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ABSTRACT

With buildings consuming nearly 40% of energy in developed countries, it is important to accurately esti-
mate and understand the building energy efficiency in a city. A better understanding of building energy
efficiency is beneficial for reducing overall household energy use and providing guidance for future hous-
ing improvement and retrofit. In this research, we propose a deep learning-based multi-source data
fusion framework to estimate building energy efficiency. We consider the traditional factors associated
with the building energy efficiency from the Energy Performance Certificate (EPC) for 160,000 properties
(30,000 buildings) in Glasgow, UK (e.g., property structural attributes and morphological attributes), as
well as the Google Street View (GSV) building fagade images as a complement. We compare the perfor-
mance improvements between our data-fusion framework with traditional morphological attributes and
image-only models. The results show that including the building facade images from GSV, the overall
model accuracy increases from 79.7% to 86.8%. A further investigation and explanation of the deep learn-
ing model are conducted to understand the relationships between building features and building energy
efficiency by using SHapley Additive exPlanations (SHAP). Our research demonstrates the potential of
using multi-source data in building energy efficiency prediction with high accuracy and short inference
time. Our paper also helps understand building energy efficiency at the city level to help achieve the net-

zero target by 2050.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The emergency of climate change and global warming has been
recognized globally in both Paris Agreement and the Glasgow Cli-
mate Pact [1]; 153 countries have collectedly listed securing the
net-zero emissions as the top missions in COP26 at Glasgow. With
the building sector accounting for nearly 40% of energy consump-
tion in developed countries [2,3], understanding buildings’ energy
usage and improving the energy efficiency are critical for reducing
overall energy use [4]. In fact, accurately predicting and under-
standing the building’s energy efficiency is not only important
for the wider objectives in global carbon emission targets, but also
related to individual homeowners’ decision-making and housing
retrofit and improvement [5]. Successful identification of house-
holds with low energy efficiency is also beneficial for eliminating
fuel poverty problems [6]. Numerous efforts have been devoted
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to predicting energy emissions [7,8], mapping energy performance
[9,10], and connecting energy with real estate markets [11].

Despite its importance, multiple challenges remain for current
research methods. Traditional research for energy analysis and
estimation involves engineering calculation, simulation model-
based benchmarking and statistical modellings [12]. Many of the
current methods involve two types of data that are not readily
available or difficult to obtain. Firstly, human behaviour data such
as the number of occupants and heating set point temperature is
often used by current research. While the energy consumption is
largely affected by users’ behaviour, the data is often hard to
retrieve without the installation of smart metres or household sur-
veys. Also, for rented houses, due to the high turnover of the
tenants, it is difficult to have a frequent survey for the behavioural
patterns. Secondly, these research often take the energy consump-
tion related indicators into account, such as CO2 emissions, walls’
solar absorptance, etc [13]. The difficulty of obtaining such data
and extremely high correlation between the data and the objec-
tives make it not suitable for more extensive energy efficiency pre-
diction research.
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In this study, we present a more precise, and scalable frame-
work for estimating building energy efficiency ratings at the city
scale by using new forms of urban big data and deep learning
framework. The framework is able to make classification of proper-
ties’ energy efficiency ratings with building morphology descrip-
tion and street-level building image data. Morphological
attributes have been widely used in the prediction of building
energy consumption and efficiency [14]. It provides information
about properties’ size, material, structural features and possibly
implies how the property is used. The street-level building image
data captures the facade of buildings and also reflects energy-
related information of the property. Architectural elements within
the images, such as windows, doors and balconies are related to
the style, age and structure of the buildings. What's more, it has
been studied that street view images are able to reveal the rela-
tionships between built environments and socioeconomic environ-
ments [15,16]. With a combination of building morphology
description and street-level building images, this paper aims at
achieving a comprehensive understanding of building energy
efficiency.

The contribution of this paper is twofold: first, we design a scal-
able multi-source data fusion deep learning framework to predict
building energy efficiency ratings from both building morphology
attributes and street-level imagery. The framework is able to per-
form property-level estimation based on publicly available data-
sets. The openly available data, high accuracy and fine scale of
the methods ensures the framework to be beneficial for real-
world application and can be extended to other study areas. The
incorporation of image data within the framework further
improves prediction accuracy. Secondly, with the designed frame-
work, we are able to understand the influential factors for building
energy efficiency through explainable Al techniques. The frame-
work is also able to explain how different building features con-
tribute to the building energy efficiency estimation. It also helps
the homeowners and policy maker to estimate the energy effi-
ciency before the renovation starts. The research results are valu-
able in providing suggestions for the facilitation and execution of
emission-reduction policies. Given the wide availability of data
involved, the framework is also beneficial for broader regions
rather than the presented site.

2. Background
2.1. Methods for predicting building energy efficiency

In the previous research, engineering calculation, simulation-
based benchmarking, data-driven statistical modellings, and artifi-
cial intelligence methods have been widely used in building energy
analysis, estimation, and benchmarking [12]. Engineering method-
ologies use physical laws to assess building energy and can achieve
extremely high accuracy, but they rely upon system complex
details, including mathematics and building dynamics, as well as
all building components, which is not conveniently available to
the public in a large area; simulation-based benchmarking
includes software and computer models that have complex details
and can be used for a variety of applications, but it can be very
costly and time-consuming when a large number of solutions need
to be defined [12]. Current development of computational methods
and data make it possible to use data-driven statistical models that
are more efficient compared to engineering and simulation-based
methods [12]. Compared with other statistical models (multiple
linear regression, support vector machine, decision trees, etc.), arti-
ficial neural networks has been favoured by researchers due to
their reliable predictions and the advantages of overcoming the
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nonlinearity between the input and output of energy-related
data[17,18].

Existing research mainly use the ANN-based methods to under-
stand the building energy usage and demand [17]. [19] combined
ANN with the statistical method to quantify the impact of driving
factors on building energy use and found that the heating/cooling
degree days, the building area, the room number, and the window
number are most related to the energy end-use per capita. [14]
used Levenberg-Marquardt optimization algorithm to update the
weights of the hidden neurons considering its high speed, and
got a higher prediction accuracy rate of heat demand indicator—
about 95% of entries fall within + 3 confidence intervals. [20] devel-
oped ANN models to predict primary energy consumption for
space cooling/heating, and got high accuracy of more than 95%.
Although these previous study has achieved high accuracy in the
task of predicting energy usage, limited research has been done
to understand the energy efficiency, which is developed by well-
established mathematical methods to help estimate and improve
the efficient use of energy [21]. [13] made effort to verify the accu-
racy of the energy performance certificates by refining ANN models
and defining Neural Energy Performance Index. It turns a small
error in only 3.6% of cases was found. [22] designed an ANN model
for predicting heating and cooling loads instand of the average
energy efficiency of the building directly. How to understand and
predict energy efficiency better needs more exploration.

Also previous research usually need to collect site-specific data
such as the human behaviour factors (the number of occupants and
the heating setpoint temperature, etc.) and the energy
consumption-related indicators (CO2 emissions, walls’ solar
absorptance, Global Energy Performance Index, etc.). These site-
specific factors are either uncontrollable in practice, and its
enlightenment on retrofitting for green energy buildings is limited
or these factors are not readily available. To extend our research to
a larger study area and have a holistic city-level understanding of
building energy efficiency, we will not use these factors but only
choose abundant and easier to obtain characteristics from EPC
and street view images to understand the building itself and its
basic energy facilities, based on which to accurately estimate their
energy efficiency. This approach makes it possible to assess the
energy efficiency at a city level with insufficient data on energy
consumption indicators.

2.2. Using street-level imagery for building stock estimation

With the increasing coverage of GSV images and computational
power, many research have been devoted to combining deep learn-
ing and GSV for building stock prediction. GSV is a new source of
large-scale urban data that has been widely used in many urban
research fields, such as urban planning and design [23,24], real
estate [25], urban morphology [26,27], transportation and mobility
[28], socio-economic studies [29,30], and urban perception [31].
[32] reviewed approximately 600 papers published between
2005 and 2020 using street-level imagery as a research data
source, where GSV was used as the data source for two-thirds of
the overall papers. The widespread use of GSV is mainly due to
its large coverage all over the world (over 200 countries) and stan-
dard data quality.

The buildings in GSV are labelled with geographical location,
style, age, facade material, volume and scale. With these tags, com-
puter vision algorithms can screen out recognizable image infor-
mation through various discriminant methods, thus analysing the
city and its architectural culture. Based on deep learning for GSV
image feature extraction, studies on architecture have developed
from being limited to the study of the building itself (e.g., architec-
tural style, age, facade material, volume, and scale) to the study of
the area including the buildings. Some studies have investigated
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certain characteristics of the areas in which they are located by
identifying multiple features of buildings and non-architectural
factors (e.g. vegetation), such as street space quality [33], urban
aesthetics [34,35], continuity of street architecture [36], urban can-
yon geometry [27], and urban architectural landscape characteris-
tics [37,38]. The relationship between building and energy has also
received much scholarly attention based on the application of GSV
images and deep learning. On the basis of the GSV images of Victo-
ria, Australia, [30] estimated the year of buildings and constructed
a dataset of relevant attributes according to GSV images from Vic-
toria, thus providing key information for energy demand and retro-
fitting of buildings. [39] used GSV and machine learning to predict
building features relevant to energy retrofitting (i.e., building type
and suitability for additional fagade insulation) [39].

3. Study area and data
3.1. Study area

We take Glasgow city in Scotland as the study area. Fig. 1 pre-
sents the footprints of domestic buildings with EPC data in our
study area. According to Koppen-Geiger classification, the climate
of Glasgow is “Cfb, Marine West Coast Climate” [40]. Also, the
indoor comfort will be affected by the global warming [41]. Besides
the climate change issues in Glasgow, as one of the largest cities in
the UK, the diversity of building styles, the historical city develop-
ment, the ambitious goal to achieve a net-zero target by 2045, and
the well organized public Scottish EPC dataset, make it an ideal site
for building energy efficiency studies.

3.2. Data

This study incorporates multi-source data from the Scottish EPC
data [42], UKBuildings dataset from EDINA Geomni Digimap Ser-
vice [43], and GSV images for estimation of building energy
efficiency.

3.2.1. EPC data

In the UK, a building must obtain and has an EPC in the past
10 years when it has been newly constructed or is to be sold or
rented, except for very few special cases [44]|. An EPC includes
information on the energy efficiency of buildings. It records speci-
fic information such as the size and layout of the building, how it
has been constructed and the way it is insulated, heated, venti-
lated, and lighted. Based on these records, the EPC evaluators use
a UK government calculation methodology to estimate monthly
energy usage and CO2 emissions of buildings and generate the “en-
ergy efficiency rating” of the building from A to G, with A being the
best, which can help understand how much fuel cost may need to
be paid.

We select 168,410 EPC records for domestic buildings from
October 2012 to March 2021 in Glasgow. The data is requested
by setting the range of zip code of Scotland and converting
addresses (contain street name, street number and zip code) of
records into coordinates by Google Geocoding API. After filtering
out the records whose coordinates fall outside the study area, we
get 165,318 records. This nearly two percent loss may be due to
inaccurate or incomplete address information of the EPC dataset.
The specific domestic building locations are shown in Fig. 1. After
deleting the features that have overlapping descriptions or are
obtained by calculation, the numerical features in the EPC we used
to predict energy efficiency are shown in Table 1. It includes the
building construction factors and facilities. Besides, details about
categorical features are presented in the Supplementary material.
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3.2.2. UK buildings

UK Buildings dataset provides 2D building footprints across
Great Britain for residential, non-residential and mixed-use prop-
erties for towns having more than 10,000 population [43]. We
use this dataset as a geo-referenced dataset to match each EPC
record with a street view image that describes its appearance.

3.2.3. Street view images

As the digital representation of the built environments, street
view image is a valuable resource for understanding and analyzing
architecture and cities. With growing coverage and more provi-
ders, the street view image service has covered more than half
the world’s population [45]. It provides a more intuitive and
human-perspective view than other data sources. Among all the
services, GSV is one of the most popular sources. We obtain images
from the GSV service with its own Application Programming Inter-
face (API) with our customized parameters’. The detailed calcula-
tion of parameters will be presented in methods section 3.3.1. We
request GSV for 165,318 properties and download more than
550,000 street view images for 157,222 properties for further analy-
sis. For each property, historical GSV images are also obtained to
enlarge the dataset. The dates of images range from 2008 to 2021.
Considering that GSV images captured in consecutive years might
be too similar and lead to the overfitting of our model, we filter
images to make sure the capture year of the historical images of
the same property has at least two years gap. As a result, we link
368,769 GSV with the EPC records.

4. Methodology

To demonstrate how our framework, this section presents the
workflow of our methodology: 1) Street view image collection, 2)
Model design, 3) Model evaluation, and 4) Model interpretation.
The nomenclature and abbreviations are shown in Table 2. The
methodology code can be found on the project GitHub repository

(https://github.com/MaoranSun/buildingEnergyEfficiency).

4.1. Street view image collection

GSV images are available for download via Google API. How-
ever, the default view is pointing at the direction along the streets.
For this analysis, an image facing the building facade is required.
The GSV API allows us to pass customized parameters including
heading (the direction the camera is pointing at), field of view
(FOV, zoom level of the camera), and pitch (vertical angle of the
camera relative to the street view vehicle). Here, we present an
algorithm for calculating these parameters below.

Heading represents the direction in which the camera is point-
ing at. More specifically, what the parameter needs is the angle o
between the Vector North and Vector SC, as shown in Fig. 2. Equa-
tion (1) shows the calculation of the heading parameter from Point
S(xs,Ys), Point C(x.,y.) and Vector North. It is worth noticing that
angle o is the clockwise rotation angle from Vecttor North to Vec-
tor SC.

B arccos “)’H”H‘(;;‘ , if (xc — x; > 0) a
360 — arccos “X ﬂl\(/fcl ,  otherwise

Pitch controls the vertical direction of the camera. This could be
calculated based on the angle y between Vector SC and Vector ST.
Equation (2) shows the calculation of the pitch angle.

A = arccos <|\‘£7G|> x0.5 (2)

1 https://developers.google.com/maps/documentation/streetview/overview.
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® Domestic buildings with EPC data p——
Fig. 1. Study area.
Table 1 Table 2
Numerical EPC Features used in the analysis. Nomenclature and Abbreviations.
FEATURES Mean Standard Range Abbreviation Notation
deviation EPC Energy Performance Point  Center of bottom edge of the
Building construction factors Certificate C requested facade
2
Total floor area (m®) 76.64 34.80 [71058%%] GSV Google Street View Point  Center of top edge of the
. ) T requested facade
Average helght of the lowest storey ~ 2.63 039 [0, 6.37] SHAP SHapley Additive Point  Request point for GSV
of the dwelling (m) .
exPlanations S download
Facilities FOov Field of View o Horizontal angle of the camera
Number of open fireplaces 0.08 0.36 [0,7] API Application B Vertical angle of the camera
Percentage of low energy lighting 49.40 40.42 [0,100] Programming
(%) Interface
Simple size 165,318 DenseNet Dense Convolutional Vn North vector
Network

FOV is based on the width of the facade and the distance
between the building facade and the requested point. This can be

measured with angle 8, which is the angle between m and ng
as illustrated in Fig. 2. As GSV API accepts the value between 0
and 120, we pass the value of 120 or the calculated angle, which-
ever is smaller.

4.2. Multi-branch deep learning model design

With building facades and energy performance descriptive data,
we design a deep convolutional neural network for classifying the
energy efficiency. This model aims at learning energy efficiency

information simuteously from both facade image and property’s
morphological and structural attributes. As shown in Fig. 3, the
network mainly consists of four stages: input, feature extraction,
feature fusion and output. In input and feature extraction stages,
the network runs in two parallel branches: image branch and
descriptive feature branch. The image branch takes building facade
photos as input, with Dense Convolutional Network (DenseNet) as
backbone and outputs a 1024-dimensional deep feature for feature
fusion. Four dense blocks are used in the image branch. For the
descriptive feature branch, we build a simple fully-connected neu-
ral network with four hidden layers which yields a 256-
dimensional deep feature. In the feature fusion stage, the 1024-
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FOV(Zoom Level)

Fig. 2. Parameters for retrieving building facade from GSV images.
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Fig. 3. Deep learning model architecture. The model takes image and descriptive features as input, processes two branches simultaneously and make a final prediction.

dimensional feature from the image branch and 256-dimensional
feature from the descriptive feature branch are concatenated as a
1280-dimensional deep feature. This concatenated deep feature
is then passed into a fully-connected neural network with two hid-
den layers and makes the final classification of the property energy
efficiency categories.

For model initialization, we apply different strategies for the
image and descriptive feature branches respectively. The image
branch is initialized with weights pre-trained on the ImageNet
dataset [46]. ImageNet is a widely used dataset for detecting com-
mon objects such as vehicle, building and street sign. The pre-
trained weights used is able to understand and extract information
about objects and scenes within the images. This initialization
strategy helps the faster convergence of the network and requires
less training time. For the descriptive feature branch, we apply ran-
dom initialization because of the small number of parameters
involved and the simple structure. Both characteristics make the
branch easier to train.

4.3. Evaluation of result

For the main model, the dataset is splitted into three parts: 70%
of it is used for training, 15% for validation and 15% is used to test
the model. The model is evaluated with several metrics with the
test dataset. The evaluation aims at providing details about the
performance and where the misclassification happens. Firstly, the
model is assessed with numerical metrics of Precision, Recall and
F1-score. Besides, we present a confusion matrix for detailed per-
formance of all classes and corresponding numerical metrics. Pre-
cision is the ratio of correctly predicted positive samples to all the
predicted positive samples as shown in equation (3); Recall is the
ratio of correctly predicted positive samples to all the samples in
actual classes as shown in equation (4); F1-score refers to the har-
monic mean of precision and recall as shown in equation (5).
Besides the main model, we also apply a 10-fold cross-validation
on the full dataset to test the stability of our method with averag-
ing the total accuracy from 10 models.
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- TP
Precision = TP 1 FP (3)
P
Recall = L EN (4)

Fl =2+ Precision + Recall
~ 7 Precision + Recall

()

Secondly, we map the prediction results to explore the spatial
distribution of the model performance, as the adjacent buildings
often share similar style, age and facade materials. It is also impor-
tant to identify the poor performance areas spatially for further
improvement. Though the prediction is made at the property level,
we aggregate the predictions results to 150-meter grids for two
reasons. Firstly, the development and implementation of policies
are usually at higher spatial scale rather than property-level. Sec-
ondly, it is more intuitive and could better convene the spatial dis-
tribution of results. The performance of grid is evaluated with the
ratio of correctly classified sample numbers to the total sample
number associated within the grid.

4.4. Model comparison and interpretation

Besides the multi-branch model, we also predict the building
energy efficiency rating from image or descriptive features, respec-
tively. Same as the image branch, the image classification model is
adapted from DenseNet architecture with four dense blocks, and
yields final prediction for seven rating classes. The descriptive fea-
ture is also fed into a simple neural network with four hidden lay-
ers. To make sure the results are comparable and avoid the
randomness during experiments, we also keep the same split of
training, validation and test dataset across models.

To better understand and improve the building energy effi-
ciency, we explore the attributes of property contributing to the
model decisions. The interpretability of deep learning has been
widely studied recently. We apply the methods proposed by [47]
to the multi-branch and descriptive models. For the multi-branch
model, we mainly focus on the most decisive regions within the
image. For the descriptive models, we explore which descriptive
attributes are more important for improving the building energy
efficiency. We calculate SHAP? values for each pixel within images
and attributes of properties. SHAP value is the method based on
game theory and used to increase transparency and interpretability
of our model. More specifically, SHAP values measure the contribu-
tion of the factors to the final prediction, with greater value leading
to the prediction and smaller value contributing to other possible
predictions.

5. Results
5.1. Model performance

With the data and methodology above, we implement the
model on the Ubuntu platform with four GeForce RTX 2080 Ti
GPUs and Python and PyTorch framework. The model is trained
with hyperparameters of 0.005 as the learning rate and 100 as
batch size. The training process takes 13.26 h and 45 epochs by
using the training (70%) and validation (15%) dataset. As shown
in Fig. 4, the validation accuracy becomes stable after the 37th
epoch. The final model is evaluated on the held test data and the
inference time is 133 samples per second. We evaluate the final
model with overall precision, recall and F1-score by categories
and spatial distribution of the prediction accuracies.

2 https://github.com/slundberg/shap.
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5.1.1. Overall performance

The final model achieves an overall accuracy of 86.8% on test
set. We also test the model performance with 10-fold cross-
validation on the full dataset, results show that our model is able
to achieve the mean accuracy of 86.4%. To further explore the
detailed performance by classes, we present a confusion matrix
containing normalized performance, recall, precision and F1-
scores for each category. As shown in Table 3, the top-left to
bottom-right diagonal shows the percentage of correctly predicted
samples over all samples. The off-diagonal space represents the
percentage of misclassified samples. Result shows that the model
is able to archieve more than 80% accuracy for most classes. For
Grade A properties, the model achieves 69% accuracy as shown
in Table 3. This is due to the extremely small number of samples
from class A compared to that of other categories. It is also worth
noticing that most of the confusion happens within adjacent
classes. For classes with accuracy under 80%, Grade F samples are
often misclassified as Grade E and Grade A samples are mostly mis-
classified as Grade B and C.

5.1.2. Spatial distribution of prediction

To further understand the framework performance and the
characteristics of energy efficiency, we plot the error into the
map to explore the spatial distribution of prediction error. Fig. 5
shows the prediction accuracy aggregated into 150-meter grids.
The performance is measured by the precision, which is the num-
ber of correctly classified samples divided by all associated sample
number. The color indicates the accuracy with blue representing
high accuracy and magenta showing low accuracy. As shown in
the map, the majority of grids achieves a precision of over 80%.
Few grids have low precisions and no evident spatial patterns are
shown, which indicates no significant spatial autocorrelation exists
for the model’s outputs (Global Moran’s I = 0.14).

5.2. Model comparison

As an exploration, we trained two individual models predicting
building energy efficiency rating from facade images and descrip-
tive features respectively. The two models are then evaluated
based on the same metrics for feature-fusion model. Table 4 pre-
sents the accuracy, precision, recall and F1-score for comparisons
of different models. As shown in the table, the image feature model
and descriptive feature model achieves the accuracy of 57.2% and
79.5%, respectively. It is not surprising that the image feature per-
forms the worst, as the image data is just the external appearance
at the building level and the information is insufficient for energy
efficiency prediction. Results also shows that the feature-fusion
model achieves the highest accuracy. Furthermore, we present
the confusion matrix heatmap for each model in Fig. 6 to inspect
the break down of performance in categories. The heatmap shows
that, the feature-fusion model not only has the best overall accu-
racy, but also has a more balanced performance across classes.
Similar to the feature fusion model, the traditional descriptive fea-
ture model has a very low accuracy for Grade A.

5.3. Model interpretation

We calculate the SHAP value for multi-branch model and
descriptive model respectively with the SHAP Python library devel-
oped by [47]. Fig. 7 shows the top important features in the
descriptive model. We implement KernelExplainer from the SHAP
library to explore the impact of each feature to building energy
efficiency. Color represents the original value of the feature
and X position shows the SHAP value for features. Since we prepro-
cess the data with one-hot encoding, in most cases pink means
True while blue represent False. The plot is ordered by the absolute
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Fig. 4. Model training curve (green dash line: validation accuracy; blue line: model accuracy). (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

Table 3

Confusion matrix for energy efficiency rating classification.
Ground Truth Prediction

A B C D E F G

A 69.23% 0.17% 0.01% 0.01% 0% 0% 0%
B 11.54% 88.41% 1.72% 0.11% 0.05% 0% 0%
C 7.69% 11.2% 90.89% 11.85% 0.63% 0.08% 0%
D 0% 0.2% 7.19% 82.05% 15.36% 1.68% 0%
E 0% 0.02% 0.17% 5.87% 80.06% 15.44% 0.25%
F 11.54% 0% 0.01% 0.11% 3.86% 77.77% 13.18%
G 0% 0% 0% 0.01% 0.05% 5.03% 86.57%
Recall 0.58 0.85 0.92 0.82 0.78 0.75 0.84
Precision 0.69 0.88 0.91 0.82 0.8 0.78 0.87
F1-score 0.63 0.87 0.91 0.82 0.79 0.76 0.86
Sample Number (368,769 in total) 171 23,779 190,876 110,222 34,555 6,797 2,369

mean of each feature’s SHAP values, which could be treated as a
proxy for feature importance. Features with high importance are
ranked on the top of the figure. SHAP values on the X-axis repre-
sent the feature’s contribution to energy efficiency, with larger
value meaning feature contributes to lower building energy effi-
ciency. Take the feature Roof: Pitched, no insulation for example,
pink dots (meaning the property has pitched and non-insulated
roof) have high SHAP values, thus contributing to low energy effi-
ciency. The result aligns with the intuition in many ways. ‘Insula-
tion’ plays an important role in energy efficiency. Roof and wall
with 'no insulation’ have negative impact to the energy efficiency,
while insulated wall improves the efficiency. Furthermore, the plot
is able to compare the contribution of each feature to identify use-
ful elements for energy efficiency improvement. For example,
houses featured with long history are associated with low effi-
ciency. Construction year before 1919 has more negative impact
to energy efficiency than construction age band within 1930-1949.

Fig. 8 shows the informative regions with the building facade
images. We select random samples from the dataset and calculate

the SHAP value for each pixel within images. Pink dots represent
the areas with high SHAP value and are important for final deci-
sions. As shown in the plot, most pink dots distribute around struc-
tural elements in the building facades, such as windows and doors.
This reveals that the model is able to make decisions based on
meaningful areas of the building facades, rather than paying atten-
tion to random parts.

6. Discussion
6.1. Building energy efficiency estimation in the era of big data

With the approaches in big data era, more and more data have
been generated and made publicly available. This research demon-
strates the potential of utilizing publicly available administrative
data to estimate building energy efficiency. These data are able
to provide extra information for building energy studies and fill
the gaps for the traditional energy efficiency estimation methods.
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Fig. 5. Prediction results aggregated to 150-meter grids.

Table 4
Model performance comparison.

This paper recognizes that GSV is informative not only for attri-
butes such as building age and style, which are directly related

Metric Model to the visual aspects of the buildings, but also can extend our
Image model  Descriptive feature model Multi-branch model understand{ng of building 1ntr¥n51c characterlstlcs.such as bu1ld1.ng
energy efficiency. As a urban big data source, GSV is able to provide
Accuracy 57.2% 79.5% 86.8% . . . - e s
Precision  40.7% 66.2% 82.1% extra information in addition to the traditional building morpho-
Recall 31.2% 57.5% 79.2% logical attributes, and achieves a more accurate and holistic
F1-Score  32.0% 61.0% 80.6% description of buildings. With the combination of GSV and EPC,
0.00 A | 0.00 0.00
0.00 B | 0.00 0.00
0.00 c | 0.00 0.00
3
3 0.00 D | 0.00 0.00
=
0.00 E | 0.00 0.00
0.01 F | 0.00 0.03
0.07 G| 000 0.00 0.0 001 0.05
G A B C D E F G

Predicted Label

a. Image Feature Model

c. Feature Fusion Model

b. Descriptive Feature Model

Fig. 6. Confusion matrix heatmap of image feature model, descriptive feature model and feature fusion model.

8



M. Sun, C. Han, Q. Nie et al.

Roof: Pitched, no insulation

Hotwater: Electric immersion, standard tariff

Main Heating Fuel Type: mains gas (not community)
Main Heating: Boiler and radiators, mains gas
Hotwater: From main system

Floor: Suspended, no insulation

Mina Heat Control: Programmer and room thermostat
Construction Age Band: Before 1919

Wall: Cavity wall, no insulation

Wall: Sandstone or limestone, no insulation

Multiple Glazing: Double glazing, installed before 2002
Wall: System built, insulated

Built Form: Mid-Terrace

Main Heating Fuel Type: Electricity (not community)
Main Heating: Boiler with radiators or underfloor heating
Construction Age Band: 1930-1949

Low Energy Lighting %

Multiple Glazing: Double glazing, unknown innstallation date
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T T Low

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

SHAP value (impact on model output)

Fig. 7. Feature Importance in descriptive attributes. The features from top to bottom have decreasing feature importance.

we are able to achieve high performance for property-level build-
ing energy efficiency estimation and prediction. Furthermore, with
the increasing number of research on deep learning’s interpretabil-
ity, we are able to find the meaningful features of building mor-
phological attributes and decisive part of building facades for
energy efficiency estimation. With the wider enforcement and cov-
erage of EPC data and street view images, this approach s shows
greater potential for the future work and can be extended to other
cities and countries.

6.2. Policy implications

Predicting and understanding the energy efficiency is crucial to
the policy making and implementations. As the building sector
being the largest energy consumer [48], improving building energy
efficiency is effective for greenhouse gas emission reduction, cli-
mate change prevention, and carbon-neutral policies. Accurate
estimations and comprehensive understanding of property-level
energy efficiency ratings are beneficial for regulation and policy
making. It has been proven that energy efficiency rating is related
to fuel poverty problem [6]. Furthermore, it is critical to the imple-
mentation of policies. For example, UK government is aiming at
increasing as many private rented properties to EPC Band C by
2030 [49]. For property owners, it is important to understand not
only current ratings, but also how the renovation will affect the
energy efficiency for their properties to be legally listed. For policy
execution, it also helps to identify the properties which require fur-
ther renovation and improvement.

The proposed analytical framework in this research is beneficial
to both policy making and implementation. The high accuracy of
methods ensures the framework could be applied to practice and
has the potential to be extended to other cities. The fine-scale

property-level prediction makes it possible for home owners to
better understand their ratings. Besides, because of the fine scale
of the methods, it is easier for city administrations to aggregate
the results and set goals in different spatial units (e.g. neighbor-
hood) for better execution, particularly for the deprived neighbor-
hood. Furthermore, our framework takes detailed inputs about the
properties such as window description and wall description. It
helps the homeowners to estimate the final energy efficiency
before the renovation starts.

6.3. Limitations and future work

Limitations do exist in this study and could be improved in the
future studies. The main limitation of this work is the data quality
of EPC dataset. It has been widely disucssed that some uncertain-
ties exist in the EPC dataset in terms of the gap between estimated
and actual energy performance [50,51]. With the growing coverage
of EPC, European countries have built standard for quality assur-
ance. In the future work, the uncertainty of dataset can be gradu-
ally minimized.

Secondly, the detailed attributes of EPC dataset also constrain
the widely application of our framework. Most of the descriptions
about properties from EPC could not be obtained through other
data sources. It is very difficult to make good prediction for build-
ings with general building information (i.e. building height, age)
outside of EPC database. For future work, we plan to explore the
balance between the data availability and prediction accuracy, so
that the framework could be extended more broadly to demostic
buildings without EPC now. At present, the coverage of EPC data
is about 50% in England, Wales, and Scotland [52], and a large num-
ber of properties that have GSV does not have EPC data. We can use
data from other open dataset instead of EPC as the traditional fea-
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Feature Value
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Fig. 8. Feature Importance in image branch of multi-branch model. Pink dots represent areas important for final decision. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

tures in the framework to predict fine-grained city-level or larger-
scale energy efficiency and gain insight into energy efficiency dif-
ferences among different regions.

7. Conclusion

Improving building energy efficiency is key to the global carbon
emission reduction task. Accurate predicting and understanding of
building energy efficiency is beneficial for better utilizing and sav-
ing energy in the building sector. This paper proposes a feature-
fusion framework for building energy efficiency prediction with
publicly available data. The framework involves EPC data collection
of building descriptive factors and street-level imagery data, and
we extract and fuse the features from both data sources for the
final estimation. The framework is implemented for the city of
Glasgow, UK for its feasibility. Results show that our framework
is able to correctly classify 86.8% samples from test set. With the

10

comparison of our feature-fusion framework, image-only model
and traditional descriptive factors model, our framework is able
to achieve the highest accuracy and has a more balanced perfor-
mance across different ratings. The explainable Al tool indicates
that insulations around open structures such as windows and
doors are key factors to influence the energy efficiency.

Our research contributes to the research of building energy
studies in twofold. First, by incorporating street view images, for
energy efficiency estimation task we are able to achieve higher
accuracy compared to traditional building attribute features. Sec-
ond, our method is able to identify important building features
to improve building energy efficiency, which will be useful for
the housing retrofit in the near future. This study also provides
insights into the potential of applying deep learning to the research
of building attributes with new forms of urban big data. By intro-
ducing street view images to the building energy studies as a visual
representation and proxy for building ages, styles and facade mate-
rials, we verify that GSV is able to provide another layer for build-
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ing stock attributes prediction. This research has the potential to
help urban planners and policy makers to target specific ‘energy
efficiency deprived’ neighborhood and provides extra evidence to
better tackle the fuel poverty problems efficiently.
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