
 

 
 
 
 

Wang, Z., Elkhatib, Y.  and Elhabbash, A. (2022) HolonCraft – an Architecture for 
Dynamic Construction of Smart Home Workflows. In: 2022 9th International 
Conference on Future Internet of Things and Cloud (FiCloud), Rome, Italy, 22-24 Aug 
2022, pp. 213-220. ISBN 9781665493505  

(doi: 10.1109/FiCloud57274.2022.00036) 

 

This is the Author Accepted Manuscript.  

 

© 2022 IEEE.  Personal use of this material is permitted.  Permission from IEEE must 
be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, creating 
new collective works, for resale or redistribution to servers or lists, or reuse of any 
copyrighted component of this work in other works. 

 

There may be differences between this version and the published version. You are 
advised to consult the publisher’s version if you wish to cite from it.  

 

https://eprints.gla.ac.uk/275351/ 

 

Deposited on: 20 July 2022 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Enlighten – Research publications by members of the University of Glasgow 
http://eprints.gla.ac.uk  

https://doi.org/10.1109/FiCloud57274.2022.00036
https://eprints.gla.ac.uk/275351/
http://eprints.gla.ac.uk/


HolonCraft – An Architecture for Dynamic
Construction of Smart Home Workflows

Zhuo Wang∗, Yehia Elkhatib∗, Abdessalam Elhabbash†
∗School of Computing Science, University of Glasgow, United Kingdom

†School of Computing and Communications, Lancaster University, United Kingdom
Email addresses: zhuowangwork@gmail.com, yehia.elkhatib@glasgow.ac.uk, a.elhabbash@lancaster.ac.uk

Abstract—Smart home systems have developed rapidly in
recent years, entering many people’s daily lives. However, it
is difficult for products from different manufacturers to work
together due to different hardware, wireless protocols and APIs.
These barriers limit the interoperability between IoT devices.
We introduce the open-source HolonCraft framework by ap-
plying the Holon ontology to smart home systems. We enable
different systems to share device descriptions so that devices
can recognize each other, understand each other’s functions, and
work together as needed, composing a system of systems (SoS)
at runtime, in order to fulfill the needs of a given user work-
flow. Further, HolonCraft implements a cross-platform graphical
programming editor for smart home automation. HolonCraft
automatically transforms device capabilities (in the form of
holon descriptions) into visual programming elements, enabling
users without programming backgrounds to design smart home
automation through simple drag-and-drop operations while also
supporting advanced programming features such as branches,
loops and even functions and variables. It then type-checks the
composed workflow and, accordingly, generates code to actualize
the workflow. Consequently, HolonCraft dramatically improves
the abstraction and expressiveness of automation. As a result,
HolonCraft enhances the efficiency and reliability of automation
development while lowering the entry barrier to users.

Index Terms—IoT, Smart Home Automation, Ontology, Visual
Programming Language

I. INTRODUCTION

IoT devices have been developing at a swift pace, especially
in the smart home market. Smart home systems (SHS) have the
potential to improve quality of life through added visibility and
control of household resources and services. The value added
by SHSs comes mainly from the integration of smart devices
and the utilization of automated instrumentation that executes
workflows to realize the functionalities of the smart home such
as optimizing energy consumption, integrating with healthcare
systems and securing the home environment, among others.

To enable reaping such rewards, a range of solutions
have been developed to enable users to create custom and
sophisticated home automation services. On one end of the
spectrum, smart home platforms from big companies (e.g.,
Amazon Echo, Apple HomeKit, Google Nest Hub) are geared
towards end-users without a programming background. These
tools are fairly easy to use via mobile applications or voice
assistants. However, the automation they provide is limited
to basic capabilities of the archetype “if X happens, do Y”
using only compatible devices. However, they are not designed
for automation that is more sophisticated than that. On the

other end of the spectrum, open-source smart home platforms
require authoring code and/or description files using general-
purpose programming languages to implement more complex
automation programs. For instance, Home Assistant1 uses
YAML to describe automation. Effectively, such platforms
expect users to be knowledgeable in programming and debug-
ging, which casts such solutions out of reach of many users.

Graphical programming is a popular approach to reach a
balance between usability and functionality through lowering
the level of required knowledge and experience needed for
creating programs. In the context of SHS, there is a handful
of graphical automation solutions such as Node-RED2, Scratch
for Arduino3, Smart Block [1] and My IoT Puzzle [2].
However, despite their advantages, they offer limited flexibility
as they provide a fixed set of graphical elements for a specific
set of properties and functionalities of smart devices. Given the
heterogeneity and scale of smart devices, a dynamic approach
for discovering device properties and functionalities is required
to ensure graphical elements are available to represent each
property and functionality of the smart device.

We address this limitation by presenting HolonCraft as an
open-source solution for graphical modeling of smart home
workflows. It provides the capability to dynamically create
graphical elements based on an ontological description of
smart home devices, specifically the Holon ontology [3], [4].
This solution has two main advantages. First, it guarantees
that for each device used in the smart home there are graphical
elements to represent its properties and functionalities. Second,
it lowers the required programming knowledge and experience
for creating smart home workflows. Our contributions are:

1) An extended ontology (§III) for encompassing different
elements of a SHS environment, from the end-user to
various devices and the services they offer.

2) The HolonCraft software architecture (§IV) which in-
cludes an ontological parser, a deployment orchestrator, and
associated code generation units.

3) An Android app and a web interface as workflow editors
(§V-B), each of which enables the average user to design
SHS automation through drag-and-drop operations. The
editors allow the writing of relatively complex control flows,

1https://www.home-assistant.io/
2https://nodered.org/
3http://s4a.cat/

https://www.home-assistant.io/
https://nodered.org/
http://s4a.cat/


and support programming constructs such as variables and
functions.

4) Server-side modules (§V-A) for: (i) automatic ontological
parsing of device descriptions and translating them into
graphical programming elements, and vice versa, as well
as type-checking block connections; (ii) code generation
to produce executable code to match a given user-designed
workflow (we implement Python generators but this could
be easily substituted with another module for different
programming languages).

5) A mixed-methods evaluation (§VI) of HolonCraft’s use-
fulness and ease-of-use. For this, we employ both software
testing and user experiments.

II. RELATED WORK

Current efforts could be categorized under two main ap-
proaches: smart home applications and graphical program-
ming frameworks. Solutions of the former approach typically
offer easy-to-use editors to create automation programs, but
only support elementary operations making it challenging to
accomplish non-basic tasks. In contrast, open-source smart
home platforms commonly use code or graphical editors that
requires experience to writing code for creating workflows or
extending platform features. Table I summarizes the compar-
ison between existing solutions and our solution, HolonCraft.

A. Smart home applications

Most mainstream SHSs already have built-in editors to
create automation programs, which are very easy to use but
only support elementary operations. Consider Apple HomeKit4

as an example. It can be used to compose only IF-THEN style
automation, such as turning on the light when a motion sensor
detects any activities. Such a simple workflow takes only five
steps, but it can only customize the trigger events and perform
a single action on the actuators. Its sophistication pales in
comparison to even the iOS Shortcuts app.

B. Graphical programming frameworks

There have been many graphical programming solutions for
smart home systems, of which we only discuss environments
for smart homes and GUI rule builders.

Node-Red5 is a Node.js-based platform for building event-
driven applications. It uses JSON to describe workflows and
to provide a flow-based programming editor in web browsers.
The editor allows users to design flows, define JavaScript
functions and deploy them with a single click. However,
JavaScript is a dynamically and weakly-typed language. In
effect, numerous errors could not be detected at edit time,
making it hard to use for ‘error-free’ composition of complex
applications. In addition, it does not compile workflows into
native binary. When deployed on Arduino, for instance, users
need to first install Firmata6 on the board. The same limitation

4https://www.apple.com/uk/ios/home/
5https://nodered.org/
6http://firmata.org/

Auto-gen. Code Error
Project Type Elements Generation Prevention
IFTTT GRB é é é
Smart Rules GRB é é é
Node-Red Flow é é é
S4A Block é é é
BlocklyDuino Block é Ë(C) Static typed
My IoT Puzzle Block é é Conflict Detect

Smart Block Block é Ë(Groovy) Static typed
& Conflict Detect

HolonCraft Block Ë Ë(Python) Type Check
TABLE I

COMPARISON WITH OTHER GRAPHICAL AUTOMATION EDITORS. NOTE:
GRB STANDS FOR GUI rule builder.

applies to Scratch for Arduino (S4A), a project based on
the MIT Scratch graphical programming platform. It provides
custom blocks to control actuators and sensors attached to
PicoBoards and Arduino boards.

BlocklyDuino is a Google Blockly-based graphical pro-
gramming platform for Arduino7. It has a web editor that
already contains standard and custom blocks for general
Arduino input, output, and common peripherals. The platform
can generate Arduino code and Blockly XML. BlocklyDurino
blocks are statically-typed, which means that users cannot
combine mismatched blocks together.

My IoT puzzle is a GUI tool for designing IF-THEN rules
[2]. The project focuses on debugging and error prevention.
It can detect endless loops, redundancy and inconsistency in
user workflows, and then display both the textual and graphical
explanation [2] and suggest means of resolution. Currently, it
can run in a simulation environment and does not support code
generation. Finally, Smart Block [5] is a visual block language
for Samsung Smart Things8. After the user has designed their
program using Blockly, Smart Block can produce an Abstract
Syntax Tree (AST) and compile it into Groovy code.

III. THING ONTOLOGY

In this section, we give an overview of the semantic tech-
nologies we use to facilitate seamless integration of different
devices in a SHS.

A. Background: What are holons?

During their operation, IoT devices constantly need to
communicate with each other. As IoT systems do not exist in
isolation but instead overlap by sharing physical spaces and
operational boundaries, the need also arises for systems to
intercommunicate. This requires systems to understand their
own properties and functions, and those of other systems.
Complicating this further is the fact that the majority of IoT
systems do not conform to a standard set of descriptions of
device properties, services and other metadata.

From the different efforts made for IoT interoperability,
the concept of a holon was proposed [3] to enable the
description of device and system properties in a manner that

7https://blocklyduino.github.io/BlocklyDuino/
8https://www.smartthings.com/

https://www.apple.com/uk/ios/home/
https://nodered.org/
http://firmata.org/
https://blocklyduino.github.io/BlocklyDuino/
https://www.smartthings.com/


is comprehensible by other systems. Under this architecture,
each constituent system (e.g., smart home device) is a holon
that can be described, manipulated, and reasoned about in a
program at design- and run-time.

With the holon as a programmatic concept, developers do
not need to know the underlying API and hardware details
when thinking about complex systems, or systems of systems.
There is also no need for cataloging services (e.g., [6]) as
they are discovered at runtime. Instead, system of systems
developers only need to specify an abstract application work-
flow consisting of tasks, each of which represents an abstract
service. Then, at runtime, the holonic architecture will realize
the workflow by looking to identify deployed services to
implement each abstract service.

We developed such architecture for interoperability and
reasoning [4], and for discovery and adaptive composition [7].
This offers strong abstracting power for distributed program-
ming, and enables systems to understand their own hierarchical
constitution and capabilities as well as those of other systems,
and then use this understanding to reason about composition
to form a larger system of systems.

We note that some other works have also defined the notion
of a holon (e.g., [8], [9]) but focused on goal-driven service
composition without means of allowing holons to reason and
self-compose.

B. Smart home ontology

We now present the ontology and how we extended it
by domain knowledge for SHS settings. This ontology will
be utilized by HolonCraft to automate the generation of the
ontological description of smart home devices.

The holon ontology defines classes to specify system func-
tionalities and properties. It also specifies relationships to link
the defined classes and described systems through parent-
children relationships. A holon also details the functionalities
supported by the system. A holon’s general properties are:
• Timestamp: to identify the snapshot of the system.
• HolonId: a unique identifier.
• Name: a non-unique name.
• Address,Port: the IP address and communication port of

the device representing the holon.
• Mobility: a class defining the mobility profile of the device

e.g., random way point.
• Reliability: a class defining the reliability profile of the

device/system, including best-effort, at least once, at most
once and exactly once guarantee levels.

• Messaging protocol: to be used for data exchanged with
other systems e.g., MQTT and CoAP.

• Services: define the functionalities that are supported by
each device in the system.
In addition to the above generic holon structure, we added

the following properties for smart home implementations:
• Type: specifying the device type, e.g., sensor or actuator.
• Events: a class representing certain reactions a device may

trigger in response to some events; for instance, an “activity
detected” event for a motion sensor.

• Model type: defines variant models of a certain a de-
vice/system type; e.g., different models of a smart light.
The Service class contains the following properties:

• Name: the name of the service.
• Parameters: input parameters to the service.
• URL: a reference to access the exposed service.
• Cost: the cost of accessing the service, which can be defined

as a simple attribute (e.g., price, delay) or a composite
attribute using a set of simple ones. This is used to reason
about selecting a service in cases when similar services
exist.

• Return: a Boolean indicating whether the function has a
return value.

• Return Type: if Return is true, Return Type represents
what is returned which is used in HolonCraft’s type check-
ing system.

• Message: represents the textual content of the Blockly block
that represents the device.

• CustomCodeGen: a reference to a custom code generator, if
any; otherwise, HolonCraft will create a general one.

IV. DESIGN

This section details the design principles of the HolonCraft
system, then describes its building blocks.

A. Design Principles

Abstraction. HolonCraft aims to raise the level of abstraction
provided to designers of SHS workflows. HolonCraft is to
enable users to design a workflow then generate executable
Python code of the designed workflow. In addition, Holon-
Craft should programmatically create a holon description of
a compatible device and parse OWL files and convert them
into block definitions. This would allow manufacturers to
design holon ontologies to make their products compatible
with HolonCraft.
Interactivity. The literature indicates that user interface
complexity is one of the most significant problems of early
efforts on SHS automation [10]. Thus, the HolonCraft user in-
terface should provide an easy-to-use graphical programming
interface. The interface needs to allow the user to freely add
and combine blocks through drag-and-drop actions, as well
as enter values to adjust parameters of the SHS workflow
elements. Additionally, the user interface could give feedback
(e.g. haptic) based on user actions, such as automatic attraction
of blocks and immediate indication of connecting to other
blocks. Finally, the interface should then generate code to
realize the workflow, relieving the user from the complexities
of such task.
Easy of use. As the target users of HolonCraft are mainly non-
professionals with no programming experience, all upload,
export, and edit operations are designed with the fundamental
principle of ease of use. The interface is to be intuitive so that
users are able to master the basic usage in a short period of
time. Categorizing elements according to their functionalities
would make it easier for users to find what they want. The
interface could also provide flexibility so that users are able



Fig. 1. The architecture of the application

to move contents within the interface, and zoom in and out of
the workspace.
Extensibility. HolonCraft should allow any devices or sys-
tems with Holon-compliant OWL documents to be loaded to
the interface. The application should also be able to generate
code in any programming language through minor modifica-
tion through swapping the code generator.
Interoperability. As SHS users tend to use various devices,
HolonCraft components need to be interoperable and usable
across different platforms. Components that require high com-
puting performance can be extracted separately and placed on
the server-side. UI components and code generators should be
manageable through different platforms.
Error handling. HolonCraft should avoid type errors by
type-annotating the blocks, and type-checking them as the
user edits them. For instance, the editor should prohibit the
user from interlinking blocks that do not match the type. For
error handling, the application should restrict user input when
editing workflows by only allowing users to import valid OWL
files to load blocks.

B. System architecture

The system architecture is depicted in Figure 1, where com-
ponents are arranged between the client- and server-side. The
server-side parses the ontology and automatically generates
blocks and code generators to populate the user interface.
The client-side includes the automation editor and the code
generator. The editor allows users to build a graphical model
of the smart home workflow. This results in an ontological
description of the composed workflow. After validation, this
is used to generate the code that realizes the user’s workflow.
To make our solution easier to transport to more platforms,
we moved the part that requires high computing performance
to the server-side, and kept the client-side mainly responsible
for actions specific to the user’s workflow. Figure 2 illustrates
the order of interactions between the user and the client- and
server-side parts of HolonCraft.

The model built by the client will be passed to the server-
side for processing. The model After the device description,
information is collected from the IoT and sent to the server.
The server will parse the ontology and automatically generate
blocks and code generators and send them back to the ap-
plication. To improve extensibility, the visual code editor also

Fig. 2. A time sequence diagram of user interactions and the subsequent
system processes.

uses the JavaScript version of the Blockly open-source project,
which is a pure client-side JavaScript framework that can be
easily extended to more platforms in the future [11].

V. IMPLEMENTATION

This section details the implementation of both the client
and server sides of the system. Both the server-side and
the Android app of the client-side were developed using
the Kotlin language. The web client was developed us-
ing JavaScript. The code bases are released as open-source
at https://github.com/WangZhuo2015/HolonCraft Server and
https://github.com/WangZhuo2015/HolonCraft Android.

A. Server side

The server is responsible for the website services and APIs.
It is developed using Ktor9, an asynchronous non-blocking
web framework written in Kotlin. Due to Kotlin’s excellent
compatibility with Java, we are able to use mature OWL
libraries written in Java to parse OWL files and manipulate
ontologies.
Holon creation. Users can create Holon and services pro-
grammatically in a few lines of Kotlin code, such as the
example shown in listing 1.

val light1 = Holon()
val switchService = Service()
initService(switchService,

"switch",
"switch %1 %2",
parameters = "dropdown(on/off),device" )

initHolonDevice(light1,
"Living Room Light",
type = HolonType.ACTUATOR,
service = arrayListOf(switchService),
events = ArrayList() )

OntologyCreator.creatOntology(light1)

Listing 1: An example of programmatic creation of a holon

9https://ktor.io/

https://github.com/WangZhuo2015/HolonCraft_Server
https://github.com/WangZhuo2015/HolonCraft_Android
https://ktor.io/


OWL files are processed on the server using the core classes
OntologyCreator and OntologyParser. The former pro-
vides methods to transform Holon objects into OWL Ontology
objects through the OWL API, and can automatically add
Holon related properties and relationships into the ontology.
The latter is responsible for parsing and converting OWL files
into Holon objects.
Restful APIs. The server exposes the following endpoints:

1) POST: /api/description
Allows clients to upload Holon compatible device descrip-
tions in OWL2 format to the server for parsing.

2) GET: /api/load-blocks
Analyzes device description, transforms it into Blocks
through the templates, and sends the corresponding Blocks
definition and code generator back to the client.

3) POST: /api/result-report, parameters: task, name
Uploads the results completed by the user to the server. The
request body includes the task number, the time spent to
complete the task, the XML tree generated by the task and
the final generated Python code. Upon receipt, the server
will look for the corresponding file based on the name, and
if not, create a file and then append the information about
the user completion.

For each physical device, there is a virtual object of type
Holon that represents it. In this virtual representation, the
device type, message, and name are mapped to the object
attributes. The Holon objects then automatically generate the
device blocks.

B. Client side

We have developed a native Android client for tablets/
mobile devices, and a web client for general usage.
Web application. Most of the interactions with the user
are implemented in the Web interface. All communication to
server is sent using XMLHttpRequest.

The left half of the page is the editor, which is essentially a
graphical programming interface based on the Blockly project.
It is divided into the toolbox and workspace. The upper four
sections in the toolbox are custom blocks we created. When
the user switches to a different task, it will automatically clear
the workspace, load the corresponding block from the server
and put the blocks into the appropriate section by block name
prefix.

The right half of the page contains the information and
code area based on the Monaco editor, the core component of
Microsoft VS Code. The information area is for users to enter
names, switch tasks, start the timer and upload the results, in
addition to an introduction to the experiment, a tutorial on the
HolonCraft editor and a list of tasks.

By listening to Blockly events, HolonCraft can imme-
diately generate the Python code when block move or
block change events are detected by the event listener,
giving real-time feedback. Compared with the regular text area
widget, the code area can highlight keywords, variable names,

function names, and values by a different color, making the
Python code more readable.

Upon clicking the finish button, the application sends the
user’s name, XML tree and the generated Python code file to
the server.
Android App. We intended to place the OWL file parsing
module on the client-side application in the initial plan. How-
ever, in the development process, we found that the Android
platform currently only has two popular ontology libraries,
Apache Android Jena and OWL API, of which Jena-Android
has not been updated for seven years and only supports some
of the OWL API1.1 features. OWL API 4 and 5 use javax,
and this part of Java features are not provided by Android, so
the new version of OWL API has compatibility problems with
the Dalvik virtual machine on Android. As such, the Android
client cannot be used without an internet connection in this
version. The client uploads the description information of the
device to the server, which responds with the definition of
graphic programming blocks, the code generator part for code
generation, and other necessary contents to the client.

The Android app contains three main activities:
• SettingsActivity – for users to enter their names and select

the task they want. When using edit the name or task
selected, it will notify Task Manager to change its record.

• EditorActivity – here, editor.html and related Javascript
and CSS files are loaded into a webView, the Kotlin part
communicates with JavaScript through the interface class.
The timer is also implemented by native Kotlin code. After
the user submits, the result are stored in Task Manager.

• ResultViewerActivity – as Android devices have a smaller
screen, a separate code viewer was created for users to check
XML and Python code.

Components. Both the web application and the Android
app provide the following components to model smart home
workflows:
• Blocks design – The HolonCraft editor uses JSON format to

define the blocks, in order to be compatible with the Blockly
framework. We abstract things involved in smart home
automation into four categories of programming blocks.

• Sensors & Actuators – We divided the devices into the
following two categories based on user feedback during the
initial evaluation phase to better differentiate the devices.

1) Sensors represent the various sensors and switches in a
smart home system, providing services such as triggering
events and sensed values.

2) Actuators represent the parts of a smart home system that
can be controlled to do some action, e.g., lamps, curtains,
and sound systems.

The Holon class generates both types of sensor and actuator
device blocks. A device block is prefixed with the type
of the block (i.e., sensor or actuator), and is defined in
Listing 2. If the user does not assign a value for the model
type property, the value will be the same as the device’s
name. However, a type of service is commonly supported
by a certain kind of device, so we can set the model type



Fig. 3. The interface of the web-based HolonCraft client application.

of these devices with the same value so that these service
blocks can be combined with any instance of this type of
device.

{
"holonId": "ACTUATOR_Living_Room_Light",
"type": "actuator_Living_Room_Light",
"message0": "%1",
"args0": [{

"type": "field_label_serializable",
"name": "NAME",
"text": "Living_Room_Light" }],

"output": "Living_Room_Light",
"colour": 30,
"tooltip": "",
"helpUrl": "to be added later" }

Listing 2: Example of defining a block representation of a
smart device

Events. HolonCraft enables defining events to trigger the
execution of the workflow. The supported events types are
sensor reading- and time-triggered events.
Services. Services are operations performed by smart home
hardware or systems, such as opening and closing of a smart
curtain. Operations that depend on specific hardware need at
least one device as their parameters, while services that do
not depend on hardware execution, such as waiting for n
seconds, can be executed without a specific device. According
to the experimental results of the first version of HolonCraft,
parameters are generally limited to 2 or fewer to facilitate
user understanding. Service is the core part of smart home
automation. Here we focus on the blocks generation of service.
▶ Parameters property is used to describe the parameters
needed for the service, in which we made some special
conventions, such as pointing to the parameters that own this

device fixed named device. This parameter location will auto-
matically bind the type of the device and will be type-checked
during editing. The program will automatically generate the
dropdown menu parameter box, the content inside the brackets
to / split into dropdown menu options.
▶ Message property generates a custom blocks template,
where %1 to %n is used to represent the first n parameters.
This property directly affects the appearance of the graphical
programming blocks, e.g., message0: ‘‘%1 is %2’’.
▶ Service Type is one of two categories: action type – services
that perform an operation with no return value (e.g., open/close
such action); and value type – operations that will have a
numerical return value (e.g., read brightness).
▶ Return Type of value type services.
• Block definition generation – To implement the

block generation, we define the Kotlin interface
BlockJSONExportable which export supported classes to
a set of blocks supported by Blockly. The Holon, Service,
and Event classes implement this interface. The application
will gain data from the holon ontology or user-created
holon objects, and then fill them into a pre-defined JSON
template to achieve this goal.

• Code generator – The same design has been followed for
the code generator, using the CodeGeneratorExportable
interface that exports JavaScript definitions for a Holon and
its services and events, to then be fed to the appropriate
code generator. To support different programming languages
with minor modifications, the parameter LanguageType
specifies the programming language type, and users can
define their code generator template. Currently, only Python
is supported, but this can be extended with suitable code
generators.



VI. EVALUATION

We now describe our experiments to examine HolonCraft’s
effectiveness and usability.

A. Strategy

We designed a set of user experiments to study how non-
specialist users use HolonCraft. Specifically, we want to mea-
sure HolonCraft’s (i) ability in enabling users to create com-
plex workflows, (ii) productivity, (iii) intuitiveness, (iv) and
effectiveness of the type-checking system.

To allow more participants to join our experiments, we bun-
dled the Kotlin code (using Gradle Shadow) then deployed the
server and web application on cloud servers (through Digital
Ocean). Participants were required to fill out a background
questionnaire, complete the tasks (see below), and finally
complete an exit questionnaire.

Task completion was tracked in 2 ways. First, its duration
was measured as the time elapsed between pressing the ‘Start’
and ‘Finish’ buttons. Second, its success was measured by
manually verifying each submitted implementation.

B. Tasks

Participants are first provided with a tutorial on how to use
HolonCraft, which explains the UI and its 4 main types of
elements and then gives a guided example. They are then given
3 automation tasks of increasing complexity, as follows:
T1: A straightforward task of automating the control of lights

under a certain condition. It tests whether the user can
master basic operations after receiving the tutorial.
Sensors: 1 Actuators: 1 Events: Level

T2: A slightly more complex task of automating daily pattern
using 1 sensor and different actuators. This requires the
use of ‘IF’ statements and numeric blocks to compare
sensor levels.
Sensors: 1 Actuators: 3 Events: Time

T3: The third task requests the changing of multiple actuator
states based on the levels of 2 sensors and on a particular
looping logic. This task requires some programming
knowledge like functions and loops.
Sensors: 1 Actuators: 3
Events: Level, Time, Loop

C. Recruitment

Inline with our goal of supporting inexperienced end users,
the main criteria of recruiting participants is the lack of pro-
gramming experience. For this purpose 17 participants were
recruited. The majority (70%) had no programming experience
as evident by the use of at least one programming language
or knowledge of basic control flows. Ten participants (58.8%)
have used a smart home system before.

D. Findings

We summarize our results in Table II. Task completion
time is calculated from the user’s interaction with the ‘Start’
and ‘End’ buttons. User difficulty is computed using the task
success rate and completion time.

Fig. 4. Participant age and previous programming experience, which in most
cases matched their prior experience with smart home automation systems.

TABLE II
SUMMARY OF RESULTS FROM THE USER EXPERIMENTS.

Success Time (s) Avg. User
Task Rate Min Avg Max Difficulty
T1 100.00% 20.09 164.49 1027.66 9.412
T2 88.24% 187.09 652.17 1974.97 23.530
T3 5.88% 367.01 367.01 367.01 N/A

As T1 did not involve variables or functions, the success rate
was the highest at 100%. Users only need to drag 4 blocks and
combine them together. Most participants took less than 100
seconds, although a few mentioned that they took a long time
to get familiar with HolonCraft. Overall, though, the majority
of users could master the basic operations of HolonCraft in a
relatively short period of time.

Despite its increased complexity, the success rate of T2 is
relatively high at 88.24%, illustrating HolonCraft suitability
(for most users) in handling more challenging tasks. Here,
we observed some participants making mistakes, especially in
corner cases e.g., choosing “lower than or equal” instead of
“lower than”, or forgetting to choose the “everyday” option
in the event block. Over half of the successful participants
used two ‘IF’ statements instead of one ‘IF-ELSE’ statement
because they did not find how to configure the ‘IF’ block (by
clicking on the gear icon). Many participants took a while
to put the ‘IF’ and compare blocks together, suggesting that
there is some room for further simplification of the blocks.

The success rate of T3, which requires a basic understanding
of variables and functions, is only 5.88% as only one partic-
ipant was able to accomplish it in just over 6 minutes. Their
solution was found to be bug-free. The participant had prior
programming experience. This outcome demonstrates that
even a fairly straightforward graphical editor requires some
basic knowledge to use for composing complex automation
tasks. We also surmise some possible improvements such as
reducing the menu hierarchy to help users find what they
want effortlessly, and providing some pre-assembled block
combinations to simplify operation.

E. Feedback

Upon completing the experiment, participants were asked to
answer the following questions using a 5-point Likert scale:



Fig. 5. Comparison of the time taken for successful results

Fig. 6. Outcome of the exit survey. Questions are ordered by their overall
response.

Q1: Using blocks to represent workflows is intuitive

Q2: Drag-and-drop control is intuitive

Q3: The type-checks feature is useful for avoiding errors

Q4: Block colors make it easier to identify block functions

Q5: Tasks were easy to understand and unambiguous
Most participants find the interface and its operations to

be intuitive. Several participants praised the type-checking
system, which prevents beginners from combining mismatched
blocks together, making it easier for them to succeed. Some
participants also thought that the different shapes and colors
of the blocks made it easy to guess their usage and possi-
ble combinations. Some participants, however, felt that task
descriptions were confusing or ambiguous. Participants also
provided several suggestions for improvement, such as adding
more tutorial examples and explanation (perhaps in video
format). Moreover, the type checking system only tells the
user that a combination is not allowed, but it does not inform
as to why it is wrong nor recommend a valid combination.

VII. CONCLUSION

The IoT market is awash with devices and services from dif-
ferent vendors. Some tools are available to help users compose
custom automation workflows for their needs. However, many
of these tools are either too simplistic and fixed to specific
device types, or too complex and do not suit generic users.

HolonCraft is proposed in this paper to fill this gap. It is an
open-source solution that lowers the requirements for users

to design smart home automation by introducing graphical
programming into an intuitive editor. HolonCraft has simple
operation, high extensibility and portability. Most critically,
HolonCraft implements automatic conversion of compatible
device description information into block definitions using
metadata within a Holon-based ontology, which dramatically
increases its scope of application to any type of device. At the
same time, HolonCraft generates code to actualize the work-
flow, and ensures the quality of the generated code through
type checking and input restrictions. We evaluated HolonCraft
through both qualitative and experimental methods.

There are numerous directions for future work. Primarily,
we plan to explore: (1) Path optimization through modeling
the different costs associated with each actualization path;
(2) Create more forms of analysis of the computed Abstract
Syntax Tree in order to attain conflict detection and system
explanability; (3) Smart recommendation of blocks that fit
a given context, akin to the code auto-completion feature,
which can be achieved through analysis of the type system
and relational reasoning of ontology metadata; (4) Component
and workflow sharing to engender a vibrant user community.

ACKNOWLEDGMENT

This work was partially supported by the UK EPSRC
through the ABC project, grant reference EP/R010889/2.

REFERENCES

[1] N. Bak, B.-M. Chang, and K. Choi, “Smart block: A visual block lan-
guage and its programming environment for IoT,” Journal of Computer
Languages, vol. 60, 2020.

[2] F. Corno, L. De Russis, and A. M. Roffarello, “My IoT puzzle: de-
bugging IF-THEN rules through the jigsaw metaphor,” in International
Symposium on End-User Development (IS-EUD). Springer, 2019.

[3] G. Blair, Y.-D. Bromberg, G. Coulson, Y. Elkhatib, L. Réveillère,
H. B. Ribeiro, E. Rivière, and F. Taı̈ani, “Holons: Towards a systematic
approach to composing systems of systems,” in International Workshop
on Adaptive and Reflective Middleware (ARM), 2015.

[4] V. Nundloll, Y. Elkhatib, A. Elhabbash, and G. S. Blair, “An ontological
framework for opportunistic composition of IoT systems,” in Inter-
national Conference on Informatics, IoT, and Enabling Technologies
(ICIoT). IEEE, 2020.

[5] G. Papamarkos, A. Poulovassilis, and P. T. Wood, “Event-condition-
action rule languages for the semantic web,” in International Workshop
on Semantic Web and Databases (SWDB). Citeseer, 2003.

[6] P. Balco, I. Šarlina, and M. Gallo, “Innovative services and processes
in university environment, processes of education supported by smart
technologies,” in International Conference on Future Internet of Things
and Cloud (FiCloud), 2021.

[7] A. Elhabbash, V. Nundloll, Y. Elkhatib, G. S. Blair, and V. S. Marco, “An
ontological architecture for principled and automated system of systems
composition,” in International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS). ACM, 2020.

[8] S. Frey, A. Diaconescu, D. Menga, and I. Demeure, “A holonic control
architecture for a heterogeneous multi-objective smart micro-grid,” in
Conference on Self-Adaptive and Self-Organizing Systems (SASO), 2013.

[9] M. Kit, I. Gerostathopoulos, T. Bures, P. Hnetynka, and F. Plasil, “An
architecture framework for experimentations with self-adaptive cyber-
physical systems,” in Symposium on Software Engineering for Adaptive
and Self-Managing Systems (SEAMS). ACM, 2015.

[10] J. J. Greichen, “Value based home automation for todays’ market,” IEEE
Transactions on Consumer Electronics, vol. 38, no. 3, pp. 34–38, 1992.

[11] E. Pasternak, R. Fenichel, and A. N. Marshall, “Tips for creating a block
language with Blockly,” in Blocks and Beyond 2: Workshop on Lessons
and Directions for First Programming Environments. IEEE, Oct 2017.


	IEEE.pdf
	275351
	Introduction
	Related Work
	Smart home applications
	Graphical programming frameworks

	Thing Ontology
	Background: What are holons?
	Smart home ontology

	Design
	Design Principles
	System architecture

	Implementation
	Server side
	Client side

	Evaluation
	Strategy
	Tasks
	Recruitment
	Findings
	Feedback

	Conclusion
	References


