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Abstract— LoRaWAN simulations are a flexible way to analyse the
behaviour of this LPWAN technology in scenarios that are un-
feasible to deploy due to their scale and the number of devices
required. Parallel to this, there is also a continued lack of larger-
scale LoRaWAN deployments in current literature. Crucially, none of
these studies involves comparison with any theoretical model, such
as discrete-time simulation or mathematical analysis, for validation.
In this paper we deploy a 20 nodes LoRaWAN network around
the University of Glasgow’s campus, analyse the results and then
proceed to develop an NS-3 simulation to recreate and match as
faithfully as possible the behaviour and topology of the physical
deployment. The performance of both the deployment and the
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simulation is then compared, and the results show that while the complexity of the simulation is kept relatively low, it

is possible to get simulation results within about 20% of the deployment results.
Index Terms— Deployment, loT, LoRaWAN, NS3, PDR, Real-life, Simulation.

[. INTRODUCTION

HE term “Internet of Things” (IoT) refers to distributed

measurement systems made up of wirelessly connected
end devices, transmitting sensing data and receiving feedback
from a central processing unit. Over the past decade, with
the increased number of connected devices and sensors being
developed, we have witnessed the rise of IoT technology
in both consumer applications like smart-health and smart
home as well as over multiple industries, such as agriculture,
automotive, oil and gas. Such networks are based on a com-
munication technology that is low in power consumption, has
a high maximum range, and is highly scalable, capable of
dealing with many wirelessly interconnected devices at the
same time. These requirements are not fully met by any of
the traditional communication protocols, be they short-range,
like Bluetooth or Wi-Fi, or long-range, such as cellular and
satellite. LPWANs (Low Power Wide Area Networks) are
protocols designed to complement the existing ones and to
better fit the IoT ecosystem specifically. LoRa (from Long
Range), NB-IoT, Sigfox, and Weightless are all examples of
LPWAN:Ss used in IoT and IIoT (Industrial Internet of Things)
applications.

In particular, LoORaWAN, a MAC layer protocol built on top
of the LoRa proprietary modulation technique, has received
much attention in the past few years. This is partly due to
its open-source nature, the promise of low capital and main-
tenance costs, and potential long battery life with very high
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communication range. Moreover, LoORaWAN is very flexible,
allowing for both private and public networks, and affording
the designer control over its performance via multiple trade-
offs, such as increasing the communication range at the
expense of battery life. This makes it suitable for a variety of
specific use cases, since multiple parameters can be fine-tuned.
The initial release of LoORaWAN dates back to 2015, and yet
there is still a lack of performance analysis studies based on
real-life deployments or scalable testbeds, particularly large-
scale ones, with a few notable exceptions [1], [2]. For conve-
nience, such networks are mainly analysed through discrete-
time simulations [3] or equivalent mathematical models [4],
[5]. More so, to the best of our knowledge, no previous work
tries to recreate in simulation, as faithfully as possible, the
same real-life deployment carried out, either working entirely
empirically or theoretically. While real, large-scale networks
will always be hard to deploy and analyse, the following work
aims to provide a metric of just how effective simulations can
be so that they can be more confidently used instead, for LoRa
as well as other technologies.

In line with the gaps identified in the related work (Section
III), the key contributions of this work are:

e Deployment of a 20-node network on the campus of
the University of Glasgow. These nodes operate with
one of five different transmission behaviours to make
the deployment closer to what a real-life application
would be, with different sensors having different uplink
schedules.

o Porting of the entire physical deployment scenario as
close to reality as possible to NS-3, a discrete-time
simulator
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o Analysis of the results of both methods while identifying
points of conflict between the two, highlighting further
improvement needed to the discrete-time simulation rou-
tines and lessons learnt.

The rest of this paper is structured as follows. First, we
briefly discuss the characteristics of LoRaWAN that will be
relevant during the rest of the paper in Section II. We then
look at the relevant literature in Section III before describing
the setup and results of the physical deployment in Section
IV. Then we describe the setup and results of the simulation,
as well as checking if and how the results from both methods
are comparable in Section V. Conclusions and ideas for further
work are given in Section VI.

1. LORA AND LORAWAN
A. LoRa physical layer

LoRa is a proprietary chirp spread spectrum (CSS) modu-
lation technique patented by Semtech. It is designed to enable
communication in the range of kilometres. To achieve this, a
number of configurable radio parameters that control the max-
imum achievable communication range, power consumption,
and data rate can be tuned.

These parameters are the bandwidth (BW), which is the
spectrum over which the modulated signal is spread, the
coding rate (CR), which is used to perform forward error
correction techniques, and the spreading factor (SF) of the
transmission. An example of the control one can have over
the network performance is how the sensitivity of the receiver
can be improved by changing the SF of a transmission, which
can range from 7 to 12. Increasing SF will boost coverage
while reducing the bitrate and increasing the packet’s Time-
on-Air (ToA), and vice versa.

The chance of a packet being received and decoded accu-
rately is strongly correlated with its ToA. While raising SF and
therefore the ToA makes it easier for the packet to be received
by a gateway by increasing its range, it also increases the like-
lihood of collisions with other packets, saturating a receiver’s
demodulation channels, and exceeding the permissible duty
cycle limitations.

LoRa usually operates in the license-free, region-dependent
ISM frequency bands, 863-870 MHz for Europe and 902-928
MHz for the United States, although it can also function in
the lower ISM bands 433 MHz and 169 MHz.

Using the unlicensed ISM frequency spectrum reduces the
cost of deployment, while also limiting the highest attainable
data rate due to constraints on available air-time per device
on the same frequency. For the regularly utilised frequency
sub-bands of 863.00-868.00 MHz and 868.00-868.60 MHz,
the duty cycle is imposed at 1%. This implies that a device
can only send data on each of the two sub-bands 1% of the
time [6].

B. LoRaWAN MAC layer

LoRaWAN is the open-source MAC protocol built on top of
the LoRa modulation and managed by the LoRa Alliance, an
open, non-profit association aiming to promote the adoption
of the LoORaWAN standard.

LoRaWAN networks contain three main elements:

o Nodes or End Devices (ED) are sensor boards responsi-
ble for collecting data or implementing instructions via
actuators through LoRa-based communication.

o Gateways (GW) are devices that forward packets coming
from nodes to a network server and vice versa, acting as a
logically invisible bridge between nodes and the network.

e The Network Server (NS), which handles the deduplica-
tion of received packets, rejection of corrupted/unwanted
packets, and scheduling messages to be sent to specific
nodes through gateways in range.

A typical LoRaWAN network is organised in a star-of-
stars topology, with nodes transmitting to all gateways in
range rather than having a direct link to any single gateway.
Uplink allows devices to communicate with the network, while
downlink allows them to receive data. Downlink data to a
node must always be routed through a gateway in range
because standard LoRaWAN does not provide native node-
to-node communication, though this can be implemented via
different MAC layers built on LoRa modulation. Downlink
communications must be sparse since gateways are subject to
the same duty cycle limits as nodes. Downlink also affects
the overall Quality-of-Service (QoS) of a network by adding
additional interference and preventing gateways from receiving
uplink messages while sending in downlink.

LoRaWAN networks define three different classes for its
EDs, Class A, Class B and Class C. Class A devices pro-
vide bi-directional communication, but downlink can only be
received over two brief time windows being opened after
an uplink is sent. Class B provides extra slots for downlink
communication at periodic times following scheduling via
beacons. Class C devices continuously listen for downlink
messages, except when transmitting [7]. While research has
been extended to other classes, Class A remains the most
popular and used of the three.

[1l. RELATED WORKS

Modelling existing network deployments is an established
practise in literature for a number of different communication
technologies and via different simulators [8], [9]. However, the
practise has not been widely extended to LoRa and LoRaWAN
yet, with existing literature either focusing on simulation or
empirical deployments. The work in [10] reports the RSSI
(Received Signal Strength Indicator) values obtained in a
three-storey building in Hyderabad, India. A single node is
placed in different sections of the building and information is
gathered by a single stationary gateway. This investigation is
meant to provide insight on how the path loss for LoRaWAN is
affected by indoor obstacles like walls and doors. Similar work
is presented in [11] where the authors report the measured
results of a field experiment across multiple locations in
Japan. Once again the packets are only used to validate the
empirically obtained path loss compared to the Okumura-Hata
model. The authors in [12] perform an indoor and outdoor
coverage analysis in a Smart Farm scenario. Together with
information on RSSI and SNR (Signal-to-Noise Ratio) of the
received packets, they also report the PDR (Packet Delivery



CITONI et al.: COMPARATIVE ANALYSIS OF AN URBAN LORAWAN DEPLOYMENT: REAL WORLD VS. SIMULATION 3

Ratio) achieved by a node in different locations against the
distance from a common gateway.

In [13], the authors present an analysis of a testbed deployed
in the University of Calgary in Canada. Two custom gateways
are placed indoor on the 7th floor of a building, with 4 nodes
operating on different frequencies in the 915 MHz band. PDR
for each floor of the building as well as for larger outdoor
distances are recorded. Additional experiments were carried
out to characterise how different parameters such as different
spreading factors and different packet size can affect the PDR.

In their study, Yasmin et al. [2] deployed 331 nodes, each
with 5 different sensors at the University of Oulu. They are all
set to have a fixed transmission interval of 900 seconds, pack-
ets with constant length of 24 bytes, operating with a spreading
factor of 7. The Adaptive Data Rate (ADR) algorithm is off
and, since the devices will not require confirmation of packet
receipt, there is theoretically no downlink. Data received at a
single gateway are collected and analysed in terms of RSSI,
SNR, and PDR and show that no device was below 25% PDR
and some had PDR >99.5%.

The work in [1] studies the results obtained from a large
deployment in Shangai, with data collected over 8 months.
They investigated the packet loss rate (defined as the opposite
of PDR) and tried to find some correlation between various pa-
rameters such as the distance between transmitter and receiver
and that of the RSSI and the SNR with the PLR (packet loss
rate). Two different types of devices with different transmitting
behaviours are included in the study, and final considerations
on the results are brought forward in terms of the quantity
of nodes in an area, the gateway deployment strategy, the
different transmitting schedules of the two types of devices,
and the impact of packet collisions in the network.

Finally, in [14], the authors carry out a similar analysis
in Brno, Czech Republic, over an area of 288 km?. More
than 20 gateways are present throughout the city, and a single
device is cycled through 231 test locations, while operating at
spreading factor 12 and on the mandatory EU frequency bands.
Timestamps RSSI, SNR, and reached GW locations were
recovered from the network server and analysed in MATLAB.
The overall PDR throughout the experiment is 83%, and some
very interesting results are also recorded in terms of RSSI,
PDR, ADR and gateway positions.

V. PHYSICAL DEPLOYMENT
A. System Model

A total of 20 end devices were assembled for this study.
Each device is made up of a The Things UNO [15] and a
custom PCB shield used to connect a 7.4V, 5.2Ah battery
pack while providing a facile way to recharge it, shown in
Fig. 1. The devices were placed in plastic enclosures and
scattered around the University of Glasgow’s 70-acre wide
Gilmorehill campus in several indoor locations. These were
varied in altitudes and room usage, but can be overall regarded
as office spaces. None of the nodes were moved throughout
the experiment, although external changes in the rooms and
buildings were impossible to track. According to previous
testing and calculations, each device was supposed to last on
a single battery charge for approximately 3 weeks.

(b)
Fig. 1: One of the deployed nodes and its plastic enclosure.

Each node is assigned an ID from 1 to 20 and one of five
possible transmission routines, hereby referred as Tx Groups.
These are meant to diversify the deployment and mimic how
in a real-life network there might be different update needs
for different data features. For instance, a node tasked with
recording temperature in a warehouse may need to be heard
from once every 10 minutes, while a light intensity sensor
only needs to transmit data a couple of times during the whole
night. As far as we are aware, the idea of diversifying the op-
eration of nodes not only based on their data rate, but on their
operation and application, has not been considered before. In
related works, nodes are instead generally programmed or set
in simulation to have fixed, periodic schedules across the entire
network.

Devices in Tx Group 1 (ID 1,6,11,16) are programmed to
transmit every 300 seconds, those in Tx Group 2 (ID 2,12,17)
transmit as fast as the currently used SF will allow. For devices
in Tx Group 3 (ID 3,8,13,18), a random interval between 300
and 900 seconds is chosen for each transmission, and for Tx
Group 4 (ID 4,7,9,14,19) a random interval between the fastest
the current SF will allow and three times that same value.
Finally, devices in Tx Group 5 (ID 5,10,15,20) will transmit
every 600 seconds for approximately 12 hours (representing
operation during daytime), and then transmit roughly every
7200 seconds for 12 hours (representing operation during
nighttime) before going back to daytime operation.

In addition to the three gateways (ID 1,2,11) we deployed
in the James Watt South building, we were expecting to reach
a number of third-party gateways, as the network used in our
work is managed by IoT Scotland and widely used throughout
the country. Gateways 1 and 2 were placed indoor, while
Gateway 11 on the roof of the same building. Analysis of the
results confirms that a total of 15 different gateways received
at least one packet from any of our devices. We depend on the
accuracy of the location provided by the unknown third-parties
operating these gateways, as we will use the GPS metadata
recovered from our packets to place the gateways in space
when recreating the network in simulation. The geographical
extent of the network is visible in Fig. 2. For a more detailed
view, a custom, interactable map is available!.

All nodes start transmitting using SF12, packets with 10
bytes of payload. They are set to hop randomly between 8
possible frequency channels: the mandatory channels at 868.1,
868.3, 868.5 MHz and five additional ones at 867.1, 867.3,

Uhttps://tinyurl.com/2p9npexz
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867.5, 867.7, 867.9 MHz. The ADR algorithm is enabled
both on the nodes and on the network server, which means
that the SF and the transmitting power of each node can
be increased or decreased throughout the deployment life
cycle. While the on-device side is formally standardised, the
network-side algorithm is developed by each network operator
based only on recommendations [16]. The algorithm employed
in both the chosen network and the simulation for this study
are supposedly the same, but as this cannot be confirmed for
certain, it could lead to some discrepancy in results.

The experiment lasted for a month, with nodes placed
between the 6" and the 8" of December 2021 and picked
up in January 2022, when it was noticed that no more data
was being collected, as all nodes ran out of battery within
approximately 3.5 weeks.

B. Results

Key metric to quantify the QoS of a LoRaWAN network
found in literature is its PDR or its inverse, Packet Loss Rate
(PLR). RSSI, SNR and overall throughput have also been used
[11, [2], [6], [17]. When gathering and analysing results from
a real LoRaWAN deployment, the only information that can
be studied is the one coming from the packets that have been
correctly received. While one can extrapolate the behaviour of
a device based on information such as the frame-counter of its
last received transmission, there is no guarantee that the packet
was the last transmitted by the node, but only that it was the
last one that was received. The consequence of this, among
other things, is uncertainty regarding key factors such as a the
PDR of a network. This is in contrast with simulations, where
all packet related events can be saved and compared to what
it is actually received at the network server.

qwb

9 gwr

9 gwa

o 9 qu12 ° A

Qo
° gwls

9 gwi3

° gw3

Fig. 2: Geographical scale of the deployed network

TABLE I: Nodes ID, groups, operating time, packets sent,
delivered and PDR.

Node ID  Tx Group  Operating hours  Sent Delivered  PDR (%)
1 1 597 7055 5965 84.55
2 2 42 11997 10313 85.96
3 3 557 3308 2961 89.51
4 4 262 5584 4139 74.12
5 5 511 1573 1227 78

6 1 98 1122 876 78.07
7 4 231 56146 55911 99.58
8 3 533 3178 3150 99.12
9 4 13 2684 2470 92.03
10 5 497 1544 1539 99.68
11 1 589 6958 4259 61.21
12 2 512 20837 6954 33.37
13 3 514 2913 1828 62.75
14 4 7 158 46 29.11
15 5 496 1532 590 38.51
16 1 23 280 266 95

17 2 355 97754 97584 99.83
18 3 529 3191 627 19.65
19 4 321 6827 4749 69.56
20 5 79 248 248 100
TOTAL 234889 205702 87.57

As it is shown in Table I, the devices we deployed in
the network experienced very different operating times, even
when powered with the same, fully charged batteries. These
operating times are based on the timestamp of the first and
last packet received by each node and can be assumed to vary
for a number of reasons.

Node 14, during the 7 hours was certainly alive only
delivered 46 packets out of the 158 that its frame counter
suggests were attempted. It probably failed to maintain the
connection alive due to interference, or a miscalculated change
in data rate from the ADR that was not subsequently fixed.
The outage of other nodes like 20 and 9, both of which
were performing very well during their time alive, could be
explained by changes in the building, or even room condition.

The initial effort was to mitigate the impact of these unex-
pected discrepancies on the accuracy of the PDR of the nodes
and determine how long each device was actually supposed to
last. The longest time alive for nodes within each Tx Group
was taken as the expected for the whole group, assuming the
same operating time due to the same transmitting schedule.

However, as mentioned, Tx Groups 2 and 4 have the ability
to set their transmission interval dynamically, based on their
SE. This ability, coupled with the fact that the SF of each
device can be changed because of the ADR algorithm, gives
rise to devices operating in the same group having greatly
different life expectancies, such as node 12 and node 17. This
effect is not as prominent for Groups 1, 3 and 5, which have
a static, SF independent Tx Interval, and where the difference
in operating time is probably due to the reasons mentioned
above.

Because of this, it was decided to work with the best-
case scenario instead. Devices are considered to be operating
only during the time they were active for certain, and the
simulation is adapted to have each device run just as long. The
resulting PDR will likely not be as accurate a reflection of the
Quality-of-Service and throughput of the deployed network.
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TABLE II: Total number of packets successfully received for each gateway-node pair, including duplicates.

GW1 GW2 GW3 GW4 GWS5 GW6 GW7 GWS8 GW9 GWI10 GWI11 GWI12 GW I3 GW 14 GW 15
Node 1 341 0 0 0 0 0 0 21 0 0 5920 0 0 0 0
Node 2 475 0 0 0 0 0 0 23 0 0 10271 0 0 13 0
Node 3 831 0 0 0 0 0 3 34 0 0 2848 0 0 62 0
Node 4 0 0 0 0 0 0 0 1789 0 0 3533 0 0 2716 0
Node 5 6 0 0 0 0 0 0 18 0 0 1224 0 0 0 0
Node 6 28 0 0 0 0 0 0 31 0 0 872 0 0 3 0
Node 7 1 54459 0 0 0 10 10 753 0 0 54358 0 0 3 0
Node 8 2457 269 0 0 0 0 0 1869 0 0 2956 0 0 402 0
Node 9 58 1 0 0 0 0 0 19 0 0 2468 0 0 15 0
Node 10 | 1499 1401 0 0 0 0 0 271 0 0 1472 0 0 93 0
Node 11 | 0 0 0 0 0 0 0 0 0 0 4259 0 0 11 0
Node 12 | 0 0 0 0 0 0 0 0 0 0 6785 0 0 1278 0
Node 13 | 0 0 0 0 0 0 6 0 0 0 1815 0 0 228 0
Node 14 | 0 0 0 0 0 0 0 41 0 0 1 0 0 13 0
Node 15 | 0 0 0 0 0 0 0 0 0 0 590 0 0 0 0
Node 16 | 0 0 0 0 0 0 0 114 0 0 69 0 0 256 0
Node 17 | 28172 95931 1409 6 206 202 1179 8853 174 1072 95111 3613 20 680 9
Node 18 | 0 0 0 0 0 0 0 0 0 0 627 0 0 0 0
Node 19 | 0 0 0 0 0 0 1034 0 0 0 4498 0 3 284 0
Node 20 | 161 244 172 1 71 9 182 131 58 125 239 216 57 99 0

One should account for the fact that a device should have
lasted longer and taking all packets that should have been sent
during this period as lost. However, restricting the simulation
to the best-case scenario ensures the most comparable results.

Together with the standard LoRaWAN frame counter, in-
creasing with every transmission and included in the manda-
tory packet header, we also added a firmware counter in the
payload, called MyCounter, increasing on the device each time
a packet was sent to the send routine on-board. Discrepancies
between MyCounter and the regular frame-counter can then be
used to check how many packets were stopped on the device
because of duty cycle restrictions or other reasons.

Taking the MyCounter value of the last packet received by
a node as the number of packets sent by that node and taking
the recorded instances of data from that device arriving at the
network server as the number of packets received will yield a
PDR for each node based on:

Packets received

PDR = x 100

Packets sent M

The results are shown in Table I.
On average, the groups with the highest PDR are those with
the slowest Tx Interval. This is not as noticeable here given the
fact that only 20 devices are being operated concurrently (plus
any other outside our test network that we have no knowledge
of). The more frequently a node sends, the more likely it is
that its packets will collide in the air with others, but as this
is an effect that scales with the size of the network is not as
prominent here. However, we can see that Tx Groups 1 and 5
have 7% higher PDR than Tx Groups 2 and 4, from Fig. 3.
Table II shows the amount of packets received by each
gateway from each of the nodes in the deployment. This
includes packets that have not yet been deduplicated by the
network server, and as such the total received from each node
is expected to be higher than the number of packets received,
as most will likely be received by more than a single gateway.
The network as a whole is heavily influenced by mainly 2
devices: gateway 11, receiving the most messages, and the
only one receiving at least once from every node, and node

17, which similarly, delivers the most messages and is the
only node which delivers at least once to every gateway. Most
importantly, this table highlights the impact of gateway and
node positioning. Node 17 and gateway 2 are the pair with the
most packets exchanged between them in the uplink direction.
They are also the closest, being only 1 metre apart. Most of
the third-party gateways to which our nodes made connections
are in the south of the University Campus, and Node 17 is
only the second southernmost device. Node 7 is technically
the southernmost deployed node, yet it does not enjoy the
same high connectivity that devices 17 and 20 did. This is
likely because, despite being placed on the same floor and in
the same building, node 17 and 20 were positioned in a larger,
emptier room with big windows, while node 7 is on a desk in
a much smaller, busier and less ventilated room.

In a similar vein, node 14, the one that lasted the least, with
only 7 active hours recorded, preferred connection to gateways
8 and 14 rather than gateway 11. This is particularly interesting
as between node 14 and gateway 11 there is Kelvingrove
Park, an open space with no buildings, while between node
14 and gateways 8 and 14 there is sandstone tenements and
the expected urban sprawl. This possibly suggests that the
conditions of the room and adjacent areas in which device
14 was placed prevented connection to gateway 11. This is
also confirmed by the fact that nodes 4 and 16, placed in the
same building as node 14, had a similar experience, though
crucially they had a better overall connection with gateway
11.

V. NETWORK SIMULATION AND COMPARISON
A. System Model

The simulation is modelled and performed using the
discrete-time network simulator NS-3, running a modified
version of the modules first developed by Magrin et al. [3]
for LoRaWAN analysis. These modules, along with NS-3,
are widely used in literature and currently among the best
and most complete simulating tool for LoRa and LoRaWAN
behaviour [18].



IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

Nodes and gateways are placed in the 3D space based on
the coordinates gathered from the deployment as well as from
the network server. Approximations of buildings containing
nodes and gateways are also placed in the simulated space.
The resulting network topology is comparable to the actual
deployed network as described by the map in Fig. 2. ADR is
present in its standard form, as described in the deployment
setup.

The core of the simulation is represented by the channel
model. For this study, choices fell onto the Log-Distance,
Okumura-Hata and Friis models. All of these have previously
been used to describe channel loss in LoRaWAN simulations,
mathematical models, and analysis based on empirical data
[3], [19]-[22]. For the Log-Distance case, we used different
coefficients for v and PLg, based on the same formula for
urban environments used in [3]. Similarly to [23] and [24] we
also performed linear regression of the obtained RSSI values
from the deployment and obtained vy and PLj coefficients by
using the following relation:

with
PL = PLy + 10vlogio(d/do) + X4 3)

Neglecting the antenna gains Gy, and G, and the fading
factor X, (included by other means in our channel model),
and with the standard transmission power of 14 dBm and dj
of 1 metre we get:

RSST =14 — PLO - 10’)/10910(61) (4)

Having 15 gateways and 20 nodes in an area spanning sev-
eral kms, it made no sense trying to create a single regression
that would possibly average the different environment losses.
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Fig. 3: PDR of devices per the different Tx Groups.
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Fig. 4: Linear fit for the Path Loss recorded at Gateway 11.

Instead, the focus was on the packets received at Gateway 11,
as it was the one that contributed the most to the network.

The results of the regression, along with the scatter plot of
path loss against the node-gateway distance, are shown in Fig.
4.

Linked to the main, distance-based propagation loss model,
we also included fast fading, provided by the NS-3 Nakagami-
m model, approximating Rayleigh fading, as well as slow
fading and building-related losses, provided and documented
by the authors of the LoORaWAN module [3]. A combination of
the different distance-based propagation models, plus effects
of buildings, fast fading, and slow fading are tested to find
which would best approximate our physical deployment.

B. Results and comparison

The various propagation loss chains were tested to find the
most effective and conductive to a proper comparison. This
was done by taking the average absolute difference between
the PDR of the deployment and the PDR found by performing
the different simulations. Table III shows the results for a
number of combinations.

Traditional path loss schemes are only about 35% accurate.

The two closest solutions are a loss chain including the Friis
free space model and the effects of buildings, fast fading and
slow fading, and one including the Log-Distance model with
the regression coefficients but no buildings effects. Unsurpris-
ingly, the Log-Distance regression approximates the deploy-
ment the best, since we are gathering the fitting coefficients for
vy and PLg (eq. 3) directly from the empirically obtained data.
Buildings are not taken into account because they are already
“included” in the regressed data, while Rayleigh fading as
well as correlated slow fading are added to approximate the
deviation from the regressed result. Where a regression is not
feasible, as well as more generalised cases, using a loss chain
with Friis, fast and slow fading, and building loss performed
the best in this case.

From Fig. 5 it emerges that generally, the simulated and
empirical PDR for the nodes fall within 20% of each other.
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TABLE Ill: Some of the PDR differences between simulation and deployment achieved using different Path Loss chains.

Main propagation loss Building related loss  Fast fading  Slow fading  Average PDR difference (%)
No path loss (perfect network) X X X 25.14

Log-Distance with v =3.76 and PLg = 7.7 at 1 metre v v v 34.72

Log-Distance with v =3.92 and PLg = 11.52 at 1 metre v v v 41.15

Log-Distance with v =3.92 and PLg = 11.52 at 1 metre v v X 44.71

Log-Distance with regression coefficients, v = 1.819 and PLo = 79.063 at 1 metre v v v 49.46

Log-Distance with regression coefficients, v = 1.819 and PLg = 79.063 at 1 metre X v v 21.3

Log-Distance with regression coefficients, v = 1.819 and PLo = 79.063 at 1 metre X X X 37.13

Okumura-Hata v v v 40.58

Friis v v v 24.25

However, when using the regression coefficients, the nodes
that are placed in the more “challenging” environments will
vastly differ in performance. Device 18 is the device in
the harshest environment, being placed in a basement room,
without windows, among electronic manufacturing equipment.
The PDR obtained in the deployment reflects this, making
it the device with the lowest recorded PDR. As there is no
way to inform the simulation of the specifics of the room
it is placed in, it is treated as others which are at a similar
distance. The result is that its simulated PDR is about 60%
better. The opposite is also true, as seen for devices 4, 7, 9
and 16. For these devices the simulation yields a worse PDR
than what was recorded experimentally. This is also due to
the topology of the rooms they were placed in, and it is a
necessary consequence of obtaining the path loss coefficients
through regression over nodes in different environments, in
Fig. 4. For these four nodes, the regression fit lands above
their Path Loss average, hence creating a worse performance
in simulation than it should.

These discrepancies are also the case using building losses
models. Without improving the existing NS-3 models and
perfectly describing each building, the simulation is unaware
of the exact layout, content, and precise position of each node
in the room. Additionally, the existing building models for
NS-3 that were investigated for this study are not concerned
with the actual travel path of a signal, but only with checking
if receiver and transmitter are indoor, outdoor, in the same
building, or different buildings. This already is beneficial for
standard, general models. Adding it to the regression however
makes this path loss chain the worst performing one, as shown
in Table III, with an average PDR difference of 49.46%.

Finally, a fundamental assumption made in the simulation is
in fact that all gateways stayed active and operating throughout
the whole length of the experiment. Other than speculation
based on the timing of the reception of packets, this is not
known, and the possible cause of further discrepancies.

VI. CONCLUSION

As part of this study, a 20 devices LoRaWAN network
was deployed in an urban environment and then simulated
in software to appreciate the differences between the two
methods. The 20 devices are split into 5 behaviour groups, to
further diversify and characterise the nodes, and performance
is compared in terms of simulated and empirical PDR. Results
show that coupled with standard models for the additional
losses such as the building effects, fast and slow fading,
traditional path loss schemes are only partially accurate in
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Fig. 5: Comparison between empirical and simulated PDR.

recreating the losses experienced by our urban deployment. By
using the empirically obtained RSSI data from the deployment
itself, this difference in PDR can be cut down to roughly
20%. In our opinion, what we have presented in this work
is the closest current technology allows simulations to get to
a real life deployment, without spending an excessive amount
of resources into modelling and recreating every minor detail.
In future work, a more controlled environment could be used.
Ideally this would include perfect information on all devices
operating in the network proximity, their active periods and
their exact positioning. A building loss model which takes
into account the travel path of each signal, computing the
approximate number of walls it must travel through, could
also benefit this comparison. Excluding the ADR operation
from the analysis would also prove beneficial. While strictly
necessary for larger networks, in this case it caused more
issues than it solved. This is possibly due to the “black box”
approach of the ADR implementation on the network server,
where no formal requirement is in place. Finally, aside from
using dedicated energy-consumption models, devices should
at least send their battery status as metadata to make better
predictions on their total lifespan.
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