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Abstract 
This paper explores the use of a particle filter—a data assimilation 
method—to incorporate real-time data into an agent-based model. 
We apply the method to a simulation of real pedestrians moving 
through the concourse of Grand Central Terminal in New York City 
(USA).  The results show that the particle filter does not perform well 
due to (i) the unpredictable behaviour of some pedestrians and (ii) 
because the filter does not optimise the categorical agent parameters 
that are characteristic of this type of model. This problem only arises 
because the experiments use real-world pedestrian movement data, 
rather than simulated, hypothetical data, as is more common. We 
point to a potential solution that involves resampling some of the 
variables in a particle, such as the locations of the agents in space, but 
keeps other variables such as the agents’ choice of destination. This 
research illustrates the importance of including real-world data and 
provides a proof of concept for the application of an improved particle 
filter to an agent-based model.  The obstacles and solutions discussed 
have important implications for future work that is focused on 
building large-scale real-time agent-based models.
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Plain language summary
The use of computer models to simulate the movement of a  
crowd of people through a busy environment, like a train  
station or city centre, is a useful way to manage busy spaces. 
The technique of agent-based modelling is often used to  
simulate crowds. This method simulates the actions of all of 
the people that might be in a crowd to try to predict how the 
whole crowd will behave. One problem with agent-based 
modelling is that it is very difficult to adapt a simulation in 
response to new data. This means that it is not possible to use  
the technique to simulate crowds in real time.

This paper experiments with a method that can be used to opti-
mise an agent-based crowd simulation in real time called  
the particle filter. We show that the particle filter is not able 
to model the behaviour of virtual people (called ‘agents’) in  
some circumstances, particularly when the agents have char-
acteristics that cannot be represented on a numeric scale,  
such as their chosen destination. We propose a potential solu-
tion and run experiments to test its reliability. Although there 
is still a lot of work to do before the method can be used in  
practice, this paper makes an important first step towards a 
better understanding of how to use a particle filter to create  
real-time crowd simulations.

Introduction
Agent-based modelling (ABM) is an interdisciplinary field 
that has emerged from the study of nonlinear, complex adaptive  
systems and computational modelling. A defining character-
istic of an agent-based model is the simulation of discrete,  
heterogeneous and autonomous agents1. This is particularly  
relevant for the study of short-term human movements, such as  
pedestrian dynamics, where higher-level features such as 
crowding emerge from interactions and behaviour of many  
individual people.

One of the biggest difficulties in modelling pedestrian behav-
iour in real time is that the inherent complexity of the sys-
tem causes a model to quickly diverge from reality. This  
uncertainty—i.e. the imprecision in modelling outputs2—can be 
reduced through robust parameter calibration. A considerable 
body of work has gone in to calibrating agent-based models in  
general (e.g. 3) and pedestrian models in particular4. How-
ever, even perfectly-calibrated models of complex systems will 
diverge over time5 as their underlying systems evolve. In agent-
based models these problems are intensified since each agent has  
a set of parameters (the parameters are not global) and,  

generally, the available data do not have all the necessary spatio- 
temporal information to cover both individual actions and  
global behaviour. Despite the progress that has been made in 
the static calibration of ABMs3,6, little progress has been made  
towards methods that can control the uncertainty in models dur-
ing run time. This makes it hard to predict systems that rapidly  
evolve, such as pedestrian systems, in real-time using agent- 
based models.

Fortunately, methods developed in other fields potentially 
offer solutions to the problems of real-time model updat-
ing in response to new observations. The technique of ‘data  
assimilation’7 (DA), which has been well studied in highly com-
putational fields such as meteorology7 and the earth sciences  
more broadly8, is a primary candidate. DA is founded on the  
premise that observations of a system are relatively certain 
but sparse (sensors only generate data at discrete points), and 
modelled estimates of a system are detailed but uncertain.  
By combining observations and model estimates in real time  
“all the available information”9 can be used to estimate the  
current true state of the underlying system. The approach is 
distinct from traditional ‘one-shot’ optimisation approaches;  
DA algorithms use real-time data to constrain the model’s 
continued evolution against observations of the real world10.  
In short, whereas calibration methods only optimise model 
parameters, DA techniques optimise the parameters and the  
model state itself.

In recent years, efforts have been made towards the use of  
DA techniques with agent-based modelling10–17. The results 
are promising, although limited by the controlled nature of the  
experiments. Most experiments make use of the identical 
twin experimental framework to obtain the ground truth state  
to be used as the real world ‘observation’ during DA  
steps11,12,14–17. This constraint implies that pseudo-real obser-
vations will never exhibit a behaviour that cannot be fully 
described by the model; ignoring the underlying complex-
ity and uncertainty inherent in many social systems, including  
pedestrian behaviour. The identical twin approach also allows 
for controlling the number of entities present in the observa-
tions, and as a consequence, the number of simulated agents  
is normally kept in the order of units11 or a few dozen12,14–17.  
Another common constraint is related to the model environ-
ment, including the use of one-dimensional environments12,15 
and comprehensive simplifications of real environments14,16. 
Usually model environment simplifications are combined with  
identical twin experiments, which, again, implies a great deal 
of control over the observations and of the agents’ behaviours.  
Finally, although categorical parameters are common in ABMs, 
the majority of the agent-based models used to test DA do 
not include this type of parameter in their formulation, and 
the main reason is related to the fact that DA methods have  
been developed for equation based models10,17.

This paper extends the state-of-the-art by experimenting with 
DA and agent-based models under more realistic assumptions.  
For this, we use an ABM that simulates simple pedestrian  
movements across a train station, the StationSim model, and 
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a well-known DA technique, the particle filter (discussed  
below)18. The model environment is designed to represent  
a real station – the Grand Central Terminal in New York City, 
USA – the observations used reflect real pedestrian behaviour  
and have been inferred from a CCTV camera at GCT, the  
model has both continuous and categorical parameters and hun-
dreds of agents are considered. 

There are a range of DA techniques that could be used to assim-
ilate data from Grand Central Terminal into the StationSim  
model. Variations of the Kalman Filter are popular11,16,17,19, 
but may not be entirely appropriate for application to ABM  
because they rely on Gaussian assumptions that do not hold in 
highly non-linear ABMs. Instead, we chose the particle filter  
(PF)18 (another well-known DA technique) because they have  
been shown to work well with non-linear systems and, because 
they are decoupled from the underlying model, should work well  
in situations where state corrections in the filter are difficult19. 
Although PFs have been in development for some decades20, 
they have only been applied to ABMs a handful of times14,21, 
and are still in their infancy with respect to their use in high- 
dimensional applications.

Interestingly, the vanilla PF implementation actually increases 
the error in the simulated agent positions because the complex-
ity of some of the pedestrians’ behaviour means that the filter  
inadvertently filters out some important particles initially. Hence, 
before concluding, we trial an adapted approach that attempts 

to prevent some useful parameter values from being inadvert-
ently filtered out. This is an important result with respect to  
future work.

The paper is structured as follows: first all necessary meth-
ods and simulation details are defined, then the experiments and 
results are presented, and, finally, the results are discussed and 
conclusions are drawn. The software codes that underpin the 
work discussed here and instructions for operating the codes  
are available in full from the project code repository22.

Methods
StationSim
The model environment is rectangular with entry and exit gates 
on the environment boundaries (see Figure 1). Each agent rep-
resents a pedestrian that enters the system through one of the 
gates (entrance gate) in a certain simulation step (activation 
time) and tries to walk towards an assigned destination (exit 
gate) with constant speed (desired speed). The behaviour of  
each agent is determined through three rules17:

1.   �The agent will try to walk in a straight line (ideal  
path) towards the destination;

2.   �If the ideal path is blocked, the agent will try to take a 
side step to avoid collisions with other agents or the  
environment;

3.   �If none of the above options are possible, the agent  
will stand still.

Figure 1. General environment view. (a) View from the Grand Central Terminal (GCT). The grayscale lines represent real pedestrian 
trajectories. The solid red line represents the station walls, the blue rectangles represents the 10 gates of the GCT concourse, and the 
red dashed line separate the camera’s field of view from non-visible region. (b) General view of the model environment. The solid red 
lines represent the station walls, the blue rectangles represent the gates, and the black circle represents an obstacle in the centre of the 
concourse.
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These rules are implemented following17. In this implemen-
tation, each agent is represented by a disc of fixed radius  
σ and the collisions are identified through hard disc dynamics  
equations23. In StationSim, collisions are defined as an overlap 
between two agents (or between an agent and the environment) 
within the next simulation step δ t.

Mathematically, the time until overlapping between two agents is

                                  ,
v r dt

v v
−∆ ⋅∆ −∆ =

∆ ⋅ ∆

� �
� �                                  (1)

where r∆ � is the difference between the agents positions, 
v∆� is the difference between the agents velocities, and

2 2( ) ( )( ( ) )iid v r v v r r σ= ∆ ⋅∆ − ∆ ⋅ ∆ ∆ ⋅∆ − ∑� � � � � �
. Note that if d < 0  

the agents never collide with each other. The time until  
overlapping between an agent and a vertical wall is

                                     ,x

x

w x
t

v
σ± −

∆ =                                      (2)

where w
x
 is the vertical wall x-position, x is the agent hori-

zontal position, and v
x
 is the agent horizontal velocity. The  

± sign in Equation 2 is related to the agent direction of move-
ment: if the agent is moving towards the left wall, a positive  
sign is used, and if the agent is moving towards the right 
wall, a negative sign is used. Note that if the agent does not 
have a horizontal movement, then the agent never collides 
with a vertical wall. The overlap time between an agent and a  
horizontal wall can be obtained in an analogous way.

If no collision is identified, i.e. the time until overlapping 
with another agent or environment, ∆t, is greater than δ t, then  
the agent will walk in the ideal path (rule 1). Otherwise, the 
agent will try to move sideways to avoid the collision. The 
direction (perpendicular to the left or right) is determined by a  
random binary choice, and the size of the movement is deter-
mined randomly from a normal distribution centred on the  
agent radius. The agent will only step sideways if the new loca-
tion is empty and within the defined environment (rule 2), 
otherwise the agent will stand and wait until it is possible to  
move (rule 3).

Although the behaviour of each agent is determined through 
three simple rules, the interaction between the agents and the 
random choices that arises from these interactions can lead  
to different scenarios, including the formation of crowds.  
Furthermore, the behaviour of each agent depends on two ini-
tial attributes (entrance gate and activation time), a continu-
ous parameter (desired speed), a categorical parameter (exit 
gate), and a dynamic position. Finally, the state of an agent  
i at time t is defined as

                                      ˆ{ , , },i i i
t tt is r v g= �                                      (3)

where ,i tr  is the agent i position at time t, ,
ˆ i tg  is a normal  

vector that indicates the agent i direction of movement 
towards the exit gate at time t, and v

i
 is the agent i desired  

speed. The simulation ends when all agents pass through 

their exit gate. Importantly, the ,
ˆ i tg  value is related to the exit 

gate that is a categorical parameter and, as we will discuss,  
presents difficulties for the traditional PF.

Data & model parameterisation
This section outlines the real data used and the process of 
estimating suitable parameters for StationSim to allow the  
agent-based model to simulate the dynamics of the underly-
ing system. GCT, a rail and subway hub in Manhattan, New  
York City (USA), has been chosen for two reasons. Firstly, 
it is a large, busy terminal, so presents a useful test of the 
ability for a DA algorithm to update the state of a crowd  
simulation in real time. Secondly, there is a readily available 
data set24 that was created from CCTV footage and describes the 
pedestrians’ trajectories across the main concourse of the ter-
minal, so we have detailed information about the underlying  
crowd on which to test the algorithm.

The original GCT video is 33 minutes and 20 seconds long 
at 25 fps with a resolution of 720 × 480. The video was first 
processed by 24 who determined the raw trajectories using a  
Kanade-Lucas-Tomasi (KLT) keypoint tracker25. The raw tra-
jectories were further processed by 17 to correct the camera  
distortions and to merge trajectories that had been inadvert-
ently split when the video data was first processed. (‘trajectory  
reconstruction’). The trajectory reconstruction process needed 
to be conducted manually and was extremely time consuming,  
therefore only a two-minute section was reconstructed by 17. 
This particular window was chosen because the crowd density 
remains relatively stable throughout17. A total of 274 individu-
als are observed during the window. For these individuals, all  
information required by the model is available: the time when 
each pedestrian entered in the station, the place of entry, the speed  
during each trajectory, and their final destination. Although  
these data are a much closer representation of true pedestrian 
dynamics than the hypothetical data used in similar work—
e.g. 11,14—it is important to note that they are somewhat  
dependent on the 2-minute window chosen by 17. Were another 
window chosen, for example one where the density changes 
dramatically, then the model might be less able to simulate the  
underlying dynamics. Future work should extend the research 
to more heterogeneous crowd data. All data used in this paper,  
including the video, the raw data and the processed data are 
publicly available17,24.

Figure 1 (a) illustrates several pedestrian trajectories obtained 
from these data after processing. Note that the southern por-
tion of the station is not visible to the camera that was used 
to record the crowd, so only the visible part is simulated.  
Figure 1 (b) shows a representation of the model environ-
ment with 53 m width and 50 m height, 11 gates, and a 4 m 
radius information booth in the centre of the concourse. Some  
pseudo-real gates (gates from 7 to 10) are created to control 
the agent entry and exit regions when the agents cross the line  
that separates the visible region from the non-visible region. 
The average width of the ‘real’ gates (gates 0 to 6) is 13 ± 5 m,  
so we create four 13.2 m gates to represent the southern  
boundary (gates 7 to 10).
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Previous work on integrating DA and ABM have tended to  
analyse macro rather than micro patterns; i.e. the simulated 
data and observations are aggregated before being compared. 
There are advantages to this approach, such improved predictive  
ability, but here we choose to use the micro patterns (individ-
ual agent and pedestrian trajectories) because the use of macro  
patterns may mask underlying problems with our model or fil-
ter. For example, it would be possible for a model to simulate  
pedestrian density adequately but at the same time fail to simu-
late the real trajectories (the ‘wrong’ model happened to produce 
the ‘right’ result). The use of micro patterns provides a more  
accurate measure of the difference between the simulation  
and the real system, which is important for identifying the  
compatibility of DA and ABMs. Many of the surprising results  
we outline in later sections may have been masked if we had 
ignored the micro data.

We ultimately work towards the creation of tools that can be 
used to make predictions for real environments in real time. 
There are many instances where visitors who enter an environ-
ment are tracked or counted—for example as a passenger passes 
through a ticket gate to enter a public transport station—but fewer 
examples of tracking people while they actually move through 
the environment. This level of tracking also raises ethical and 
privacy questions. Therefore we do not provide the PF will all 
the information that is available in the GCT data and only pro-
vide the place of entry (entrance gate) and the time that an indi-
vidual entered (activation time). The PF is not provided with the 
speed at which they will cross the environment (desired speed)  
nor their final destination (exit gate). So, when a pedestrian 
enters the environment, an agent is created with an explicit 
entrance gate and activation time, but the desired speed will 
be randomly selected from a truncated Gaussian distribu-
tion with mean of 1.6 m/s, a standard deviation of 0.6 m/s, and 
a minimum value of 0.05 m/s, and the exit gate, g, will be  
randomly selected with the following probabilities:

and are on the same side of the concourse,0 if
( | ) ,1 and are on different sides of the concourse,if

in

in
in

in

g g
g gP g gG G







=
−

 (4)

where g
in
 is the entrance gate, G = 11 is the total number of  

gates, G
in
 is the total number of gates on the side of g

in
. 

These probability distributions describe the behaviour of real  
pedestrians observed in the GCT CCTV camera17.

PF
DA has a long history in the environmental sciences as a 
means of updating models with the most recent observations;  
see 26 for a review. Although it typically requires larger  
ensemble sizes than other methods14,26,27, the PF is chosen 
here because it is non-parametric and hence better suited to  
systems that exhibit non-linear and non-Gaussian behaviour28,  
such as agent-based models11.

The goal of DA is to estimate a posterior distribution, and  
the PF does this in a brute force manner by creating an ensem-
ble of N model instances, called ‘particles’, and then simul-
taneously running the particles for a number of iterations, 
termed the DA ‘window’ (prediction step). When new obser-
vations arrive from the real system, the particles are paused,  
and the updating step is performed. For each particle, an 
importance weight is calculated that estimates how closely 
the particle corresponds to the given observations. Here, this  
weight is calculated for each particle by comparing the posi-
tions of the particle’s agents to those of the real individu-
als in the observed data. Finally, a resampling criteria based  
on particle weight is used to remove the worst perform-
ing particles—those that are least likely to have generated  
the observations—from subsequent iterations, whereas better  
performing particles are duplicated. These resampled parti-
cles represent the posterior distribution. Figure 2 shows an  
illustration of the PF process.

Each particle is a full realisation of a model with n agents  
each, and the particle j state at time t is defined as

                                { }: {1, , } ,j i
t tS s i n= ∈ …                                 (5)

where i
ts  is the agent i state at time t. In this case, each par-

ticle is an instance of StationSim, and the agent’s state  
is defined by Equation 3.

Figure 2. Illustration of a particle filter method. Each square represents a particle (full model realisation) and the size of the square 
represents the particle’s weight after comparison to the real data.
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Several resampling criteria can be used29 to replace the worst 
performing particles with high-weight particles. Here, a variant  
called Sequential Importance Resampling (SIR) is used because  
it ranks higher in resampling quality and computational sim-
plicity compared to other approaches30,31. The SIR PF approxi-
mate the filtering problem by an ensemble of weighted particles.  
Formally, a SIR PF at time t is

                           { }( , : {1, , } ,)j j
t t tP S w j N= ∈ …                           (6)

where j
tw  is the corresponding weight – determined through  

the “variance of the weights”, i.e. weight is inversely  
proportional to squared distance between the prediction and  

the observation32 – associated with particle j at time t and 

1 1
N j

tj w= =∑ .

There are two particularly well-known difficulties that PFs 
must overcome. Particle collapse occurs when one or a few  
particles have weights that are much higher than the others, 
so that the set of ‘useful’ particles is effectively much smaller  
than the total number of particles in the ensemble. With 
respect to particles that represent agent-based models, collapse 
may occur when the agents in most particles are not able to  
describe the observed behaviour in the underlying system, but 
a few particles have a large number of “good” agents (i.e. those  
that representing some of the observed pedestrians well). In 
this case, the few well-performing particles will have much  
higher weights than the others. The second difficulty, which 
often occurs after collapse, is particle degeneracy. A filter will  
degenerate if a few particles with high weights are resampled so 
often that the population of particles becomes near-identical.  
Many studies have found that the number of particles required 
to prevent particle degeneracy grows exponentially with the 
dimensionality of the model14,26,27. This is particularly relevant  
for agent-based modelling, because as each agent typically has 
many distinct parameters, agent-based models usually have 
extremely high dimensionality. Although SIR helps to increase 
the spread of particle weights, it is often insufficient on its  
own26. Here a process of random noise injection known as  
‘jittering’33 is used to try prevent the collapse: at the beginning 
of each DA window a small amount of Gaussian noise is added  
to the (x, y) positions of the agents.

Adapted SIR PF. Unlike models in the natural sciences (where  
DA methods are normally applied) which are usually based 
on equations, ABMs are based on decision rules, and it is com-
mon for agents’ behaviour to be related to categorical param-
eters. As discussed in the Introduction, the later results will  
show that the vanilla PF implementation can actually increase 
the error in simulated agent positions after DA. This prob-
lem stems from the presence of categorical parameters in the  
model state vector; we will show that particles with the  
‘correct’ agent destinations can be sampled out of the population  
early in the process, leaving no reliable particles in later stages 
of the simulation. The adapted PF involves a change to the 
resampling step that allows the worst performing particles to  
keep their inferred parameters (exit gate, and speed), 
while replacing the position r� of each agent with those of  

better performing particles. In other words, the positions of the  
agents in a particle are replaced, but their other parameters 
are not. This is a hybrid approach and aims to consider the two 
sources of uncertainty that are characteristic of an agent-based  
model: the random characteristics of the heterogeneous agents 
and the random choices that the agents make during the  
simulation. Formally, in the adapted SIR PF experiments, the  
state of agent i at time t is

                                           { }.i i
t ts r= �                                            (7)

Error metric
We use mean distance (MD) to quantify the prediction accu-
racy, defined as the average distance between agent positions 
predicted by the model and the positions of the pedestrian in  
the data:

                  2 2

1

1MD ( ) ( ) ,
n

A Ai iPi Pi
i

x x y yn =
= − + −∑                   (8)

where n = 274 is the number of agents/pedestrians, x
Pi

 and 
y

Pi
 are the horizontal and vertical position of pedestrian i in 

the data, and x
Ai

 and y
Ai

 are the horizontal and vertical posi-
tion of the agent i in the simulation. The mean distance between 
the predict and observed position is also used to determine 
the particle weights present in Equation 6. The precision is  
measured by the standard deviation (SD) defined as:

         ( )2
2 2

1

1SD ( ) ( ) .
n

A Ai iPi Pi
i

x x y y MDn =
= − + − −∑         (9)

The results are presented in two different time references. The 
observation time reference gives the mean distance result in 
every frame. In each frame there are pedestrians at the begin-
ning, in the middle or at the end of the trajectory, so this time  
reference gives an overview of the model prediction capacity.  
To identify at which points in the trajectory of each pedes-
trian the model prediction is better or worse, the result is also 
shown in the pedestrians’ time reference, where zero time is  
the time each pedestrian enters the scene.

Experiment details
In total, four experiments were carried out; see Table 1. First, 
to evaluate the performance of the model two experiments  
were conducted without DA. In Experiment 1, all parameters  
were obtained from the data (unrealistic scenario as these  
parameters cannot be known in reality at real-time), then the 
same experiment was performed under a realistic scenario (only 
the time and entry gate for each agent are known). Then, two 
experiments were conducted with DA and under a realistic  
scenario.

In all experiments 274 agents with radius of 0.5 m were simu-
lated; 1 simulation step is equivalent to 1 frame from the CCTV  
camera (25 frames = 1 s). The information booth in the cen-
tre of the environment was modelled by a static disc with  
4 m radius, and the collision time between an agent and  
the information boot was determined using Equation 1. In 
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Table 1. Experiments conducted using the StationSim model. Illustrates whether all parameters 
are given to the model (unrealistic scenario) or just activation time and entry gate (realistic scenario). 
Also shows which simulations include data assimilation and specifies the adopted method.

Experiment ID Description Data assimilation

Experiment 1 Unrealistic scenario (all parameters known, only the agents’ 
(x, y) positions are uncertain)

None

Experiment 2 Realistic scenario (destination and desired speed unknown) None

Experiment 3 Realistic scenario (destination and desired speed unknown) SIR PF

Experiment 4 Realistic scenario (destination and desired speed unknown) Adapted PF

experiments 1 and 2, 5000 model samples were used. In 
experiments 3 and 4, 5000 particles were used, and DA—i.e.  
particle reweighting and resampling—was conducted every 100 
simulation steps (4 s).

Results and analysis
Experiment 1: model evaluation
We first implement StationSim without DA in an unrealis-
tic scenario to purely evaluate the performance of the model 
when all parameters (activation time, speed, entrance gate  
and exit gate) are known. Figure 3 illustrates the average results 
over N = 5000 independent models.

Figure 3(a) shows mean distance as a function of sensor time. 
The average value (MD and SD) for the distance between agents 
and pedestrians over all selected frames is 7 ± 6 m, i.e. about  
14 times greater than a side-step that the agents take to avoid a 
collision. Therefore, the mean distance in this experiment can-
not be explained solely by the random choices that agents 
make when crossing the station. Some pedestrians exhibit 
more complex trajectories than can be predicted by the model.  
On the other hand, as the standard deviation is almost equal to 
the mean difference, it is possible to infer that some pedestri-
ans do have trajectories that are similar to those simulated in  
the model.

To illustrate these cases, Figure 4 shows the trajectories of 
three pedestrians and their respective agents. The first scenario 
is illustrated by the pair of red lines. In this case, the pedestrian  
(solid line) performs an almost linear trajectory, as well as the 
movement of the agent (dashed line) predicted by the model.  
The second scenario is illustrated by the pair of orange lines. 
In this case, the pedestrian performs a more complex trajec-
tory, but the change of movement direction is mainly related  
to interactions with other pedestrians or with elements of 
the environment. Because agents in the StationSim model  
can vary the direction of movement based on such interac-
tions, even if a pedestrian executes a non-linear trajectory, 
it is possible for the agent to simulate this behaviour if the 
agent’s random decisions reflect real pedestrian behaviour.  
These two scenarios represent more than 70% of the observed 
trajectories17. The third scenario (blue lines) represents the case 
where the pedestrian performs an even more complex trajectory 

that cannot be explained only by interactions with individu-
als or with the environment. In this case the agent is not  
able to adequately describe the pedestrian’s behaviour.

Figure 3(b) shows the mean distance as a function of pedestrian 
time, i.e. time 0 represents the point that the agent enters the 
system regardless of the frame that they actually enter in. For  
all agents the difference between their position and the posi-
tion of their respective pedestrian is almost zero in the first few 
seconds of trajectory, but after 10 seconds the mean distance  
is 6 ± 4 m. Such a difference in this small time interval is 
related to the complex trajectory that some pedestrians per-
form and that can not be predicted by the model. The mean 
distance increases with time until it reaches a value around  
10 ± 7 m after 31 s, which is mainly related to the width of the 
gates that have a mean value of 13 ± 4 m — i.e. although the  
agents do not leave the station in the same position as their  
respective pedestrians, they leave through the same gate. This  
difference at the end of the trajectory can be related to the  
random choices that each agent makes during the simulation.

Experiment 2: baseline scenario
As with the first experiment, Experiment 2 is also without 
DA, but now the speed and exit gate parameters are not pro-
vided to the model. Therefore, each time a model spawns  
an agent the values for these parameters are drawn from ran-
dom distributions that were parameterised through analysis 
of the trajectory data. This is a baseline scenario to compare  
with future scenarios when DA is applied. Figure 5 shows 
the mean distance between agents and pedestrians for this  
experiment over N = 5000 independent models.

As with Experiment 1, Figures 5(a) and 5(b) show the mean  
distance as a function of sensor time and agent time respec-
tively. With respect to Figure 5(a), the average value for the  
distance between agents and pedestrians over all selected 
frames is 13 ± 8 m. In Experiment 1 it was 7 ± 6 m. As  
expected, by randomly selecting the speed and exit gate param-
eters, the mean uncertainty in the prediction of pedestrian 
positions increases. The entrance gate and activation time  
were extracted from the data so the error at the beginning 
of the path of all pedestrians is small, but as the destination 
gate and speed were not known the trajectories diverge as the  
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Figure 3. Experiment 1: (a) Mean distance between agents and pedestrians (red solid line) as a function of sensor time. The light red 
region shows one standard deviation from the mean. (b) Mean distance between agents and pedestrians (blue solid line) as a function of 
pedestrian time. The light blue region shows one standard deviation from the mean.

Figure 4. Experiment 1: Trajectories of three pedestrians (solid 
lines) and their respective agents (dashed lines). The circles 
mark the beginning of each pedestrian trajectory. Three cases of 
pedestrian movement are evident: (i) the red line illustrates a linear 
trajectory; (ii) the orange line illustrates a near linear trajectory with 
some obstacle avoidance; (iii) the blue line illustrate complex, non-
linear trajectory.

simulation runs. After 29 s, the mean distance reaches a value  
around 17 ± 9 m, which is greater than the average width of 
the gates, indicating that the model is not able to correctly  
predict the exit gate for all agents.

Experiment 3: SIR PF
Experiment 3 tests the use of the SIR PF as a means of reduc-
ing the difference between the real pedestrian traces and those 
simulated in StationSim. In this experiment activation time and  

entrance gate are known, but the speed and exit gate param-
eters are not provided to the particles. For this experiment 5000 
particles are created with the same entrance gate and activa-
tion time as their respective pedestrian, while speed and exit 
gate parameters are randomly drawn. Figure 6 illustrates the  
result for this experiment.

Figures 6(a) and (b) show the mean distance as a function of 
sensor time and agent time respectively. The average value for 
the distance between agents and pedestrians over all frames 
shown in Figure 6(a) is 17 ± 11 m. This value is greater than 
the observed in Experiment 2, where the average value was  
13 ± 8 m. Unexpectedly, in this experiment, DA using a PF 
decreased the accuracy and precision of the result! Figure 6(b) 
shows that during the first 10 s, the mean distance increases 
at a similar rate to that of Experiment 2. However, after 10 s 
the mean difference further increases until it reaches a value 
around 24 ± 11 m. Although this result was not expected, 
it brings an important contribution to the understanding of  
the behavior of the PF when applied in ABMs.

In situations where there are few collisions, each agent in 
the StationSim model walks almost in a straight line towards 
their exit gate. However, as illustrated in Experiment 1, the  
real movement of pedestrians can be more complex. To under-
stand a complex trajectory in terms of the movement allowed  
by the model, we can think of the pedestrian trajectory as 
the combination of several small almost linear trajectories.  
It would appear that the pedestrian walks almost in a straight 
line towards a gate, but after a short time they start walk-
ing towards a different gate. The more complex the trajectory,  
the more changes in the destination the pedestrian makes. In 
this way, the exit gate that generates the better trajectory at  
the beginning of the pedestrian’s movement is not the same 
exit gate at the end of the trajectory. The PF selected parti-
cles that better described the movement of pedestrians at the  
beginning of their trajectory. Then as the system evolves 
and it becomes clear that the gate chosen initially is not the 
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Figure 6. Experiment 3: (a) Mean distance between agents and pedestrians (red solid line) as a function of sensor time. (b) Mean distance 
between agents and pedestrians (blue solid line) as a function of pedestrian time. Shaded regions show one standard deviation from the 
mean.

Figure 5. Experiment 2: (a) Mean distance between agents and pedestrians (red solid line) as a function of sensor time. (b) Mean distance 
between agents and pedestrians (blue solid line) as a function of pedestrian time. Shaded regions show one standard deviation from the 
mean.

one that the pedestrian is in fact heading to, all particles that 
might have included the ‘correct’ exit gate will have already  
been sampled out in the first moments of the experiment. 
Hence the movement of the agents begins to diverge quickly 
in relation to pedestrians’ movement. This phenomenon is 
related to particle degeneracy and is the main reason for the  
high error observed in Figure 6.

Experiment 4: adapted PF
The result from Experiment 3 was unexpected and highlights a 
critical issue that arises when a PF is applied to an agent-based  
model and confronted with data from real human behaviour. 
Before concluding, we apply an adapted PF method to further  
investigate the problem highlighted in Experiment 3; namely 
that the particles with the ‘correct’ destinations can be resa-
mpled out of the population early in the process as the pedes-
trians do not follow straight paths. Recall that in the adapted  
PF, instead of completely removing the worst performing  
particles, agents in those particles will keep their inferred  
parameters (exit gate and speed), while the dynamic (x, y)  

position will be removed from subsequent iterations and replaced 
by the dynamic (x, y) position from better performing particles.

As with experiments 2 and 3, in Experiment 4 activation time 
and entrance gate are known, but the speed and exit gate  
parameters are drawn from random distributions that were  
parameterised through analysis of the trajectory data. Figure 7  
shows the mean distance as a function of sensor time. The  
average value for the distance between agents and pedestri-
ans over all frames is 13 ± 9 m. This result shows a great 
reduction in uncertainty in relation to Experiment 3: the accu-
racy obtained was 23.5% (4 metres) better than that observed 
in Experiment 3, and the precision obtained was 18.2%  
(2 metres) better than that observed in Experiment 3. An overall 
improvement around 21%.

Although this result is exciting when compared to the result 
of Experiment 3, it is comparable to the baseline scenario  
(Experiment 2). To further improve the efficiency of the PF 
when applied to an ABM, some additional adaptations are  
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necessary. This result is, however, enlightening when it comes  
to identifying the bottleneck of the combination of PF, 
ABM, and real pedestrian data: the estimation of categori-
cal parameters. Future work should consider the possibility of  
changing categorical parameters with a certain probability.

Discussion and conclusions
This paper extends the state-of-the-art by demonstrating how 
a PF can be used to incorporate real data in an agent-based  
simulation of pedestrians as they traverse the concourse of  
Grand Central Terminal in New York City (US). Although 
this is not the first work to use the combination of a PF and  
an ABM, it makes a valuable innovation through the use of 
real data. Up to now all attempts to unite DA and agent-based  
modelling have used hypothetical, ‘pseudo truth’ data11–17. This  
is important because we find that the complexity in the move-
ments of real pedestrians seriously impact on the ability of  
the filter to optimise the model. This would not have been 
uncovered using toy data and is particularly important for  
agent-based models, as behavioural simplifications mean 
that virtual agents may not reflect the actions of real indi-
viduals. When using the traditional SIR PF, the filter selected  
particles that better described the movement of pedestrians at 
the beginning of their trajectory, but when pedestrians changed 
their direction of movement there were no longer any particles  
capable of describing this new direction. By understanding  
the behaviour of the PF when applied to an agent-based  
model, we were able to apply a method capable of reducing 
uncertainty by about 21% in relation to the uncertainty observed 
with the SIR PF. Despite being an expressive result, more  
precise methods still need to be developed as this improvement  
is marginal when compared to the baseline experiment.

In the Methods section we explain that particle degeneration 
and collapse can occur when the spread of the population of  
particles becomes very narrow—i.e. all particles in the popu-
lation become very similar. It is well documented that the  
particle ensemble size needs to maintain a constant error to  

prevent collapse and it scales exponentially with the dimensions  
of the state space27. The agent-based model here, like many  
agent-based models, has high dimensionality: 274 agents each 
with two unknown parameters (exit gate and speed) and a  
dynamic (r� = x, y) position that becomes uncertain when agents  
collide. Although we added Gaussian noise at the beginning  
of each DA widow to all the agents’ positions within a parti-
cle to provide some resilience to the unexpected non-linear  
pedestrian movement and prevent filter collapse and state  
degeneracy, some particle collapse was observed. More spe-
cifically, the results point to the need for methods that add a  
fluctuation to the categorical parameters, as well as the use of  
methods that support the high dimensionality of ABMs.

More advanced methods do exist that try to circumvent this 
issue, one of which is local particle filtering (LPF). LPF takes 
the approach of splitting the state space into sub-states34. In this  
case the weighting and resampling steps are performed 
locally within a region and the full state of the system is 
defined by the tensor product of all sub-states. In the case of  
ABMs for pedestrian movement it is difficult see how to use  
LPFs without changing the overarching output from predic-
tions of individual pedestrian movements to a wider output 
of predicting crowd movement and aggregated characteristics 
which may be better approximated by aggregate models rather  
than ABMs in the first place. Another potentially useful method 
is the Particle Flow Filter (PFF). In the PFF, particles itera-
tively transition from the prior to the posterior state (without  
the resample process), consequently avoiding the degeneracy 
problem. In addition to being promising for high-dimensional  
systems, the PFF developed by Pulido et al.35,36 is particularly  
promising, since it is compatible with nonlinear observations. 
Future work will experiment with this filter.

One hyper-parameter that can be further experimented with 
is the length of the DA window. This represents the time that 
passes between the PF receiving observations and resampling 
its particles. Here the DA window was 4 seconds (represented  

Figure 7. Experiment 4: (a) Mean distance between agents and pedestrians (red solid line) as a function of sensor time. The light red 
region shows one standard deviation from the mean. (b) Mean distance between agents and pedestrians (blue solid line) as a function of 
pedestrian time. The light blue region shows one standard deviation from the mean.
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Manuel Pulido  
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This manuscript develops a data assimilation system that is composed of a classical particle filter 
and an agent-based model. The agent-based model describes pedestrians walking around the 
concourse of a terminal. The technique is validated using real data from a terminal in New York 
City. ABMs are very descriptive models at the expense of having multiple free parameters that 
require to be properly set for realistic simulations. Therefore there is a current need for the 
development of callibration techniques that may constrain parameters and the state of the system 
close to the observations. The present manuscript is a pertinent effort along this line. One 
challenge that the authors had to deal with in their work is the presence of categorical variables 
(destination gate of the pedestrians) that are difficult to be statistically represented in data 
assimilation. They propose a relaxation of the resampling step. The manuscript is well written and 
the proposed technique and evaluation experiments are relevant so I recommend the indexing of 
the article with some comments that the authors may consider for the revised versions. 
 
The authors have previous work on the use of the ensemble Kalman filter for data assimilation in 
ABMs. The motivation on why they chose a particle filter in this work instead of other Gaussian 
techniques (e.g. ensemble Kalman filter) requires some further discussion. In the article, they 
mention nonlinearities as a motivation. Are the nonlinearities of the model statistically important? 
How do the authors evaluate this point? My (probably wrong) intuition was that because the 
system was highly unpredictable since pedestrian trajectories have multiple motivations (many 
not influenced by the modeled variables), because of that data assimilation schemes that may 
correct the predicted trajectories of the individuals and exit gate using observations could be 
more suitable. At the same time, particle filters are promising because the only coupling between 
observations and predictions is via the observational likelihood so that state evolution is enterely 
based on the simulations. In this sense, particle filters look a promising venue for epidemiological 
ABMs in which state corrections in the filter are difficult (Cocucci et al 2022). 
 
Perhaps some credit in the introduction to the original works on particle filters (e.g. Gordon et al 
1993 etc) should be given in the manuscript. The interest in the particle filter in geoscience 
applications is much more recent (and I would say it is still an open field for those high-
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dimensional applications). 
 
What is the observation likelihood that the authors are using in the particle filter? Are observations 
assumed to be without error? The weighting factor is the inverse of the mean distance. Is this 
more suitable than a Gaussian/Mahalonobis distance?. 
 
As far as I can see the impact of observations on the exit gate attribute is rather indirect: the 
trajectory likelihood. I wonder if one could incorporate the "mean" direction information as a 
proxy for the exit gate (this could be also an observable variable). 
 
Standard parameters in particle filters are known to produce sample degeneracy. To avoid this 
problem an artificial random evolution is added to the parameters so that they can explore the 
parameter space (Liu and West 2001). I wonder if some kind of stochasticity may be added to the 
exit gate (particularly at the initial times) to avoid the problem of the particle filter related to 
particle degeneracy. 
 
I was expecting some further analysis of the assimilation experiments (3 and 4). Does the 
performance of the filter depend on the particle number? Could you show the number of effective 
particles and compare its evolution between Exp 3 and 4. 
 
About the conclusions, my impression is that particle flow filters (e.g. Pulido and vanLeewen 2019) 
may be potentially more interesting to apply than local particle filters. Localization does not 
appear to be suitable for this application, I think it would be very hard to determine which agent 
states are independent and which are correlated. On the other hand, the goal of particle flow 
filters is to avoid particle impoverishment moving the particles toward the posterior density. 
 
Further general comments/discussion: 
 
It seems that there are no learnable parameters in the filter apart from exit gate and speed? Could 
the authors foresee some further parameters that are correlated to observations to be 
incorporated in the state space? Another related point for further discussion in the manuscript. 
Will the system be able to predict any urgency situation that alters the standard pedestrian 
trajectories? This could be one of the most important features to model and predict. 
 
Is it essential real-time data assimilation in this application? Could the system be conditioned with 
near-future observations to improve the performance of the filter/smoother? 
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Nikolai W. F. Bode   
Department of Engineering Mathematics, University of Bristol, Bristol, UK 

This contribution is concerned with testing data assimilation techniques for calibrating an agent-
based model on an openly available data set of pedestrian trajectories. Overall, this is an 
interesting contribution that is presented well and I could not find any obvious technical issues. 
My comments are mainly about the broader context and approach of this work. 
 
The data selection was explained only with reference to computation times. It would be useful to 
discuss limitations of this data selection in terms of how representative of the overall data set it is: 
e.g. what would the advantages/disadvantages of choosing two separate 1-minute sections 
instead of one 2-minute section have been? 
 
Some aspects for model parameterisation are surprising, given that availability of trajectory data 
is assumed. For example, the preferred speed could be informed by taking speed measurements 
(a realistic proposition with current technology). Similarly, the exit gate estimation could be 
informed by observed movement directions of agents. This more informed parameterisation may 
reduce the number of particles needed in PF. As it stands, PF is asked to achieve a lot. If I 
misunderstand why the approach outlined above is not what is intended here, then an 
explanation for this would be useful. 
 
In general, the approach outlined attempts more than just model calibration. However, model 
calibration is a useful comparison and it would therefore be useful to discuss some of the work 
that has attempted to calibrate models for pedestrian movements, as this is rather difficult and 
may help to contextualise this work. 
 
Predicting/matching the trajectories of individuals is very ambitious. As the authors show, there 
are all sorts of behaviours that most models cannot predict or do not even consider. 
 
Most approaches for DA will attempt to reduce the complexity of the problem (e.g. consider 
weather predictions on a grid). I think the authors should discuss to what extent this could be 
done for the data they consider. E.g. movement could be predicted on a coarser grid, only 
pedestrian densities could be predicted, etc. 
 
Such an approach may improve prediction success substantially, even if the same model is used. 
 
I haven't had the time to look at the code and can therefore not comment on it.
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