
Electronic Supplementary Information:

Rapid, Energy-Efficient and Pseudomorphic Microwave-Induced-Metal-Plasma (MIMP) Synthesis of Mg₂Si and Mg₂Ge

Zhen Fan, a Hsi-Nien Ho, Robert Szczęsny, Wei-Ren Liu, and Duncan H Gregory.**a

- a. WestCHEM, School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, United Kingdom.
- b. Department of Chemical Engineering, Chung Yuan Christian University, R&D Center for Membrane Technology, Research Center for Circular Economy, 32023, No. 200, Chun Pei Rd., Chung Li District, Taoyuan City 32023, Taiwan.
- c. Faculty of Chemistry, Nicolaus Copernicus University in Toruń, ul. Gagarina 7, 87-100 Toruń, Poland.
- * Corresponding Author. Email: Duncan.Gregory@glasgow.ac.uk Tel: +44-141-330-8128.

1. Supplementary SEM/EDS and SAED Results for Mg₂Si

Figure S1. (a) The representative EDX spectrum corresponding to the SEM image in Figure 2d; and the corresponding **(b-d)** Elemental mappings of Mg, Si and O, respectively.

Table S1. Indexed lattice planes from the SAED patterns shown in Figure 1h.

Diffraction No.	Indexed Diffraction Distance / nm	Lattice Plane – Mg ₂ Si
1	0.230	(220)
2	0.190	(311)
3	0.150	(331)
4	0.120	(511)
5	0.106	(531), (600)
6	0.094	(533), (622)

2. Structure of the Nanoporous Ge Reactant Powders

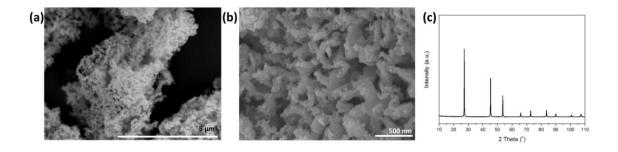


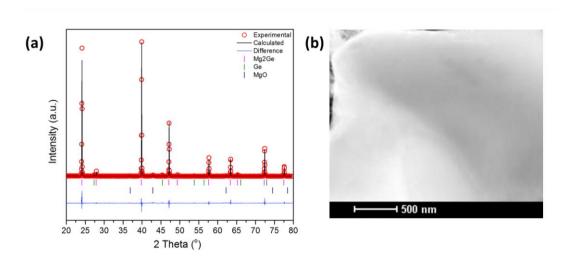
Figure S2. (a, b) SEM images and (c) PXRD patterns of the nanoporous Ge reactant powders.

3. Mg₂Ge synthesized from Mg and Ge, irradiated for 30 s.

Table S2. Crystallographic data obtained from the Rietveld refinement of the MIMP-synthesised product of Mg₂Ge with an irradiation time of 30 s (see also Figure 3a).

Chemical Formula	Mg ₂ Ge	Mg	Ge	
Crystal System	Cubic	Hexagonal	Cubic	
Space Group	Fm-3m (225)	$P6_{3}/mmc$ (194)	Fd-3m (227)	
Lattice Parameter / Å	6.3935(2)	3.2124(5)	5.6568 a	
		5.2136(17)		
Cell Volume / Å ³	261.349(22)	46.593(14)	181.014 a	
Formula Weight / g mol ⁻¹	484.800	48.610	580.720	
Formula Units, Z	4	2	8	
Calculated Density / g cm ⁻³	3.080	1.732	5.327	
Phase Fraction / wt.%	94.3(3)	4.1(3)	1.5(1)	
No. of Variables		19		
No. of Observations		2090		
wRp	0.2646			
Rp		0.1788		
χ^2		1.960		

^{a.} Not refined.


Table S3. Atomic parameters for MIMP-synthesised Mg₂Ge (irradiated for 30 s).

Atom	Site	x	у	z	$100 imes U_{iso}$ / Å ²	SOF ^a
Mg	8 <i>c</i>	0.25	0.25	0.25	2.54(18)	1
Ge	4 <i>a</i>	0	0	0	2.24(12)	1

^{a.} Not refined.

4. MIMP-synthesised Mg₂Ge from Commercial Bulk Ge Powders

In order to investigate between the premise that the reaction between Mg and nanoporous Ge was pseudomorphic, a supplementary MIMP synthesis was conducted. Commercial Ge powders (Trace metal basis, 99.999%, Acros Organics) were initially ground manually using a mortar and pestle. Mg powder (35 mg) and as-ground Ge powder (45 mg) were mixed thoroughly. The MW synthesis was performed with an incident power of 200 W for an irradiation time of 90 s under a static vacuum of $P < 10^{-6}$ mbar. The Rietveld refinement results (Figure S3a; Table S4) confirmed the *anti*fluorite structure of Mg₂Ge with a lattice parameter of a = 6.3894(4) Å. The refined phase fraction of the main phase was 95.9(4) wt.%, with the presence of small amounts of MgO (3.2(2) wt.%) and Ge (0.9(6) wt.%) impurity phases indicated. In contrast to the Mg₂Ge sample synthesised from nanoporous Ge starting material (Figures 4a,b), the STEM image in Figure S3b showed that the Mg₂Ge produced from commercial Ge was composed of dense bulk particles and was not porous.

Figure S3. (a) Profile plot of the Rietveld refinement against PXRD data, and **(b)** a STEM image of the Mg₂Ge product as obtained from the MW synthesis experiment using a commercial Ge starting material, illustrating the relatively large particle size obtained.

Table S4. Crystallographic data obtained from the Rietveld refinement of the MIMP-synthesised Mg₂Ge synthesised from commercial Ge powder (see also Figure S3a).

Chemical Formula	Mg_2Ge	MgO	Ge
Crystal System	Cubic	Cubic	Cubic
Space Group	Fm-3m (225)	Fm-3m (225)	Fd-3m (227)
Lattice Parameter / Å	6.3894(4)	4.2170 a	5.6568 a
Cell volume / Å ³	260.85(5)	74.991 ^a	181.014 a
Formula Weight / g mol ⁻¹	484.800	161.216	580.720
Formula Units, Z	4	4	8
Calculated Density / g cm ⁻³	3.086	3.570	5.327
Phase Fraction / wt.%	95.9(4)	3.2(2)	0.9(6)
No. of Variables		27	
No. of Observations		2093	
wRp		0.2071	
Rp		0.1397	
χ^2		0.2199	

^{a.} Not refined.

Table S5. Atomic parameters for MIMP-synthesised Mg₂Ge from commercial Ge powder (see also Figure S3a).

Atom	Site	x	у	z	$100 imes U_{iso}$ / Å ²	SOF ^a
Mg	8 <i>c</i>	0.25	0.25	0.25	2.77(14)	1
Ge	4 <i>a</i>	0	0	0	2.26(9)	1

^{a.} Not refined.