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Abstract  

Protected areas offer unique opportunities for recreation, but the non-market nature of these benefits 

presents a significant challenge when trying to represent value in the decision-making processes. The 

most common techniques to value recreation are based on resource-intensive primary surveys which 

are difficult to perform at a large scale or in remote locations. This is true in the case of Italy, where 

a large and diverse network of protected areas suffers from lack of data. Here, we offer an alternative 

data source for the valuation of recreation by integrating the metadata of geotagged photographs from 

social media into single-site, individual travel cost models for 67 Italian protected areas. Count data 

model results are generally consistent with standard economic and consumer demand theory for 

ordinary goods, with a zero-truncated Poisson model returning down sloping demand curves for 50 

of 67 sites. A significant travel cost coefficient was returned for 33 sites (p-value <0.05) for which 

consumer surplus estimates were found in the range between €6.33 and €87.16, with a mean value 

per trip of €32.82. Although not without their own challenges, the results presented highlight the 

possibilities of new forms of spatial big data as a novel data source for environmental economists.  

Keywords: social media; spatial big data; travel cost method; protected areas; Italy; recreation; 

Flickr; geotagged photographs. 
 

 

 

 

 

 



 2 

1. Introduction  

Protected areas (PA) provide a range of vital ecosystem services (Haines-Young and Potschin-Young, 

2018) which generate significant value for society (Balmford et al., 2002; Harmon and Putney, 2003; 

Heagney et al., 2019). These spaces are important for ecology and biodiversity while also providing 

a range of important cultural ecosystem services (CES) to humans, including offering spaces to 

engage in recreational activities (de Groot et al., 2012; Kettunen and ten Brink, 2013; Balmford et 

al., 2015). Exploring recreation to PA generally requires detailed visitation data (Schägner et al., 

2017; Spenceley et al., 2021). Given the free access nature of the majority of protected areas, the 

monitoring of access and use is not common and generally only happens as part of a dedicated 

research remit, often relying on time-consuming and expensive survey-based monitoring which can 

quickly become outdated. This is particularly true for large, remote, and geographically dispersed 

protected areas where complexities and costs in data collection are substantial. These issues are true 

in the Italian context given the number of large sites and diverse geography of its natural areas. 

Previous research on the recreational use of natural areas and valuation of its benefits relies on the 

meta-analytical investigation of previous, independently conducted primary valuation efforts (De 

Salvo and Signorello, 2015) or on a limited number of surveyed sites (Schirpke et al., 2018). The 

currently available attempts for a comprehensive characterization of nature-based recreation at the 

country level involve probabilistic approaches to the determination of recreation-driven mobility 

functions, which are primarily informed by indirect, contextual variables such as population density 

and accessibility (Capriolo et al., 2020), and rely on behavioral data extrapolated from surveys 

conducted in other contexts (Paracchini et al., 2014). Due to lack of data, economic valuations of 

country-wide nature-based recreation in Italy were limited to the aggregation of estimated fuel costs 

for reaching the sites (Capriolo et al., 2020) or based on a simple unit value transfer (or average value 

transfer) (Balmford et al., 2015; Schägner et al., 2016). In general, there is a lack of systematic 

monitoring data on recreation and visitation to PA in Italy and the value this creates for society. 

To ensure the non-market benefits of CES are adequately represented in the decision-making 

process, environmental economists implement valuation techniques based on stated or revealed 

preferences (Champ et al., 2013). Of these, the Travel Cost Method (TCM) is the most well 

established for the valuation of recreational benefits. The TCM extracts welfare estimates based on 

the assumption that travel behaviour can be used to infer a demand for access to the recreational 

experience (Parsons, 2013). The TCM comes in a variety of forms, from single-site models focusing 

only on the intensive margin component of recreation decision, to multi-site models. The latter can 

be based on random utility theory, which analyses the extensive margin aspect of recreation behavior, 

or on corner solution frameworks such as Kuhn-Tucker (K-T) models, which exploit both 
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components (intensive and extensive margins) of recreation consumption (Parsons, 2013; Nicita et 

al., 2016). Although the strengths and limitations differ between methods, two consistent challenges 

lie in the resource-intensive nature of the survey process on which these TCM rely and in relying on 

cross-section data for analyses over long time periods (Cooper and Loomis, 1990). 

The global penetration of smartphones and the integration of GPS technology in mobile phones 

have generated large volumes of novel behavioural data for use in environmental research (Ilieva and 

McPhearson, 2018; Ghermandi and Sinclair, 2019; Cui et al., 2021). Available data sources range 

from social media data, such as geotagged photographs (e.g., Flickr, Instagram) or text (e.g., Twitter, 

Weibo), to GPS data generated when users interact with their mobile devices (e.g., call data records). 

These new forms of spatial big data enable researchers to expand the understanding of human 

mobility at wider spatial and temporal scales than traditional forms of survey-based data allow. This 

is particularly important in the context of human-nature interactions where a lack of mobility data is 

a challenge especially in large or remote sites. The last decade or so has witnessed substantial growth 

in the number of studies assessing nature-based recreation using forms of spatial big data (Signorello 

et al., 2018; Ghermandi and Sinclair, 2019; Cui et al., 2021), particularly in the context of protected 

areas (Barros et al., 2021; Wilkins et al., 2021).  

An emerging area of research utilizes spatial big data as a source of revealed preferences for the 

valuation of nature-based recreation which can overcome some of the limitations of primary data 

collection techniques (Fisher et al., 2018; Legget et al., 2017). This opportunity is made possible 

because GPS data has been found as a suitable proxy for recreational visitation to natural areas (Wood 

et al., 2013) and also as a source of data to estimate the home location of visitors to natural areas 

(Sinclair et al., 2020a). Combining these factors with the TCM technique may allow researchers to 

generate estimates of recreational value without the need to undertake resource-intensive surveys. 

Towards this end, spatial big data from mobile phones and social media have recently been utilized 

to value recreation in the context of national parks (Sinclair et al., 2020b), urban greenspace (Cui et 

al., 2021), wetlands (Ghermandi, 2018; Sinclair, Ghermandi and Sheela, 2018), lakes (Keeler et al., 

2015) and beaches (Jaung and Carrasco, 2020; Kubo et al., 2020). Research findings so far are 

promising, with value estimates comparing well to those generated by representative surveys (Sinclair 

et al., 2020b). However, most research has applied the zonal TCM, i.e., a simple variant of TCM that 

lacks strong theoretical support (Loomis and Walsh, 1997), and applications have been restricted to 

a selection of larger more remote sites or a large selection of smaller sites. An opportunity exists to 

use these new forms of spatial big data to extend the analysis to a large sample of large and dispersed 

sites while also testing different types of TCM.  
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 In this paper, we explore a novel approach to value recreation at large spatial scales and without 

the need for expensive field-based surveys by integrating geo-location data from social media 

photographs into the individual TCM valuation technique, and demonstrate it in application to 67 

national parks and protected areas in Italy. Compared to previous research, the novelty of the research 

is twofold. Firstly, we expand on the literature in terms of the complexity and specifications of TCM 

tested, demonstrating how such techniques can be applied to the large spatial scale, number and 

diversity of study sites represented by the entire set of the largest terrestrial protected areas in Italy. 

Secondly, we go some way to filling an empirical gap in knowledge on recreational value through 

the case study application of Italy’s protected areas and national parks where there is a general lack 

of systematic data on recreation. 

2. Materials and methods 

2.1 Extracting Flickr geotagged photographs in Italian protected areas  

Boundaries for Italian PA were extracted from The World Database of Protected Areas (WDPA), the 

most comprehensive global database of marine and terrestrial protected areas1 (UNEP-WCMC and 

IUCN, 2020). The spatial boundaries of Italy’s 25 national parks as well as terrestrial PA with a 

designated International Union for Conservation of Nature (IUCN) category and an area over 100 

km2 were extracted from the database for use in the project. We limited the investigation to relatively 

large PA in the hope that an adequate number of geotagged photographs were available. This 

limitation can be overcome in future studies, by using data fusion techniques to integrate in the 

analysis data from multiple social media sources, such as Instagram and Twitter (Ghermandi et al., 

2020; Ma, Kirilenko and Stepchenkova, 2020). This resulted in a total of 67 PA, the spatial extension 

of which are represented in Figure 1 (see Appendix S1 for the full details of the PA). The metadata 

of public geotagged Flickr photographs (https://www.flickr.com/) taken within these 67 PA was 

collected using code written in R 3.5.0 (R Core Team, 2020) by calling the “flickr.photos.search” 

function on the website’s application programming interface (API). Data were retrieved for the period 

between January 1, 2005 and December 31, 20182 using a georeferenced bounding envelope for each 

PA. The data collected includes the GPS coordinates, user ID, photo ID and timestamp. Photo-user-

days (PUD), i.e., unique combinations of user ID, date and recreation site, were extracted from the 

dataset for each PA to correct for the fact that a single user can take multiple photographs during a 

single visit (Wood et al., 2013).  

 
1 Protected areas which were entirely marine were not included (coded 2 by the WPDA). 
2 Data was extracted before the change of Flickr ownership, from Yahoo to SmugMug, which occurred between 

2018/2019 and led to alterations in the website’s free service, ultimately limiting the number of photographs a user could 

upload to 1000. Data from 2019 and 2020 was not included in the analysis because the changes in data availability would 

have led to inconsistencies in the database.  
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 To test the suitability of the Flickr data in the study area it is common to compare PUD with 

visitor numbers from official sources. Doing so allows to test the fit of the data and to facilitate 

predictions on the number of annual visits for sites where official data is absent. Unfortunately, in the 

case of Italy, there is a general lack of official visitor data for natural areas. In absence of 

comprehensive visitor data for the 67 PA, we utilize estimated visitor days to the 25 national parks 

available for 2016 (latest available data), based on stays at lodging facilities located within the park 

boundaries3. After removing the two marine national parks, justified by the expected reduced use of 

phones and cameras while undertaking water-based recreation activities (Ghermandi et al., 2020), an 

ordinary least squares model was administered:  

 

𝑙𝑜𝑔𝑌 𝑖 =  𝛽0 + 𝛽𝑃𝑈𝐷 𝑙𝑜𝑔𝑃𝑈𝐷𝑖 + 𝛽𝐴𝑅𝐸𝐴 𝐴𝑅𝐸𝐴𝑖  +  +  𝜀     (1) 

 

where Yi is the natural logarithm of the visitor days for the ith site in 2016; PUDi is the total PUD 

count for the ith site (2005-20184); AREAi is the area in square kilometers for the ith site; β0, βPUD and 

βAREA are the intercepts and slope coefficients respectively, and ε is the error term. The assumption 

of normality for the distribution of residuals was tested with the Shapiro-Wilk diagnostic test and 

outliers were checked using Cook's d. Potential heteroskedasticity of the residuals was investigated 

using the Breusch-Pagan test. Testing for outliers returns one park (Parco Nazionale Del Gran Sasso 

E Monti Della Laga5) with a Cook's d of 0.50, which substantially exceeds the conventional threshold 

of four times the average value of d (mean d = 0.055). This park was removed, and the regression 

redone with a sample of 22 sites. This final model was used to estimate annual visitation for PA using 

the total PUD and area for the respective site. 

 

2.2 Home location analysis of social media visitors  

For all visitors, a home city was extracted from the social media profile where publicly available by 

calling the “flickr.people.getInfo” function on the website’s API. For users who did not provide a 

home city, we inferred a home location based on their public geotagged photographs. Research has 

shown that the public social media data of a user can be used to assign a home region with good 

 
3 https://annuario.isprambiente.it/ada/downreport/html/7032  
4 We also tested the analysis on Flickr data from 2016 only but found results were weaker than aggregating 2005-2018 

data. This could be because aggregating data provides a larger sample for the analysis while also accounting for the 

changing number of Flickr users when using data from one year only.   
5 This park has the lowest density of accommodation establishments and beds among all national parks (data is for 

2016, same source as the visitors data): since the visitors data we have is based on visitor days in accommodation 

establishments, it stands to reason that the official data might be somewhat off in a site that has a low density of such 

establishments since it might overlook day-time hikers (according to Iezzi and Zarelli (2015) most visitors in the Gran 

Sasso are "hikers who know the area", thus presumably including a lot of locals). 

https://annuario.isprambiente.it/ada/downreport/html/7032
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accuracy (Ghermandi, 2018; Sinclair et al. 2018; Sinclair et al., 2020a). For the subset of users who 

did not state their home city, we first estimated their home country using the Database of Global 

Administrative Areas (GADM, v2.8) (https://gadm.org/). The home country was assumed as that 

where they recorded the most active days, given the location of their entire library of public Flickr 

photographs. This is the most accurate technique recorded in the literature (Sinclair et al., 2020). For 

the subset of Italian visitors, we subsequently estimated their home region6 using the same technique 

that was performed at country level. Finally, for use in the TCM analysis, a unique latitude and 

longitude home location was estimated for each Italian visitor by mapping the public photographs 

within their home region and determining the coordinates which minimised the mean distance 

between the points7 (Sinclair et al., 2018; Sinclair et al., 2020b). 

 

 

Figure 1: location and ID of protected area study sites in Italy 

 

2.3 Crowdsourced travel cost method  

 
6 Using the second spatial level of the Database of Global Administrative Areas (GADM, v2.8) (https://gadm.org/) which 

corresponds in Italy to level two of the EU-Nomenclature of Territorial Units for Statistics (NUTS2). 
7 For users who stated their home city, we took the coordinates from the Google Maps API.  

https://gadm.org/
https://gadm.org/
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To perform an individual TCM for each site, it was necessary to extract the number of trips an 

individual made to a site, his or her income (for the estimation of the opportunity cost of time), and 

the associated travel costs. The number of trips to PA was extracted from the database of PUD for 

each visitor (see section 2.1). In absence of individual income data for Flickr visitors, we estimated a 

proxy of individual income using data available at municipality level8, transformed into an hourly 

rate (Eurostat, 2021). Estimating a visitor’s travel was performed in five stages. First, we extracted 

the point on the PA boundary which minimized the straight-line distance from a visitor’s home 

location (see section 2.2) using the ‘dist2Line’ function of the geosphere package (v1.5–10; Hijmans, 

2019) in R 3.5.0 (R Core Team, 2020). We considered this as a conservative estimate of the distance 

given it is the closest point on the PA to a visitor’s home. Second, to calculate the round-trip distance 

and travel time based on the road network between this point and the home location, we called the 

Google Maps distance matrix API using the R package ‘gmapsdistance’ (v3.4; Melo et al., 2018). 

Third, to assign drive cost to a return trip, we used a rate of 0.14 €/km based on an estimated car 

occupancy rate of two, following analysis done by Capriolo et al (2020). Fourth, income was used to 

calculate an opportunity cost of travel at a fractional rate of one third of an individual’s income which 

is common in the literature (Parsons, 2003). Finally, the opportunity cost and the return drive cost 

were combined to complete the travel cost for a trip. 

  The application of an individual TCM using data from a long period of time, like in the present 

study, requires careful consideration. Previous research has recommended multiple one-year cross-

section models for the analysis of multi-year travel cost data, in light of the potential instability of 

demand parameters (Hellerstein, 1993; Cooper & Loomis, 1990). In spite of their potential to control 

for otherwise unobservable individual-specific factors, panel estimators were found to have inherent 

problems in travel cost analysis, thus limiting their usefulness (Hellerstein, 1993). Both modeling 

strategies are unfortunately unfeasible in the present study, considering the relatively small annual 

sample size in several of the investigated sites. Even when tested in the site with the largest number 

of data points (i.e., Parco Regionale Dei Monti Lattari), the results of multiple one-year models were 

largely inconclusive, likely due to the small number of data points available for each year (ranging 

between N=8 and N=76)9. Of the 14 yearly models for which we could estimate a truncated Poisson 

model (each year between 2005 and 2018), only three returned a statistically significant coefficient 

for the travel cost variable, albeit in all three cases with the expected negative sign. We opted thus to 

 
8 As a proxy of income, annual gross domestic product per capital at a municipality level (averaged between 2005-2018) 

was transformed into an hourly rate based on a 38-hour working week (see Appendix S8 and S9). 
9 Although the database covers the entire period 2005-2018, the vast majority of users are only active over a fraction of 

it. For the Parco Regionale Dei Monti Lattari, for instance, the average time between the first and the last geotagged 

photo uploaded by individual visitors is 1.4 years, with 93% of the users active for only one year or less. 
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rely on pooled models as an alternative modeling strategy. The rationale for this is that both 

aforementioned studies (Hellerstein, 1993; Cooper and Loomis, 1990) observed that, although they 

were obviously unable to capture the dynamics of temporal variation of demand parameters, pooled 

models provided good estimates of the average consumer surplus (CS) over the entire considered 

time period, which is consistent with the objectives of the present study.  

Pooled, single-site individual models were thus estimated for each of the 67 PA using various 

count data regression models (Hilbe, 2011, Hilbe, 2014; Cameron and Trivedi, 2013). Poisson and 

Negative Binomial (NB1 and NB2) regressions were considered as well as zero-truncated versions 

of both models, to account for the lack of zero values in the data. The Poisson model is frequently 

used in the literature for count data (Hellerstein and Mendelsohn, 1993) while the NB1 and NB2 help 

to account respectively for under and over dispersion, frequently present in travel cost data 

(Hellerstein and Mendelsohn, 1993; Haab and McConnell, 2002)10. No correction for endogenous 

stratification is applied (Shi and Huang, 2018) since, unlike in onsite surveys, frequent visitors are 

not more likely to be sampled than occasional visitors when using social media data.   

For each PA, we consider visitors who made a return drive of 240 km or less as a conservative 

cut off for a daytrip (we also test the sensitivity of halving this value to 120 km). The number of PUD 

observed for each visitor was entered as the dependent variable to each regression model. It was 

regressed against a visitor's income and their travel cost inclusive of opportunity cost of time11. The 

model for each PA was as follows: 

 

𝑙𝑜𝑔𝑌 𝑖 =  𝛽0 + 𝛽𝑇𝐶  𝑇𝐶𝑖 + 𝛽𝐼 𝐼𝑖  +  +  𝜀         (2) 

 

where Yi is the natural logarithm of the PUD for the ith visitor; β0 is the intercept of the model; TCi is 

the travel cost incurred per trip (in €) for the ith visitor; βTC is the coefficient of TCi; Ii is the individual 

income (€/hour) for the ith visitor; βI is the regression coefficient of Ii;  is the dispersion parameter 

which is returned for the NB1 and NB2 regressions, and ε is the error term. The most appropriate 

model is selected for further analysis based on appropriate statistical criteria - such as the Bayesian 

Information Criterion (BIC), the Akaike Information Criterion (AIC) - and Z statistical test on 

dispersion parameter  (Cameron and Trivedi, 1990; Hilbe, 2011; Hilbe, 2014). 

 
10 Poisson regression model assumes that the variance of the dependent variable is equal to its mean (equidispersion 

hypothesis). Negative binomial models relax this assumption by including the estimation of a dispersion parameter , 

which is set to zero in Poisson models. In the NB1 model the variance is a multiple of the mean. In the NB2 model the 

variance is quadratic in the mean (Cameron and Trivedi, 2013). 
11 A third variable, return travel cost to the nearest substitute site, was considered but removed because the 67 PA included 

in the analysis represent a selection of the potential substitute sites for visitors but not all of them. Defining what could 

be considered a potential substitute was not feasible given the scale of the analysis.   
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For PA which return a negative and statistically significant TC coefficient (p-value <0.05), 

we use the selected model to calculate the compensating Marshallian Consumer Surplus12 per visit 

(CStrip) following Creel and Loomis (1990): 

 

𝐶𝑆𝑡𝑟𝑖𝑝 =  −
1

𝛽𝑇𝐶
                  (3) 

 

where βTC is the regression coefficient of the travel cost variable in the model.  

 For the selection of PA where a CS value is reported, we also estimate annual CS values using 

the predicted annual visits returned from the calibration model presented in section 2.1.  

3. Results  

3.1 Summary of spatial big data in Italian protected area  

Extracting geotagged Flickr photographs within the PA boundaries resulted in 231,655 photographs. 

These photographs represent 45,078 PUD captured by 17,105 unique visitors. Figure 2 shows the 

number of PUD for each PA and the inferred home locations of Italian visitors. The home city was 

available for 6240 of the 17,105 visitors, 3184 (51%) of which were Italian. Of the remaining 10,865 

visitors, the photograph libraries were available for 10,667. It was possible to estimate a home country 

for 10,620 of those users based on the metadata of their public Flickr photographic library. After 

assessing home location of the available sample (16,841), 9862 were Italian (~59%), 4299 were from 

other European countries (~26%) and 2680 were international (~16%). Figure 3 shows the magnitude 

of visits to PA, aggregated regionally (see Figure 1 for regional boundaries), based on the home 

designation of the visitor (see appendix S2 for more details). As expected, Italian visitors make up 

the majority of visits to PA across all regions, followed by other European and international visitors, 

respectively. Of the 9862 Italian visitors, a home region could be determined for 955213 (97%), the 

geographic coverage of which is spatially represented in Figure 2.  

 PUD counts were found to be significantly correlated (Spearman's rho=0.610, p-value<0.01) 

with visitor days in 2016 based on the calibration model for 22 sites (see section 2.1). This is in the 

range found by previous studies (see Barros, Gutiérrez and García-Palomares, 2021). The results of 

the ordinary least squares regression show that PUD counts and area are able to explain most of the 

variation in the dependent variable (R2 = 0.74; Adj. R2 = 0.71; n = 22). Predicted visits from the model 

 
12 For PA which return statistically significant coefficient values (p-value <0.05) with the expected sign for both travel 

cost and income variables (negative and positive respectively), we also calculated compensating variation and equivalent 

variation as a better approximation of economic benefits (Bockstael et al., 1984; Anderson, 2010). Results showed that 

income effects were minimal and therefore the Marshallian measure of consumer surplus can serve as a good 

approximation of the economic value of a recreational trip (Anderson, 2010). To make comparison between values 

possible in the paper, we only report Marshallian measure of consumer surplus in the results. 
13 Those who could not be determined was because they returned more than one possible home region.  
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(after retransformation from the log-scale14) are significantly correlated with observed visits for the 

22 sites (Spearman's rho = 0.802, p-value <0.001). Area and PUD are not highly nor significantly 

correlated (rho = 0.333, p-value = 0.131) and both variables are significant in the regression (p-value 

<0.01). Assumptions regarding normality of residuals and homoskedasticity are respected.  

 

Figure 2: Photo-user-days (PUD) to protected areas (2005-2018) and distribution of estimated home 

locations for Italian visitors 

 

 
14 We also tested Duan’s smeaning technique (Sinclair et al., 2019) but this did not improve the fit compared to the 

naive estimate. 
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Figure 3: Aggregate photo-user-days to protected areas by region and visitor designation  

Note: European visits exclude Italian visits 

 

3.2 Spatial big data and economic estimates 

The zero truncated Poisson model was selected as the most appropriate model of the four tested (the 

results of all models are available in appendix S5). The results of this model are summarized visually 

in Figure 4 (see Appendix S3 for tabular results). Only PA with a significant travel cost coefficient 

are presented (p-value <0.05). Of the 67 PA, 55 returned a negative travel cost coefficient as expected 

from economic theory (representing a down sloping demand curve), of which 33 were significant at 

the 95% level. The income coefficient was positive and significant for 22 of these PA (as is expected 

from economic theory) with 13 sites significant at the 95% level. The number of visitors included in 

the models presented in Figure 4 range between 17 and 488, with the Central regions returning 

consistently higher samples than the other regions (range: 124 to 318). For 28 of the presented sites 

(85%) we had a sample size of more than 40 visitors, while 20 sites (61%) had a sample size of over 

100 visitors and 8 (24%) had a sample size of over 200 visitors.  
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Figure 4: results from the travel cost model using spatial big data 

Note: results are based on the zero-truncated Poisson model with a 240 km return drive cut off (tabular results are 

presented in Appendix S3); only PA with a significant travel cost coefficient are included (p-value <0.05); a red bar 

between coefficients indicates a non-significant income coefficient (p-value >0.05) while a black bar indicated a 

significant income coefficient (p-value <0.05); the number in brackets is the sample size included in the model. 

 

Figure 5 compares the travel cost model using a sensitivity of drive buffers based on 120 km and 240 

km return trips. In comparison to the 240 km cut off, the zero truncated Poisson model based on a 

120 km return drive results in less PA with the expected negative and significant travel cost coefficient 

(28 PA). Combining negative and significant results from both drive cut-off levels would result in 41 

PA (~61% of total). Twenty PA are significant at both levels while 21 are significant at one level but 

not the other (120 km = 8 PA, 240 km = 13 PA). The South region, which has the most PA in the 

study area, returns the highest number of PA with the expected outputs while also returning the 

highest number of PA with results consistent across the two drive buffers. In the North-East and 

North-West, more PA return significant results at the 120 km buffer.  
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Figure 5: number of protected areas with significant and negative travel cost coefficients using a 

sensitivity of return drive distances 

Note: results are based on the zero truncated Poisson model presented in Figure 4; only parks with return a negative and 

significant trave cost coefficient are presented (p-value <0.05). 

 

The CS values per trip are presented in Figure 6 for 33 PA based on the results of the zero truncated 

Poisson model (Figure 4). CS values estimates range between €6.33 and €87.16, with a mean value 

per trip of €32.82. Parco Naturale Provinciale dell'Adamello Brenta returns the highest value while 

Parco dei Sicani returns the lowest value. Results should be considered in the context of the sample 

of visitors included in the model, where Parco dei Sicani has the lowest sample size of the PA (visitors 

in the model = 17). While there is no clear regional pattern in the results of CS values, the South and 

North-East regions have 5 out of the top 6 CS values. Using the results of the calibration model 

presented at the end of section 3.1 we estimate annual visitor days and aggregate consumer surplus 

values for these 33 PA (Table 1).   
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Figure 6: consumer surplus value per trip for Italian protected areas  

Note: results are based on the zero truncated Poisson model presented in Figure 3; values are in 2018 €/trip based on a 

rate of 0.14 €/km.; the numbers in parenthesis reflect the number of visitors in the sample for that PA; grey bars represent 

the boundaries of the 95% confidence intervals; tabular results are presented in Appendix S6.  

 

Table 1: Estimated annual visitor days and consumer surplus values for select protected areas 

ID Name Region 
Estimated 

visitor-days 
Estimated 

consumer surplus 

2 Parco Nazionale Del Gran Paradiso North-West 487,095 € 23,458,485 

4 Parco Regionale Delta Del Po (Er) North-East 191,641 € 4,927,087 

7 Parco Naturale Fanes - Sennes E Braies North-East 282,479 € 11,044,933 

8 Parco Naturale Dolomiti Di Sesto North-East 204,734 € 12,601,365 

9 Parco Naturale Delle Alpi Marittime North-West 90,975 € 1,916,839 

12 Parco Naturale Provinciale Dell' Adamello 
Brenta 

North-East 439,920 € 38,343,398 

16 Parco Naturale Vedrette Di Ries - Aurina North-East 92,284 € 925,609 

17 Parco Nazionale Della Val Grande North-West 65,903 € 1,024,784 

18 Parco Nazionale Delle Foreste Casentinesi, 
Monte Falterona E Campigna 

North-East 211,175 € 11,713,875 

20 Parco Nazionale Delle Cinque Terre North-West 770,095 € 41,723,725 

21 Parco Regionale Del Delta Del Po (Ve) North-East 60,441 € 1,376,856 

22 Parco Naturale Delle Dolomiti Friulane North-East 135,759 € 2,382,570 
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24 Parco Naturale Lombardo Della Valle Del 
Ticino 

North-West 266,374 € 8,468,044 

25 Parco Nazionale Del Circeo Centre 227,934 € 11,070,748 

27 Parco Naturale Regionale Monti Simbruini Centre 160,528 € 2,009,810 

29 Parco Naturale Regionale Delle Alpi Apuane Centre 164,933 € 7,161,371 

30 Parco Nazionale Dei Monti Sibillini Centre 952,141 € 11,263,824 

32 Riserva Naturale Litorale Romano Centre 323,577 € 2,831,298 

33 Parco Del Lago Trasimeno Centre 291,900 € 22,820,772 

35 Parco Naturale Regionale Del Complesso 
Lacuale Bracciano - Martignano 

Centre 201,999 € 2,492,670 

39 Parco Nazionale Dell'Abruzzo, Lazio E Molise South 289,274 € 12,592,092 

45 Parco Dell' Etna Islands 733,807 € 11,975,722 

47 Parco Nazionale Del Pollino South 1,500,899 € 129,032,296 

49 Parco Nazionale Del Gargano South 1,642,032 € 31,494,182 

50 Parco Nazionale Del Gran Sasso E Monti 
Della Laga  

South 2,118,573 € 174,061,994 

52 Parco Nazionale Del Golfo Di Orosei E Del 
Gennargentu 

Islands 538,890 € 16,393,043 

54 Parco Nazionale Della Maiella South 368,523 € 6,924,547 

58 Parco Regionale Del Taburno - Camposauro South 90,974 € 895,187 

60 Parco Regionale Dei Monti Lattari South 778,758 € 22,724,156 

61 Parco Naturale Regionale Serre South 36,202 € 376,858 

62 Parco Nazionale Dell'Appennino Lucano - Val 
D'Agri - Lagonegrese 

South 162,360 € 1,839,541 

63 Parco Nazionale Dell'Alta Murgia South 271,966 € 3,761,292 

67 Parco dei Sicani Islands 63,974 € 404,953 

Note: CS values are from figure 6 and only PA with significant TCM results from figure 4 are included. Values are in 

2018 € based on a rate of 0.14 €/km in the TCM. 

4. Discussion  

4.1 Spatial big data for revealed preferences research 

This paper presents a novel and low cost approach to estimate the value of nature-based recreation in 

large and remote natural locations using social media data as an alternative to traditional primary 

survey-based techniques. Through the case study of 67 Italian PA, we apply the individual TCM 

technique using the metadata of free and publicly available geotagged photographs as an alternative 

to visitor surveys and extend the state of the art by testing various model specifications and a 

sensitivity of drive distances on the TCM results while also extending the size and volume of natural 

sites included in the analysis for a region where limited data exists.  

 Previous studies have found spatial big data to be a reliable data source for TCM analysis, 

returning model results which are consistent with economic theory (Ghermandi, 2018; Sinclair, 

Ghermandi and Sheela, 2018; Jaung and Carrasco, 2020; Kubo et al., 2020) and comparable to results 

generated based on representative primary surveys (Sinclair et al., 2020b). Here we tested, for the 

first time at national scale, the potential of using these data in single-site individual TCM, using four 
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different model specifications and across a sample of 67 PA. We find results consistent with economic 

theory with a down-sloping demand curve for most sites across all models. The zero-truncated 

Poisson model was selected as the most suitable model from which to perform further analysis, 

outperforming the other models based on the econometric results (see appendix S5). Using this model 

with a sample of visitors who made a return drive of 240 km or less, 50 PA (75%) returned a negative 

travel cost coefficient with 33 PA significant at the 95% level. Testing the sensitivity of different 

drive distances showed that the larger 240 km buffer returned more sites with the expected findings. 

This was particularly true for the Northern regions. In the Centre and South, we find that many PA 

return results which are consistent using both drive buffers with only a few PA in each region 

returning the expected results at one or the other distance.  

Regionally, the North-West which has the smallest sample of PA in the study (8 sites) returned 

~63% of sites with a significant TC coefficient result (p-value <0.05). This is somewhat higher than 

the other regions which have a range between ~38% and 50%. In terms of the sample of visitors 

included in the models, the Central region has a consistently higher number than other regions which 

has been shown to generate more reliable results based on previous findings (Sinclair et al., 2020b). 

A lack of data for some sites meant that we could not generate TCM results. This lack of data could 

be owing to the fact that social media visitors are less likely to visit certain sites or that they represent 

less iconic PA and therefore people are less likely to share experiences in these sites, leading to their 

under-representation in the data. This is something which is generally noted as a limitation in the 

literature (Ghermandi and Sinclair, 2019).  

 

4.2 Recreation valuation estimates for Italian protected areas  

Value estimates based on TCM using geotagged photographs from Flickr have been shown to return 

value estimates for nature-based recreation which are similar to those obtained using representative 

surveys (Sinclair et al., 2020b). Although we cannot directly compare the value estimates presented 

here to results based on primary surveys, owing to a lack systematic valuation data for the study sites, 

we can look to past valuations for some natural sites in Italy as a comparison (Signorello et al., 2009; 

De Salvo and Signorello, 2015). A meta-analysis including 265 estimates of daily CS based on 46 

primary studies in Italy reported a mean CS per visit of €9.69 (in 2013 prices), with values in the 

range of €0.90–63.24, which are generally in the range of our results albeit with an average CS which 

is around three times lower. We under or overestimate the CS value for some parks, Etna for example, 

where previous results returned a consumer surplus value of €31.25 per trip which is around twice 

that found in our analysis (€16.32 per trip) (Signorello et al., 2009). 
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Extending the valuation results to explore aggregate annual values based on the estimated 

number of trips to sites is important for a wider perspective. These results have the limitation that the 

calibration of visits is based on all Flickr PUD while the CS values rely only on local visits (within a 

240 km return drive). Our results therefore must assume that the value a tourist places on a trip is 

equivalent to that of a local. The results should therefore be viewed in that context. 

 

4.3 Limitations and future directions  

While the research presented here offers a low cost and scalable alternative to traditional primary data 

collection techniques to perform TCM, some limitations should be noted. A non-trivial complication 

with the TCM more generally, is how to account for multiday and multipurpose trips. In the 

application of social media data to the TCM, this complication is amplified. In this study, we have 

assumed that all trips are daytrips and we have not accounted for potential multipurpose trips, owing 

to the nature of the data it is difficult to determine these factors accurately at the scale of analysis 

undertaken here. To compensate, we only include trips which can reasonably be considered as day 

trips by segmenting trips at a 240 km return drive distance (120 km was also tested). Better 

understanding the issue of multiday and multipurpose trips when using social media data for TCM 

metrics investigation but was outside of the scope of this research given the number of large sites 

included here.  

Selection bias is an unavoidable limitation of using social media data in research and the 

geographic and socio-demographic representation of social media users is an area of ongoing research 

(Lenormand et al., 2018; Ghermandi and Sinclair, 2019). Certain biases are expected to be introduced 

to the analysis in so far as mobile phone and social media users generally tend to represent a younger 

and wealthier demographic of visitor (Hausmann et al., 2018). Despite this, previous studies into 

human-nature interactions have shown Flickr data to be geographically comparable to survey data in 

terms of visitor provenance (Sinclair et al., 2020a) and regional visitation levels (Sinclair et al., 

2020b). In terms of preferences for nature-based recreation, results revealed by the analysis of Flickr 

photographic content are not found to be significantly different from preferences stated in primary 

surveys (Hausmann et al., 2018) although it is not clear if this finding is consistent with different 

natural areas across different countries.  

The relatively small annual sample size that was available for the sites under consideration in 

this study limited the analysis to the investigation of pooled travel cost models, rather than multiple 

one-year cross-section models. While these can provide an estimated average value of per-trip CS 

over the considered time period, they are unable to capture the dynamics of temporal variation of 

demand parameters and as such should be used carefully, if at all, in discussing temporal trends and 
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in forecasting. We suggest that future research will explore whether such limitations can be overcome 

through the integrated investigation of data from multiple social media sources, which has the 

potential to greatly enhance the size of the data samples available for analysis. Pooling data across 

many platforms may also allow for activity-specific travel cost modeling for a range of activities 

(given the further reduction in sample size at the activity level). Relying on data from multiples 

sources was also found to increase the correlation between social media data counts and observed 

visitation in a recently published meta-analysis (Ghermandi, 2022).  Currently, however, analytical 

techniques to control for the different ways in which social media users interact with the individual 

platforms as well as changes in popularity of specific sites over time are lacking.  

 One should also point out that potential temporal variation of demand parameters is a frequent 

concern in TCM applications when the results of the analysis of cross-section data (e.g., from one 

year or one season of monitoring) need to be extrapolated over long time periods (e.g., for cost-benefit 

analyses). Cooper and Loomis (1990) have shown, for instance, how reliance on one single year of 

data can lead to substantial errors in the estimation of future benefit streams. Some authors have 

argued that because of the costs involved in collecting individual-level data, zonal TCM based on 

data routinely collected by management agencies may become indispensable for analyses over 

lengthy timescales (Weber et al., 2012). This paper, albeit with the aforementioned limitations, shows 

that user-generated content from social media can provide a valuable source of revealed preference 

data that can be tapped into for individual-level analyses, including at broad temporal and spatial 

scales. However, despite the great potential of new sources of data, in certain cases the sample size 

remains a challenge at the site level even for them. 

We believe that the results presented here and the expanding literature in this area should 

garner support for this novel data as a source of revealed preferences for use in environmental 

economics. Future research can be further extended and analysis developed to include emerging 

forms of spatial big data generated by the use of mobile phones applications, a data source which is 

gaining traction for human mobility analysis at high resolutions and wide spatial scales (Khataee et 

al., 2021; Sinclair et al., 2021). Combining automated photograph content analysis (Ghermandi et 

al., 2020; Runge et al., 2020) with valuation estimates may allow to develop TCM techniques based 

on specific types of recreation (e.g., cycling or boating) and stratify value estimates accordingly. The 

nature of these novel data sources also lends well to more complex implementations of TCM 

including multi-site RUM and K-T models which can help account for some of the previously 

mentioned limitations of the individual single site TCM.   

  

4.4 Conclusion 
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Using a large sample of Italy’s protected areas and national parks, this research sheds light on the use 

of spatial big data as a source of revealed preferences which can facilitate non-market valuation at 

wide spatial scales with limited resources as an alternative to traditional methods of data collection. 

Testing four TCM models across the wide sample of sites returned consistent results across most PA. 

The zero-truncated Poisson model was found to perform best with value estimates generated in the 

range of previous primary valuation studies in Italy, despite some site specific under or ever 

estimation. Although the limitations inherent with spatial big data merit further investigation, this 

novel and emerging data source offers a unique potential for environmental economists and other 

environmental researchers as a low-cost alternative to traditional survey data for revealed preferences 

analysis. This growing resource of behavioural data extends to wide spatial scales, the potential of 

which has only begun to be tapped by environmental economists.  
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