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Abstract—Traditional methods for motion comparison consider features from individual characters. However, the semantic meaning of

many human activities is usually defined by the interaction between them, such as a high-five interaction of two characters. There is

little success in adapting interaction-based features in activity comparison, as they either do not have a fixed topology or are in high

dimensional. In this paper, we propose a unified framework for activity comparison from the interaction point of view. Our new metric

evaluates the similarity of interaction by adapting the Earth Mover’s Distance onto a customized geometric mesh structure that

represents spatial-temporal interactions. This allows us to compare different classes of interactions and discover their intrinsic

semantic similarity. We created five interaction databases of different natures, covering both two-characters (synthetic and real-

people) and character-object interactions, which are open for public uses. We demonstrate how the proposed metric aligns well

with the semantic meaning of the interaction. We also apply the metric in interaction retrieval and show how it outperforms

existing ones. The proposed method can be used for unsupervised activity detection in monitoring systems and activity retrieval

in smart animation systems.

Index Terms—Activity comparison, interaction, human motion analysis, distance metric, earth mover’s distance
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1 INTRODUCTION

COMPARING human activities is a core problem in areas
such as sports sciences, rehabilitation and monitoring.

Applications in these areas typically require the user to
perform a set of pre-defined activities and evaluate the
correctness/quality by comparing the performed activities
with given exemplars. On one hand, traditional motion
analysis methods typically require the type of the activities to
be known in advance in order to apply the right criteria for
evaluations, and can only evaluate the similarity of activities
belonging to the same class. On the other hand, traditional
motion classificationmethodsworkwell in identifying differ-
ent classes of activities, but fall short in analyzing the subtle
difference for those belonging to the same class. This paper
aims at proposing a new unifiedmetric that accurately evalu-
ates both intra-class and inter-class similarity.

Existing research in the field mainly analyzes the motion
of individual characters only, without considering the inter-
action among characters and that between the character and
the environment. The geometric features extracted from indi-
vidual characters are limited in modelling the semantic
meaning of complexmovements such as boxing anddancing.
They cannot distinguish semantically dissimilar interactions
that have similar geometrically features. For example, a high-
five interaction between two characters is similar to a waving
interaction if we look at the features of the individual charac-
ters. Similarly, they cannot identify the similar semantic

meaning from geometrically different interactions, such as a
right punch having some level of similarity to a left punch
when they both hit the opponent.

We observed that high-level activities are usually defined
based on character-character or character-environment inter-
actions, such as punching an opponent, sitting on a chair and
jumping over a fence. The contextual meaning of the activity
depends heavily on the interaction instead of individual
movement [1]. For example, a punching movement that hits
is semantically different from the same punch that misses.
This motivates us to research on a metric that evaluates the
similarity of activities based on the concept of interaction.

Interaction-based features are therefore considered to
solve the problem. However, many of them suffer from var-
ious limitations. While relative kinematic features such as
the joint relative distance are used to model movement
between characters [2], the number of feature increases
exponentially with the number of considered joints, and it
becomes inefficient to use a high dimensional feature vector
for representing the interaction involving two characters. A
feature selection pre-process can be introduced, but there is
a side effect that the optimally selected features depend on
the types of interactions. Logical filters are efficient in index-
ing and modelling the motion of character using multiple
manually defined logical rules [1]. However, for two or
more characters, there will be an exponential number of
possible logical rules, and manually defining the optimal
rules requires domain experts’ knowledge. The Gauss Link-
age Integral (GLI) that represents the degree of twisting
between two strings can be applied in analyzing two charac-
ters interactions [3]. Since it models human body as simpli-
fied strings and twisting degree indicates close-body
interactions, it cannot effectively represent non-contacting
interactions. This group of interactions is important as it
covers a large range of interactions, such as one character
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avoid a punch from another, a character walking around
another, and two characters talking. Overall, these interac-
tion-based features either suffer from the problem of expo-
nentially growing dimension size or perform optimally
only for limited types of interactions.

In this paper, we propose a new metric for evaluating
the degree of similarity between interactions by adapting
Earth Mover’s Distance [4] onto a customized interaction
mesh structure [5] that represents spatial-temporal interac-
tions. Given a scenario, we extract feature points from the
characters and/or the environment objects and construct
an interaction mesh structure using Delaunay Tetrahedral-
ization [6]. Such a three-dimensional mesh can be robustly
applied in different human activities, as shown in Fig. 1,
and effectively samples spatial proximity into a lower
dimensional space for efficient processing. We establish
correspondences between topologically different struc-
tures from different interactions, such that we can evaluate
the similarity of interactions between different classes.
This is facilitated by the Earth Mover’s Distance (EMD) [4],
which has shown great success in corresponding meshes
of different objects [7]. Instead of using a distance function
of simple vertex coordinates that cannot capture direc-
tional information, or discrete topological distance that
cannot produce continuous distance values [8], we pro-
pose a distance function consisting of direction and posi-
tion for effective interaction comparison, and demonstrate
that it works very well with the correspondence produced
by EMD.

A strength of our system is that it can compare different
classes of interactions and evaluate the subtle similarity.
This is particularly important in activity analysis applica-
tions in which we do not have full prior knowledge of the
activity classes. Our proposed metric is continuous, mean-
ing that we can compare any two interactions and evaluate

their similarity. Also, our proposed metric aligns well with
the semantic meaning of the interactions comparing with
existing ones. As shown in Fig. 2, “right punch + being hit”
(reference) and “right kick + being hit” (rank 31) are usually
considered to be different classes of interactions, but they
are similar as they are both “attack + being hit” interactions.
Our system can assess the level of similarity between them
and discover their intrinsic correspondence. As a result, we
can arrange different classes of interactions on a continuous
scale of similarity, and perform content-based interaction
retrieval.

While our system perform very well in inter-class com-
parison, its true value is the accuracy in intra-class activity
comparison. Comparing the subtle difference among activi-
ties in the same class is essential in areas such as sports sci-
ences and rehabilitation, in which the user performed
activity is being compared with a set of exemplars in order
to mimic the correct moves. Notice that many activities
involve interaction with opponents (e.g., dancing and box-
ing) or environment objects (e.g., hurdling and ball games).
Again, as shown in Fig. 2, our system can tell the subtle dif-
ference between a punch that hit the head (reference, rank 1
and 2) and a punch that hit the upper body (rank 3 and 4)
using the interaction features.

Good inter and intra-class interaction comparisons facili-
tate many applications. For example, in a monitoring sys-
tem, listing all possible types of interactions that can
happen is typically difficult. With inter-class comparison,
the system can deduce that a pushing interaction is some-
what similar to a fighting one, thereby understanding it as a
dangerous activity. Intra-class comparison enables it to
assess the potential injury level of a fighting interaction
based on the annotated exemplars in the database. Simi-
larly, the inter-class comparison allows a smart animation
system to suggest a “hook punch and hit” interaction to the

Fig. 1. Our interaction model (brown lines) effectively represents the information accounting for the high-level semantic meaning of human activities,
including (a) character-character interaction, (b) character-character interaction with different body sizes, (c) non-contacting and (d) contact-based
human-object interaction.

Fig. 2. Our unified framework can compare different classes of interactions and discover their intrinsic similarity. Using a “right punch + being hit”
interaction as a reference, the most similar interactions are variations of “right punch + being hit” (rank 1-4). Notice that the punch in rank 3 and 4 hit
the upper body instead of the head as in the reference, resulted in a slightly higher difference. “left punch + being hit” (rank 14-15) are ranked lower,
which have a similar semantic meaning of punches that hit. “kick + being hit” (rank 31 and 40) appears in even lower ranks, which have a similar
semantic meaning of attacks that hit, while the right kicks is more similar than the left ones.
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animator, when the query “straight punch and hit” is not
available in the database. The intra-class comparison facili-
tates finding out the best matches.

We have three major contributions in this paper:

� We propose a new framework to compare human
interactions including human-human and human-
object interactions. We demonstrate that the evalua-
tion of both intra-class and inter-class distance aligns
well with the semantic similarity.

� Utilizing the proposed interaction-based metric, we
implement an interaction comparison system and a
content-based interaction retrieval system. Such sys-
tems perform robustly in different types of human
activities.

� We construct five interaction databases that are open
to the research community for benchmarking. This is
one of the first comprehensive databases containing
different classes of human-human and human-object
interaction in the community.

The rest of the paper is organized as follows. Section 2
reviews the related research of this project. Section 3 details
the construction of five interaction databases of different
natures. Section 4 explains our framework to compare inter-
actions. Section 5 shows our experimental results. Section 6
concludes the paper and provides discussions.

2 RELATED WORK

In this section, we first review traditional human-centered
representations for human motions and discuss their major
weaknesses. Then, we review interaction-based representa-
tions and point out the difficulties of applying them in
motion retrieval and analysis.

2.1 Human-Centered Systems

There is a large body of research about analyzing and iden-
tifying human motion using human-centered features of
body movement. In the early research of human motion
retrieval, traditional approaches utilize kinematic features
such as joints position [9] and joint angles-based distance
[10] to evaluate different types of motion. Dynamic features
such as forces produced by specific joints provide another
mean to identify human movement [11]. Derived dynamic
features such as center of pressure can enhance body stabil-
ity analysis [12].

Although it is possible to analyze individual kinematic
and dynamic features, understanding the logical signifi-
cance of a motion requires the meaningful combination of
them. Logical rules based on combined kinematic features
can be used as the motion features in motion retrieval [1].
By exploiting the body hierarchy, kinematic features con-
cerning body parts can provide a higher level of evaluation
[13]. Movement notation language known as the Laban
notation can abstract a short duration movement [14].

To better reflect the semantic meaning of human motion
and minimize the tedious manual design, machine learning
algorithms based on joint-pair relationship features are
introduced to train classification systems that recognize dif-
ferent types of motion [15], [16]. Learning a distance metric
based on a set of single-character posture feature improves

motion recognition accuracy [17]. Neural networks can
automatically learn a manifold to represent a motion [18].
Deep learning algorithms such as the convolutional autoen-
coders can learn effectively from a large amount of data
[19], [20].

While these human-centered representations have been
effective for interpreting basic movement, they fall short in
representing scenarios involving multiple interacting charac-
ters, which is one of the key components in daily activities.

2.2 Interaction-Based Systems

Recently, there has been a significant increase in research to
analyze the interaction between multiple characters. Long
durations of human-environment interactions can be seg-
mented as patches [21]. This motivates us to focus our eval-
uation on shorter duration of interactions. An event graph
structure is proposed to represent multi-character interac-
tions for motion synthesis [22]. However, such an abstract
model does not carry enough low-level information for
detailed activity comparisons. An even more abstracted
model, the motion grammar, is more human-understand-
able for representing high-level activities [23]. Instead of an
abstract, human-friendly interaction representation for
human-computer interfaces, we design a metric that better
reflects the semantic meaning of the interactions. The Lapla-
cian space is used to maintain the spatial-temporal con-
straint when editing multi-character interactions [24]. We
employ a similar technique to synthesize more interactions
in our CRC database.

Relative kinematic features such as relative joint distance
are proposed to represent the interaction between two char-
acters [2]. The concept of kinematic-based logical rules can
also be extended to represent inter-character kinematic fea-
tures [1]. However, the feature dimension increases expo-
nentially when considering multiple characters. While
feature selection [2], [15] can be used to maintain a reason-
able feature dimension, the optimal set of the feature
depends on the type of interactions. It is difficult to find a
global optimal set of low dimensional feature to represent
all interaction types.

By considering the skeleton hierarchy of the interacting
character as a number of strings, the Gauss Linking Integral is
used to represent how these strings wrap around each
other, thereby representing the interaction of the two char-
acters [3]. Such a representation can be used to synthesize
movement by considering close interaction [25], as well as
motion indexing and retrieval [26]. However, the represen-
tation cannot effectively represent non-contacting interac-
tions such as one character avoiding an attack from another.

The interaction mesh has been shown to be a robust inter-
action representation [5]. It considers the joints of the inter-
acting characters, and applies Delaunay Tetrahedralization
[6] to generate a mesh structure that indicates spatial prox-
imity. Using the interaction mesh, interaction among char-
acters can be adapted according to the user-defined criteria
or environment changes [5], [27]. The structure is used in
robotics to represent the interaction between a robot and the
environment for movement adoption [12] and control [28].

There are some attempts to apply interaction mesh in
interaction retrieval [29], [30], [31]. However, the results are
not satisfying. The major difficulties are that the topology
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and dimension of the interaction mesh depend on the pos-
tures of the interacting characters, and therefore changes
across different classes of interaction and across frames,
making it difficult to compute the difference between two
interaction meshes. Previous works attempt to solve the
problem by dividing the distance function into two parts.
For the edges that co-exist in two interaction meshes, a tra-
ditional geometry-based distance function is applied. For
those that do not co-exist due to the topological difference,
[30] assumes zero distance, while [29] simply counts the
total number. Since the two parts of the distance function
have different natures, forcing them together generates
inconsistent results. Li and Leung [31] utilizes an affinity
matrix calculated based on a heuristic to extract the active
joint pairs, but the heuristic requires domain knowledge
and is likely dependent on the types of interaction.

In this project, we propose a new unified framework for
interaction-based activity comparison. We adapt the interac-
tion mesh structure due to its robustness, and we corre-
spond two topologically different interaction meshes with
the Earth Mover’s Distance [4]. Our method can discover
the intrinsic similarity between interactions, and produce
superior results compared with existing work.

3 INTERACTION DATABASES

To demonstrate the robustness of our proposed system, we
construct five different databases involving different types
of interactions. The number of interactions and respective
durations of the database are shown in Table 1.

3.1 Character-Character (2C)

We created a character-character (2C) database using kick-
boxingmotions. Kick-boxingwas chosen as it involves a large
variety of movements and is considered to be one of the most
challenging domains of humanmotion research [32].

We adapt the interaction synthesis framework proposed
in [32] to synthesize high-quality interactions. The major
advantages of such an approach are that we can guarantee
the availability of data for a wide variety of interaction clas-
ses, and categorize the data with synthesizing parameters.
To synthesize interactions, first, we capture the shadow
boxing of a single boxer and construct an action level motion
graph [33]. Second, we define a set of semantic interaction
classes, each defines the interaction pattern [34] to be per-
formed the characters. Third, we perform the temporal tree
expansion to synthesize the interactions between two charac-
ters using a set of reward functions [32], and extract the
interactions that fit into our pre-defined list of interaction
classes.

The complete list of semantic interaction classes is shown
in Table 2. The labels of basic kick-boxing moves are bor-
rowed from [35], in which high-intensity moves are classi-
fied into punches, kicks and defense (i.e., avoid in our case).
Such basic moves are then combined to form the list of
semantic interaction classes. Designing such a list requires
domain knowledge, and is more of an art than a science.
Our strategy is to enumerate different combinations of com-
mon boxing interaction by first deciding the outcome of the
interaction (i.e., attack avoided or attack hit). This is because
whether an attack is hit or avoided forms the most signifi-
cant context in sports such as boxing. We then list the
attacking type of the attacking character (i.e., punch or
kick), and then further describe the lower-level details of
the attack (left or right).

3.2 Character-Retargeted Character (CRC)

In order to evaluate the robustness of our method to differ-
ent interactions with the same context, as well as its robust-
ness against geometry changes, we also create a character-
retargeted character (CRC) database. In such a database, we
adjust the size of a character but maintaining the nature of
the interaction.

The database is created by first synthesizing interactions
with the method mentioned above. We then resize one
character into 80 to 130 percent of the original size in every
10 percent step. The scale range is designed according to
[5]. It suggests that such a range is effective for interaction
retargeting without changing contact information, which is
important for the interaction context. We finally retarget the
movement using Autodesk MotionBuilder, a third-party
software that provides a user interface for maintaining con-
tacts during retargeting with inverse kinematics [36]. An
example frame of retargeted interaction is shown in Fig. 3.
Table 2 shows the semantic classes defined.

3.3 Human-Object Interaction (HOI)

We further created a human-object interaction (HOI) data-
base to demonstrate how our method can be used in a more
general context. We use a chair as the object since it has a
complex structure and multiple ways to interact with, such
as sitting on and walking around.

This database is constructed by capturing human motion
in an environment with a chair of known dimensions and
positions. We model the chair with boxes manually based
on the real-world dimensions obtained. Table 3 specifies the

TABLE 1
Details of the Databases Constructed

Database Nature No. of
Interactions

Duration
(sec)

2C Synthetic 95 206
CRC Synthetic 60 130
HOI Real-People 30 200
2PB Real-People 44 103
2PD Real-People 29 170

TABLE 2
2C & CRC: Hierarchical Semantic Classes

Interaction
Type

Attacking
Type

Attacking
Body Part

Class

A Attacks, B Avoids
Punch

Left Punch A1.1
Right Punch A1.2

Kick
Left Kick A2.1
Right Kick A2.2

A Attacks, B Being Hit
Punch

Left Punch A3.1
Right Punch A3.2

Kick
Left Kick A4.1
Right Kick A4.2
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classes of interaction we included. We first define 2 types of
interactions (i.e., walking-around and sitting-on). We then
define a number of spatial variations (e.g., from the back,
stepping over, at the front) for each of the types. Example
interactions of each class are shown in Fig. 4.

3.4 2 People Boxing (2PB)

To evaluate the performance of our system for real-people
interactions, we created a database of boxing motion per-
formed by 2 people (2PB), which was captured at the Uni-
versity of Tokyo. This is a challenging database with
complex interactions and body movement.

We collect around 6 minutes of boxing from 4 pairs of
professional boxers, as shown in Fig. 5. We define the
semantic classes that covered the majority of the boxing
movements as shown in Table 4. The interaction classes
defined here are generally more complicated than that of
the 2C database, in the sense that the actions from the real
boxers are less synchronized (e.g., both attacking in similar
timings) and more continuous (e.g., longer combo punches).

3.5 2 People Daily Interaction (2PD)

We created a real-people database of 2-people daily interac-
tions (2PD). This is based on the Utrecht Multi-Person
Motion (UMPM) benchmark [37].

The original dataset contains multi-person daily interac-
tions such as walking around each other and shaking hands.
We consider only 2 people interactions in the scene and
define 4 semantic classes of commonly occurred characteris-
tic interactions, as shown in Table 5. Unlike the previous
databases we mentioned above, this database is presented
in a C3D surface point cloud format instead of a skeletal
representation. We consider each C3D point as a joint when
generating the interaction mesh structure. Fig. 6 shows a
frame in the video footage, the corresponding point clouds
and the interaction mesh respectively.

4 UNIFIED INTERACTION COMPARISON

In this section, we explain our unified framework for inter-
action comparison, which involves three major components.
First, we elaborate the approach to represent an interaction
sequence using a series of customized interaction meshes.
Then, with the help of the Earth Mover’s Distance, we pro-
pose a distance function to evaluate the difference between

Fig. 3. CRC database: For the same interaction, the size of the blue
character is scaled by (a) 80 percent, (b) 90 percent, (c) 100 percent,
(d) 110 percent, (e) 120 percent, and (f) 130 percent.

TABLE 3
HOI: Hierarchical Semantic Classes

Interaction Type Spatial Variations Class

Walking-around

From the Back B1.1
Stepping Over B1.2
At the Front B1.3

Sitting-on
Forwards B2.1
Sideway B2.2

Fig. 4. HOI: The five class of human-object interactions corresponding to
Table 3.

Fig. 5. 2PB: Motion capture for real-people boxing.

TABLE 4
2PB: Hierarchical Semantic Classes

Interaction Type Movement Variations Class

A and B Attack With a Single Punch C1.1
at the Same Time With Combo Punches C1.2

A Attacks, B Avoids
B Avoids Only C2.1
B Avoids and Counter-attacks C2.2

Fig. 6. 2PD: (a) Motion capture, (b) the corresponding point clouds, and
(c) the interaction mesh.

TABLE 5
2PD: Semantic Classes

Interaction Type Class

A and BWalk Around in a Circular Manner D1
A and B Dance Together D2
A and B Shake Hands D3
A and B Chat with Each Other D4
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two interaction meshes. Finally, we deal with the spatial
and temporal variations using normalization and sampling
respectively, and align two sequences with Dynamic Time
Warping (DTW).

4.1 Customized Interaction Mesh Structure

Here, we explain how we adapt the interaction mesh struc-
ture [5] to represent the interaction between characters.
Without loss of generality, we explain our system using two
characters interactions. We then explain how the system
can be applied to human-object interactions.

Given two characters interacting with each other, we uti-
lize the interactionmesh structure as a feature representation,
as it can gather the implicit spatial relationship of the charac-
ter effectively. Considering one frame of an interaction, an
interaction mesh is created by generating a volumetric mesh
using Delaunay Tetrahedralization [6], considering the 3D
Cartesian joint positions of the interacting characters as verti-
ces. An interaction is therefore represented by a series of
interaction meshes. The topology and the dimension of the
meshes vary over time according to the changing poses of the
characters, which allows representing the varying spatial
relationship over time.

We customize the process to generate the interactionmesh
[38] such that the resultant mesh is more suitable for interac-
tion comparison. In particular, we would like to have a uni-
form distribution of vertices to ensure that the comparison is
not biased to body parts with more joints. Therefore, on top
of the set of vertices generated by the joint positions of the
characters in [38], we include a set of vertices by uniformly
sampling the skeleton structure of the characters using a pre-
defined length. This allows us to maintain a more uniform
density for the mesh, such that the interaction comparison
based on the mesh is not biased to specific joints. In our
implementation, a character consists of 25 joints, which are
shown as the red circles in Fig. 7a. We uniformly sample
body segments using a sampling length of 15 cm. This pro-
cess creates another 13 vertices, which are shown as the blue
squares in Fig. 7a. We found that further reducing the sam-
pling length leads to similar results but came with higher
computational overhead due to the more complicated inter-
action mesh generated, and therefore chose the mentioned
sampling length.

To create the interaction mesh, we consider frame t of an
interaction between two characters, and denote Vt as the set
of vertices of the characters:

Et
DT ¼ DT ðVtÞ; (1)

where DT is the Delaunay Tetrahedralization process, and
Et
DT is the set of edges created. Different from [38] that con-

siders all edges, we filter Et
DT by removing all edges con-

necting to the same character, as those edges do not
contribute to the interaction. The resultant set of edges, Et,
is regarded as the interaction mesh of frame t. The brown
lines in Fig. 8 show the edges before and after filtering.

Finally, the temporal sequence of an interaction is re-
presented as a series of interaction meshes, E 2 E0;

�
E1; . . . ;Ettotalg, where ttotal is the total number of frames in
the interaction.

We utilize the same algorithm to create the interaction
meshes for human-object interactions, but we consider the
object as the second character. In particular, we approxi-
mate the object using boxes. Similar to the skeleton sam-
pling algorithm as explained above, we uniformly sample
the surface of the boxes using a predefined sampling dis-
tance, which is set as 20 cm in our experiments. Fig. 7b
shows an example of vertices sampled from a chair. Finally,
we combine the vertices from the character and the object to
generate the interaction mesh, as shown in Figs. 1c and 1d.

For the 2PD database, the motions are represented with
C3D surface marker points and the body hierarchy informa-
tion is not given explicitly. Therefore, we do not conduct the
sampling process, which is done according to the body hierar-
chy. Also, for some body parts, there are not enough surface
markers to effectively calculate the joint angles using inverse
kinematics. Therefore, we consider each point as a joint when
generating the interaction mesh structure, and use the point
cloud as a query in the activity comparison experiments.

Existing work [1], [2] and fully-connected meshes (i.e.,
connecting all vertices with edges) [39] suffer from the expo-
nentially growing size of the feature. For example, if we
extract one feature based on one vertex pairs for two charac-
ters of 38 vertices each, there will be ð38� 2Þ� ð38� 2� 1Þ ¼
5700 features. To tackle this issue, we utilize Delaunay Tetra-
hedralization to sample spatial proximity, and prune edges
connecting to the same character. On average, each interac-
tionmesh for two characters consists of only 170 edges.

4.2 Distance between Interaction Meshes

One of the major features of our interaction representation
structure is that it can represent semantically dissimilar inter-
actions using the topologically and dimensionally varying
interaction meshes, thanks to the use of Delaunay Tetrahedr-
alization in evaluating geometry proximity. This allows us to
effectively represent interactions of different semantic mean-
ing (e.g., punching versus kicking) using a consistent format.
Therefore, unlike previous research, our algorithm allows the

Fig. 7. Sampled vertices on (a) a character and (b) an environment
object.

Fig. 8. Interaction mesh creation: (a) edges from Delaunay Tetrahedrali-
zation (b) edges after filtering.
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comparison of two interactions with different semantic
meaning, and thereby find out if they have any intrinsic simi-
larity. To achieve this, we propose a distance function that
adapts the Earth Mover’s Distance [4] to find the best corre-
spondence between the input interaction meshes. Such a dis-
tance function can effectively compare interaction mesh of
different topologies and dimensions.

Here, we explain how to compute the distance between
two interaction meshes of two-character interactions. The
same distance function is used for human-object interaction,
by considering the environment object as the second character.

4.2.1 Edge-Level Distance Function

Given edge ei from interaction i and edge ej from interac-
tion j, we represent the difference between the two edges
using a customized cosine distance function, which effec-
tively combines the Euclidean distance and orientation dis-
tance between the two edges. It is defined as:

dðei; ejÞ ¼ ei1 � ej1
�� ��þ ei2 � ej2

�� ��� �� 1

2
ð1� cos uÞ; (2)

where j � j denotes Euclidean distance, ei1 and ei2 are the two
endpoints of ei connecting characters 1 and 2, ej1 and ej2 are
that of ej, u is the angle between the two edges, and cos u is
calculated by vector dot product. The idea of the equation is
visualized in Fig. 9. The cosine term is multiplied by 1

2 such
that it has a range of ½0:0; 1:0�. Compared with other designs,
such as the weighted sum of distances and cosine angles,
ours does not require any parameter tuning.

4.2.2 Earth Mover’s Distance

We then adapt a mass transport solver [4] to find the opti-
mal edge-level correspondence between two interaction
meshes. The idea is to match the edges by minimizing the
overall sum of the distance of all the edges. Given two
sequences of interaction meshes EI and EJ, let us consider
one interaction mesh E

tI
I 2 EI at frame tI and one interaction

mesh E
tJ
J 2 EJ at frame tJ . The mass transport solver opti-

mizes a set of unidirectional flow to map the edges ei 2 E
tI
I

to ej 2 E
tJ
J with a minimized overall distance:

f�
i;j ¼ argmin

fi;j

Xm
i¼1

Xn
j¼1

dðei; ejÞfi;j
 !

; (3)

subjected to:

X
j¼1

fi;j ¼ 1:0; (4)

X
i¼1

fi;j ¼ n

m
; (5)

wherem and n are the total number of edges in the mesh E
tI
I

and E
tJ
J respectively, dðei; ejÞ is the distance between two

edges calculated with Eq. (2), fi;j is the set of flow values to
be optimized. The constraint in Eq. (4) ensures that in case
an edge is mapped into multiple ones, the sum of all outgo-
ing flows is always 1.0. The constraint in Eq. (5) ensures that
the sum of all incoming flows to an edge is a constant. These
equations jointly guarantee that all edges in E

tI
I map to all

edges in E
tJ
J evenly.

With the optimal set of flow values f�i;j, the minimum dis-
tance between two interaction meshes is calculated as:

DðEtI
I ;E

tJ
J Þ ¼

Xm
i¼1

Xn
j¼1

dðei; ejÞf�
i;j: (6)

Fig. 10 visualizes the concept of the mass transport solver
in two simplified 2D scenarios, in which the red mesh is
matched onto the green one. The flow to match the two
meshes is represented by the black arrows, while the corre-
sponding number is the magnitude of the flow. Fig. 10a is a
simpler case in which both meshes have the same number
of edges, and a solution of one-to-one mapping can be
achieved. On the other hand, in Fig. 10b, since the red mesh
has more edges than the green one, some of the edges in the
red mesh match partially to those in the green one.

Finally, the EMD is calculated as the normalized minimal
distance. With EMD, the distance between two meshes,
which are usually topologically and dimensionally differ-
ent, can be calculated:

EMDðEtI
I ;E

tJ
J Þ ¼ DðEtI

I ;E
tJ
J ÞPm

i¼1

Pn
j¼1 f

�
i;j

: (7)

4.3 Distance between Interaction Sequences

Here, we explain how to evaluate the distance between two
sequences of interaction.

4.3.1 Spatial Normalization

We observe that real human compares interactions with
little consideration on their absolute position and orienta-
tion. For example, two kicking interactions happening in

Fig. 9. The discance between two edges.

Fig. 10. The concept of mass transport solver in 2D.
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different positions and facing directions are typically con-
sidered to be similar. Therefore, we normalize interactions
spatially to compare them with local coordinates, thereby
eliminating the influence from different world coordinates.

In general, there are two strategies to do the spatial align-
ment. The first strategy assumes that the interacting charac-
ters have unique identities. One therefore consistently uses
the same character in different interactions as a reference to
normalize the whole time series of interactions, by remov-
ing its pelvis translation and its horizontal facing angle in
each frame. The second strategy assumes that the two char-
acters are anonymous. One can then obtain two normalized
results by considering either of them as the reference. In this
case, when comparing interactions, both normalized results
are evaluated and the one that generates the smaller differ-
ence is selected.

In our research, we opt for the first strategy since the logi-
cal meaning of interactions in movies and games usually
depends on the unique identities of the characters. For
example, “a hero kicking a monster” is different from “a
monster kicking a hero”.

4.3.2 Temporal Sampling

We also observe that real human is sensitive to characteristic
features of the interaction instead of its duration. For exam-
ple, the duration of a sitting down motion is not very impor-
tant in defining its context. Motivated by [40], we design a
non-linear sampling algorithm to obtain a set of keyframes
that better represents the context of the motion. We aim at
extracting the significant postures from the data point of
view rather than the human perception point of view [41],
although there are similarities in both applications.

Here, given one sequence of interactionmesh, we first con-
sider each frame as a block. Then, we go through all the
neighbouring block pairs. Starting from the pairwith the least
distance calculated by Eq. (7), we merge the pair into a single
block. If there is more than one frame in a block, the distance
is represented by the maximum distance of all frame combi-
nations. We repeat the process to further merge the block
pairs until the number of blocks equals to the required num-
ber of the keyframes. The center of each block is then consid-
ered as a keyframe. We set the required number of keyframe
as 9, which is determined by analyzing the average recon-
struction error using different keyframes, as shown in Fig. 11.

Fig. 12 shows the sampling results using different keyframe
numbers. Here, the self-similarity matrix of an interaction cal-
culated with Eq. (7) is shown, with a darker color representing
smaller distance. The green squares represent the sampled

blocks. The sampling algorithm samples more keyframes in
the regions where the distance changes rapidly across frames,
which is typically the frame range with complex interaction. It
samples fewer in bigger regions with high similarity, which
contribute less to the context of the interaction.

4.3.3 Temporal Alignment

Finally, similar to [40], we align the keyframes of two inter-
actions using Dynamic Time Warping and calculate the dis-
tance between them.

Given the keyframe sequences of interaction meshes, EI

and EJ , and each of them is represented by W keyframes,
we obtain an optimal warping path p ¼ pI1; pJ1ð Þ; pI2;ð½
pJ2Þ; . . . ; pIW ; pJWð Þ� to align the two keyframe sequences.
Using such a path, for each w 2 ½0;W �, the interaction mesh
E
pIw
I 2 EI at keyframe pIw is aligned with E

pJw
J 2 EJ at key-

frame pJw. Therefore, the DTW distance is defined as:

DTWðEI ;EJÞ ¼ 1

W

XW
w¼1

EMDðEpIw
I ;E

pJw
J Þ: (8)

5 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our system.
We compare our method with an interaction-based feature
known as space-time proximity graphs [29], as well as tradi-
tional human-centered features including joint positions [9]
and joint angles [10]. We first evaluate the performance in
comparing and evaluating distances between interactions
using similarity matrices. We then analyse the quality and
the accuracy on interaction retrieval using precision and
recall analysis, as well as an interactive retrieval applica-
tions with user-defined constrains.

For [9] and [10], we normalize the interaction in the same
way as our method according to Section 4.3.1. We utilize all
joint information from the characters to form the feature vector.
For the object in the HOI database, we represent the object as a
set of position for [9], and as a static simplified skeleton for [10].

The experiments were performed on a computer with
dual Intel Xeon E5-2687W CPUs, an NVIDIA Quadro K4000
display card and 64 GB RAM. Extracting the interaction
meshes and sampling the keyframe are performed as a pre-
process. The computational time depended mainly on the
number of samples in the database and the duration of the
interaction. The pre-process took 1.5 hours, 0.5 hour and
4 hours for the 2C, CRC and HOI databases respectively.
Given the meshes, computing the distance between two
interactions took 0.2 seconds on average.

Our interaction database is open for public usage at our
website. Also, please refer to the attached video for more
results such as the quantitative retrieval analysis.

Fig. 11. Reconstruction error against keyframe number.

Fig. 12. The results of keyframes sampled overlaid on a self-similarity
matrix with (a) 5, (b) 9, and (c) 13 keyframes. Green squares represent
keyframe regions, and darker pixels indicates smaller distance.

SHEN ET AL.: INTERACTION-BASED HUMAN ACTIVITY COMPARISON 2627



5.1 Interaction Similarity Analysis

Here, by analyzing the similarity matrices, we evaluate the
quality of the method with three key criteria:

� high intra-class similarity, to find out interactions of
similar context

� high inter-class difference, to distinguish interactions
of different context

� different levels of inter-class similarity according to
the semantic similarity, to effectively evaluate how
different two interactions are

The last criterion is usually overlooked in existing works.
Typical supervised machine learning methods for classifica-
tion can create very high intra-class similarity and inter-class

difference, but there is little continuous evaluation of differ-
ence for pairs that are different to a certain extent.

Figs. 13, 14, 15, 16, and 17 show the similarity matrices of
all comparing methods in different databases, in which
each pixel shows the similarity between two interactions.
The pixel color represents the normalized distance between
two interactions, and the value 3s (i.e., standard derivation)
of each method is used as the normalizer of the respective
matrix. Darker pixels represent higher similarity. We
arrange the interaction according to interaction classes
defined in Tables 2 and 3, which are marked in the X and Y
axes. We also highlight in the matrix the square areas that
belong to the different levels of class similarity using blue
and red lines for a better observation.

Fig. 13. 2C: Similarity matrices evaluated by (a) our method, (b) [29], (c) [9], (d) [10].

Fig. 14. CRC: Similarity matrices evaluated by (a) our method, (b) [29], (c) [9], (d) [10].

Fig. 15. HOI: Similarity matrices evaluated by (a) our method, (b) [29],
(c) [9], (d) [10].

Fig. 16. 2PB: Similarity matrices evaluated by (a) our method, (b) [29],
(c) [9], (d) [10].
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The similarity matrix of our method in the 2C database is
shown in Fig. 13a. Each individual class (highlighted by red
squares) shows the highest intra-class similarity. Classes
belonging to the same attacking type (highlighted by blue
squares) shows the second highest similarity. Classes
belonging to the same interaction type (i.e., A1.1-A2.2 and
A3.1-A4.2) shows moderate similarity. Interactions of differ-
ent interaction types are generally different, but if they have
the same attacking type or the same attacking body part, the
difference is smaller. This demonstrates how our method
fulfils the three criteria mentioned above.

Comparing to [29] in Fig. 13b, our method performs bet-
ter in intra-class similarities, such as A1 and A3, in which
one character punches the other. Our method also outper-
forms [29] in identifying motion classes with the same
attacking type (highlighted by blue squares)—there is a
large distance between A2.1 and A2.2, as well as between
A4.1 and A4.2. This is mainly because the distance function
in [29] involves a topology distance term that counts the
edges with different vertices. Such a term is sensitive to
small changes of interaction and does not align well with
human understanding. Human-centered features including
[9] in Fig. 13c and [10] in Fig. 13d do not work well. Due to
the lack of interaction information, both of them show a
high inter-class distance between the semantically similar
classes within each blue square, as well as a small inter-class
distance. They fail to distinguish if a character is hit or not.

The results of the CRC database are shown in Fig. 14. This
is a challenging database as the interactions are edited dur-
ing the retargeting process, which results in different 3D pos-
tures. Still, our proposedmethod generates a high intra-class
similarity, and there are different levels of similarity aligning
with the semantical meaning. This supports the robustness
of our method in evaluating the interaction of different char-
acter sizes. Tang et al. [29] also results in a high intra-class
similarity, but it fails to highlight the semantic closeness in
this database indicated by the red and blue squares. Both [9]
and [10] struggle in identifying the similarity within each
class, suffering from the difference in postures after motion
retargeting.

The results of the HOI database are shown in Fig. 15. Our
method has a high intra-class similarity indicated by the red
squares, and a reasonable similarity for the classes of the
same interaction type indicated by the blue squares. [29]
shows a less significant intra-class similarity indicated by
the red squares. Also, the semantic closeness between B2.1
and B2.2 cannot be identified. [9] and [10] cannot clearly dif-
ferentiates B1.1, B1.2 and B1.3. [10] further cannot identify
the similarity between B2.1 and B2.2.

The results of the 2PB database are shown in Fig. 16. Due
to the complex, ambiguous real-people motion, [9], [10],

[29] fail to identify the intra-class similarity accurately, espe-
cially for C1.2 in which two boxers perform multiple
punches simultaneously. These methods also fail to identify
the intrinsic similarity among the two sub-classes in C1.x,
for which our method performs consistently.

The results of the 2PD database are shown in Fig. 17.
Notice that this database is extracted from a public database
where real-people motions are represented as point clouds.
Therefore, joint angle [10] evaluation is not available. Since
[29] employ a binary function to determine the topology dif-
ference, it is very sensitive to small gesture changes, which
results in the poor intra-class similarity in all four classes.

Finally, we include experiments in the 2C database to
evaluate the effect some design strategies in our system, as
shown in Fig. 18. First, our system removes edges connecting
to the same character such that the evaluation focus on the
interaction between the characters. Figs. 18a (ours) and 18b
(ours without pruning) show that keeping self-connected
edges results in poor performance in identifying the similar-
ity in semantically similar classes, such as A1.x and A2.x.
Second, for keyframe selection in Fig. 12, while we select
the middle frame of each block, other selection algorithms
also work as well. Fig. 18c shows the result of an alternative
selection strategy, which selects the last frame in a block
instead of the middle frame. There is no significant differ-
ence comparing to ourmethod in Fig. 18a.

5.2 Interaction Retrieval Analysis

Here, we implement an interaction-based retrieval system.
Given one interaction, we apply Eq. 8 to evaluate its differ-
ence with respect to all motion in the database, and retrieve
the most similar ones across all interaction classes. Fig. 2
shows the retrieved results of using a right punch and hit
interaction as the query (i.e., A3.2 in Table 2), annotated
with the corresponding ranks and differences. The advan-
tage of our system is that it can compare different types of
interactions and discover their intrinsic similarity.

We compare the methods using precision and recall [42]
as shown in Fig. 19. We treat each interaction in the data-
base as a query, and average the results from all queries to
form the plot. Given a query interaction, only the retrieved
results within the same semantic lowest level sub-class (e.g.,
A1.1) as defined in Table 2 (for 2C and CRC) and Table 3
(for HOI) are considered as relevant results. Our method
outperforms the others in all five databases.

We further evaluate how our system performs for differ-
ent types of interactions. We use the 2C database here as it
has a large interaction variety. We group the interaction
classes according to the attacking types in Table 2. Fig. 20
shows the precision and recall results. It can be seen that in
general, avoiding interactions (i.e., A1.x and A2.x) are more

Fig. 17. 2PD: Similarity matrices evaluated by (a) our method, (b) [29],
(c) [9].

Fig. 18. 2C: Similarity matrices evaluated by (a) our method, (b) our
method without pruning self-connecting edges, (c) our method with an
alternative keyframe selection strategy.
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challenging, potentially due to the large variety of avoiding
actions. Our method outperforms [29] in general in A1.x,
but it does not have a clear advantage over [29] in A2.x. A4.
x is a kick and being hit interaction. Due to the farther
attacking position comparing to punches, such a class has a
larger intra-class spatial variety. As a result, [9] and [10] per-
form particularly poorly. We also plot the precision and
recall results of the real-human database 2PB in Fig. 21. It
shows that our method performs consistently better than
the others in both classes C1.x and C2.x.

In order to evaluate the accuracy and consistency of
interaction retrievals using our system, Table 6 shows the
numerical values of the average matching retrieval results
in different ranges of ranks. The second column shows the
accuracy of the exact matching class. From the second col-
umn to the right-most one, the relevancy of the matching
decreases. It can be observed that higher-rank results are
highly-relevant, with the relevancy dropping in lower-rank
results as expected.

For a retrieval application, one possible solution to limit
the number of retrieved results is to introduce a manually-
tuned threshold on the similarity value. Retrieval results
with similarity smaller than such a value are considered
irrelevant. Since the aim of the retrieval experiments here is
to demonstrate the overall picture of retrieval consistency,
we do not include such a threshold value.

5.3 Interactive Retrieval Application

We also implement an interactive retrieval system based on
user-provided constraints with the 2C database. These con-
straints demonstrate the potential of applying our system in
interactive animation production, in which the required
interaction that fits with the environment and storyboard
can be found interactively.

For the best run-time speed, we first precompute the dis-
tance between all pairs of interactions in the database using
Eq. (8). During run-time, the user provides a query interac-
tion with constraints. Our system then retrieves the most
similar interaction that satisfies the constraints in real-time.
Such an operation takes 0.02 second on average.

We design a distance constraint as:

dmin < V0
hips A �V0

hips B

��� ��� < dmax; (9)

where dmin and dmax are the lower bound and the upper
bound distances given by the user,V0

hips A andV0
hips B are the

3D hips positions of the two interacting characters at frame 0
respectively. This constraint therefore enforces the distance
between the characters during the first frame of an interac-
tion. Fig. 22 shows the result of applying the distance con-
straint, in which the inner and outer radii of the red torus
represent dmin and dmax respectively, the blue circle repre-
sents the initial distance between the two characters, and the
red circles are markers for visualizing different distance val-
ues. Fig. 22a shows the initial interaction.When the preferred

Fig. 19. Precision and recall of all methods for (a) 2C, (b) CRC, (C) HOI,
(d) 2PB and (e) 2PD.

Fig. 20. 2C: Precision and recall of all methods for (a) A1.x, (b) A2.x, (c) A3.x, (d) A4.x.

Fig. 21. 2PB: Precision and recall of all methods for (a) C1.x, (b) C2.x.
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distance between the characters increases in Figs. 22b and
22c, similar interaction that fits the constraints are retrieved.

We also design an object collision constraint as:

Vt
j �Vob

��� ��� > dob 8t; j; (10)

whereVob is the 3D position of an obstacle, dob is the distance
to avoid colliding with it,Vt

j represents the position of joint j
at frame t. We consider all the joints of both characters in all
frames to ensure that the characters do not collide with the

obstacle during the interaction. Fig. 23 shows an example of
applying the collision constraint. Fig. 23a is the initial interac-
tion. In Figs. 23b, 23c, 23d, and 23e, the user introduces objects
that lead to collisions. The system then retrieves themost sim-
ilar interaction that satisfies the object constraint.

6 CONCLUSION AND DISCUSSIONS

In this paper, we propose a newmethod for activity compari-
son from the interaction point of view. This allows us to evalu-
ate movement in a way aligning with the high-level semantic
meaning of the interaction. Our method can compare interac-
tions of different topology and discover their intrinsic seman-
tic similarity. Experiments show that our system outperforms
existing ones in better evaluating interaction similarity and
providing a continuous scale of similarity results. The algo-
rithm can also be used for interaction retrieval to obtain
semantically similar interactions, and to suggest suitable
interactions based on a set of user-defined constraints.

Our system adapts Earth Mover’s Distance to compare
interaction meshes of different topologies. Theoretically
speaking, such a design can be applied to other features such
as joint relative distance aswell. However, we prefer the inter-
action graph structure as it can be used robustly for different
kinds of interactions. It can also discover spatial proximity,
which is one important aspect in defining interactions.

We use boxing/kickboxing in this project as it has clear
logic and rules, which help us to define the hierarchical
semantic classes. However, the semantic meaning of some
interactions, especially general daily activities, are less well
defined. Understanding how real-people comprehend the
semantic meaning of interactions, as well as how they
weight different factors that affect the semantic similarity, is
a challenging but important topic. We are interested in
exploring theories in cognitive science for future research.

TABLE 6
Numerical Retrieval Results for (Top) 2C, (Second) CRC, and

(Third) HOI, (Fourth) 2PB, (Bottom) 2PD

Retrieved

Rank

Matching

Class

Matching

Attacking Type &

Interaction Type

Matching

Interaction

Types

All

Others

1-5 92.5% 7.5% 0.0% 0.0%

6-10 71.7% 18.8% 9.5% 0.0%

11-15 30.4% 43.1% 20.9% 5.6%

16-20 16.3% 52.4% 23.6% 7.7%

21-25 0.0% 38.7% 53.2% 8.1%

26-30 0.0% 36.3% 52.9% 10.8%

31-35 0.0% 19.2% 66.1% 14.7%

36-40 0.0% 8.9% 74.5% 16.6%

41-45 0.0% 0.0% 78.1% 21.9%

46-50 0.0% 0.0% 76.7% 23.3%

Retrieved

Rank

Matching

Class

Matching

Attacking Type &

Interaction Type

Matching

Interaction

Types

All

Others

1-5 95.0% 5.0% 0.0% 0.0%

6-10 42.5% 55% 2.5% 0.0%

11-15 12.6% 69.7% 10.3% 7.4%

16-20 0.0% 41.1% 47.2% 11.7%

21-25 0.0% 30.7% 48.1% 21.2%

26-30 0.0% 9.6% 51.3% 39.1%

31-35 0.0% 0% 46.3% 53.7%

36-40 0.0% 0% 32.7% 67.3%

Retrieved

Rank

Matching

Class

Matching

Interaction Type

All

Others

1-5 94.8% 5.2% 0.0%

6-10 18.3% 71.4% 10.3%

11-15 0.0% 57.6% 42.4%

16-20 0.0% 32.3% 67.7%

21-25 0.0% 17.1% 82.9%

Retrieved

Rank

Matching

Class

Matching

Interaction Type

All

Others

1-5 89.4% 7.5% 3.1%

6-10 72.6% 19.8% 7.6%

11-15 39.2% 47.4% 13.5%

16-20 14.9% 56.2% 28.9%

21-25 18.8% 45.9% 35.3%

26-30 0% 37.2% 62.8%

31-35 0% 14.6% 85.4%

Retrieved

Rank

Matching

Class

All

Others

1-5 91.3% 8.7%

6-10 40.6% 59.4%

11-15 13.1% 86.9%

16-20 0.0% 100.0%

The terms Attacking Type and Interaction Type are referred to Tables 2, 3,
4, and 5.

Fig. 22. Interactive retrieval by adjusting the distance between two
characters.

Fig. 23. Interactive retrieval by introducing objects.
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One future direction is to perform a formal perceptual
analysis to obtain real-human perception on the semantic
meaning of interactions. Such a study would involve design-
ing a proper experiment to gather perception data. We can
then cross-reference that to our results and evaluate howwell
our algorithm models human understanding. We may also
consider using supervised machine learning to learn a metric
with the ground-truth perception information.

Another direction is to apply our distance metric for
visualization purposes. In areas such as sports science and
rehabilitation, there are a lot of training exercises involving
human-human or human-object interactions. The proposed
interaction comparison method can better visualize how
two interactions, potentially one from a novice and another
from an expert, are similar or different.

We propose a simple vertex sampling process in Section 4.1
such that the interaction comparison is less affected by the joint
hierarchy of the character. It is an interesting future direction to
explore more advanced methods in vertex sampling, such as
using samples to replace joints, considering the topology of the
joint hierarchy, or even considering the surface information of
the character instead of the skeleton. A good sampling scheme
would facilitate the comparison of interaction with characters
of different joint hierarchies (e.g., having long legs) or even dif-
ferent structure (e.g., havingmultiple arms).

We use a chair as the object in the HOI database as it has a
complex structure and different ways to interact with,
thereby covering a wide range of human-object interactions.
One future direction is to evaluate the method with more
diverse objects, or even to incorporate multiple objects into
the scene. More research can be done tomodel the sub-part of
the object the character interacts, especially for larger objects.

While we demonstrate the method using 2-person and
character-object interactions, it can be applied to single
human activities by representing a posture with an interac-
tion mesh connecting different joints, thereby modelling the
spatial relationship among all body parts. However, unlike
interactions, many single character motions involve minor
spatial differences, such as waving versus pointing. The lack
of an object or another character to interact with results in
less information for the interaction mesh to represent. There-
fore, our method may not have an absolute advantage over
existing ones. One of our future direction is to explore com-
bining interactionmeshwith traditional features such as joint
angles to strengthen single character motion comparisons.

Our proposedmethodwill be less effective for activities in
which there is no close interaction or the characters are far
away from each other, which exist in some general daily
activities. This is because if the body parts of the characters
are not in proximity, the interaction mesh created tend to be
having a similar uniform structure (e.g., similar edge lengths,
similar topology). This increases inter-class similarity and
degrades the retrieval performance. One possible solution to
be explored is to introduce non-linear functions for normaliz-
ing the length and angle of the interactionmesh.

It is challenging to identify semantically similar interac-
tions with a large variety of style or movement strategy. For
example, in a punching-avoiding interaction, the avoider
can duck or back-step. The former involves squatting and
then standing up, while the latter involves only one step
backwards. This explains the challenge in A1.x and A2.x.

Our system performs better than existing ones by focusing
on interaction features. Still, obtaining human-level accu-
racy requires more research.
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