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Abstract-- Characterization of the exact critical current density 

(Jc) and stress values in twisted superconducting tapes plays an 

important role for analysing their magnetic, thermal, and 

mechanical behaviours. In this paper, a model based on Artificial 

Neural Network (ANN) is introduced to estimate the electro-

magneto-mechanical characteristic of different superconducting 

tapes. For this purpose, magnetic flux density, temperature, strain, 

total thickness of tape, their width, thickness of stabilisers, and 

thickness of substrates are used as inputs to ANN model whilst 

minimum normalised Jc and maximum stress are considered as 

outputs. The required experimental data are extracted from 

published papers in literature. The ANN model was trained for 

Jc/stress estimation using extracted data for different inputs. 

Sensitivity analysis was conducted on ANN models which were 

used to estimate the Jc and stress values of tapes, to choose an 

optimum structure for ANN models to be used in future by other 

scientists in the superconductivity community. To check the 

reproducibility, repeatability, and stability of presented results, 

the estimations with ANN optimum structure were tested for 500 

testing runs. We found that the ANN optimum structure was as 1 

hidden layer with Levenberg-Marquardt training method and 7 

inputs. Comparing to the literature, the proposed ANN model 

offers about 15% and 1.1% higher accuracy in Jc and stress 

estimations, respectively. 

 
Index Terms-- ANN, Critical current, Magnetic field, HTS 

tapes, Stress, Strain, Temperature.  

I.  INTRODUCTION 

UPERCONDUCTING technology is generally very 

promising for being used for applications in power systems, 

aviation industry, and healthcare sector in devices such as 

magnetic resonance imaging/nuclear magnetic resonance 

magnets [1]–[5], High Temperature Superconducting (HTS) 

cables [6]–[8], superconducting machines [9], [10], 

superconducting fault current limiters [11], [12], 

superconducting magnetic energy storage units [13], [14], and 

HTS transformers [15], [16]. In superconducting magnets, as 

one of the most successfully commercialised applications of 

superconductors, low temperature superconducting wires and  
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Figure 1. Twisting of HTS tapes in form of CORC cables in HTS magnets, 

figures adapted from [2]–[5]. 

also HTS tapes and cables are used in the form of coils to 

generate the required magnetic field with required properties 

[17], [18]. 

As shown in Figure 1, usually in magnet applications, HTS 

tapes and cables are twisted to build up the coils and the magnet 

systems [2]–[5]. Twisting of HTS tapes causes local critical 

current density (Jc) reduction and stress increase. Thus, exact 

estimation of the Jc and stress values is a vital task during the 

design stage of superconducting magnets and cables which can 

be affected by multiple factors such as magnetic flux density, 

temperature, strain, thickness of tapes, and thickness of 

different layers in coated conductor [19], [20]. Performing 

experimental tests or using Finite Element Methods (FEMs) for 

characterising electro-magneto-mechanical behaviour of 

superconducting tapes is costly and time consuming whilst it 

can be handled easier and much faster by using  
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Figure 2. The internal structure of a simple ANN model containing inputs, 

weights, bias numbers, net signal, activation function, and model output 

 

Artificial Intelligence (AI) technique-based models. These 

models are capable of considering multiple variables for 

determining the characteristic of HTS tapes without giving up 

on the accuracy or estimation speed. Last recently, AI models 

were used to design [21], monitor [22], and estimate [23] 

different characteristics and performances of superconducting 

devices. In [24], a novel AI approach was introduced to estimate 

the stress and Jc in HTS tapes. However, it did not consider the 

thickness of stabilisers and substrates in the model. However, 

the substrates work as mechanical protection of HTS layer in 

coated conductor tapes. Thus, considering their thicknesses for 

stress/Jc estimation could increase the accuracy of the model.  

Due to the application of HTS tapes in superconducting 

cables of magnet systems, accurate AI-based models with the 

capability of Jc and stress estimation, could help the researchers 

to design a magnet with a higher magnetic field homogeneity, 

low possibility of pre-mature quenches, lower local Jc 

reduction, and higher reliability [1]. This is especially the case 

for applications that a very accurate and multi-physical 

characteristic of HTS magnets are needed that is usually 

difficult or very time-consuming to acquire by FEMs. 

Therefore, in this paper, a novel method based on Artificial 

Neural Network (ANN) models is introduced - for the first time 

- to estimate the Jc/stress characteristic of different Second 

Generation (2G) HTS tapes whilst the thicknesses of stabilisers 

and substrates, strain, magnetic flux density, temperature, total 

thickness of the tape, and its width are considered as inputs for 

the proposed ANN model. Considering all of these properties 

as inputs makes the estimation of electromechanical 

characteristic more accurate. To accomplish such a goal, and 

after extracting the experimental results presented in [25]–[32], 

firstly, a series of preliminary results are illustrated to show the 

capability of ANN model in estimating the Jc and stress of the 

tapes. In addition, sensitivity analysis was conducted to choose 

an optimum structure for the proposed ANN model. It should 

be also mentioned that for training ANN model, 70% of the total 

data were used while the ratio of test data and validation data 

were 15% each. The next step is showing the stability and 

reproducibility of results by running the model for 500 times. 

At last, the results are compared with a method known as 

Adaptive Neuro Fuzzy Inference System (ANFIS) method 

based on the Root Mean Square Error (RMSE), and coefficient 

of fit-goodness (R2). Using the proposed method of this paper, 

it is possible to determine Jc and stress of any generic 

superconducting tape, unlike what happens with conventional 

methods (Jc parameterizations and fitting methods) that usually 

refer to a single tape. 

II.  METHODOLOGY: THE PROPOSED ANN MODEL 

A.  The overview of artificial neural networks 

An ANN is an AI-based model that uses data to characterise 

the behaviour of a complex and often non-liner systems that can 

be used for classification, clustering, vector quantisation, 

feature extraction, and even curve-fitting [33]. As shown in 

Figure 2, the simplest ANN system consists of three general 

layers. The first layer is known as “Input” layer which is the 

layer that receives the set of data based on which the ANN must 

characterise the system behaviour. After that there is/are 

“Hidden” layer(s) consisting of some “neurons” with the main 

objective to make a logical connection between inputs and 

output layers by using a set of weights, bias factor, and 

activation functions. At last, there is “Output” layer that 

presents result of the estimation, prediction, and classification 

tasks of ANN. Equations (1) and (2) express the correlation 

between input and output layers in an ANN system [34]. 

 

𝑛𝑒𝑡 = [𝑤1 𝑤2 … 𝑤𝑛] [

𝑥1

𝑥2

⋮
𝑥𝑛

] + 𝑏 = 𝑊𝑇𝑥 + 𝑏 

 

(1) 

 

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑓(𝑊𝑇𝑥 + 𝑏) (2) 

 

where, 𝑊 is weight vector, 𝑥 is input vector, 𝑏 is bias factor, 

and 𝑓 is activation function.  

Usually, ANN models consist of three phases, i.e. train, test, 

and validation. The training is a process in which ANN model 

uses inputs and outputs to recognise a specific pattern in 

understudied characteristic. Training data is part of dataset that 

participates in training phase of the ANN model. In fact, the 

number of training data plays an important role in final accuracy 

and speed of the ANN model. If all data are used in training 

stage, there is no remaining data for testing and validating the 

model and this could keep us blind about the real accuracy of 

the ANN model. Thus, to avoid this, the ratio of training data to 

total number of data is usually selected to be 50% to 70%. By 

doing this, ANN model is trained based on the majority of data 

that increase the final accuracy of the model while test and 

validation phases can be conducted as well. The importance of 

these phases originates in the fact that the performance of 

trained model is evaluated for the data out of training range that 

results in higher accuracy and higher level of adaptability of the 

final model. It should be also mentioned that, consistency, 

adaptability, and prediction capability are the most important 

features of the ANN models that could estimate the outputs out 

of the training range. 
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Figure 3. The procedure of developing an ANN-based predictor/estimator 

 

Table 1. The range of the inputs for estimating the electro-magneto-
mechanical characteristic of 2G HTS tapes under different conditions 

Input Range  Unit 

Magnetic flux 

density 
Self-field & 19 T 

Temperature  4.2 & 77 K 

Strain  0 to 0.8 % 

Width of tapes 3.05, 4, 4.04, 4.1, and 4.19 mm 

Thickness of tapes 101, 110, 112, 115, 153, and 161 𝜇𝑚 

Stabiliser thickness 30, 36, 40, and 75 𝜇𝑚 

Substrate thickness 50, 60, and 100 𝜇𝑚 

 

B.  Proposed ANN for the Jc and stress estimations  

To use ANN for estimating stress/Jc, this paper has considered 

the following inputs: The thickness of tapes, width of tapes, the 

value of magnetic flux density, temperature, the applied strain, 

the thickness of stabiliser, and the thickness of substrate layer 

in different 2G HTS tapes. The data were extracted based on the 

experimental tests that were performed in [25]–[32]. As shown 

in Figure 3, after the experimental data extraction stage, training 

stage begins - initially based on Levenberg Marquardt 

algorithm on the experimental data. The next phase is the 

validation phase that is usually used to make a final assessment 

of the model performance and finally there is test phase. Table 

1 tabulates the range of considered inputs in the proposed ANN 

model. The structure of the adapted ANN models for Jc and 

stress estimations are shown in Figure 4(a) and Figure 4(b), 

respectively. The initially tested networks – as preliminary 

models – have 1 hidden layer, in each layer there are 5 neurons, 

7 inputs for Jc estimation and 6 inputs for stress estimation. 

Although more hidden layers results in a slight increase in 

accuracy of stress and Jc estimation, computational time would 

be increased significantly. Thus, the number for hidden layer 

selected to be 1 for the sake of speed and computation time 

concerns. 

 

 

 

 
a) 

 
b) 

Figure 4. The structure of proposed ANN for the characteristic estimation of 

HTS tapes, a) Jc estimator, b) Stress estimator 

 

The 7 inputs for the ANN model and their ranges are 

tabulated in Table 1. It should be also mentioned that in stress 

estimation, magnetic field is removed from the inputs and 

therefore, they are reduced to 6. Initially, the Levenberg- 

Marquardt method is used to train the model with 70% of the 

total data points. 

III.  RESULTS AND DISCUSSIONS 

A.  Results of Jc/stress estimation by ANN model  

      Figure 5(a) plots the estimated value of Jc versus the real 

experimental values. In this stage, 15% of data are used for 

testing the ANN model. The more accurate the model is, the 

data points locate near the y=x line. Figure 5(b) shows the 

regression between the estimated values of stress and the real 

experimental values. As can be seen, the relation between 

experimental values and estimated ones is similar to y=x line. 

It proves that the proposed ANN model can be used for Jc/stress 

estimation of HTS tapes. The maximum relative error of Jc 

estimation is about 3% while this value for stress estimation is 

about 4%. However, the accuracy of the ANN model could be 

changed (either improved or worsen) by varying the ANN 

controlling parameters, such as number of neurons or type of 

activation functions. The impact of such parameter changes will 

be discussed in the following sub-sections. The next step is to 

select an optimum ANN structure for Jc/stress estimation. 

 At last, it should be mentioned that to make the problem more 

complex for our proposed ANN model, different HTS tapes 

from different manufacturers were used for training the model 

such as YBCO taped manufactured by SuperPower, SuNam, 

Bruker HST, Fujikura, and SuperOx. However, it can be seen 

from Figure 5, that even tough different tape structures from 

different manufacturers were used in our complex dataset, still 

the proposed ANN model can estimate the Jc/stress with high 

accuracy.  
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a) 

 
b) 

Figure 5. The regression performance of the proposed ANN model to 

characterise 2G HTS tapes, presented for test phase for: a) the normalised 

current density b) the stress  

B.  Sensitivity Analysis  

The sensitivity analysis is accomplished according to three 

approaches. The first one is analysing impact of neuron number 

variations and impact of different activation functions. Four 

activation functions were used in this paper to evaluate their 

impact on the accuracy and computation speed of the proposed 

model. These activation functions are as follows and are 

illustrated in Figure 6 [35]: 

• Pure linear:  𝐹(𝑥) = 𝑥                                           (3) 

• Saturated linear:  𝐹(𝑥) = {
0 𝑥 < 0
1 𝑥 > 0

}                 (4) 

• Hyperbolic tangent sigmoid:  𝐹(𝑥) = tanh (𝑥)   (5) 

• Log-sigmoid:  𝐹(𝑥) =
1

1+exp (−𝑥)
                        (6) 

The next phase of the sensitivity analysis is for evaluating 

impact of number of inputs on the accuracy and computation 

speed of the proposed model. In this step, number of inputs 

changes from 1 to 7. In each case, the combinations of inputs 

are selected which offer the highest accuracy of Jc and stress 

estimation. After that the third phase investigates impact of 

training parameters on the final results such as different training 

methods and different ratio of training data to all data. The last 

two steps are conducted to show how data could change the 

accuracy of the estimations.      

    1)  Impact of ANN parameters on the estimation results 

In this part of sensitivity analysis, the training method is 

selected to be Levenberg- Marquardt while 70% of the data  

 

Figure 6. The activation functions used in the proposed ANN model 

are used for training, 15% for testing, and 15% for validation. 

Figure 7(a) illustrates the impact of the number of neurons and 

type of activation functions on the R2 values of the estimation. 

As can be seen, the increase in the number of neurons causes 

the R2 increment, i.e. higher estimation accuracy. However, for 

neurons more than 5, computation time increases from about 

1.1 seconds to around 3-6 seconds. Also, with respect to the 

nature of the data, tansig/purlin and logsig/purlin activation 

functions perform better. In fact, an ANN model needs two 

activation functions, one for relating inputs and hidden layers 

and another one for connecting hidden layers and outputs. In 

this study, the activation function before (/) is for inputs side 

and the function after (/) is for outputs side. For maximum 6 

neurons, tansig/purlin performs better while for 7 neurons or 

more logsig/purlin activation function has better performance. 

The same behaviour can be seen in Figure 7(b), when 

comparing the RMSE for neurons higher than 4, the 

logsig/purlin performs better, in comparison to tansig/purlin. 

So, for Jc estimation, numbers of neurons are selected to be 5 

and now is time to select the activation functions. The activation 

function is selected here to be tansig/purlin (~1.1 seconds) 

which is faster than logsig/purlin (1.5 seconds) in training 

phase. Figure 7(c) shows the variation of R2 value for stress 

estimation. Here the best performance is related to the number 

of neurons in range of 3 to 10 while the best activation function 

in this range of neurons is tansig/purlin. Also, based on Figure 

7(d), the hidden layers higher than 3 cause the extreme 

reduction of RMSE. Thus, for the sake of offering fast and 

accurate ANN model for stress estimation, numbers of neurons 

are set to 3 with tansig/purlin as the activation function. In 

accordance to the reported results, any ANN with numbers of 

neurons more than 3 and with activation function of 

tansig/purlin, is capable of estimating Jc and stress with a high 

accuracy and low RMSE.  

    2)  Impact of number of inputs on the estimation results 

Here ANN parameters are set as follows: number of neurons 

is 5, 70% training data, and Levenberg-Marquardt training 

method. Thus, 7 different scenarios are considered among all 

possible combinations. The reported combinations of inputs for 

Jc and stress estimations are the best-case scenarios with 

highest R2 and lowest RMSE for each scenario. These 

combinations are tabulated in Table 2. The inputs combinations 

are chosen among multiple available scenarios.  
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a) b) 

  
c) d) 

Figure 7. Sensitivity analysis for the variation of neuron numbers and activation functions in the proposed ANN, log sig 
stands for log-sigmoid function, tansig stands for tangent sigmoid, purlin stands for pure linear, and stalin stands for 

saturated linear function, a) R2 of Jc estimation, b) RMSE of Jc estimation, c) R2 of stress estimation, d) RMSE of stress 

estimation 

For instance, in S2 of Jc estimation, there are 21 different 

scenarios with different combination of inputs that the reported 

one show the best performance. By applying each one of these 

scenarios, it can be observed that the highest R2 belongs to the 

scenario with seven inputs, as shown in Figure 8(a) and Figure 

8(b) for Jc and stress estimation, respectively. Also, by reducing 

the inputs, the R2 is reduced and the worst-case scenario is when 

just 1 input are fed to ANN model. 

    3)  Impact of training process/parameters on the estimation 

results 

Firstly, the ratio of training data is changed for three values, 

50%, 70% and 90% of all data for both Jc and stress estimations. 

As listed in Table 3, the ratio of training data has a significant 

impact not only on the training accuracy but also on final test 

and validation results. For Jc estimation, the superiority of 

performance belongs to the ANN model when 70% of data are 

used to train the model. By doing this, RMSE is about 10% 

lower in comparison to the situation in which 50% of data are 

used for training and 7% lower comparing to situation in which 

90% of data are used for training. For stress estimation the 

better performance of ANN model can be achieved when 70% 

of data are used in training stage. Thus, 70% of the data is used 

to train the model in this paper. 

Table 2. Considerations for scenarios of different numbers of inputs for Jc 

estimation. In case of stress estimation, in S4 to S6, the flux density is 
replaced by thickness of substrate and also there is no S7 for stress estimation 

Scenario Number of inputs Type of Inputs 

S1 

 

1 

 

Strain 

 

S2 

 

2 

 

Strain- thickness of stabiliser 

 

S3 

 

3 

 

Strain- temperature-thickness of 

stabiliser  

 

S4 

 

4 

 

Strain - temperature - flux 

density - thickness of stabiliser  

 

S5 

 

5 

 

Thickness and width of tapes- 

strain- flux density, temperature 

 

S6 

 

6 

 

Thickness and width of tapes- 

strain- flux density, temperature, 

thickness of stabiliser 
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S7 7 

Thickness and width of tapes- 

strain- flux density, temperature, 

thickness of stabiliser-thickness 

of substrate 

 

Table 3. The impact of training data ratio on the accuracy of the proposed 
ANN model 

Train 
data 

ratio 

respect 
to all 

data 

Jc estimation Stress estimation 

train test validation train test validation 

50% 0.054 0.048 0.047 32.68 46.93 45.43 

70% 0.036 0.044 0.039 27.98 45.43 38.66 
90% 0.046 0.047 0.041 31.68 49.87 40.19 

 

It should be mentioned that other parameters of ANN model are 

fixed at what found in previous sections. There are many 

different training methods to train an ANN model, among them 

the following ones are the most commonly used for complex 

problems [35]: Levenberg-Marquardt (LM), Bayesian 

Regulation (BR), Broyden, Fletcher Goldfarb, and Shanno 

(BFGS), Conjugate Gradient Backpropagation (CGB), 

Conjugate Gradient Backpropagation with Fletcher-Reeeves 

Updates (CGBFRU), Conjugate Gradient Backpropagation 

with Polak-Ribiere Updates (CGBFPU), Gradient Descent with 

Adaptive Backpropagation (GDAB), Gradient Descent with 

w/momentum adaptive Backpropagation (GDXB), One Step 

Secant (OSS), and finally, Scaled Conjugate Gradient 

Backpropagation (SCGB). In Table 4, a sensitivity analysis is 

conducted to show their impact on the train, test, and validation 

phases of the ANN model for the Jc estimation. As can be seen, 

the best performance of training is for LM method with the 

highest R2 and the lowest RMSE. Also, in the test and validation 

phases, the best performance belongs to the LM method. At last, 

by considering the computation time, as an important factor, the 

LM method has the fastest performance with shortest 

estimation time. It should be also emphasised that the LM has a 

highest R2 with the minimum simulation time. 

C.  Stability Analysis of the estimation results 

The term of stability indicates not only the high accuracy of 

the reported estimations is not a random phenomenon that 

somehow end up with high accuracy but also can be repeated 

and reproduced if the exact same parameters are applied to the 

model. To do this, each estimation is conducted with 5 neurons 

for Jc estimation and 3 neurons for stress estimation, 

tansig/purlin activation function, 7 inputs for Jc estimation, and 

70% ratio of training data and repeated for 500 times running.  

Table 5 tabulates the statistical values for the mean and 

standard deviation of the RMSE and R2 after 500 times 

repetition of Jc estimation. As can be seen, the mean value of 

R2 and RMSE in test phase is very close to the previously 

discussed ones. On the other hand, the lower standard deviation 

means the stability of the results is higher, typically this index 

shows the difference of each data from the mean of the all data 

points. The mean and standard deviation are also shown for 

training and validation phases to show the stability of 

estimations in these phases too. The same is shown for stress 

estimation in Table 6. As can be seen, the reported mean  

 
a) 

 
b) 

Figure 8. The impact of the number of inputs on R2 and RMSE, a) Jc estimation 

b) Stress estimation 

Table 4. The impact of different training methods on the R2, RMSE, and 

estimation time of the ANN model for Jc estimation for a grid with 5/3 
neurons, and 70% of training data. 

Phase  Train Test Validation 
Computation 

time (s) 

Parameter R2 RMSE R2 RMSE R2 RMSE * 

LM 0.96 0.031 0.93 0.042 0.93 0.022 1.12 

BR 0.95 0.032 0.82 0.072 0.92 0.046 2.12 

BFGS 0.85 0.053 0.91 0.47 0.91 0.076 3.29 

CGB 0.81 0.066 0.88 0.057 0.73 0.068 1.92 

CGBFRU 0.84 0.062 0.91 0.047 0.91 0.046 1.93 

CGBFPU 0.8 0.068 0.8 0.064 0.8 0.061 1.52 

GDAB 0.74 0.073 0.8 0.073 0.78 0.081 1.48 

GDXB 0.84 0.063 0.77 0.077 0.76 0.048 2.03 

OSS 0.82 0.064 0.88 0.044 0.88 0.065 1.85 

SCGB 0.84 0.061 0.92 0.48 0.81 0.059 1.67 

values for R2 and RMSE are very close to the values based on 

which the parameters of the ANN were chosen.  

To show the distribution of the R2 and RMSE values after 

500 times of repetition, Figure 9 is presented. According to 

Figure 9(a), for test phase of Jc estimation, around 370 of the 

500 data points have the R2 value more than 0.9 which means 

74% of the data have a high accuracy, near the reported values. 

This number and percentage are around 320 and 64% for RMSE 

value lower than 0.06, in test phase of Jc estimation, according 

to Figure 9(b).   For stress estimation  
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Table 5. Stability analysis of the critical current estimation by ANN after 500 times repetition for a ANN with 5 neurons, and 70% of training data, and 
Levenberg-Marquardt training method. 

Results Phase RMSE R2 

Mean 

Train 0.036 0.944 

Test 0.044 0.932 

Validation 0.039 0.935 

Standard deviation 

Train 0.011 0.038 

Test 0.017 0.064 

Validation 0.017 0.062 

Table 6. Stability analysis of the stress estimation by ANN after 500 times repetition for an ANN with 3 neurons, and 70% of training data, and Levenberg-

Marquardt training method. 

Results Phase RMSE R2 

Mean 

Train 27.98 0.991 

Test 45.43 0.980 

Validation 38.66 0.981 

Standard deviation 

Train 24.01 0.022 

Test 33.63 0.057 

Validation 27.14 0.045 

 

  
a) b) 

  
c) d) 

Figure 9. Distribution of R2 and RMSE values for Jc and stress estimations after 500 times repetition a) R2 of Jc estimation, b) RMSE 
of Jc estimation, c) R2 of stress estimation, d) RMSE of stress estimation 

 

and according to Figures 9(c) and 9(d), in test phase, 480 of data 

have a R2 values higher than 0.9 which mean 96% of data are 

estimated with an accuracy higher than 90%. On the other hand, 

this value for RMSEs under 50 is about 90%. The reported 

values indicate that the proposed ANN model has very high 

stability for Jc/stress estimation. 

D.  Selecting optimum structure for ANN model 

The optimum structure of the proposed ANN model is shown 

in Figure 10(a) for Jc estimation and in Figure 10(b) for stress 

estimation. The training method in both cases is selected as LM 

method while 70% of data are used for training the model. As 
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shown in Figure 10(a), the Jc estimation requires 5 neurons in 

each layer while this value for stress estimation is 3.  

IV.  RESULTS COMPARISON WITH OTHER METHODS 

A.  Comparison with ANFIS method in [24] 

To show the capability of the proposed structure of ANN 

model, Table 7 is presented. In this table, firstly the 7 inputs are 

used to form an ANN model. Another ANN model is also used 

for estimating with only 5 inputs. At last, the results are 

compared with the estimations of ANFIS method [24] to show 

the improvements that the proposed ANN with 7 inputs is 

offering. For Jc, the proposed 7 inputs ANN has about 10% 

higher R2 value in comparison to 5 inputs ANN and 15% higher 

than the proposed method of [24]. The RMSE of the 7 inputs 

ANN is also 10% and 26% lower than two other methods, 

respectively. By considering estimation computation time, both 

the 7 inputs and the 5 inputs ANN model has superiority to 

ANFIS method with 82.4% lower estimation time. The 

computation times are reported based on running the models on 

a personal computer with settings as follows: 16GB RAM and 

Intel Core-i7 3.40 GHz CPU. 

For stress estimation, the R2 value of all methods are very 

close to each other and by this metric, no method has superiority 

over others. However, by comparing the RMSE, it can be seen 

that the value of RMSE in proposed ANN method with 7 inputs 

is 18.5% lower than ANN with 5 inputs and 6% lower than 

method published in [24]. When considering estimation 

computation time as an index, the ANN model with 7 inputs has 

around 60% lower estimation time. According to the reported 

results, it can be seen that the ANN model with 7 inputs has a 

better performance for Jc estimation in comparison to ANN 

with 5 inputs and ANFIS method published in [24], in terms of 

accuracy, error, and estimation computation time. On the other 

hand, the ANN with 7 inputs has also superiority in stress 

estimation over ANN with 5 inputs and ANFIS, in terms of 

error and estimation computation time while in terms of R2 

index, all three methods offer a close performance.   

B.  Comparison with Fitting Methods 

ANN models have a significant advantage over fitting 

methods when they are used for Jc/stress estimation. They can 

estimate the electro-magneto-mechanical characteristics of 2G 

HTS tapes with respect to multiple factors such as flux density, 

temperature, type of tape, strain, etc. In addition, ANN is 

capable of considering all interdependencies among inputs 

simultaneously. This is not the case for fitting methods and they 

usually have two inputs. Although some methods and software 

give a solution to this for fitting methods and present an n-

dimensional equation for curve fitting, they are either too slow, 

or based on artificial intelligence models to determine the 

coefficient of polynomial fittings. To compare the best 

performance of fitting methods for Jc and stress estimations 

with the ANN model, Figure 11(a) and Figure 11(b) are 

presented to illustrate the R2 value of the estimation, based on a 

general form of polynomial fit shown in equation (7): 

 

 
a) 

 
b) 

Figure 10. The proposed optimum structures for ANN to be used in a) Jc 

estimation, b) stress estimation 

Table 7. A comparison of the accuracy and RMSE of the ANN when thickness 

of stabiliser and the substrate are considered as inputs and when they are not 

considered as inputs and also comparison with the method of [24] 

models indices 
Proposed ANN with 

7 inputs 
ANN with 5 

inputs 
[24] 

critical 
current 

R2 
 

0.93 
 

0.84 
 

0.81 
 

RMSE 

 

0.042 

 

0.047 

 

0.057 

 
Time (s) 0.278 0.315 1.573 

stress 

R2 

 

0.99 

 

0.98 

 

0.98 

 

RMSE 
 

39.42 
 

40.05 
 

41.99 
 

Time (s) 0.316 0.277 0.780 

 

𝐹 = 𝑎1𝑥𝑛 + 𝑏1
𝑛𝑦 + 𝑐1𝑥𝑛𝑦 + 𝑐2𝑥𝑛−1𝑦2 + ⋯ + 𝑎𝑛𝑥 + 𝑏𝑛𝑦

+ 𝑐𝑛𝑚  
(7) 

 

where, F is the proposed fitting polynomials, ai is the coefficient 

of the polynomial fit for terms that just have x, bi is the 

coefficient of the polynomial fit for terms that just have y, ci is 

the coefficient of the polynomial fit for terms that are a 

combination of x and y, and x, y are the inputs which could be 

any of the 7 inputs of ANN.     

Here x and y are considered as thickness of stabiliser and 

strain, respectively, as this scenario offers the best performance 

for Jc/stress estimation in ANN model with two inputs and 

fitting methods. The maximum R2 of Jc estimation by fitting 

methods is about 0.68 which is 10% lower than R2 value of 

ANN method with two inputs. The highest R2 value for stress 

estimation by fitting methods is about 0.94 which is 3% lower 

than the reported value for ANN with two inputs. Thus, it can 

be stated that ANN has also superiority in comparison to fitting 

methods, even when only two inputs are considered. By 

comparing the results and considering the  
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a) 
 

 
b) 

Figure 11. R2 value of polynomial fitting methods based on thickness of 

stabiliser and substrates, a) For Jc estimation b) For stress estimation 

ANN properties, it can be seen that the ANN model is more 

practical during the design stage of the superconducting devices 

and fitting methods could not accomplish the same task that 

offered ANN models. This is due to the fact that fitting methods 

are not capable of considering many inputs for Jc or stress 

estimation with high accuracy and low computation time. 

V.  CONCLUSION 

Electromechanical characteristic of twisted high temperature 

superconducting (HTS) tapes plays a significant role at the 

design stage of the HTS cables and magnets. Analysing the 

stress and critical current density of twisted HTS tapes requires 

electromagnetic finite element models parallel with thermo-

mechanical considerations that leads to long simulation time 

and extreme computational burden. To overcome this issue, this 

paper presented a fast and accurate model based on Artificial 

Neural Networks (ANN) to solve the electro-magneto-

mechanical problems of twisted HTS tapes. Unlike finite 

element-based methods, proposed ANN model is capable of 

considering all electromagnetic and thermo-magneto-

mechanical properties of HTS tapes with a fast-computational 

speed.   

The results show the superiority of the proposed ANN model 

in comparison to previously presented models in [24] based on 

other AI-methods as well as curve fitting approaches. A 

comprehensive sensitivity analysis is conducted to select the 

optimum range, type, and values of parameters of the proposed 

ANN model. At last the stability of the results were tested after 

500 repeated estimations. The most important findings of this 

paper are as follows: 

• The estimations by ANN have a better performance in 

comparison to the method that proposed in [24], in 

terms of higher R2, lower RMSE, and lower 

estimation time.  

• When comparing with fitting methods, the better 

performance of the proposed ANN-based model can 

be clearly observed, especially when fitting methods 

have only two inputs. 

• The most appropriate activation function for stress 

and critical current estimations is pure linear/log 

sigmoid with a R2 value higher than 0.92 for 

estimating both critical current density and stress. 

• The stability of the results is also tested and proven 

after repeating the estimations for 500 times which 

indicates the reproducibility and repeatability of the 

estimations. 
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