remainder of this section as WB/LR and WB/Bayes, when using a linear
regression or Bayesian prediction approach respectively). We compare our solution against two
types of baseline approaches: (i) a hard baseline (denoted WB/Lit/LR), in the form of a white-box
linear regressor built using algorithmic complexities provided by the relevant literature, and (ii) a
soft baseline, in the form of the best performing state-of-the-art black-box regressor (GBM).
In the latter case, the regression model is trained on characteristics resulting from training the

CF models on samples of the input dataset, without having any knowledge of the inner space/time
complexity of the latter. To this end, we augmented the structural input features (𝑚,𝑛, 𝜌), with rating
distribution/frequency-related features. Specifically, in line with the practice in the state-of-the-art
[1, 24], we modelled the concentration of users’ (items’, respectively) ratings by using the Gini
coefficient [34] as described in equation 4, where w is the number of users (items, respectively), 𝜌k
is the number of ratings given by a user (or received by an item, respectively), and 𝜌total is the
total number of ratings.

𝐺𝑖𝑛𝑖𝑤 = 1 − 2 ×
w∑
𝑘=1

(
w + 1 − 𝑘

w + 1

)
×
(

𝜌k

𝜌total

)
(4)

We thus compute the Gini coefficient for users, 𝐺𝑖𝑛𝑖𝑢𝑠𝑒𝑟𝑠 , and items, 𝐺𝑖𝑛𝑖𝑖𝑡𝑒𝑚𝑠 , and include them
as extra features for the black-box approach. We experimented with multiple state-of-the-art
regressors and report results for the best performer, Gradient Boosting Machine (GBM).

4.5 Results
Figures 2a, 2b, and 2c depict the predicted training time for the complete dataset, as predicted when
using different upper sample sizes. Specifically, the curves on these figures show the predicted full-
dataset training time (y-axis) versus the upper sample size limit (x-axis) on which the contenders
where applied. The horizontal black line represents the actual training time over the entire dataset.
In other words, the closer a curve is to the black line the more accurate the prediction, and the
earlier a curve approaches the black line the smaller a sample is required to achieve this result. The

15



orange and purple areas show the prediction error interval and uncertainty for the predictions of
WB/LR and WB/Bayes respectively, as presented in §3.3. Our results indicate that WB/LR, using
simple linear regression, outperforms the much more complex best performing state-of-the-art
regressor (GBM). In most cases a 30%-40% upper sample size limit seems enough to allow WB/LR
to achieve highly accurate prediction. Interestingly, WB/Bayes also seems to achieve good accuracy
in the processing time prediction task with similarly small sample sizes; however, its training cost
is considerably greater than the one for WB/LR and WB/Lit/LR as discussed shortly (table 1).

(a) MovieLens 1M

(b) MovieLens 20M
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(c) GoodBooks 10K

Fig. 2. Predicted processing times for (a) MovieLens 1M, (b) MovieLens 20M, and (c) GoodBooks 10K collec-
tions, for various values of 𝑆 (upper sample size limit), using our approaches (WB/LR and WB/Bayes) and
the two baselines (linear regression over literature complexity equations (WB/Lit/LR), and state-of-the-art
regressor (GBM)). The black horizontal line represents the actual training time over the entire dataset.

When assessing the overall performance of our framework, we also need to consider the cost
of sampling the dataset, training the CF algorithms on the samples, and running the prediction
models on the base data (i.e., (processing time and memory usage). To this end, figures 3a, 3b, and
3c highlight the cost of acquiring samples from the dataset (blue bars) stacked on top of the cost for
training the CF on these samples (red bars). The training time for the full dataset is depicted with a
black horizontal line. In other words, when a composite blue-red bar reaches or exceeds the black
horizontal line, then this denotes that it is more efficient to train the CF algorithms directly on the
full dataset rather than draw samples and train on them. We note that for CF algorithms with more
expensive training cost (e.g., KNN-based CF), the processing time exhibits a steeper increase across
samples. Hence, our framework is more valuable for predicting the efficiency of such CF models, as
we can draw a small and cheap sample of the data, while accurately estimating the processing time
and memory of the CF on the full dataset.

So far, we examined how the processing time varies when sampling the datasets and training the
CF algorithms on the given samples. However, training and running the prediction models on the
base data also involves a cost. Table 1 presents the average time taken by each prediction model
across ML100K, ML1M, and GB10K. As we can see, the cheapest models are WB/LR and WB/Lit/LR,
followed by GBM, while WB/Bayes is by far the slowest (by several orders of magnitude). Therefore,
for predicting the efficiency of a CF model, it is important not only to select an adequate sampling
strategy but also a cheap and accurate predictor, such as our proposed approach (WB/LR).
Figures 4a, 4b, and 4c illustrate the accuracy of the predictions for memory usage across the

three datasets. These figures are similar in design to 2; on the y-axis we have the memory usage
for training the CF models over the complete dataset, as predicted using as the upper sample size
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(a) MovieLens 100K

(b) MovieLens 1M

limit the value on the x-axis, while the horizontal black line depicts the actual memory usage for
training the CF models over the complete input dataset. Similarly to the time prediction models, the
proposed approach (WB/LR, orange curve) outperforms the best state-of-the-art regressor (GBM,
green curve). WB/Bayes (purple curve) again achieves good accuracy in the prediction task, but for
a much higher training cost as discussed earlier. Again, a 30%-40% sample suffices for WB/LR and
WB/Bayes to produce highly accurate predictions. WB/Lit/LR is not shown on this figure as, alas,
the literature around the CF models considered here provides no space complexity analysis.

Another benefit of using the processing time and memory prediction models is knowing when
to stop sampling the input data and training the CF models. We have discussed in §4.3 a simple
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(c) GoodBooks 10K

Fig. 3. Sampling and training time cost across datasets ((a) MovieLens 100K, (b) MovieLens 1M, and (c)
GoodBooks 10K) w.r.t. upper sample size S% compared to the processing time for the entire dataset (black
line).

Table 1. Mean and standard deviation of processing time (i.e., training and prediction time) for the prediction
models across MovieLens 100K, MovieLens 1M, and GoodBooks 10K.

Mean Runtime (s) Standard Deviation
WB/LR WB/Bayes WB/Lit/LR GBM WB/LR WB/Bayesian WB/Lit/LR GBM

Baseline 0.000846 12.976536 0.000821 0.560964 0.000076 0.630854 0.000008 0.193972
Random 0.000811 12.490760 0.000831 0.498211 0.000014 0.636542 0.000017 0.074976
KNN 0.000828 12.782280 0.000821 0.478027 0.000009 0.372070 0.000007 0.019466
Centred KNN 0.000835 12.342325 0.000834 0.471252 0.000019 0.553207 0.000019 0.028891
KNN Baseline 0.000806 13.305759 0.000805 0.486257 0.000012 0.648463 0.000020 0.017886
Co-clustering 0.000793 12.845628 0.000801 0.467534 0.000014 0.782792 0.000012 0.022713
Slope One 0.000829 13.280002 0.001018 0.501125 0.000013 0.629301 0.000140 0.072633
SVD 0.000811 13.438938 0.000833 0.524837 0.000015 0.619231 0.000029 0.091137
NMF 0.000840 13.330891 0.000817 0.508564 0.000040 0.503423 0.000009 0.027130

stopping strategy based on the variance of the resource (i.e., time, memory) measurements across
samples. However, we can assess the quality of the predictions on a given upper sample size S% by
quantifying the prediction error interval in linear models and uncertainty in the Bayesian models
as presented in §3.3. As the predictors get more accurate, the prediction error interval and the
uncertainty decrease/shrink; hence, we could stop sampling the dataset and training the models. In
our experiments, we noticed that an upper sample size of 30-40% produces good estimations for
the processing time and memory usage. From figures 3a, 3b, and 3c we can see that sampling and
training our best predictor (LR) on a sample size of 30-40% of the entire collection is much cheaper
than training the CF models on the complete datasets.
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(a) MovieLens 1M

(b) MovieLens 20M

To fully assess the performance of a CF algorithm on a given input, we need to examine both
efficiency and effectiveness. The results above demonstrated how the proposed sampling strategy
and models could address the former (i.e., efficiency). For the latter (i.e., effectiveness), we employ
state-of-the-art regression models to learn the quality of the recommendations given a CF algorithm,
a collection of samples (drawn using the strategy in §3.4), and characteristics of the input. Figures
5a, 5b, and 5c show the predicted recommendation effectiveness for the popular CF algorithms
implemented in Surprise [45]. We note that a sample size of 30-40% (same size as for efficiency
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(c) GoodBooks 10K

Fig. 4. Predicted memory usage for the CF algorithms on the full (a) MovieLens 1M, (b) MovieLens 20M, and
(c) GoodBooks 10K datasets using our approaches (WB/LR and WB/Bayes) and the GBM baseline. The black
horizontal line represents the actual memory usage over the entire collection.

models) attains good accuracy for predicting the effectiveness of a CF model. Consequently, our
tool and methodology allow one to draw a single set of samples for predicting both the effectiveness
and efficiency of a CF in one.

As presented in table 2, we also analysed the efficiency-effectiveness trade-offs emerging from the
training cost on various sample sizes compared to the normalised RMSE for the estimated processing
times. For the selected CF algorithms, we measured the training cost in terms of time (seconds)
and power consumption (kWh), which combined can indicate the monetary cost quantified in US
dollars ($). Then, this cost is compared to the normalised RMSE values obtained from predicting the
processing time of the entire dataset using our proposed methods (WB/LR and WB/Bayes), as well
as the hard (WB/Lit/LR) and soft (GBM) baselines. This study was conducted on GoodBooks 10K,
as we believe it is a good case of when a bigger sample that is more expensive does not necessarily
improve the accuracy of the predictions.
For example, let us examine the baseline CF model. As the sample size increases and therefore

the training cost, the prediction error decreases, leading to more accurate expected processing
times. However, not all CF algorithms display this behaviour. For SVD, a bigger and more expensive
sample does not necessarily minimise the NRMSE value; this means that while the cost of training
increases, the processing time predictions’ accuracy remains relatively constant, without further
improvements. Therefore, we believe that knowing the training cost of a CF algorithm versus its
nominal effectiveness (i.e., the quality of the recommendations) is a critical aspect that should be
taken into consideration for building and deploying efficient CF models without sacrificing the
users’ satisfaction while maximising the content providers’ revenue.
Another interesting aspect to examine when choosing a CF algorithm is its effectiveness, as

well as training and deployment costs. For the former, benchmarks such as the one from [45]
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(a) MovieLens 1M

(b) MovieLens 20M

and also our results (i.e., figures 5a, 5b, and 5c) show that different CF models can have similar
recommendation quality (e.g., RMSE and MAE for KNN and SVD). However, the training cost is
considerably higher for one CF model over the other one. Therefore, when CF algorithm selection
represents a critical decision based on the infrastructure available, we propose using our prediction
tool, methodology, and sampling strategy to determine if a CF model would be feasible and fit the
operational time and memory constraints before allocating and spending many resources for it.
As part of RQ (c), in table 3, we report the average variance ratio (where 0 corresponds to 0%

and 1 corresponds to 100%) across samples in different subsets of data for a fixed confidence value
of 99% and the constraints from §4.3 (i.e., 10-15% variance in the processing time values). While
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(c) GoodBooks 10K

Fig. 5. Predicted effectiveness (i.e., recommendation quality) for the full (a) MovieLens 1M, (b) MovieLens
20M, and (c) GoodBooks 10K datasets using state of the art regressors, such as Ada Boost Regressor (ABR),
Support Vector Regressor (SVR), and Gradient Boosting Machine (GBM). The black horizontal line represents
the actual recommendation quality (RMSE) over the entire collection.

Table 2. Estimated training cost vs. prediction accuracy w.r.t. different sample sizes on GoodBooks 10K.

Training Resources Predictions’ Accuracy (NRMSE)
Upper Sample Size S% Time (s) Power (kWh) Cost ($) WB/LR WB/Bayes WB/Lit/LR GBM

Baseline
20 3.5 0.13 0.02 0.16 13.59 12.35 19.98
40 16.67 0.6 0.07 0.01 4.25 7.03 16.25
60 37.13 1.34 0.16 0.06 0.01 3.98 10.23

Random
20 1.86 0.07 0.01 0.05 0.02 5.55 9.57
40 7.91 0.29 0.03 0.05 0.01 3.18 7.52
60 17.67 0.64 0.08 0.03 0.009 1.69 4.92

KNN
20 64.45 2.33 0.28 0.39 0.05 840.67 1453.77
40 455.25 16.44 1.97 28.39 26.79 521.28 1344.44
60 1729.19 62.44 7.49 0.3 0.06 187.97 1000.23

Centred KNN
20 76.39 2.76 0.33 10.5 11.75 855.98 1582.24
40 496.68 17.94 2.15 30.73 23.26 561.38 1453.82
60 1595.96 57.63 6.92 35.8 33.72 333.77 1153.67

KNN Baseline
20 83.38 3.01 0.36 228.02 247.41 569.47 1330.45
40 482.86 17.44 2.09 0.59 0.01 390.03 1185.3
60 1629.22 58.83 7.06 4.49 4.65 141.52 943.11

Co-clustering
20 29.7 1.07 0.13 0.19 0.01 80.49 140.93
40 119.89 4.33 0.52 0.55 0.11 46.56 115.53
60 269.85 9.74 1.17 0.29 0.01 24.39 71.38

Slope One
20 3.62 0.13 0.02 466.88 393.51 57.44 95.66
40 21.84 0.79 0.09 29.81 19.59 42.01 89.85
60 78.93 2.85 0.34 5.73 2.14 24.37 74.62

SVD
20 56.98 2.06 0.25 0.32 0.04 0.25 277.31
40 226.85 8.19 0.98 2.09 1.20 0.39 228.91
60 545.71 19.71 2.37 0.1 0.21 0.71 127.48

NMF
20 62.34 2.25 0.27 10.78 0.55 10.49 288.54
40 244.28 8.82 1.06 18.87 0.36 18.71 235.87
60 561.34 20.27 2.43 14.97 0.002 14.9 144.11
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most algorithms seem to achieve a low variance in the processing times from the 20% subset of
data on MovieLens 100K, we can observe that for the 10% partition, which also corresponds to
the smallest input, some CF, such as KNN, KNN Baseline, and Baseline are less stable. This was
expected since these algorithms were the fastest on very small inputs, and the recorded training
times were as small as 0.78 milliseconds (KNN). However, as the size of the input data increases,
the variance across samples decreases, resulting in steadier measurements. This behaviour was also
observed on the larger datasets (ML 1M and GB 10K), which yielded similar results (i.e. 5% variance,
or 0.05 in table 3, starting with the 10% data split); these are not included for space considerations.

Table 3. Average variance across 5 samples for various values of 𝑆 over the MovieLens 100K dataset.

S % Baseline Centred KNN Random Co-clustering KNN KNN Baseline NMF Slope One SVD

10 0.250706 0.027964 0.067672 0.044952 0.966998 0.430209 0.048225 0.097964 0.055360
20 0.049200 0.018693 0.040723 0.033381 0.173672 0.043722 0.035976 0.090190 0.038803
30 0.032348 0.018011 0.029437 0.026288 0.044634 0.049973 0.028211 0.084882 0.029211
40 0.026480 0.017744 0.025777 0.022463 0.027991 0.026873 0.023757 0.062660 0.030115
50 0.019236 0.014401 0.018921 0.017123 0.023000 0.018624 0.017933 0.060335 0.018390
60 0.015513 0.014273 0.016325 0.025878 0.018855 0.018155 0.014537 0.054240 0.015502
70 0.012500 0.012400 0.011676 0.016157 0.016994 0.015884 0.013080 0.032698 0.015423
80 0.010277 0.011007 0.010337 0.009992 0.011521 0.010502 0.009411 0.026711 0.010177
90 0.006314 0.010413 0.006731 0.006102 0.009067 0.015581 0.006380 0.015045 0.005691
100 0.025653 0.008101 0.002862 0.005187 0.050106 0.017862 0.005243 0.006064 0.006068

For RQ (d), we firstly investigated if the standard practice sampling strategy can be employed to
draw samples that capture both the efficiency and effectiveness of CF on a subset of the data. Figures
6a and 6b present the raw measured effectiveness of a CF algorithm on an upper sample S% that has
been chosen using (i) standard practice sampling [1, 24] and (ii) the proposed sampling mechanism
(§3.4). Interestingly, the two sampling strategies have a similar performance regarding the accuracy
of the produced recommendations. We note that for the random algorithm, it is expected to have
different RMSEs every time a sample is drawn, using either strategy, since the recommendations are
produced at random. Thus, for effectiveness, we conclude that both strategies can be successfully
used with similar performance.
However, if we examine the two sampling strategies to predict the efficiency (e.g., processing

time) of a CF model, more notable changes are observed. Figures 7a and 7b show the performance
of the prediction models, which have been trained on samples drawn using the two strategies.
Our results indicate that the standard practice sampling strategy fails to capture the complexity
characteristics of the base data, as the prediction models (non-dashed curves) are far away from
the ground truth (black horizontal line). On the other hand, the models that have been trained
using the proposed sampling approach (dashed curves) are a lot more accurate in predicting the
efficiency of the CF algorithms. Consequently, since our adaptive sampling algorithm (§3.4) works
well for both efficiency and effectiveness prediction, it has been used throughout the experimental
evaluation.

5 CONCLUSIONS
The accurate prediction of the resource consumption during the training phase of CF models is
of exceptional practical interest to establishments of all sizes from both academia and industry.
However, so far, the relevant literature does not capture this pressing problem. This paper addresses
the challenge of predicting processing time and memory overhead of CF algorithms using a simple
yet highly effective approach. This incorporates a fit-for-purpose sampling scheme and a fast
but accurate linear regression scheme over time and space complexity equations drawn from the
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(a) MovieLens 100K

(b) MovieLens 1M

Fig. 6. Actual CF effectiveness (i.e., quality of the produced recommendations) for the full (a) MovieLens
100K and (b) MovieLens 1M datasets using the standard practice (SP) strategy (red curve) compared to our
proposed adaptive sampling approach (blue curve).

algorithms’ implementations. Furthermore, we showed that using a smaller sample of a dataset,
the CF models’ performance and resource cost could be estimated with our methodology without
training on the entire collection. Our sampling strategy also allows the prediction of both efficiency
and effectiveness while paying the cost of sampling only once.
Despite its simplicity, our proposed methodology and resource cost models for CF algorithms

manage to considerably outperform in accuracy even the best performing off-the-shelf state-of-the-
art regressor. Moreover, our approach is also faster than all contenders, including the best state-of-
the-art regressor, and utilises only a fraction of the resources used by them. We view this work as
one of the first core steps towards a systematic exploration of the efficiency-effectiveness trade-offs
inherent in modern recommendation systems. While our methodology was developed and probed
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(a) MovieLens 100K

(b) MovieLens 1M

Fig. 7. Predicted processing times for the full (a) MovieLens 100K and (b) MovieLens 1M datasets using our
approaches (WB/LR and WB/Bayes) and the 2 baselines (WB/Lit/LR and GBM). Each prediction model has
been trained and tested against the two sampling strategies w.r.t. ratings/interactions (i.e., standard practice
(SP) sampling), as well as users and items (i.e., proposed sampling).
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with CF models, we believe it could be applied and used for other classes of algorithms and use
cases. In the near future we plan to expand our methodology to other areas of the recommendation
systems’ design space, such as deep learning models, and estimate the training cost for other
resources (e.g., GPU usage).
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