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Abstract—Internet of vehicles (IoV) has been developed as
a promising technology to improve road safety. However, re-
source management can be challenging in a congested traffic
environment, which can affect the energy efficiency (EE) and
spectrum efficiency (SE) in IoV networks. In this paper, we
present a novel intelligent resource allocation approach based on
deep reinforcement learning to maximize the weighted composite
efficiency that incorporates the EE and SE metric subject to
latency and reliability constraints of vehicle-to-vehicle (V2V)
users. We employ Thompson sampling with double deep Q
network to transform the objective function. Moreover, we
present a probability-based learning approach to meet the quality
of service requirements and to increase the learning ability of the
proposed model. The simulation results indicate that the proposed
approach maximizes the composite efficiency while satisfying the
latency and reliability constraints of V2V users.

Index Terms—5G, V2X, DRL, EE, SE, IoV.

I. INTRODUCTION

In recent years, the internet of vehicles (IoV) networks
has emerged as an important element in intelligent transport
systems (ITS) by supporting wireless transmission services
among vehicles [1], [2]. IoV network enables intelligent
vehicle-to-vehicle (V2V) communication by providing internet
services between vehicles [3]. Future cellular technology needs
to coordinate the vehicle-to-everything (V2X) communica-
tions in an organized manner to enhance road safety, which
involves communications among V2V users and vehicle-to-
infrastructure (V2I) users [4]. Whereas, V2V users must meet
the ultra-reliable and low latency communications (URLLC)
requirements [5]. V2X communication can help to improve
traffic efficiency and road safety by gathering real-time traffic
information. The information services in the IoV environment
demand endless continuous access to the network, where V2I
pairs need to meet the capacity requirements by support-
ing high transmission rate. Moreover V2V pairs must meet
the URLLC requirements in order to communicate safety-
critical messages [6], [7]. Since a dedicated spectrum is
assigned in V2X communications, and there will be inter-
ference among V2I and V2V pairs due to sharing of single
resource block among vehicular users [8]. Many resource
management schemes have been presented recently in order to
meet the spectral efficiency (SE) and energy efficiency (EE)
requirements of V2V and V2I pairs in IoV networks. In [9],
the authors look into the problem of maximizing V2V pairs

reuse. They utilize the upper bound of the outage probability
to improve the SE.

In [10], the authors presents the centralized resource alloca-
tion approach where they transform the URLLC requirements
of V2V users into optimization limitations, and present a
heuristic approach to address the optimization problem. Large
transmission overhead is a problem in a centralized approach
and it increases significantly as the network size increases
[11]. In [11], the authors proposed a decentralized scheme
to allocate the frequency bands efficiently to V2V users
by classifying them based on their data rate and positions.
The conventional optimization schemes based on iterative
algorithms are not effective to manage the resources due to
the increase of network size in IoV networks. In particular,
they cannot make rapid decisions in fast varying channel state
conditions of vehicular networks and thus cannot address the
URLLC requirements of V2V users. Machine learning (ML)
based approach can be effective in addressing these challenges
[12]. Deep reinforcement learning (DRL) has shown potential
to address more difficult decision-making problems as required
in IoV networks [13].

Authors in [14] present a DRL-based decentralized ap-
proach to maximize the SE in unicast and broadcast envi-
ronments while considering the URLLC requirements of V2V
pairs. In [15], the authors propose a deep Q-network (DQN)
based approach to manage the resources. To optimize the com-
munication mode selection in V2X communications, authors in
[16] proposed a DRL-based semi-decentralized approach to in-
crease the reliability of V2V users. In [17], the authors present
a reinforcement learning (RL) based algorithm to manage the
network load by classifying the vehicles into clusters. Authors
in [18] describe case studies based on reinforcement learning
to improve resource management in the V2X environment. In
[19], the authors proposed a DQN-based centralized spectrum
allocation framework, where the agent aims to maximize the
SE of V2V and V2I users subject to the interference of priority
users. Authors in [20] present a DRL-based real-time energy-
aware offloading resource management framework to reduce
the latency and energy consumption of vehicular users with
mobile edge computing (MEC). Work in [21] presents a DRL-
based deep deterministic policy gradient (DDPG) approach to
improve the EE in complex multi-user V2V communication.



In [22], the authors present a multi-agent DRL approach to
maximize the total sum rate of V2V and V2I users subject to
URLLC requirements of V2V users. Authors in [23] proposed
an approach based on proximal policy optimization (PPO)
and DRL to manage the resources, where V2V pair acting
as an agent learn the optimal policy by interacting with the
environment and taking appropriate action to select the optimal
power and sub-channel. However, most studies are based on
actor-critic (AC), q-learning and DQN methods. All these
methods can manage the resources intelligently but also have
some limitations. The q-learning approach fails to converge
rapidly. Moreover, the DQN approach may perform poorly
due to the overestimation of Q-value, while AC converges to
a local optimum and has high variance.

A. Contributions

In this work, we propose an efficient DRL-based DDQN
approach with Thompson sampling to manage the radio re-
sources intelligently in the IoV environment. We formulate
to optimize the SE and EE of V2V and V2I users, while
ensuring the URLLC requirements of V2V users. The main
contributions are listed below.

• We propose a decentralized DRL-based transmit power
control and resource block allocation approach where we
try to optimize the weighted composite efficiency that
incorporate both the EE and SE metrics. We aim to
increase the composite efficiency of V2I and V2V users
subject to URLLC requirements of V2V users in IoV
networks.

• An efficient learning approach based on Thompson sam-
pling named probability-based learning (PBL) is pro-
posed to manage the resources intelligently. If the existing
or new vehicular user experience poor performance then
it can learn from the master user. This help to improve the
overall system performance. The user that has the highest
probability with the learning user is chosen as the master
user.

• Simulation results shows that our proposed approach
performs better in the dynamic IoV environment.

The remainder of this paper is organized as follows. In
Section II, we present the system model and describe the
optimization problem. In Section III, we describe the details
of our proposed PBL approach to model the optimization
problem. Simulation results are provided in Section IV. Lastly,
we conclude the paper in Section V.

II. SYSTEM MODEL

We consider the unicast communication scenario in the IoV
network as shown in Fig. 1, where we have two kinds of
communications: V2V and V2I communication. V2I com-
munication indicates transmission between BS and vehicular
users, and V2V communication is the direct communication
between vehicular users. We assume that the orthogonal fre-
quency division multiple access (OFDMA) scheme is adopted
by the network to support vehicular users. There are M
V2I users, denoted as M = {1, 2, ..,m, ..,M}, and K V2V

Fig. 1: System model of the unicast-based IoV networks.

users, denoted as K = {1, 2, .., k, ..,K}, and orthogonal
resource blocks are allocated to the V2I users. We assume that
each V2V user can reuse only one resource block, and each
resource block can be used by multiple V2V users because
the interference is more manageable at the BS level. Hence,
the resource block allocation element sk,m is such that

sk,m =

{
1, If the kth pair reuses the mth pair resource
0, otherwise

(1)

The capacity of the mth V2I pair can be represented as:

Rm = B log2

(
1 +

Pmhm,b∑K
k=1 sk,mPkhk,b + σ2

)
(2)

where B indicates bandwidth while the transmission power of
mth V2I pair and kth V2V pair are Pm and Pk, respectively.
Channel gain from mth V2I pair to BS and from kth V2V pair
to BS is indicated by hm,b and hk,b, respectively. The noise
power is expressed by σ2. The capacity of kth V2V pair can
be formulated as:

Rk = B log2

(
1 +

Pkhk
ζk + σ2

)
(3)

where ζk indicates the interference, and can be expressed as:

ζk =

M∑
m=1

sk,mPmhm,k +

M∑
m=1

K∑
i ̸=k

sk,msi,mPkhk,i (4)

where hk and hk,i indicates the channel gain and interference
gain of the ith V2V pair. The first term in (4) denotes the
interference power of the V2I pair sharing the same resource
block with the V2V pair. The second term in (4) is the
sum interference power from all V2V pairs sharing the same
resource block.

A. Problem Statement

In this work, we aim is to maximize the SE and EE of
V2I and V2V pairs while guaranteeing the strict URLLC
requirements of V2V pairs. The resource allocation problem is
formulated as an optimization-based problem. The composite



efficiency for the V2I network is the ratio of the sum-rate of
all the V2I pairs, bandwidth and the total power consumed for
the V2I communications. Hence, it can be formulated as

℘m =

∑M
m=1Rm∑M

m=1Bm × (
∑M

m=1 Pm +MPc)
(5)

where Bm and Pc indicates the allocated bandwidth to the
mth V2I pair and circuit power, respectively. Similarly, the
composite efficiency of V2V pair can be expressed as:

℘k =

∑K
k=1Rk∑M

m=1Bm × (
∑K

k=1 Pk +KPc)
(6)

Let τtrx and τmax be the V2V user current transmission
and the maximum transmission delays, respectively. The strict
latency requirements of V2V users can be met such that the
probability Pr{τtrx ≥ τmax} is less than the threshold value
νdelaymax , and it can be expressed as [25]:

νdelayk = Pr{τtrx ≥ τmax} ≤ νdelaymax (7)

Similarly, the reliability constraint can be guaranteed by re-
ducing the outage probability such that:

νoutagek = Pr{Rk ≤ R
′

k} ≤ νoutagemax (8)

where R
′

k indicates the target rate and νoutagemax is the rate
outage threshold. So, the joint optimization problem can be
stated as:

P : max
P⋆

m,P⋆
k

{w1℘m + w2℘k} (9a)

subject to
M∑

m=1

sk,m ≤ 1, ∀k; (9b)

Pr{τtrx ≥ τmax} ≤ νdelaymax , ∈ {0, 1},∀k; (9c)

Pr{Rk ≤ R
′

k} ≤ νoutagemax , ∈ {0, 1},∀k; (9d)
Pm ≤ Pmax, (9e)
Pk ≤ Pmax, (9f)

where (9a) represents the objective function that aims to
maximize the weighted composite efficiency (SE and EE) of
V2I and V2V pairs. Constraint (9b) indicates that the kth

V2V pair can only reuse a single resource block of the V2I
pair. Constraints (9c) and (9d) ensure that the strict URLLC
requirements of the V2V pair are satisfied. (9e) and (9f) are
the transmission power constraints of V2I and V2V users,
respectively.

III. INTELLIGENT RESOURCE MANAGEMENT BASED ON
DRL

In this section, DRL-based resource management approach
is discussed along with the proposed solution which is based
on PBL. In this framework, every V2V pair acts as an agent
and interacts with the environment to observe the behaviour.
So, the agent observes the environment state st at each trans-
mission time intervals (TTI), and selects resource block and
transmission power by taking an action at based on the optimal

policy π. The optimal policy π can be achieved by estimating
the Q-function Q(st, at) through DL. The environment gets to
a new state st+1 according to the decisions or actions initiated
by agents, and it achieves a reward value rt. In this work, we
evaluate the reward value by the weighted composite efficiency
of the V2I and V2V pairs subject to URLLC requirements of
the V2V pair.

1) State-space: The state space is essential for learning
the optimal parameter settings. It can be represented as S,
and it consists of useful information of all agents observed
at each TTI. At each TTI, the state-space st of an agent
consists of CSI, selected resource blocks, QoS requirements,
and the received interference. The CSI at tth TTI over the
mth resource block for the kth agent (V2V pair) can be
expressed as Ht

k[m] = {htk[m], htm,b[m], htm,k[m]}, where
htk[m] and htm,b[m] indicates the channel gain of V2V pair and
channel gain from V2I pair to BS over mth resource block,
respectively. And htm,k[m] represents the interference channel
gain on the mth resource block. The chosen mth resource
blocks captured by the neighbor vehicular users in previous
TTI can be represented by N t−1[m]. QoS requirements can
be indicated by vq which includes strict URLLC requirements.
We present the received interference as It−1[m]. The state-
space can be represented as:

s(t) = [Ht
k[m], N t−1[m], It−1[m], vq] (10)

2) Action space: After observing the environment state
each V2V agent will take action, which includes selecting of
resource block and transmit power level, and it needs to satisfy
the constraints (9b)-(9f) while taking these actions. The action
space can be described as:

a(t) = {{N1, ..., Nk}, {Pk(1), ..., Pk(k)}} (11)

where Nk and Pk(k) represents the resource block and trans-
mission power level, respectively, selected by the agent.

3) Reward: A V2V agent chooses the resource block
and appropriate transmission power level that leads to less
interference to neighbouring vehicular users while meeting
the URLLC QoS requirements. Therefore, an efficient reward
function is required to determine the optimal policy π. The
key objective is to take intelligent decisions and maximize the
reward by learning the optimal policy π based on the observed
environment state. So to manage the resources intelligently, we
present the reward function by considering the QoS require-
ments in the IoV network. It can be represented as:

r(t) = (w1℘m + w2℘k)−w3

(∑
k∈K

(νdelayk + νoutagek )

)
(12)

where w1, w2 and w3 are the weight values. Our reward
function has two parts, namely, the composite efficiency of
V2I and V2V pairs, and the URLLC requirement of V2V
pairs. Part 1 indicates the objective function (SE and EE) and
part 2 is the cost function in terms of URLLC requirements
for V2V users. Since the key objective is to determine the
optimal policy, so, to achieve better performance, immediate



reward and future rewards need to be reviewed. The expected
cumulative discounted reward can be expressed as:

Rt = E
[ ∞∑
j=0

βjrt+j

]
(13)

where βj ∈ [0, 1] indicates the discount factor.

A. PBL for Intelligent Resource Management

The optimal policy π can be determined by applying
different DRL techniques such as policy gradient (PG), Q-
learning and deep Q-learning (DQL). In this work, we train
our model to find the optimal policy to allocate the resource
block and transmission power level to maximize the reward
value. The Q-learning approach can be useful when state-
action space has low dimension, because with large dimension
it will update the Q-value rarely which will result in slow
convergence [14]. In the IoV environment, the policy gradient-
based approach converges to local optima and also suffers from
high variance values which result in poor performance in terms
of convergence [24]. Whereas, in DQN, every action is chosen
and evaluated by the target Q-network which leads to an
overestimation of Q-value [25]. We propose an efficient PBL
approach based on DDQN coupled with Thompson sampling
in order to find the optimal policy π. In DDQN, the action
at is selected by the DQN and a target Q-network is used
to evaluate that action. We use Thompson sampling to allow
the V2V agent to select an action at based on the highest
probability value. The V2V agent will not choose the actions
with low probability which will lead to better convergence
performance. Therefore, for Q-value Qπ(st, at) the action that
maximizes it can be formulated as:

at = argmax
a

Qπ(st, a; θ) (14)

where θ represents the weight. In this work, we formulate an
efficient exploration-exploitation approach by using Thompson
sampling. Bayesian linear regression approach is used to
estimate the distribution over Q-value. For each action at taken
by the agent, we form a dataset with values from the replay
memory. Then we form a matrix ψθ

at
and estimate the posterior

distribution. It can be expressed as:

wat
=

1

α2
Covat

ψθ
at
Q′π(st, at; θ̂) (15)

wat
∼ N (wat

, Covat
) (16)

where ψθ
at

and wat refers to the variance and mean, respec-
tively. Samples are selected for every action at around the
mean value and co-variance Cov. Once the V2V agent takes
action at based on the observed environment state st, the
reward value rt and current state st+1 will get back to the
V2V agent. Then all these values are stored in replay memory.
The output can be expressed as:

y ← rt + γQ′π(st, at; θ̂) (17)

where Q′π(st, at; θ̂) indicates the target network that approx-
imates the Q-value with action at. Whereas, DQN chooses

the action a with a maximum Q-value as mentioned in (14).
The Q-value is updated based on the estimation from the
Q′π(st, at; θ̂). The loss function can be expressed as follows:

∆(y,Q′π(st, at; θ̂)) = E[(y −Q′π(st, at; θ̂))
2] (18)

B. Transfer learning

In transfer learning, learned knowledge is transferred to
new task to improve the learning performance. We assume
that there are two tasks: old task To = (S,A,P1, r1, β1) and
new task Tn = (S,A,P2, r2, β2), and their respective optimal
Q-functions are Q1 and Q2, respectively; where P1 and P2

are transition probabilities. We also assume that both these
tasks have similarities. The aim is to improve the performance
of the system in dense environment by using the learned
knowledge of To and Q1. We propose a novel approach to
improve the model performance and efficiency to determine
the optimal policy. The vehicular users who are experiencing
poor performance can learn from neighbouring vehicles in
the IoV network. Newly joined vehicular users can also learn
information from the master vehicular user instead of creating
its own model. It needs to select the neighbouring vehicular
user as a master to learn the information which includes
resource block selection and transmission power level while
exchanging the information such as QoS requirements, CSI
and received interference. The vehicular user who has the
highest probability with the learning user is chosen as the
master. It can be defined as:

△(To, Tn) = ||Q1 −Q2||∞ ≤ △̂(To, Tn) (19)

PBL optimizes the state-value action function Qπ(st, at, θ)
according to the transfer information. The weight parameter

Algorithm 1 PBL for intelligent resource allocation

1: Input: Environment simulator
2: Initialize: weight θ, target weight θ̂, policy π and model
3: Set memory= ∅
4: for each TTI do
5: Observe the state space st
6: Take action at for the selection of resource block and

power level following the Thompson sampling
7: Determine reward r(t)
8: Save data into memory
9: Sample and train with DDQN

10: Update policy π
11: Update parameter θ by minimizing a loss function
12: if Vehicular user has poor performance then
13: Find the master with highest probability
14: Obtain learned strategy and create action space
15: Choose action according to equation (20)
16: Perform steps from (7) to (11)
17: else
18: Perform steps from (5) to (11)
19: end if
20: end for



θ will be optimized, and the transfer learning parameters will
converge to the state-value action function and find an optimal
policy π. After finding the master with the highest probability,
it uses the learned action information from the master and its
action space to create a new range of action space. Then the
agent employs Thompson sampling to select the actual action
space based on the observed environment. The chosen action
can be expressed as:

â = cal + (1− c)ac (20)

where c refers to the transfer rate c ∈ [0, 1], al and ac indi-
cate the learned action information and current action space,
respectively. Details are mentioned in Algorithm 1. Mostly,
V2V agent takes action based on its observed information and
will not share the learned strategy with other V2V pairs if
the V2V user is not experiencing any performance loss as it
does not require to use the transfer learning framework from
any master user. Our proposed decentralized transfer learning
framework improves the performance of the system because
the V2V agent will not continuously transfer the knowledge
as it can learn based on its own observation.

IV. SIMULATION RESULTS

In this section, simulation results are provided to show the
performance of the proposed algorithm in terms of maximizing
the composite efficiency, which integrates both the EE and SE
metrics subject to URLLC requirements. The carrier frequency
is 2 GHz and we set the simulation setup according to the
urban case of 3GPP TR 36.885 [26]. We generate the data
samples from the environment where V2I and V2V users are
scattered randomly in a cell. We obtain the CSI of all users
in the network according to their present positions. Large-
scale fading and small-scale fading is also considered, and we
divide the channels into non-line-of-sight and line-of-sight. In
order to meet the latency and reliability constraints, we set the
τmax = 5ms, and reliability 99.999 %, respectively with the
1 bits/Hz target SE. All the parameters are shown in Table I.
We have three hidden layers with a learning rate of 0.01 and
a discount factor of 0.75. We compare our simulation results

TABLE I: Simulation Parameters

Parameter Value
Carrier frequency 2 GHz

Resource block bandwidth 180 KHz
Cell radius 400 m
Bandwidth 5 MHz

No. of resource blocks 25
V2I power 23 dBm

V2V power level [23, 15, 10] dBm
Circuit power 15 dBm

No. of V2I users 20
No. of V2V users [20, 40, ..., 80]

Noise power -107 dBm
Learning rate 0.01

Distance between vehicles 100 m
Path Loss LOS & NLOS
Channel Rayleigh fading

Shadow distribution Log-normal

Fig. 2: Composite efficiency against number of V2V users.

Fig. 3: Probability of satisfying V2V pairs.

with actor-critic learning based on the PG approach, DQN and
Q-learning.

In Fig. 2, the result of composite efficiency is shown for the
different schemes with an increasing number of V2V users,
and when the vehicle speed is 50 km/h. It can be seen that
the proposed scheme performs better than PGAC and DQN.
This is because our proposed algorithm adapts the policy π
in order to manage the resources intelligently and efficiently
reducing the interference to V2I pairs. And as the number of
users are increased, the composite efficiency of V2I and V2V
pairs decreases due to the increasing interference and power
consumption. The value is 5.12 bits/Hz/J for the PBL when the
vehicular users are 30, whereas the values of PGAC and DQN
are 4.75 bits/Hz/J and 4.67 bits/Hz/J, respectively. Q-learning
technique performs poorly due to its slow convergence. When
the number of vehicular users is increased to 80, the composite
efficiency also decreases with it. The PBL approach performs
better than the rest of the schemes.
The result showing the probability of satisfying V2V pairs is
shown in Fig. 3., where the speed of the vehicular user is 50
km/h. It can be observed that PBL achieves better performance
by finding the optimal resource management policy to meet



Fig. 4: Network efficiency with varying speed.

the URLLC requirements. As the number of V2V users is
increased the network efficiency decreases with it. This is
because as the user pairs are increased they are all required to
establish the connection, and need to maximize the objective
function while guaranteeing the URLLC requirements. Hence,
increasing the number of pairs leads to toppling the satisfied
pairs.

Fig. 4 shows the effect of the varying speed on the network
efficiency when the number of vehicular users is 30. It can be
seen that the network efficiency decreases with the increase
in user speed. This is due to the influence of the larger
observation variability from the dynamic environment. Our
proposed approach outperforms the other schemes initially and
then its performance drops as the increase of speed. This is
because of the larger quantized action values which results in
larger dimension.

V. CONCLUSION

In this work, we investigated the resource block and power
allocation mechanism in IoV networks. We proposed a novel
DRL-based approach to improve the network efficiency while
meeting the URLLC requirements in a highly dynamic and
resource limited environment. We optimized the composite
efficiency, which incorporates the SE and EE metric while
ensuring the QoS requirements of V2V pairs. Simulation
results shows that the proposed PBL approach performs better
while meeting the QoS requirements.
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