Khaos: Dynamically Optimizing Checkpointing for Dependable Distributed Stream Processing

Geldenhuys, M. K., Pfister, B. J. J., Scheinert, D., Thamsen, L. and Kao, O. (2022) Khaos: Dynamically Optimizing Checkpointing for Dependable Distributed Stream Processing. In: 17th Conference On Computer Science And Intelligence Systems (FedCSIS 2022), Sofia, Bulgaria, 4-7 September 2022, pp. 553-561. ISBN 9788396242396 (doi: 10.15439/2022F225)

[img] Text
276346.pdf - Accepted Version



Distributed Stream Processing systems are becoming an increasingly essential part of Big Data processing platforms as users grow ever more reliant on their ability to provide fast access to new results. As such, making timely decisions based on these results is dependent on a system’s ability to tolerate failure. Typically, these systems achieve fault tolerance and the ability to recover automatically from partial failures by implementing checkpoint and rollback recovery. However, owing to the statistical probability of partial failures occurring in these distributed environments and the variability of workloads upon which jobs are expected to operate, static configurations will often not meet Quality of Service constraints with low overhead.In this paper we present Khaos, a new approach which utilizes the parallel processing capabilities of cloud orchestration technologies for the automatic runtime optimization of fault tolerance configurations in Distributed Stream Processing jobs. Our approach employs three subsequent phases which borrows from the principles of Chaos Engineering: establish the steady-state processing conditions, conduct experiments to better understand how the system performs under failure, and use this knowledge to continuously minimize Quality of Service violations. We implemented Khaos prototypically together with Apache Flink and demonstrate its usefulness experimentally.

Item Type:Conference Proceedings
Glasgow Author(s) Enlighten ID:Thamsen, Dr Lauritz
Authors: Geldenhuys, M. K., Pfister, B. J. J., Scheinert, D., Thamsen, L., and Kao, O.
College/School:College of Science and Engineering > School of Computing Science
Copyright Holders:Copyright © 2022 PTI
Publisher Policy:Reproduced in accordance with the copyright policy of the publisher
Related URLs:

University Staff: Request a correction | Enlighten Editors: Update this record