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Abstract 

Objective: Customization of the rate of drug delivered based on individual patient requirements 

is of paramount importance in the design of drug delivery devices. Advances in manufacturing 

may enable multilayer drug delivery devices with different initial drug distributions in each layer. 

However, a robust mathematical understanding of how to optimize such capabilities is critically 

needed. The objective of this work is to determine the initial drug loading distribution needed in a 

spherical drug delivery device such as a capsule in order to obtain a desired drug release profile.  

Methods: This optimization problem is posed as an inverse mass transfer problem, and 

optimization is carried out using the solution of the forward problem. Both non-erodible and 

erodible multilayer spheres are analyzed. Cases with polynomial forms of initial drug distribution 

are also analyzed. Optimization is also carried out for a case where an initial burst in drug release 

rate is desired, followed by a constant drug release rate. 

Results: More than 60% reduction in root-mean-square deviation of the actual drug release rate 

from the ideal constant drug release rate is reported. Typically, the optimized initial drug 

distribution in these cases prevents or minimizes large drug release rate at early times, leading to 

a much more uniform drug release overall.  

Conclusions: Results demonstrate potential for obtaining a desired drug delivery profile over time 

by carefully engineering the drug distribution in the drug delivery device. These results may help 

engineer devices that offer customized drug delivery by combining advanced manufacturing with 

mathematical optimization. 
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Nomenclature 

𝐴 initial (erodible case) or fixed (non-erodible case) radius (m) 

𝐵 rate of erosion of the erodible sphere (m s-1) 

c concentration (mol m-3) 

𝐷 diffusion coefficient (m2 s-1) 

𝐽 order of the polynomial function 

𝑀 number of layers 

𝑀𝑡𝑜𝑡𝑎𝑙 total drug amount (mol) 

qa actual drug release rate (mol s-1) 

qd desired drug release rate (mol s-1) 

R radius of erodible sphere as a function of time (m) 

r radial coordinate (m) 

t time (s) 

 

𝜆 non-dimensional eigenvalue 

θ non-dimensional concentration, 𝜃 = 𝑐/𝑐𝑟𝑒𝑓 

𝜏 non-dimensional time, 𝜏 = 𝐷𝑡/𝐴2 

𝜉 non-dimensional radial coordinate, 𝜉 = 𝑟/𝐴 

 

 

Subscripts 

in initial 

ref reference 

m layer number 
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1. Introduction 

 

Drug delivery devices such as tablets/capsules [1], stents [2] and transdermal patches [3] 

are commonplace in the clinic [4,5]. In designing such devices, the drug release profile (i.e., the 

rate at which the initial drug loaded is released into the outside as a function of time) is usually a 

primary consideration [1,6]. In most applications, it is desirable to maintain local drug 

concentrations within some therapeutic range for a defined period of time. However, depending 

on the local physiological environment, spells of under- or -overexposure may occur if the drug 

release rate is not tailored appropriately. It is noteworthy that most drugs are presented as 

immediate release formulations, which result in a rapid initial increase in systemic drug 

concentrations, which can lead to several undesirable effects [7]. One example is drug-filled PLGA 

particles which usually involve an initial burst of drug, resulting from fabrication where the drug 

primarily resides on the particle surface [7]. As discussed in [7], this can lead to toxicity, rapid 

depletion of the drug within the particle and additionally complicates redosing. A constant drug 

release rate (so-called zero-order release) can help to alleviate this concern by minimizing variation 

in local drug concentrations [8]. However, zero-order release is difficult to achieve in practice, 

particularly when the drug is presented in a form that permits rapid dissolution [9].  In such cases, 

diffusion typically governs the rate of drug release, and first-order release kinetics are usually 

observed, giving rise to a variable drug-release rate. Despite the aforementioned advantages of 

zero-order release, in some situations, an initial burst of drug may be desirable. For example, in 

the case of drug-eluting stents, it has been reported that the drug release should be programmed to 

quickly bind to and saturate specific receptors on target cells, before providing sustained release 

to match declining levels of bound drug over time [10]. 
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Drug delivery tablets are traditionally manufactured by mixing the Active Pharmaceutical 

Ingredient (API) in an inactive chemical, known as the excipient, such as Polyvinyl Alcohol 

(PVA), along with other minor ingredients for binding, strength and stability [11]. While most 

tablets are designed to contain uniform concentration of a single drug, some work also exists on 

bilayer or multilayer tablets, wherein each layer contains uniform concentration of a different drug 

[12,13]. More recently, 3D printing of tablets, often referred to as printlets, has been heavily 

investigated [14-17]. 3D printing is much slower than traditional manufacturing, but may offer the 

capability of customization according to individual patient needs. 3D printing of tablets has been 

reported using techniques such as Fused Filament Fabrication (FFF) [14], selective laser sintering 

[15], stereolithography [16] and binder jetting [17]. Using these techniques, it may be possible to 

print tablets in which the drug concentration varies between and/or within the layers. Advanced 

manufacturing methods may also help print other multilayer drug delivery devices, such as stents, 

transdermal patches, etc. 

Experimental investigation of drug release characteristics from drug delivery devices, 

especially in vivo, is often time-consuming and expensive. The number of design features that can 

be explored experimentally is often limited, and therefore, an accurate design of experiments is 

critical. In light of this, theoretical modeling of drug release plays an important role in developing 

a fundamental understanding of the factors that influence drug delivery, which in turn may help 

maximize the benefits of measurements [1,18]. Theoretical modeling of drug release is based on 

solving the underlying conservation equations, often written in the form of transient partial 

differential equations, subject to appropriate boundary and initial conditions [1,19,20]. While most 

literature account only for diffusion as the dominant transport mechanism, advective transport due 

to fluid flow, such as radial pressure gradient driven plasma flow in an artery [21,22], as well as 
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drug absorption within the capsule prior to release [23] have also been accounted for. Other factors, 

such as surface or bulk erosion of the capsule [24,25], dissolution [26], multidrug diffusion [27] 

and drug binding after release [28] have also been modeled. 

Most of the theoretical work outlined above focuses on determining the drug release profile 

for a given set of input parameters such as geometry and diffusion coefficients. In contrast, the 

inverse problem, i.e., to determine the optimal design of the drug delivery device that produces a 

desirable drug release profile, has received relatively less attention. For example, while the nature 

of diffusion makes it inherently impossible to obtain a constant drug release rate from a uniformly 

loaded drug delivery device, in the case of a multilayer drug delivery device, it may be possible to 

configure the drug concentration in each layer in such a way as to obtain a drug release rate that is 

as close to a constant, or indeed any given function of time, as possible. In practice, the underlying 

physics likely makes it impossible to achieve precisely the desired drug delivery rate, however, it 

is, in principle, possible to seek an initial concentration distribution that minimizes the deviation 

from the desirable drug release rate over the delivery period. Mathematical modeling and 

optimization provide the required tools in pursuit of this goal. Such design optimization, coupled 

with advances in multilayer manufacturing methods, may result in more customized drug delivery 

devices, in which, the drug release profile is tailored to the local environment and the individual 

patient needs. 

In general, optimization methods have not been applied sufficiently for drug delivery 

problems, especially when compared to other engineering problems [29]. The impact of the initial 

drug distribution on drug delivery characteristics in a flat, slab-shaped device has been recognized 

[30,31], and optimization of the initial drug distribution towards a desirable delivery profile has 
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been carried out [32,33]. However, these papers do not sufficiently account for the important and 

practical phenomenon of erosion, except as a limiting case with zero diffusion [30]. In practice, 

erosion and diffusion occur simultaneously to determine drug delivery characteristics of an 

erodible drug delivery device [24]. Moreover, these papers are not directly applicable to spherical 

drug delivery devices, such as capsules.  

 This paper presents inverse analysis and optimization of diffusion-based drug delivery 

from a spherical drug delivery device, such as a capsule or a tablet. Both non-erodible and surface-

erodible drug delivery devices are considered. The problem is cast in the form of an inverse mass 

transfer optimization problem, with the goal of determining an initial drug distribution that results 

in a drug delivery profile that is as close as possible to a desired profile. Polynomial or discrete 

multilayer functions for the initial drug distribution are considered, and surface erosion is 

accounted for. Optimization is carried out for cases where zero-order release is desired, as well as 

ones with a desired initial burst. It is shown that optimization of initial drug distribution in each 

layer of a multilayer spherical drug delivery device results in a drug delivery profile that is much 

closer to a desired profile than the baseline case of uniform drug distribution.  

2. Problem Definition and Derivation of Solution 

2.1. Spherical Layered Non-Eroding Capsule 

Consider the problem of drug delivery from a spherical capsule of fixed radius A containing 

drug of total mass 𝑀𝑡𝑜𝑡𝑎𝑙. A multilayer capsule, as shown schematically in Figure 1(a) is 

considered first, which can be manufactured through layer-by-layer deposition around a solid core. 

The initial drug distribution of each layer may be designed to be different, resulting in a discrete 
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initial drug distribution. For an M layer capsule, this may be mathematically expressed as c=cin,m 

at t=0 for Rm-1<r<Rm (m=1,...M) where Rm-1 and Rm are the inner and outer radii of the mth layer. 

Note that R0=0 and RM=A. The radii of the regions may be equally spaced, but not necessarily so. 

Section 2.3 later considers the case of continuous initial drug distribution, say, c=c0(r) at t=0 

(Figure 1(b)). 

Diffusion of the initial drug distribution to the outer surface of the sphere, followed by 

convective transport at the surface results in release of the drug to the surrounding medium. Drug 

absorption within the sphere is neglected, and, thus, in principle, all of the drug may be released 

over time. The timescale for dissolution of drug is assumed to be much shorter than for diffusion, 

so that the entire drug distribution in the sphere begins to diffuse immediately at the initial time. It 

is assumed that each layer consists of the same excipient such that each layer has the same diffusion 

coefficient that remains invariant with time. Erosion of the sphere over time is neglected here, so 

that the outer radius remains fixed. The bioerodible case is considered in the next section. 

Assuming a circumferentially symmetric sphere with drug loading varying only in the radial 

direction, drug diffusion occurs only in the radial direction. The release medium surrounding the 

capsule is assumed to be an infinite sink, which is appropriate when the capsule is immersed in a 

relatively large volume of fluid. 

Under these assumptions, for a desired rate of drug release as a function of time, 𝑞𝑑(𝑡), the 

interest is in determining the initial drug distribution which results in an actual drug release rate 

𝑞𝑎(𝑡) that is identical, or as close as possible to the desired rate 𝑞𝑑(𝑡). In many cases, a uniform 

rate of drug delivery is desired, i.e., a flat 𝑞𝑑 curve over the period of drug delivery. In some cases, 

an initial burst in the amount of drug delivered may also be desirable. From a theoretical mass 
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transfer perspective, this is an inverse mass transfer optimization problem. In principle, there may 

not exist any initial drug distribution, for which, 𝑞𝑎(𝑡) exactly matches 𝑞𝑑(𝑡). Instead, one must 

seek to optimize the initial drug distribution, for example, by minimizing the root-mean-square 

deviation between the actual 𝑞𝑎(𝑡) and the desired 𝑞𝑑(𝑡). The forward problem is first defined and 

solved, i.e., an expression for 𝑞𝑎(𝑡), given an initial drug distribution, is derived. Based on this 

solution, the optimization problem is then defined and solved. 

Based on the assumptions described above, the mass conservation equation governing the 

present problem within the sphere and up to a total release time ttotal may be written as 

 𝜕𝑐

𝜕𝑡
=

𝐷

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕𝑐

𝜕𝑟
) 

0 < 𝑟 < 𝐴; 0 < 𝑡 < 𝑡𝑡𝑜𝑡𝑎𝑙  

(1) 

along with boundary and initial conditions given by 

 𝜕𝑐

𝜕𝑟
= 0  𝑟 = 0 (2) 

 𝑐 = 0  𝑟 = 𝐴 (3) 

 𝑐 = 𝑐𝑖𝑛,𝑚  𝑅𝑚−1 < 𝑟 < 𝑅𝑚 (𝑚 =

1,2. . . 𝑀);  𝑡 = 0 (4) 

Once this problem is solved, the actual drug release profile is given by 



10 
 

  
𝑞𝑎(𝑡) = −𝐷 (

𝜕𝑐

𝜕𝑟
)

𝑟=𝐴
∙ 4𝜋𝐴2  (5) 

 This problem is first non-dimensionalized as follows: 

 𝜃 =
𝑐

𝑐𝑟𝑒𝑓
, 𝜉 =

𝑟

𝐴
, 𝜏 =

𝐷𝑡

𝐴2   (6) 

where the reference concentration 𝑐𝑟𝑒𝑓 is chosen to be 𝑐𝑟𝑒𝑓 =
𝑀𝑡𝑜𝑡𝑎𝑙
4

3
𝜋𝐴3

, which is the concentration if 

the entire drug amount 𝑀𝑡𝑜𝑡𝑎𝑙 was distributed uniformly within the capsule. Accordingly, the non-

dimensional governing equations are 

 𝜕𝜃

𝜕𝜏
=

1

𝜉2

𝜕

𝜕𝜉
(𝜉2

𝜕𝜃

𝜕𝜉
) 

0 < 𝜉 < 1; 0 < 𝜏 < 𝜏𝑡𝑜𝑡𝑎𝑙   

(7) 

subject to 

 𝜕𝜃

𝜕𝜉
= 0   𝜉 = 0 (8) 

 𝜃 = 0  𝜉 = 1 (9) 

 𝜃 = 𝜃𝑖𝑛,𝑚  𝛾𝑚−1 < 𝜉 < 𝛾𝑚 (𝑚 =

1,2. . . 𝑀);  𝜏 = 0 (10) 

where 𝜃𝑖𝑛,𝑚 =
𝑐𝑖𝑛,𝑚

𝑐𝑟𝑒𝑓
 are the non-dimensional initial drug concentrations in each layer, 𝛾𝑚 =

𝑅𝑚

𝐴
 are 

the radii of the layers, and 𝜏𝑡𝑜𝑡𝑎𝑙 =
𝐷𝑡𝑡𝑜𝑡𝑎𝑙

𝐴2  is the total non-dimensional drug release time. In this 
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framework of non-dimensionalization, the non-dimensional drug delivery profile may be defined 

as �̅�𝑎(𝜏) =
𝑞𝑎(𝑡)𝐴2

3𝐷𝑀𝑡𝑜𝑡𝑎𝑙
= − (

𝜕𝜃

𝜕𝜉
)

𝜉=1
. 

Equations (7)-(10) represent a forward mass transfer problem, in which an initial drug 

distribution 𝜃𝑖𝑛,𝑚 is given and the resulting non-dimensional drug delivery profile, �̅�𝑎(𝜏) =

− (
𝜕𝜃

𝜕𝜉
)

𝜉=1
is to be determined. This problem is solved first, because the solution of this direct 

problem provides the theoretical basis for solving the inverse problem. A straightforward solution 

for equations (7)-(10) may be obtained using the method of separation of variables as [20] 

 
𝜃(𝜉, 𝜏) = ∑ 𝐴𝑛

sin(𝜆𝑛𝜉)

𝜉
exp (−𝜆𝑛

2 𝜏)

∞

𝑛=1

      (11) 

where 𝜆𝑛 = 𝑛𝜋 (𝑛 = 1,2,3. . . ∞) are the eigenvalues and, based on the principle of orthogonality, 

coefficients 𝐴𝑛 are given by 

 

𝐴𝑛 = 2 ∑
𝜃𝑖𝑛,𝑚

𝜆𝑛
2

[sin(𝜆𝑛𝛾𝑚) − 𝜆𝑛𝛾𝑚 cos(𝜆𝑛𝛾𝑚) − sin(𝜆𝑛𝛾𝑚−1)

𝑀

𝑚=1

+ 𝜆𝑛𝛾𝑚−1 cos(𝜆𝑛𝛾𝑚−1)] 

(12) 

Subsequently, the rate of drug delivery into the release medium as a function of time is given by 

 
�̅�𝑎(𝜏) = − (

𝜕𝜃

𝜕𝜉
)

𝜉=1

= − ∑ 𝐴𝑛𝜆𝑛 cos(𝑛𝜋) exp (−𝜆𝑛
2 𝜏)

∞

𝑛=1

 (13) 
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For a sphere in which each layer is loaded with the same concentration, �̅�𝑎(𝜏) will be 

largest at small times, when drug concentration gradient at the surface is the highest. As drug 

diffuses outwards and drug amount within the capsule reduces, �̅�𝑎(𝜏) decreases at large times. The 

precise nature of �̅�𝑎(𝜏) depends on the initial drug distribution in each layer, which appears in 

equation (13) within the 𝐴𝑛 terms.  

 Now, the problem of determining the initial drug distribution that results in a �̅�𝑎(𝜏) that is 

as close as possible to a desired �̅�𝑑(𝜏) may be posed as an optimization problem. The goal is to 

determine the initial drug concentrations in each layer, 𝜃𝑖𝑛,𝑚, so as to minimize the root-mean-

square deviation between �̅�𝑎(𝜏) and �̅�𝑑(𝜏) over a time period, i.e.,  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑆 = √
1

𝑖𝑡𝑜𝑡𝑎𝑙
∑ [�̅�𝑎(𝜏𝑖) − �̅�𝑑(𝜏𝑖)]2

𝑖𝑡𝑜𝑡𝑎𝑙

𝑖=1

 (14) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝜃𝑖𝑛,𝑚

𝛾𝑚
3 − 𝛾𝑚−1

3

3

𝑀

𝑚=1

=
1

3
 (15) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝜃𝑖𝑛,𝑚 ≥ 0 𝑚 = 1,2. . 𝑀 

(16) 

where 𝜏𝑖 are discrete times in a certain time duration 0 < 𝜏 < 𝜏𝑡𝑜𝑡𝑎𝑙 that are used to 

determine S, the root-mean-square (RMS) error, and �̅�𝑑(𝜏) is the desired drug delivery rate in this 

time period. The constraint given in equation (15) represents the requirement to load a fixed total 

mass 𝑀𝑡𝑜𝑡𝑎𝑙 of the drug in the sphere. The constraint given by equation (16) represents the 
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requirement for the initial drug concentration in each layer to be positive, since negative drug 

concentration is not meaningful. Finally, the total time in which to consider this problem may be 

taken to be the diffusive timescale corresponding to the sphere radius, given by 𝑡𝑡𝑜𝑡𝑎𝑙 =
𝐴2

4𝐷
, and 

therefore, in the non-dimensional problem, 𝜏𝑡𝑜𝑡𝑎𝑙 =
1

4
. This problem has been formulated in a 

general manner, and can be solved for any desired drug delivery rate �̅�𝑑(𝜏). For example, a 

constant drug delivery rate is often desirable, in which case, it can be shown that �̅�𝑑 =
4

3
. Further, 

the general nature of this problem statement facilitates analysis of any value of M, depending on 

the maximum number of layers that can be reliably manufactured. 

A similar problem for a surface-erodible sphere is defined next. 

2.2. Spherical Layered Surface-erodible Capsule 

This section considers the optimization of initial drug distribution in a multilayer spherical 

capsule assumed to be undergoing linear surface erosion, so that the sphere radius reduces as 

𝑅(𝑡) = 𝐴 − 𝐵𝑡, where A is the initial radius and B is the rate of erosion. The assumption of linear 

surface erosion is supported by theoretical modeling [34] as well as experimental observations 

[35]. It is assumed that D remains unaffected by the erosion process. In the context of this problem, 

the interest is to understand how the optimal drug distribution may deviate from the results for the 

non-erodible sphere. 

The direct problem of predicting the rate of drug delivery from a linear single-layer surface-

erodible sphere has been recently solved [24]. Using a coordinate transformation, the non-
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dimensional transient concentration distribution for a given initial drug distribution has been 

shown to be [24] 

𝜃(𝜉, 𝜏) = (1 − �̅�𝜏)−1/2exp (
𝜉2�̅�

4(1 − �̅�𝜏)
) ∑

𝐴𝑚(1 − �̅�𝜏)

𝜉
sin (

𝜆𝑚𝜉

1 − �̅�𝜏
)

∞

𝑚=1

 exp (−
𝜆𝑚

2 𝜏

1 − �̅�𝜏
)  (17) 

where  

 

𝐴𝑛 = 2 ∑ 𝜃𝑖𝑛,𝑚 ∫ 𝜉∗ sin(𝜆𝑛𝜉∗)exp (−
𝜉∗2�̅�

4
) 𝑑𝜉∗

𝛾𝑚

𝛾𝑚−1

𝑀

𝑚=1

 (18) 

Here, �̅� = 𝐴𝐵/𝐷 is the non-dimensional rate of erosion. Eigenvalues 𝜆𝑛 are the same as 

the previous sub-section. Note that while the previous work considered the case of the initial 

distribution given by a continuous function, equation (18) represents an adaptation for the present 

case, in which the initial distribution is discrete.  

As a result, the non-dimensional rate of drug delivered is given by 

�̅�𝑎(𝜏) = − (
𝜕𝜃

𝜕𝜉
)

𝜉=1−�̅�𝜏

(1 − �̅�𝜏)
2

= (1 − �̅�𝜏)
−1/2

exp (
�̅�(1 − �̅�𝜏)

4
) ∑ 𝐴𝑛𝜆𝑛 cos(𝜆𝑛)

∞

𝑛=1

 exp (
−𝜆𝑛

2𝜏

(1 − �̅�𝜏)
) 

   

(19) 

As expected, for �̅� = 0, equations (17)-(19) reduce to corresponding results for the non-

erodible sphere discussed in section 2.1. Moreover, the constraints related to fixed total drug mass, 

given by equation (15) and positive initial drug distribution in each layer, given by equation (16) 
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continue to apply for the surface-erodible case. Therefore, optimization for this case of discrete 

initial drug distribution in a surface-erodible sphere may be carried out based on equations (14), 

(15) and (16), where �̅�𝑎 is given by equation (19).  

Note that since the sphere erodes at a uniform rate, the entire sphere vanishes when R(t)=0, 

i.e., 𝑡 = 𝐴/𝐵, and therefore, the time period in which drug must be delivered is given by 𝜏𝑡𝑜𝑡𝑎𝑙 =

1/�̅�. Therefore, the ideal, constant rate of drug delivery in this time period is given by �̅�𝑑 =

1/(3𝜏𝑡𝑜𝑡𝑎𝑙) = �̅�/3.  

2.3. Spherical Capsule with Continuous Initial Drug Distribution (Both Non-erodible and Erodible 

Cases) 

The prior two sub-sections considered problems in which the sphere, whether erodible or 

not, has a discrete, layered initial drug distribution. In contrast, the problem of a continuous initial 

drug distribution, where 𝜃𝑖𝑛(𝜉) is a known continuous function of space may also be of interest. 

Advances in 3D printing may make it possible to print a capsule with an initial drug distribution 

that approximates the desired functional distribution 𝜃𝑖𝑛(𝜉). Practical considerations may limit the 

implementation of spatial variation of 𝜃𝑖𝑛 to relatively simple functions, since complicated 

concentration distribution within the capsule may possibly not be accurately reproducible in 

experiments. Polynomial functions are considered in this section due to their versatility and 

common usage in fitting experimental data over a finite domain. The solutions of the non-erodible 

and erodible drug delivery problems remain the same, as given in Sections 2.1 and 2.2, 

respectively, with the expression for the coefficients An recast in a more general form as follows 

for the surface-erodible case 
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𝐴𝑛 = 2 ∫ 𝜉∗𝜃𝑖𝑛(𝜉∗) sin(𝜆𝑛𝜉∗)exp (−
𝜉∗2�̅�

4
) 𝑑𝜉∗

1

0

 (20) 

Note that setting �̅� = 0 in equation (20) above results in the expression for the non-erodible case. 

Moreover, the constraint of maintaining the same total drug mass during optimization, 

given by equation (15) for the discrete drug distribution is also written down more generally for 

both erodible and non-erodible cases as follows  

 

∫ 𝜉∗2𝜃𝑖𝑛(𝜉∗)𝑑𝜉∗

1

0

=
1

3
 (21) 

The other constraint of non-negative concentration may be written as 

 𝜃𝑖𝑛(𝜉) ≥ 0 0 ≤ 𝜉 ≤ 1  

(22) 

Optimization results for the simplest two polynomial functions – linear and quadratic – are 

discussed, followed by a more general analysis for a polynomial of order J in Section 3.2. 

2.4. Optimization procedure 

 An interior-point algorithm [36] solution is utilized to solve the constrained optimization 

problem summarized in equations (14) – (16).  To relax the inequality constraints, a vector of slack 

variables is introduced, and an approximated problem is posed. With this, the optimization 
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problem is then modified using a logarithmic barrier function and the inequalities are removed. 

For the augmented problem, the optimization iterates are generated using Newton’s method, in 

which, the Jacobian is synthesized using a finite difference routine. The iterations are continued 

until an appropriate stopping criterion is met. This process is implemented using the ‘fmincon’ 

function in the MATLAB Optimization Toolbox. The tolerances used for the function as well as 

the constraint satisfaction are set to be 10-12. The minimum allowable step size is also set at 10-12. 

A local minimum is always found for the range of parameters used. Additionally, the optimization 

algorithm is initialized with multiple starting values (guesses for the initial concentration), and in 

all those cases, the results are found to converge to the same values. A more detailed discussion 

on interior-point optimization methods can be found in [36,37]. 

3. Results and Discussion 

Results for various cases presented in Section 2 are now discussed in the same order. 

3.1. Discrete, multilayer drug cases 𝜃𝑖𝑛,𝑚  

3.1.1. Non-erodible sphere 

The fundamental motivation for optimizing the initial drug distribution in a non-erodible 

multilayer sphere to obtain a desirable drug release curve is first illustrated. A non-erodible two-

layer sphere with equi-radially distributed layers (i.e., 𝛾1 = 0.5) is considered. Based on a desired 

constant drug release rate, Figure 2 plots three candidate designs, including a baseline Case A, in 

which, both layers have the same initial drug concentration. The other two curves pertain to Cases 

B and C, in which the entire drug is loaded either in the outer or in the inner layer, respectively, 
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leaving the other layer completely drug-free. The color plots in Figure 2 represent the initial drug 

concentration distributions in the layers for each Case. Since drug delivery from the outer surface 

of the sphere occurs due to a concentration gradient at the surface, for Cases A and B, the rate of 

drug delivery is very high initially, which then rapidly decays as much of the drug is lost, and the 

concentration gradient weakens. However, in Case C, since the outer layer does not contain any 

drug, the initial drug release rate is close to zero, and it grows only slowly before reaching a peak 

and subsequently decaying. Compared to Cases A and B, the drug release rate curve for Case C, 

when considered across the time of interest, is relatively flatter, and, in particular, it avoids the 

large initial drug release. This illustrates the strong dependence of the drug release rate on initial 

distribution of drug in a multilayer capsule. Even though Case C is an extreme case and not 

necessarily optimal, its much better performance compared to Cases A and B justifies a systematic 

optimization in search of the optimal initial drug distribution that produces close to a desired drug 

release rate. 

Several optimization cases are computed for different number of layers in a non-eroding 

sphere. In each case, the goal is to obtain a constant drug release rate, i.e., based on the non-

dimensionalization scheme, �̅�𝑑(𝜏) = 4/3, while maintaining the total amount of drug loaded to a 

constant value, per equation (15). Figure 3(a) presents the optimal drug delivery curves obtained 

for cases with different number of layers. In each case in Figure 3, as well as in subsequent Figures, 

layers are assumed to be equi-radially distributed. For comparison, the baseline drug delivery curve 

for the case with uniform drug distribution throughout the sphere is also shown. The desired drug 

rate is also shown as a broken line. Figure 3(a) shows that an optimized two-layer sphere already 

performs much better than the baseline uniformly distributed case in terms of flatness. There is 

further improvement upon the use of more than two layers, but the incremental improvement is 
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much lower beyond three layers or so. In general, it is not possible to obtain a completely flat 

curve, even with a large number of layers, due to the constraints imposed by the fundamental 

nature of diffusion. However, as shown here, optimization can be used to avoid the large initial 

drug release rate and get as close as possible to a flat curve. Figure 3(b) presents the RMS deviation 

in the optimized drug distribution as a function of the number of layers. The RMS deviation for 

the baseline, unoptimized case is also shown as a broken line for comparison. This plot shows a 

reduction of around 64% in the RMS error in the two-layer case compared tobaseline, and further 

improvement when going to the three-layer case. Beyond that, however, there ceases to be much 

further improvement. This shows that optimization beyond a few layers may not be worthwhile, 

especially considering the increased manufacturing cost and complexity due to the additional 

layers.  

It is instructive to examine the optimal drug distributions predicted by the optimization 

algorithm for different number of layers. These distributions are presented as color plots in Figure 

4, where, in each case, the total mass of drug loaded in the sphere is the same. It is found that in 

each case, the optimization algorithm focuses on loading most of the drug in the inner layers, while 

loading no or very little drug in the outer layers. This is consistent with the physical understanding 

of this problem, wherein, it is critical to reduce the surface concentration gradient at early times to 

avoid very large rate of drug delivery, for which, it is reasonable that most of the drug be loaded 

in the inner layers. 

For a simple, non-eroding drug delivery device, these results demonstrate the capability of 

substantial improvement in the nature of drug delivery by optimization of the initial drug 

distribution in multiple layers. Such information can be valuable for fully maximizing the benefit 
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of experimental capabilities of manufacturing multilayer drug delivery devices with different drug 

concentrations in each layer. 

Optimization results for a more realistic case of a linearly erodible multilayer sphere is 

discussed next. 

3.1.2. Erodible sphere 

 In contrast with the previous sub-section, the results presented here pertain to a sphere that 

undergoes a linear reduction in its radius. The non-dimensional rate of erosion, defined as �̅� =

𝐴𝐵/𝐷 is an important parameter here. A value of �̅� = 1, which is representative of several drug 

delivery scenarios [24] is used. In order to illustrate the importance of optimizing the initial drug 

distribution for the eroding sphere, results for three Cases of a two-layer erodible sphere are shown 

in Supplementary Figure 1. The three cases include baseline case (uniform drug distribution in 

both layers – Case A), and ones in which all the drug is distributed in the outer layer alone (Case 

B) or in the inner layer alone (Case C). Similar to Figure 2 for a non-erodible sphere, this plot 

shows that loading all the drug in the inner layer (Case C) results in much more uniform drug 

release rate than the baseline case. Therefore, the motivation to optimize the initial drug delivery 

distribution is as valid for the erodible case, as it was for the non-erodible case discussed in section 

3.1. 

 For a fixed value of the rate of erosion, �̅� = 1, Figure 5 plots the optimized initial drug 

distributions for erodible spheres with two, three and four layers. A curve corresponding to the 

baseline case is also plotted. It is seen that as the number of layers increases, the drug release rate 

gets closer and closer to the ideal flat curve, although, similar to the non-erodible case, the 
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incremental benefit beyond two or three layers is relatively minor. The color plots in Figure 5 

illustrate the nature of the optimized drug distributions in each case. In general, the optimization 

calls for more drug to be distributed in the inner layers, and less in the outer layers. This is similar 

to the non-erodible case and consistent with the need to reduce surface concentration gradient at 

small times in order to flatten the drug release rate curve. 

 Since the non-dimensional rate of erosion is an important problem parameter here, the 

impact of �̅� on the optimization is examined next. Drug delivery optimization is carried out for 

two different rates of erosion, �̅� = 1 and �̅� = 4 for a four-layer device. Keeping the same total 

amount of drug in each case, Figure 6 plots the optimized drug delivery curves, as well as the 

underlying initial drug distributions as color plots. For a surface-erodible sphere, the release time 

is inversely proportional to the rate of erosion, and therefore, for the �̅� = 4 case, the drug release 

process terminates earlier, and therefore, the rate of release is larger. It can be seen from the color 

plots in Figure 6 that, in order to meet this elevated drug delivery requirement at early times, the 

optimization algorithm assigns somewhat greater drug concentration in the outer layers than in the 

�̅� = 1 case. As a result, the optimized drug release rate for the �̅� = 4 case is also elevated, in order 

to better match the required faster rate of drug delivery over a shorter time. Figure 6 demonstrates 

the capability of the optimization algorithm to adjust itself to the rate of erosion, and, when needed, 

assign a greater drug concentration in the outer layers. 

3.1.3. Erodible sphere with initial burst release 

While all plots presented so far have been based on the goal of obtaining a constant drug 

release rate, the optimization methodology developed here is quite general, and is applicable to 
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any desired drug release profile. In order to demonstrate this, a case in considered, in which, it is 

desired to produce an initial burst for a small time, followed by sustained drug release at a constant 

rate for the remainder time. In order to examine the impact of this desired initial burst on optimal 

drug distribution, optimization calculations are carried out for a case where a five-fold burst in 

drug release rate is desired during the first 10% of the time period. For consistency, the same total 

drug mass is assumed within the sphere as all previous problems. Figure 7 presents the optimized 

results for this case for a three-layered spherical surface-erodible capsule. The rate of erosion is 

�̅� = 1. The drug release rate based on optimized initial drug distribution is plotted in Figure 7, 

along with the curve for the baseline case, in which drug is loaded uniformly in all layers. The 

desired drug release profile, showing a five-fold burst initially, followed by a lower, constant drug 

release rate is also shown. Figure 7 shows that with the implementation of the optimized drug 

distribution in the three layers, shown as a color plot in the inset, the drug release rate curve is 

much flatter compared to the baseline case. The optimization algorithm assigns most of the drug 

to the inner-most layer, and relatively lesser drug in the outer layers, resulting in a rate of drug 

delivery initially that better matches the desired burst. In comparison, the baseline drug release 

rate is extremely large at the initial time. 

The inverse problem defined in this work and the subsequent optimization can be used for 

any desired drug release rate, and Figure 7 demonstrates this capability for the specific case of a 

drug release profile with an initial burst. The initial drug distribution can be similarly optimized 

for any other desired drug delivery profile, for example, one that may be highly customized for the 

needs of a specific patient. 

3.2. Polynomial multilayer drug distribution 𝜃𝑖𝑛(𝜉) (non-erodible sphere) 
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3.2.1. Linear drug distribution 

A linear initial drug distribution 𝜃𝑖𝑛(𝜉) = �̅�1 + 𝜉�̅�2 is considered first. Based on the 

constraint given by equation (21), it can be shown that �̅�2 =
4

3
(1 − �̅�1), and therefore, 𝜃𝑖𝑛(𝜉) =

(1 −
4

3
𝜉) �̅�1 +

4

3
𝜉. Therefore, when the initial drug distribution is to be linear, the optimization 

problem is a one-variable problem. This problem can be analyzed by simply plotting 𝑆 as a 

function of �̅�1 in the range that satisfies the constraint given by equation (22), i.e., 0 ≤ �̅�1 ≤ 4. 

The two extremes within this range, �̅�1 = 0 and �̅�1 = 4 represent initial drug distribution of 

𝜃𝑖𝑛(𝜉) =
4

3
𝜉 and 𝜃𝑖𝑛(𝜉) = 4(1 − 𝜉), respectively. These functions represent a capsule that is 

heavily loaded towards the outer surface or the center, respectively. Between these two extremes, 

�̅�1 = 1 represents the baseline, uniform drug distribution (𝜃𝑖𝑛(𝜉) = 1). Intuitively, in order to 

make the drug release rate curve as flat as possible, the drug delivery profile must be reduced at 

early times, and at later times, the curve must be prolonged as much as possible. In order to do so, 

it is important to reduce drug distribution towards the surface and instead load greater drug 

concentration near the center. 

Figure 8(a) plots RMS deviation of the drug release rate as a function of �̅�1 in the feasible 

range 0 ≤ �̅�1 ≤ 4. Initial drug distributions for three cases – baseline (𝜃𝑖𝑛(𝜉) = 1) and two 

extreme cases, 𝜃𝑖𝑛(𝜉) =
4

3
𝜉 and 𝜃𝑖𝑛(𝜉) = 4(1 − 𝜉) corresponding to �̅�1 = 0 and �̅�1 = 4, 

respectively – are also shown in the inset as color plots. Consistent with physical arguments 

discussed above, 𝑆 reduces monotonically with increasing �̅�1. This shows that, within the given 

constraints, it is desirable to have as large a value of �̅�1 as possible, and therefore 𝜃𝑖𝑛(𝜉) = 4(1 −

𝜉) corresponding to �̅�1 = 4 is the optimal linear initial drug distribution. The physical 
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interpretation of this result is that an initial drug concentration distribution biased towards the 

center of the sphere helps reduce the initial peak and prolongs the drug distribution curve. This 

can be clearly seen in Figure 8(b), which plots the drug release rate for these three specific cases. 

For comparison, the desired flat drug release rate curve is also shown as a dotted line. Figure 8(b) 

shows high mass flux of the drug at early times for each case. However, compared to the baseline, 

the optimal 𝜃𝑖𝑛(𝜉) = 4(1 − 𝜉) case shows a much lower initial peak and a more prolonged flat 

period before drug delivery goes to zero. This results in a much flatter drug release rate curve than 

the baseline. The RMS deviation for this case, 0.87, is 58% lower than the baseline value of 2.07, 

representing a substantial improvement in the uniformity of drug delivery. In contrast, the peak at 

early times is worse for the non-optimal 𝜃𝑖𝑛(𝜉) =
4

3
𝜉 case because it loads more drug towards the 

outer surface, resulting in even greater drug release at early times.  

This analysis shows that 𝜃𝑖𝑛(𝜉) = 4(1 − 𝜉) is the ideal initial linear drug distribution in 

the spherical capsule. Due to the non-dimensionalization carried out here, this is a universal result 

that applies to all non-erodible spherical capsules with a linear initial drug distribution. 

In search of an even closer drug release rate to that desired, the case of a quadratic initial 

drug distribution is considered next. 

3.2.2. Quadratic initial drug distribution 𝜃𝑖𝑛(𝜉)  

A quadratic initial drug distribution, 𝜃𝑖𝑛(𝜉) = �̅�1 + 𝜉�̅�2 + 𝜉2�̅�3 facilitates a much larger 

design space compared to the linear case analyzed in the previous sub-section. In the quadratic 

case, in order to ensure the same total mass of drug loaded into the capsule, the coefficients in 
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𝜃𝑖𝑛(𝜉) must satisfy 
�̅�1

3
+

�̅�2

4
+

�̅�3

5
=

1

3
, so that 𝜃𝑖𝑛(𝜉) = �̅�1 + 𝜉�̅�2 + 5𝜉2 (

1

3
−

�̅�1

3
−

�̅�2

4
) involves two 

coefficients �̅�1 and �̅�2 that may be assigned independently. This two-variable optimization 

problem can be analyzed by plotting the objective function 𝑆 in the �̅�1-�̅�2 space and determining 

the (�̅�1, �̅�2) design point that results in the lowest value of 𝑆. Figure 9 presents a color plot of the 

objective function 𝑆 in the �̅�1-�̅�2 space, shown only in the feasible region that satisfies equation 

(16). Figure 9 shows that, firstly, only a limited region within the two-dimensional �̅�1-�̅�2 design 

space is feasible, because for �̅�1 and �̅�2 values outside this region, the drug distribution becomes 

negative at one or more points inside the sphere, which is not meaningful in the present work. 

Within the feasible region, Figure 9 shows a non-intuitive variation in the RMS deviation as a 

function of �̅�1 and �̅�2. In general, there is lower deviation for large positive values of �̅�1 and large 

negative values of �̅�2. The optimal point in the �̅�1-�̅�2 space, in which the RMS deviation is lowest 

is found to be at �̅�1 = 13.14 and �̅�2 = −29.10, i.e., a quadratic drug distribution of 𝜃𝑖𝑛(𝜉) =

13.14�̅�1 − 29.10𝜉 + 16.14𝜉2. Figure 10(a) presents drug release rate curves for the baseline and 

optimal cases. Two additional cases – a near-optimal quadratic case, 𝜃𝑖𝑛(𝜉) = 10�̅�1 − 20𝜉 +

10𝜉2 and the optimal linear case 𝜃𝑖𝑛(𝜉) = 4(1 − 𝜉) are also shown for comparison. Figure 10(a) 

shows a much flatter drug release rate curve for the optimal quadratic case – the RMS deviation is 

0.58 compared to 2.07 for the baseline case, representing a reduction of around 72%. In 

comparison, the corresponding RMS deviation for the optimal linear case is 0.87. Compared to the 

baseline case, the rate of drug delivered at initial times is much lower for the optimal case. 

Additionally, while the mass flux goes down monotonically for the baseline case, it reduces, then 

increases and finally reduces in the optimal case, all the while staying much closer to the desired 

flat curve.  
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An interesting aspect of the variation of RMS deviation in the �̅�1-�̅�2 space is that the RMS 

surface around the minima, found at �̅�1 = 13.14 and �̅�2 = −29.10, is rather flat. Therefore, there 

is a reasonably large region in the �̅�1-�̅�2 plane, where the RMS deviation is quite close to the 

minimum value. For example, for 𝜃𝑖𝑛(𝜉) = 10�̅�1 − 20𝜉 + 10𝜉2 plotted in Figure 10(a), the RMS 

deviation is 0.61, which is within 5% of the optimal case. Therefore, it may be possible for a drug 

designer to choose within a greater design space without sacrificing much in terms of the drug 

release rate. 

Figure 10(b) illustrates the nature of drug distribution curves within the sphere for the cases 

considered here. While the baseline curve is flat, corresponding to uniform drug distribution, the 

optimal drug distribution curve starts very high at the center and has a minima of zero 

concentration just before the outer surface of the capsule. For comparison, drug distributions for 

the optimal linear and nearly-optimal quadratic cases shown in Figure 10(a) are also plotted here. 

Both of these curves are monotonic and reduce to zero concentration at the surface. In case 

implementing the optimal drug distribution, with a minimum, zero concentration close to the 

surface is experimentally challenging, one may adopt a monotonic curve, such as 𝜃𝑖𝑛(𝜉) = 10�̅�1 −

20𝜉 + 10𝜉2, without much loss of performance. 

3.2.3. General polynomial initial drug distribution 𝜃𝑖𝑛(𝜉)  

A general polynomial initial drug distribution is now considered, i.e., 𝜃𝑖𝑛(𝜉) =

∑ �̅�𝑗+1𝜉𝑗𝐽
𝑗=0 , where J is the degree of the polynomial. In this case, the design space is much larger, 

and a brute force search for the optimal, similar to linear and quadratic distributions in the previous 

sub-section is no longer possible. Inserting the general J-order polynomial form into the mass 
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conservation requirement eliminates one of the coefficients, and therefore, this is a problem of J-

parameter optimization, defined by equations (14), (16) and the following form of equation (15) 

written for the assumed polynomial form 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑
�̅�𝑗+1

𝑗 + 3

𝐽

𝑗=0

=
1

3
 (23) 

Similar to the multilayer sphere cases, optimization for this case is carried out using the 

procedure outlined in Section 2.3. Representative optimization results for this case are presented 

in Figure 11. The optimized drug release rates are plotted for polynomials of degrees 1 (linear) 

through 6 in Figure 11(a). The RMS deviation S is also plotted as a function of the degree of 

polynomial in Figure 11(b). These plots show substantial improvement in the drug delivery for the 

J=1 (linear) and J=2 (quadratic) cases compared to baseline. Beyond these cases, the drug release 

rate curves in Figure 11(a) are nearly identical, and correspondingly, the values of RMS deviation 

plateau out, as shown in Figure 11(b). This shows, similar to the plots for the multilayer case, that 

the benefit of optimizing the initial dug distribution reaches a plateau, and there is not much 

additional benefit in considering increasingly complex initial drug distributions. Such insights 

must be carefully considered along with cost and complexity in order to determine the best initial 

drug distribution. 

Note that while results in this section are presented in the context of a polynomial form of 

the initial drug distribution, the optimization framework utilized here is a general one, and it is 

possible to optimize based on initial drug distributions of other forms, such as power functions or 

exponential functions instead of polynomials. 
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4. Conclusions 

The key contribution of the present work is in optimizing the initial drug distribution in a 

multilayer surface-erodible spherical capsule for attaining a desired drug release rate over time. A 

key conclusion of the results discussed here is that while there is substantial early stage 

improvement, for example, for a two- or three-layered capsule, the incremental benefit in 

considering more complicated systems, such as a capsule with more than three layers, is rather 

limited. 

By solving the forward problem and carrying out optimization in non-dimensional form, 

this work ensures universal applicability of the results. For example, the results for the non-

erodible sphere are applicable for a sphere of any dimension, as long as the underlying assumptions 

are satisfied. Similarly, results for the erodible sphere case are also universally applicable, with the 

non-dimensional rate of erosion as the only variable. 

It is important to recognize the key limitations of the present work. Dissolution is assumed 

to occur rapidly. If dissolution was to be the rate-limiting factor, then the qualitative trends we 

have reported would still be valid. However, the overall timescale for drug to be released would 

increase, in a manner dependent on the specific dissolution properties of the drug within the 

delivery system.  The diffusion coefficient is assumed to be invariant during the drug delivery 

process and  the outer boundary is modeled in terms of a zero concentration boundary, although 

this can be easily extended to account for non-sink conditions. These assumptions are reasonable 

for a broad range of drug delivery problems. The theoretical model presented here does not 

consider the possibility of API-excipient interactions, which may alter the drug release rate, and 

may also not be appropriate when considering complex systems such as Amorphous Solid 
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Dispersions (ASDs). In general, however, the optimization algorithm can be easily extended to 

account for additional effects, as long as the forward problem can be readily solved.  

While presented in the context of uniform drug delivery curves and those with an initial 

burst, the methodology presented here can be easily extended to other drug delivery requirements 

as well. It is expected that the methodology and results presented in this work may be helpful in 

maximizing the benefit of advanced manufacturing technologies capable of producing multilayer 

drug delivery devices that address the individualized drug delivery needs of patients. To help 

facilitate this, we hope that this work will inspire future experiments to fully validate the model 

and test model predictions of optimal drug distribution for different applications. 
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List of Figures:  

Figure 1 – Schematic of a spherical capsule of radius R with (a) discrete (multilayer), or (b) 

continuous initial drug concentration. 

Figure 2 – Drug release rate curves for a non-eroding sphere with two-layered initial drug 

distribution for three cases – baseline uniform distribution (Case A), drug loaded only in outer 

layer (Case B) and only in outer layer (Case C). The black dashed line represents the desired 

constant drug delivery release rate curve. Initial drug concentration distributions for each case are 

shown as insets. 

Figure 3 – Optimization results for a non-erodible sphere with initial drug distribution in different 

number of layers: (a) Optimal drug release rate curves for up to nine-layered sphere, including the 

curve for the baseline, unoptimized case. The black dashed line represents the desired, constant 

release rate curve, �̅�𝑑 =
4

3
; (b) Minimized RMS deviation (compared to a flat drug release rate 

curve) as a function of number of layers. RMS error for the baseline, unoptimized case is also 

shown as a dashed line for comparison. 

Figure 4 – Color plots of optimized initial drug concentration distributions for the multilayer non-

erodible sphere case, for which optimal drug release rate curves are presented in Figure 3. 

Figure 5 – Optimal drug delivery curves for an eroding sphere (�̅� = 1) with different number of 

layers. For reference, the baseline curve for a sphere with uniform drug distribution, as well as the 

desired constant release rate curve are also shown. 

Figure 6 – Comparison of optimal drug delivery curves for two speeds of erosion for an eroding 

sphere with four layers. For reference, the desirable constant release rate curves for both cases are 

also shown. The �̅� = 4 curves end earlier than the  �̅� = 1 curves due to faster erosion of the sphere. 

Figure 7 – Demonstration of drug optimization for a case requiring five-fold drug dosage boost in 

the first 10% of the time period. A three-layer erodible sphere with �̅� = 1 is considered here. 
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Figure 8 – Optimization results for linear initial drug distribution in a non-erodible sphere: (a) 

RMS deviation from ideal, flat delivery curve as a function of �̅�1, where 𝜃𝑖𝑛(𝜉) = (1 −
4

3
𝜉) �̅�1 +

4

3
𝜉. Initial drug distribution curves for three cases – uniform, optimal and non-optimal drug 

distribution are shown in inset colorplots. (b) Drug delivery curves for the three cases, with the 

desired constant release rate curve shown for reference. 

Figure 9 – Colormap showing the RMS deviation from ideal, flat delivery curve in the �̅�1 −

�̅�2 parameter space for quadratic drug distribution in a non-erodible spherical capsule. White space 

represents the infeasible region where the drug distribution becomes negative at a point within the 

capsule. While the optimal point is indicated, the dark region shown is also close to optimal. 

Figure 10 – Optimized results for non-erodible spherical capsule with quadratic drug distribution: 

(a) Drug delivery curve for a number of quadratic drug distributions. The desired constant release 

rate curve and optimized linear curve are also shown for comparison‘ (b) Initial drug distribution 

curves for the cases plotted in part (a). 

Figure 11 – Optimized drug delivery curves for a non-erodible spherical capsule with polynomial 

drug distributions of different degrees; (b) Minimized RMS error as a function of degree of 

polynomial. 

Supplementary Figure 1 – Drug delivery curves for an eroding sphere (�̅� = 1) with two-layered 

initial drug distribution for three cases – baseline uniform distribution (Case A), drug loaded only 

in outer layer (Case B) and only in outer layer (Case C). Drug concentration distributions for each 

case are shown as insets. 
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Figure 1 – Schematic of a spherical capsule of radius R with a (a) discrete (multilayer), or (b) continuous initial drug concentration. 
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Figure 2 – Drug release rate curves for a non-eroding sphere with two-layered initial drug distribution for three cases – baseline 

uniform distribution (Case A), drug loaded only in outer layer (Case B) and only in outer layer (Case C). The black dashed line 

represents the desired, constant release rate curve, �̅�𝑑. Initial drug concentration distributions for each case are shown as insets. 
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Figure 3 – Optimization results for a non-erodible sphere with initial drug distribution in different number of layers: (a) Optimal drug 

release rate curves for up to nine-layered sphere, including the curve for the baseline, unoptimized case. The black dashed line 

represents the desired, constant release rate curve, �̅�𝑑 =
4

3
; (b) Minimized RMS deviation (compared to a flat drug release rate curve) 

as a function of number of layers. RMS error for the baseline, unoptimized case is also shown as a dashed line for comparison. 
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Figure 4 – Color plots of optimized initial drug concentration distributions for the multilayer non-erodible sphere case, for which 

optimal drug release rate curves are presented in Figure 3. 
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Figure 5 – Optimal drug delivery curves for an eroding sphere (�̅� = 1) with different number of layers. For reference, the baseline 

curve for a sphere with uniform drug distribution, as well as the desired constant release rate curve are also shown. 
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Figure 6 – Comparison of optimal drug delivery curves for two speeds of erosion for an eroding sphere with four layers. For reference, 

the desirable constant release rate curves for both cases are also shown. The �̅� = 4 curves end earlier than the  �̅� = 1 curves due to 

faster erosion of the sphere. 
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Figure 7 – Demonstration of drug optimization for a case requiring five-fold drug dosage boost in the first 10% of the time period. A 

three-layer erodible sphere with �̅� = 1 is considered here. 
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Figure 8 – Optimization results for linear initial drug distribution in a non-erodible sphere: (a) RMS deviation from ideal, flat delivery 

curve as a function of �̅�1, where 𝜃𝑖𝑛(𝜉) = (1 −
4

3
𝜉) �̅�1 +

4

3
𝜉. Initial drug distribution curves for three cases – uniform, optimal and 

non-optimal drug distribution are shown in inset colorplots. (b) Drug delivery curves for the three cases, with the desired constant 

release rate curve shown for reference. 
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Figure 9 – Colormap showing the RMS deviation from ideal, flat delivery curve in the �̅�1 − �̅�2 parameter space for quadratic drug 

distribution in a non-erodible spherical capsule. White space represents the infeasible region where the drug distribution becomes 

negative at a point within the capsule. While the optimal point is indicated, the dark region shown is also close to optimal. 
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Figure 10 – Optimized results for non-erodible spherical capsule with quadratic drug distribution: (a) Drug delivery curve for a 

number of quadratic drug distributions. The desired constant release rate curve and optimized linear curve are also shown for 

comparison. (b) Initial drug distribution curves for the cases plotted in part (a). 
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Figure 11 – Optimized drug delivery curves for a non-erodible spherical capsule with polynomial drug distributions of different 

degrees; (b) Minimized RMS error as a function of degree of polynomial. 
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Supplementary Figure 1 – Drug delivery curves for an eroding sphere (�̅� = 1) with two-layered initial drug distribution for three cases 

– baseline uniform distribution (Case A), drug loaded only in outer layer (Case B) and only in outer layer (Case C). Drug 

concentration distributions for each case are shown as insets. 
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