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A B S T R A C T   

Scholarly interest in the accessibility of ridesharing services stems from debates within the transportation and 
planning communities on the inequality of access to transit and the growing digital divide embedded within 
novel forms of transit services. Contributing to such discussions, this paper considers the city of Atlanta as a case 
study and explores the links between the spatial disparity of accessibility to different Uber ridesharing products 
and features of the built environment extracted from Google Street View (GSV) imagery. The variability of wait 
time for an Uber service is used as a proxy of accessibility, while semantic image segmentation is performed on 
GSV imagery using a deep learning model DeepLabv3+ to identify notable spatial features captured at the eye- 
level perspective around service pick-up points. Results from spatial models show that proportions of built 
environment features such as buildings, vegetation, and terrains are associated with longer waiting times. In 
contrast, larger salient regions with foreground features are associated with shorter waiting times for several 
Uber service products.   

1. Introduction 

In the last decade, the sharing economy boom has ushered in tech-
nologies that have revolutionarily changed multiple industries. Among 
these, ridesharing service is an innovation in the Vehicle-for-Hire (VFH) 
market traditionally dominated by taxis. Ridesharing has introduced 
significant changes to the urban transportation system with the expec-
tation of reducing the number of automobiles needed to satisfy existing 
travel demand by optimizing the match between riders and drivers. The 
practice of sharing rides can be traced back to as early as carpooling 
clubs from WWII (Chan & Shaheen, 2012). The most recent technology- 
enabled ridesharing has proliferated since the late-1990s when a com-
bination of information and communication technologies, such as the 
Internet, mobile phones, and social networking, were integrated into 
automated ridesharing software (Chan & Shaheen, 2012). 

Ridesharing is hailed by its proponents for its societal benefits, such 
as enabling better access to goods and opportunities by providing access 

to underutilized services (Cohen & Kietzmann, 2014; Hamari, Sjöklint, 
& Ukkonen, 2016), reduction of CO2 emissions and fossil fuel de-
pendency (Global e-Sustainability Initiative, 2008), and mitigation of 
urban congestion. Despite these purported benefits, ridesharing, as led 
by transportation network companies, has been criticized for intensi-
fying urban transport challenges (Diao, Kong, & Zhao, 2021). Critical 
questions surrounding accessibility and spatial equity arise in academic 
literature and urban policy debates to probe whether ridesharing ser-
vices assuage or exacerbate existing spatial divides (e.g., Hughes & 
MacKenzie, 2016; Wang & Mu, 2018). Notably, the interest of urban 
scholars is to investigate how the physical and socioeconomic charac-
teristics of the built environment contribute to such issues. 

Against this backdrop, this study investigates the relationship be-
tween ridesharing accessibility and the built environment. Uber is the 
most popular ridesharing mobile application today, which debuted in 
2009 and now operates in >785 metropolitan areas across 85 countries 
(Uber Technologies Inc, 2021). In 2022, Uber still dominates the U.S. 
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market, accounting for 72% of U.S. ridesharing spending (Bloomberg 
Second Measure, 2022). Considering Uber’s popularity in adoption and 
high market penetration, this study takes Uber as an example of various 
ridesharing services and focuses on exploring Uber’s accessibility. The 
built environment has long been studied as “an innate driver of traveler 
needs” (Cervero & Kockelman, 1997; Chen, Feng, Ding, Yu, & Yao, 
2021), whose features were found to have profound impacts on human 
perception of cities (Lynch, 1964). We will use street-level images 
among numerous data sources that describe the built environment. 
Compared with a bird’s eye view, street-level images have the advantage 
of providing a wide range of street landscapes closer to a human’s 
perspective from the ground in reality. Such a ground view mimics a 
human-eye view of travelers from the street (Biljecki & Ito, 2021; Wang 
& Vermeulen, 2021). This perspective is well aligned with the objective 
of this study – to understand the ridesharing accessibility from a user’s 
perspective. 

This research contributes to the literature in the following manner. 
First, the relationship between the built environment and ridesharing 
accessibility remains under-researched due to the relative newness of 
ridesharing data and the lack of tools to measure the built environment 
at fine granularity. Novel data sources such as street view imagery and 
innovation in computational methods such as computer vision and deep 
learning introduce the possibility of delineating the built environment 
with more delicate details to assess its effects on accessibility at a non- 
aggregated level. Second, while many studies on ridesharing have 
been conducted at aggregated geographical units (Gerte, Konduri, & 
Eluru, 2018, Sabouri, Park, Smith, Tian, & Ewing, 2020; Yu & Peng, 
2019; Yu & Peng, 2020; Bao, Liu, Yu, & Wu, 2017; Zhu et al., 2022), this 
study is performed at the individual point level, allowing for an un-
derstanding of the association between the built environment and 
ridesharing accessibility at a finer and more customized scale. Third, we 
expand on existing studies with Uber data by incorporating product 
differentiation of Uber services in our analysis. In assessing accessibility, 
we distinguish between UberX, UberXL, UberBlack, UberSELECT, and 
Uber SUV, accounting for the different products that may target users 
with different needs and preferences from a built environment 
perspective. 

The remainder of this paper is organized as follows. Section 2 re-
views the literature on ridesharing accessibility, the built environment, 
and novel computation techniques for measuring the built environment. 
Section 3 illustrates the data and methods. Section 4 reports the results 
and tests for the robustness check. Section 5 discusses the impact of this 
research and concludes. 

2. Literature review and related work 

2.1. Built environment and accessibility 

The built environment has long sustained interest among scholars in 
urban studies and other related social science disciplines. In his seminal 
work Image of the City, Kevin Lynch broke down the componentry of the 
built environment that influences the imageability and human experi-
ence of cities into paths, edges, districts, nodes, and landmarks (Lynch, 
1964). Later, Cervero and Kockelman (1997) identified the three "D- 
variables"- density, diversity, and design - to describe the characteristics 
of the built environment. More recently, destination accessibility and 
distance to transit were further highlighted as essential features of the 
built environment by Ewing and Cervero (2001). As the built environ-
ment’s definition and scope continued to evolve over the past decades, a 
vast body of work began investigating the connection between the built 
environment, travel behavior, and accessibility. Research has shown 
that individuals’ travel choice depends on their socioeconomic status 
and built environment characteristics (Ewing & Cervero, 2010). 

The question of accessibility has attracted vast attention from 
scholars in transportation planning. Historically, accessibility is defined 
as “the opportunity which an individual or type of person at a given 

location possesses to take part in a particular activity or set of activities” 
(Hansen, 1959). Previous research has shown that higher accessibility is 
associated with areas of cities with higher density and large employment 
concentrations (Hanson & Schwab, 1987; Muraco, 1972). The concept 
of accessibility can be further distinguished as active accessibility and 
passive accessibility; the former referring to how easily subjects located 
in a given zone can conduct activities (individual-based), and the latter 
relates to how easily activities in a certain zone can be reached by users 
and services (location-based) (Cascetta, Cartenì, & Montanino, 2013). 
Beyond reflecting the spatial distribution of transit networks and op-
portunities, accessibility is also a manifestation of temporal develop-
ment based on the time-geographic perspective (Miller, 2003; Weber & 
Kwan, 2003). There is a tradition of location analysis in accessibility 
studies to minimize the average access time or distance (Kwan, Murray, 
O’Kelly, & Tiefelsdorf, 2003). Compared with the location-based mea-
sures, this time perspective measure of accessibility has the benefit of 
more sensitively mirroring the socio-demographic, economic, and cul-
tural constraints (Miller, 2003). Travel time between work and home has 
been used in numerous studies as a proxy for accessibility to understand 
underlying inequality along racial, gender, and socioeconomic lines in 
urban areas (Tribby & Zandbergen, 2012; Preston & McLafferty, 1999). 

Innovative ridesharing services employ algorithmic optimization to 
match supply and demand. A central question is whether such optimi-
zation alleviates or aggravates the existing spatial divide. As critics have 
specified, the current mainstream trend of smart city development and 
technology in urban space embodies a technocratic fantasy (Datta, 
2015), one which is founded upon neoliberal ethos (Kitchin, 2015) and 
reinforces pre-existing biases and accelerating privatization (Benjamin, 
2019). A systematic study of accessibility that includes physical features 
of the built environment must understand the impact of ridesharing 
services in the urban realm to determine appropriate policies to 
encourage or regulate current practices. 

A handful of research has examined the accessibility of ridesharing 
services. The accessibility of VFH services such as Uber and Lyft is 
significantly impacted by transportation infrastructure and socioeco-
nomic characteristics (Jiang, Chen, Mislove, & Wilson, 2018), popula-
tion density, urban land use intensity, and the availability of public 
transit (Wang & Mu, 2018). As far as the built environment is concerned, 
only density and land use have been considered in previous studies. This 
research will use street-level images to enhance the resolution of spatial 
and temporal measures when examining the interaction between the 
built environment and ridesharing accessibility. Compared with previ-
ous studies measuring the density and land use of the built environment 
from a bird’seye view, the street-level imagery can integrate individuals’ 
perspectives into the measurement of the built environment, providing 
an objective way of measuring the built environment from a human-eye 
perspective. Moreover, with the street-level images, this study can 
complement previous studies focusing on meso-scale built environment 
features and explore the impacts of micro-scale built environment fea-
tures on ridesharing accessibility. 

2.2. Measuring built environment with street view imagery 

Before the arrival of AI-assisted methodologies, researchers relied on 
surveys, remote sensing images, and aggregated census data to quantify 
the built environment. The recent emergence of street view imagery 
(SVI) within the larger paradigm shifts of machine intelligence has 
provided a novel data source for researchers to read and understand the 
urban landscape from the street-level human eye perspective (Anguelov 
et al., 2010; Badland, Opit, Witten, Kearns, & Mavoa, 2010; Ibrahim, 
Haworth, & Cheng, 2020). Seeing the city from the street level provides 
a more human-oriented horizontal reading of visual features of the built 
world that are not captured by other birds’ eye-view data sources such as 
aerial or satellite imagery (Biljecki & Ito, 2021). Since its launch in 
2007, Google Street View has become arguably the most widely used 
service for street-view image provision, offering omnidirectional and 
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panoramic coverage and including >90 countries (Biljecki & Ito, 2021). 
Coupled with the availability of street-view images, maturity in deep 

learning and computer vision technologies in image recognition in the 
past decade (LeCun, Bengio, & Hinton, 2015) paved new avenues to 
understand the built environment through large-scale image data for the 
first time (Reichstein et al., 2019). Semantic segmentation using con-
volutional neural network models allows for accurate classification of 
individual attributes of the built environment – such as urban greenery, 
buildings, sky, and ground – at a pixel level (Chen, Papandreou, Kok-
kinos, Murphy, & Yuille, 2017; Chen, Papandreou, Schroff, & Adam, 
2017; Long, Shelhamer, & Darrell, 2015; Badrinarayanan, Kendall, & 
Cipolla, 2017). Street-view images have been widely experimented by 
researchers on a variety of applications and research problems, from 
evaluating property prices in real estate research (Wang, Hu, Tang, & 
Zhuo, 2020; Yang, Rong, Kang, Zhang, & Chegut, 2021), to assessing the 
level of walkability in a neighborhood in public health and socioeco-
nomic studies (Koo, Guhathakurta, & Botchwey, 2022; Yin & Wang, 
2016), to revisiting and measuring earlier concepts of urban perceptual 
qualities such as imageability and aesthetics (Ma et al., 2021). 

This study will be the first to employ street-view images to quantify 
the built environment in the context of assessing its relationship with 
ridesharing accessibility. The use of street-view images will not only 
provide finer-resolution data but also offer a more human-oriented 
perspective. Research results will help shed light on potential spatial 
inequality relating to ridesharing services driven by market demands 
and potential solutions to urban transport problems. 

3. Data and methods 

3.1. Uber accessibility and street-level images 

We measure Uber accessibility from a time perspective. Previous 
studies on ridesharing services in various contexts have used the waiting 
time in their exploration of ridesharing accessibility. For instance, 
Hughes and MacKenzie (2016) have measured the relationship between 
Uber wait times and socioeconomic indicators in Greater Seattle. Pre-
vious studies in Atlanta have adopted the expectation and variability of 
Uber wait time as proxies to measure the spatial disparities of ride-
sharing accessibility (Wang & Mu, 2018) and the impacts of road 
network structure on Uber accessibility (Wang, Chen, Mu and Zhang, 
2020). Furthermore, Shokoohyar, Sobhani, and Ramezanpour Nargesi 
(2020) used the average wait time and standard error of wait time as a 
proxy to explore the determinants of Uber accessibility in Philadelphia. 
Building upon previous studies, this study measures the wait time for an 
Uber product service at a given location as a proxy for Uber accessibility. 
Taking the city of Atlanta as the study area, we employ a systematic 
sampling approach to capture at least one random sample point in each 
neighborhood and at least one random sample point every two square 
miles. For each of the 152 random sampling locations, we used the Uber 
Developers API to collect the wait times for all available Uber products1 

roughly every 30 min for a month, resulting in a total of over 360,000 
data points. The Uber Developers API provides estimations of pick-up 
waiting times based on the GPS data from their rides. Although these 
estimates are claimed by Uber to be very close to the actual data, they 
can still vary according to real-world situations. These estimations from 
the Uber Developers API have been largely used and validated in 
existing studies as a good proxy for investigating the ride-sourcing 
networks (e.g., Hughes & MacKenzie, 2016; Shokoohyar, Sobhani, & 
Sobhani, 2020; Wang & Mu, 2018). 

For each sample site, we acquired its corresponding street-level 

images from Google’s Street View Static API. Specifically, we collected 
eight images for each point to ensure retrieving complete coverage of the 
built environment information, with the headings2 of 0, 45, 90, 135, 
180, 225, 270, and 315. Additionally, we set the pitch parameter as 0 (i. 
e., the camera was held flatly horizontal to the vehicle) and a field of 
view of 90. Finally, we obtained each image as 640 pixels by 640 pixels 
(the highest resolution Google allows for non-premium users). Fig. 1 
shows the locations of all 152 random sampling points along with their 
corresponding average wait time for UberX in this study. 

3.2. Image semantic segmentation with Deeplab V3+

Semantic segmentation is a fundamental task in computer vision, 
aiming to assign semantic labels to every pixel in an image (Everingham 
et al., 2015; Mottaghi et al., 2014). Most of the successful semantic 
segmentation systems rely on hand-crafted features combined with flat 
classifiers, such as support vector machines (Fulkerson, Vedaldi, & 
Soatto, 2009), random forests (Shotton, Johnson and Cipolla, 2008), and 
boosting (Shotton, Winn, Rother and Criminisi, 2009). However, sub-
stantial improvements in the performance of these systems have always 
been constrained by the fact that hand-crafted features have quite 
limited expressive ability. Recently, deep convolutional neural networks 
has emerged as the transformative power for advancing the performance 
of semantic segmentation systems, aided by their excellent feature 
learning ability. Deep convolutional neural network-based semantic 
segmentation approaches can be categorized into three groups. The first 
approach typically employs a cascade of bottom-up image segmentation, 
followed by a deep convolutional neural network used for the region 
classification (Girshick, Donahue, Darrell, & Malik, 2014). The second 
approach relies on using the features extracted from the deep convolu-
tional neural network for dense image labeling and couples those fea-
tures with independently obtained segmentations (Farabet, Couprie, 
Najman, & LeCun, 2012). The last one directly predicts dense category- 
level pixel labels through a deep convolutional neural network, which 
only involves pixel-wise classification (Long et al., 2015). The 
segmentation-free approaches directly apply a deep convolutional 
neural network to the entire image in a fully convolutional fashion, 
becoming the mainstream application of deep convolutional neural 
networks to semantic segmentation systems. 

Deeplab v3+ is a recently proposed semantic segmentation model, 
which has extended from DeepLabv3 (Chen et al., 2017) by employing 
an encoder-decoder structure to gradually capture the semantic infor-
mation and high-level features. Deeplab v3+ is capable of extracting 
multiscalar semantic information in a computationally efficient way 
because of its atrous spatial pyramid pooling approach (see Chen, 
Papandreou, Kokkinos, Murphy and Yuille, 2017 for details of the al-
gorithm). Because of the features above, Deeplab v3+ has already 
achieved excellent performance on multiple datasets (Chen, Zhu, 
Papandreou, Schroff, & Adam, 2018). More recently, it has been applied 
to analyze street-level images in empirical urban research (e.g., Kim, 
Lee, Hipp, & Ki, 2021; Wang & Vermeulen, 2021). 

In this work, we employed the Deeplab v3+ model to segment 
Google Street View (GSV) images. Specifically, we leverage the Xception 
model as the network backbone of Deeplab v3+ and train the Deeplab 
v3+ model on the Cityscapes dataset (Cordts et al., 2016), which is a 
large-scale dataset containing high-quality pixel-level annotations of 
5,000 images and about 20,000 coarsely annotated images. Then, we 
applied the well-trained Deeplab v3+ model to segment all Google 
Street View images into 19 categories, namely bicycle, building, bus, 
car, fence, motorcycle, person, pole, rider, road, sidewalk, sky, terrain, 
traffic light, traffic sign, train, truck, vegetation, and wall. Fig. 2 pro-
vides an example of this study’s image segmentation results via Deeplab 

1 At the time we ran the Uber Developers API, there were five Uber products 
in the Atlanta market, namely UberX (the low cost Uber), UberXL (low-cost 
rides for larger groups, UberSELECT (the next step towards luxury), UberBLACK 
(the original Uber), and UberSUV (Room for everyone). 

2 Heading refers to the camera’s compass degrees, where 0 indicates North 
and 90 denote East. 
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v3+. We calculated the categorical percentage within each image, 
where categories with at least 1% area of each panorama were consid-
ered in the subsequent analysis. For example, in Fig. 2, roads occupy the 
most extensive area (26%), followed by vegetation (21%) and buildings 
(18%). As eight GSV panoramas were collected for each sampling point, 
the average proportion of each category among the eight panoramas was 
taken. Finally, we chose the top six common categories (i.e., road, 
building, wall, vegetation, terrain, and car) for the following empirical 
analysis (Section 3.4). 

3.3. Additional variables from computer vision 

Although there is not a consensus regarding defining a salient region, 
it usually refers to areas of an image with semantic contents. When it 
comes to a GSV panorama, a salient region can be conceptualized as 
foreground features (e.g., buildings, cars, trees) instead of background 
features (e.g., open space, sky, etc.). We extracted additional informa-
tion from the salient region analysis of the corresponding GSV pano-
ramas for each sample point. For each GSV panorama, we applied 
Gaussian filtering and identified the salient region via Otsu’s thresh-
olding method (Otsu, 1979). Otsu’s thresholding method has been 
widely applied for its mathematical simplicity and computational effi-
ciency. Fig. 3 shows an example of the salient region of a GSV panorama. 
We calculated the salient region ratio from 0 to 1, denoting the ratio 
between the area of salient regions and the entire GSV panorama. The 
higher the value, the more proportion of foreground features in the 

corresponding GSV panorama. 
Similarly, major colors (i.e., a color occupied at least 1% of the 

corresponding image) of all GSV images were identified via the Color-
gram package (https://github.com/obskyr/colorgram.py). Colorgram. 
py is a Python version of the JavaScript library colorgram.js, which often 
produces better results compared to alternative color extraction li-
braries. We then counted the number of major colors for each image. As 
eight GSV panoramas were taken at every single sample point, we 
calculated the average value from salient regional analysis and color 
analysis, resulting in the variables of salient region ratio (Srr) and the 
number of colors (NumColor) – consider that as an indicator of the 
heterogeneity of the street view, for the following spatial modeling. 

3.4. Spatial modeling 

To understand the association between the built environment from 
street-level images and ridesharing accessibility from Uber wait times, 
we build upon previous studies (e.g., Hughes and MacKenzie (2016); 
Wang and Mu (2018); Sabouri et al. (2020); Wang et al. (2020)), and 
added neighborhood-scale population density (PopDen) and road 
network density (RoadDen) as neighborhood-level control variables. 
Therefore, our model specification can be conceptually illustrated as 
follows, with the six major categories derived from GSV images (Road to 
Car) plus four additional variables introduced in sections 3.3 (Srr, 
NumColor) and 3.4 (PopDen, RoadDen): 

Fig. 1. All the sampling points in the study area.  
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Uber Accessibility =f (Road,Building,Wall,Vegetation,Terrain,Car,
Srr,NumColor, PopDen,RoadDen)

(1) 

To select the appropriate regression model for the current study, we 
performed a spatial autocorrelation analysis to estimate whether Uber 
accessibility is related to geographical positions. Global Moran’s I was 
estimated to identify whether Uber accessibility at a location is influ-
enced by neighboring locations. We constructed the spatial weight 
matrix by assessing the spatial autocorrelation within the spatial context 
of a fixed number of close neighbors. 

The neighbor relationships identified in the spatial weight matrices 

ensure that every target case is connected to a certain number of 
neighboring cases, even when the density of cases’ spatial locations 
varies across the study area. Four nearest neighbors to the target case 
were determined in computations, as they displayed a better perfor-
mance than alternative spatial weighting methods that we have evalu-
ated (see robustness tests in Section 4.3 for details). Table 1 shows the 
values of Moran’s I for Uber accessibility of different Uber car types 
under the spatial weight of four nearest neighbors. The results suggest 
the existence of spatial autocorrelation for the accessibility of all Uber 
car types, which lays the foundation for applying spatial regression 
models. 

Fig. 2. An example of a segmented image extracted from Google Street View (GSV) panorama via Deeplab v3+. (a) The original image from GSV panorama; (b) the 
segmented image from GSV panorama. 

Fig. 3. An example of the salient region analysis of an image from panorama. (a) The original Google Street View image. (b) The salient region of the corresponding 
image (in black). 
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While Uber accessibility is spatially autocorrelated, the independent 
variables, such as the street landscape of a specific observation, tend to 
be more independent and primarily determined by the local physical 
built environment. The Spatial Lag Model (SLM) is a method to control 
only spatial autocorrelation in the dependent variable, where spatial 
dependence effects between observations lay on the dependent variable 
of Uber accessibility. We performed two Lagrange Multiplier (LM) tests 
to evaluate the spatial dependence effects according to the spatial model 
selection procedure (Anselin, Florax, & Rey, 2013) and to select an 
adequate model to analyze the association between street landscape and 
Uber accessibility of all Uber car types. The Lagrange Multiplier di-
agnostics for spatial error model (LMerr) and the Lagrange Multiplier 
diagnostics for spatial lag model (LMlag) tests were significant, sug-
gesting that a spatial model is needed. Hence, the Robust LMerr and 
LMlag were applied, and only the Robust Lagrange Multiplier di-
agnostics for the spatial lag model (RLMlag) statistic was significant 
(Table 1). This empirical result confirmed that a spatial lag model would 
be more appropriate for our analysis than a spatial error model. 
Therefore, this study uses spatial lag models to analyze the impact of the 
street landscape on Uber accessibility. The equation of SLM is displayed 
as follows: 

Y = ρWY +Xβ+ ε (2)  

where Y is the dependent variable of uber accessibility; ρ is the spatial 
regression coefficient of the endogenous interaction effects (represented 
by WY) between the sample observations; W is the weight matrix with 
spatial location relationship of the sample observations. X represents the 
explanatory variables such as the street landscape, population density, 
road density, and their interaction terms, and β is a vector of corre-
sponding coefficients; ε refers to the error term. 

4. Results 

We built our spatial lag regression based on our model specification 
using the dependent variable UberX accessibility (Avg_UberX) to inves-
tigate the association between street landscape and UberX accessibility 
as measured by the average wait time (Eq. 1 and Eq. 2). To further 
explore the potential moderation effects of road network density on the 
relationship between the significant street landscape variables and Uber 
accessibility, we have added the corresponding interaction terms in the 

preceding model. 

4.1. Main effect model 

Table 2 presents the final regression results, including the interaction 
terms for UberX accessibility. A significant likelihood ratio (LR) test 
suggested that this model with a spatial lag term performs significantly 
better than traditional ordinary least squares (OLS) regression. Addi-
tionally, the LM test for residual autocorrelation is not significant, sug-
gesting that the spatial autocorrelation has been accounted for by 
adding the spatial lag term. Generally, there was a positive spatial 
autocorrelation (Rho >0) in our regression analysis of the association 
between street landscape and UberX accessibility. All explanatory 

Table 1 
Descriptive statistics of variables in the spatial models.  

Variable Description Mean Std.dev Moran’s I RLMerr RLMlag 

X 
Road The proportion of roads 0.288 0.057    
Building The proportion of buildings 0.048 0.086    
Wall The proportion of walls 0.005 0.015    
Vegetation The proportion of vegetation 0.391 0.173    
Terrain The proportion of terrain 0.078 0.064    

Car The existence of cars Yes 
(N = 81)       
No 
(N = 71)     

Srr Salient region ratio 0.645 0.123    
NumColor Number of major colors 12.392 1.156    

PopDen 
Population density 
(ppl per sq. mile) 3872.239 2791.512    

RoadDen Road network density 
(miles per sq. mile) 

13,364.180 5520.215     

Y 
Avg_UberX Average wait times for UberX (seconds) 349.476 92.305 0.748 0.818 37.801** 
Avg_UberXL Average wait times of UberXL (seconds) 488.681 133.876 0.852 0.038 48.718** 
Avg_UberBL Average wait times of UberBL (seconds) 468.262 153.026 0.820 0.000 37.768** 
Avg_UberSE Average wait times of UberSE (seconds) 482.885 146.089 0.867 0.436 47.898** 
Avg_UberSU Average wait times of the UberSUV (seconds) 473.547 151.837 0.818 0.006 38.488** 

“.” Significant at 0.1; “*” Significant at 0.05; “**” Significant at 0.01. 

Table 2 
Results effects for Uber X Accessibility.  

Dependent Variable: Avg_UberX Estimate S.E. Total effect 

(Intercept) − 0.038 0.059  
PopDen ¡0.101* 0.044 ¡0.291* 
RoadDen ¡0.106* 0.049 ¡0.306* 
Srr ¡0.106* 0.043 ¡0.306* 
NumColor − 0.029 0.040 − 0.085 
Road 0.062 0.060 0.179 
Building 0.115. 0.063 0.333. 
Wall 0.040 0.043 0.115 
Vegetation 0.292** 0.076 0.843** 
Terrain 0.217** 0.060 0.628** 
Car 0.055 0.080 0.159  

RoadDen × Srr 0.085* 0.038 0.246* 
RoadDen × Building 0.002 0.060 0.006 
RoadDen × Vegetation − 0.060 0.044 − 0.174 
RoadDen × Terrain ¡0.101* 0.044 ¡0.291*  

Rho 0.654   
LR 78.14**   
Wald statistic 159.4**   
Log-likelihood − 104.9   
Nagelkerke pseudo-R2 0.763   
LM test for residual autocorrelation 1.500   
AIC 243.8   

“.” Significant at 0.1; “*” Significant at 0.05; “**” Significant at 0.01. 
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variables are significant in the model and supported by the Wald sta-
tistics. A high value of Nagelkerke pseudo-R2 (0.763) suggests that this 
model fits the data well. Because of the spatial lag term, the coefficient in 
a spatial lag model represents only the short-term direct impacts of an 
independent variable on the dependent variable. Therefore, the total 
effect (see LeSage and Pace (2009) for details) was computed to incor-
porate the direct and indirect effects of spatial dependence on UberX 
accessibility from neighbors. 

Both control variables – population density (PopDen) and road 
network density (RoadDen) – were found to exert an enormously sig-
nificant total impact on the accessibility of UberX. Concerning street 
landscape features, the street-level greenness (Vegetation) measured at 
the observation points plays a critical role in UberX accessibility. When 
controlling for other covariates, the regression reveals that a higher 
occupation of vegetation (predominately big trees) in the street view is 
associated with a longer waiting time for UberX. The positive impact of 
the proportion of terrain (primarily urban parks and grassland) in the 
street landscape on the average UberX waiting time has confirmed the 
importance of urban green spaces in streets for UberX accessibility. One 
possible explanation is that observation points with large portions of 
vegetation or terrains in the street-level images may be located in sub-
urban areas with fewer Uber services available. Another interpretation 
could be that places with more vegetation or terrain in the street land-
scape can be less connected to road networks, costing extra time for 
UberX drivers to reach. Additionally, Uber tends to serve more business- 
concentrated areas that are often located in concrete jungles. The pro-
portion of vegetation and terrain presented an exceedingly high total 
influential magnitude (0.843 and 0.628, respectively) on UberX acces-
sibility compared with other explanatory variables. 

There are other important indicators of UberX accessibility. Our re-
sults suggest that the salient region ratio (Srr) in the street views is 
associated with better accessibility of UberX. One percent increase in the 
salient region ratio is associated with an approximate 30% decrease in 
the average waiting time for UberX. Salient regions refer to foreground 
scenes, such as a landmark, which are more eye-catching. In contrast, 
more buildings in the street views are found to correspond to an increase 
in the average waiting time of UberX, although the association is only 
significant at the level of 90% (p = 0.073 < 0.1). It could be understood 
that more buildings in street views of the observation point can be 
accompanied by crowdedness and narrower streets, which could be an 
obstacle to the accessibility of UberX. 

4.2. Moderation effect of road network density 

Our exploration of the moderating effects of road network density on 
street landscape variables provides new insight into the relationship 
between street landscape and uber accessibility. The interaction term 
RoadDen * Srr is found to be significantly and positively correlated with 
the average waiting time of UberX, opposite to the coefficient direction 
of Srr on UberX accessibility, which suggests that road network density 
has played a countereffect role in the relationship between Srr and 
UberX accessibility. In other words, when the proportion of foreground 
features in street views increases, an observation point with dense road 
networks will experience a decrease in the average waiting time of 
UberX compared to an observation point with sparse road networks. 

Additionally, road network density plays a significant role in miti-
gating the impact of the proportion of terrain on UberX accessibility. For 
example, two observation points are located in dense road networks (A) 
and sparse road networks (B), respectively. When the proportion of 
terrain increases in the surroundings, A will experience a smaller in-
crease in the average waiting time of UberX than B. Nevertheless, we did 
not find a similar effect of road network density on the proportion of 
vegetation or buildings on UberX accessibility. As road network density 
has both direct and moderation effects on UberX accessibility, the road 
networks, in a broad sense, may have more profound and nuanced im-
plications for ridesharing accessibility issues. 

4.3. Robustness check 

A series of robustness tests were conducted with alternative spatial 
weighting methods and compared their performances in the modeling 
diagnosis. Regarding the spatial weighting method of k nearest neigh-
bors, we chose k = 3 and k = 5 to compare with our modeling results 
when k = 4. Additionally, distance-band weight methods were applied 
with three distance bands3 (i.e., 2.60 km, 2.75 km, and 3.00 km). Table 3 
displays the regression results with different spatial weight matrices. All 
the models fit the data well. Regarding individual explanatory variables, 
the evaluation results on the relationship between built environment 
features and UberX accessibility are consistent under different spatial 
weight matrices. 

5. Discussions and conclusions 

5.1. Built environment features in the close proximity of pick-up points 

Our results show that several built environment features from GSV 
panoramas are significantly correlated with UberX accessibility. To the 
best of our knowledge, this is the first empirical work investigating the 
relationship between built environment features and ridesharing 
accessibility at a very fine scale and with pedestrian-perspective, i.e., the 
360-degree view at the pick-up points. We tackle the research question 
with a more human-oriented data source rather than the traditional 
bird’s-eye view images. Literature using traditional land-use datasets 
has confirmed the influence of the built environment on Uber accessi-
bility. For example, Uber has been suggested to be more accessible in 
denser areas and areas with higher road network densities (Jiang et al., 
2018; Wang et al., 2020). Additionally, Shokoohyar, Sobhani, and 
Ramezanpour Nargesi (2020) reported that Uber accessibility is not 
associated with public facilities such as police departments and health 
centers. This study with street-level imagery, therefore, contributes to 
complementing the existing findings on spatial determinants of Uber 
accessibility in that the location for travelers to request ridesharing 
service matters at a fine scale. First, we found that the proportion of 
foreground features (i.e., salient region) is positively related to UberX 
accessibility, meaning that the more areas of salient regions within close 
proximity to pick-up points, the less waiting time that one would expect 
for an UberX to pick up a customer. Second, it has been revealed that the 
proportion of buildings, vegetation, and terrain in the surroundings of 
the pick-up points are positively correlated with higher UberX waiting 
time (i.e., lower UberX accessibility). Although SVI has the limitation on 
its perspective that it is collected from vehicles, which might not always 
be consistent with the viewpoint of pedestrians (Ito & Biljecki, 2021), 
still, compared with the much land-use data using a bird’s eye view, the 
street-level images have the advantage of mimicking the situation when 
a customer requests an Uber and possibly present most of the actual built 
environment from the first-person view. When everything else is held 
constant, pick-up points surrounded by more buildings, tall trees (i.e., 
vegetation), or in the middle of urban parks/grasslands (i.e., terrains) 
will tend to have a longer waiting time for Uber. Pinning a pick-up 
location with certain built environment features may reduce the wait 
time for ridesharing services. 

Such findings of the street-level built environment from street view 
images are generally aligned with previous studies with taxi data or 
travel surveys in other studies. For example, Guo and Karimi (2017) 
focused on spatial-temporal inflow and outflow mobility patterns across 
different spatial areas within New York City and found that the spatial 
environment caused such spatiotemporal patterns of taxi trips. More 
recently. Zhang, Wu, Zhu, and Liu (2019) investigated taxi trips’ pick-up 
and drop-off locations and revealed that street-level images could 

3 Empirical analysis shows that some points would become islands when a 
distance band was set <2.60 km. 
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explain up to 66.5% of hourly variation taxi trips in Beijing. It is also 
worth mentioning that we did not find a significant correlation between 
the presence of cars and the accessibility of UberX, which resonates with 
the study by Goel et al. (2018) across 34 cities in Great Britain – the 
number of cars in Google Street View images was not correlated with car 
commuters. 

Nevertheless, empirical results showed that the number of major 
colors in the surrounding areas, i.e., the heterogeneity of the street view, 
does not significantly correlate with UberX accessibility. On the one 
hand, the colorscape of streets reflects the built environment aesthetics 
(Stamps, 2013) and is linked to the level of mixed land use (Wang & 
Vermeulen, 2021). While Sabouri et al. (2020) reported that Uber de-
mand was positively correlated with land use entropy, this empirical 
work did not find a similar conclusion from a colorscape perspective. 

5.2. Built environment features in the neighborhood scale of pick-up 
points 

Previous studies of the relationship between the built environment 
and ridesharing accessibility have primarily focused on the built envi-
ronment characteristics at the neighborhood scale (e.g., Hughes & 
MacKenzie, 2016; Sabouri et al., 2020; Wang et al., 2020; Wang & Mu, 
2018) and found the important roles of population density and road 
network density in ridesharing accessibility. This study has confirmed 
such findings by including neighborhood-scale population density and 
road network density where the pick-up points are located. Pick-up 
points in the neighborhoods with higher population densities are 
correlated with higher UberX accessibility (i.e., less waiting time), 
confirming Hughes and MacKenzie’s (2016) finding in Seattle. While the 
proportion of roads in the surrounding area of a pick-up point is not 
significantly associated with UberX accessibility, the density of the road 
network in the neighborhood of a pick-up point is found in our study to 
significantly correlate with higher UberX accessibility, consistent with a 
previous study in Philadelphia (Shokoohyar, Sobhani, & Ramezanpour 
Nargesi, 2020). 

In addition to supporting the direct positive impact of road network 
density on ridesharing accessibility reported in previous studies, this 
study can contribute to revealing that road network density at the 
neighborhood scale provides a more nuanced knowledge by its moder-
ation effect on built environment features at the scale of the pick-up 
point. Firstly, while higher proportions of both vegetation and terrain 
are associated with a longer waiting time of UberX, road network den-
sity mitigates the effect of the proportion of terrain but not that of 

vegetation on the waiting time for UberX. Put it differently, when 
comparing the waiting time for UberX at two pick-up points with high 
road network density, the pick-up point with high occupancy of terrain 
(urban parks, grassland) will have less waiting time than the point with 
high occupancy of vegetation (big trees). Similarly, road network den-
sity negatively moderates the role of the salient region ratio in UberX 
accessibility. When there are two pick-up points with equal attraction of 
human attention in their surrounding areas, the one located in a higher 
road network density area will result in a longer waiting time for UberX. 
Indeed, further studies must disentangle the nexus between road 
network structures and salient regions in an urban setting. 

5.3. Heterogeneous levels of accessibility across different Uber products 

As mentioned by Uber Inc., there are different Uber products across 
the market to meet the needs of different travelers and customers. At the 
time of the data collection, there were five different Uber services. In 
addition to UberX, which represents the low-cost Uber product that has 
been widely used in urban research, other available products include 
UberXL, UberBLACK, UberSELECT, and UberSUV. Different Uber prod-
ucts vary in the number of seats, base rate, cost per minute, and cost per 
mile, along with the minimum payment and cancelation fee. We re-ran 
our main model by replacing the dependent variable with the wait time 
of the remaining four Uber products. Similar to their roles in UberX 
accessibility, the proportions of buildings, vegetation, and terrain in 
close proximity to pick-up points are significantly positively correlated 
with the waiting time for all of the rest four Uber products. However, the 
silent region ratio was only significant for the accessibility of UberXL 
and UberSELECT. Previous studies have found that although people with 
a higher willingness to pay to reduce their travel time use ridesharing 
more often in general (Alemi, Circella, Mokhtarian, & Handy, 2019), 
UberX resembles public transit systems (e.g., Wang and Mu (2018); 
Deka and Fei (2019); Jin, Kong, and Sui (2019)), suggesting there are 
more socioeconomic variables associated with its service availability 
and accessibility. 

The primary difference between UberX and UberXL is their capacity 
of four and six passengers, respectively. Therefore, neighborhood-level 
built environment features, i.e., population density and road network 
density, contribute similarly to the accessibility of both services. When 
comparing UberBLACK and UberSUV, they have the highest costs among 
these five Uber services, where built environment features at the 
neighborhood scale play no significant role in their accessibility. Finally, 
UberSELECT is a mid-range service with the same capacity level as 

Table 3 
Robustness check with different spatial matrices (Y = Avg_UberX).   

(1) K = 3 (2) K = 4 (3) K = 5 (4) D = 2.60 km (5) D = 2.75 km (6) D = 3.00 km 

Beta S.E. Beta S.E. Beta S.E. Beta S.E. Beta S.E. Beta S.E. 

(Intercept) 0.006 0.058 0.001 0.057 0.006 0.058 − 0.023 0.057 − 0.023 0.058 − 0.012 0.060 
PopDen ¡0.085. 0.045 ¡0.085. 0.045 ¡0.077. 0.045 ¡0.095* 0.044 ¡0.094* 0.046 ¡0.092* 0.046 
RoadDen ¡0.118* 0.050 ¡0.093. 0.050 ¡0.085. 0.051 − 0.076 0.050 ¡0.088. 0.052 − 0.085 0.053 
Srr ¡0.111** 0.043 ¡0.104* 0.043 ¡0.090* 0.043 ¡0.083. 0.042 ¡0.082. 0.043 ¡0.077. 0.044 
NumColor − 0.032 0.041 − 0.030 0.041 − 0.040 0.041 − 0.035 0.041 − 0.044 0.042 − 0.044 0.043 
Road 0.043 0.061 0.064 0.061 0.078 0.061 0.060 0.060 0.059 0.062 0.040 0.063 
Building 0.104 0.064 0.115. 0.063 0.120* 0.064 0.129* 0.063 0.117. 0.065 0.113. 0.066 
Wall 0.036 0.043 0.041 0.043 0.041 0.043 0.034 0.043 0.034 0.044 0.038 0.045 
Vegetation 0.251** 0.077 0.265** 0.077 0.270** 0.077 0.270** 0.076 0.272** 0.078 0.266** 0.080 
Terrain 0.216** 0.060 0.222** 0.060 0.220** 0.061 0.227** 0.060 0.217** 0.061 0.202** 0.063 
Car 0.039 0.081 0.048 0.080 0.076 0.081 0.079 0.080 0.081 0.082 0.074 0.084  

Rho 0.656  0.689  0.722  0.725  0.723  0.748  
LR 82.22**  86.09**  84.60**  91.03**  85.40**  81.57**  
Wald statistic 186.5**  184.8**  202.2**  183.8**  168.6**  163.0**  
Log likelihood − 112.6  − 110.7  − 111.4  − 108.2  − 111.0  − 113.0  
Nagelkerke Pseudo-R2 0.738  0.745  0.742  0.753  0.743  0.737  
AIC 251.3  247.4  248.8  242.5  248.1  251.9  

“.” Significant at 0.1; “*” Significant at 0.05; “**” Significant at 0.01. 
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UberX; however, it is about twice the price of UberX. Consequently, we 
found that some neighborhood-scale built environment features matter 
(i.e., population density), but some do not hold significance (i.e., road 
network density) in predicting its accessibility. 

5.4. Limitations and future work 

There are several caveats and limitations in the current study, which 
cast light on future work. First, we employed a pre-trained Deeplab v3+
model for segmentation. Although the model was well-trained on the 
Cityscapes dataset with street-level images of the urban scene, we had 
little control over the categories of built environment features included 
in the initial analysis. For example, there are different types of buildings, 
such as single-family houses, rowhouses, duplex flats, commercial 
complexes, etc. Our approach has consolidated these nuances into a 
single category – building. Future work can investigate the sub- 
categories of built environment features from street-level images. Sec-
ond, this study used the estimation of Uber waiting time from the Uber 
Developer API to measure Uber accessibility. Although these datasets of 
estimations are claimed by the companies to represent the actual data in 
a large probability, we should be aware that these estimations of waiting 
times might be used for the companies to attract and retain customers. 
Future work could consider using the actual waiting time to more 
accurately model the relationship between the built environment from 
the user perspective and ridesharing accessibility. A comparison be-
tween the actual and estimated waiting times can provide empirical 
support for the validity of applying the dataset from the Uber Developer 
API or from other ride-sourcing service companies in the research field 
of ride-sourcing platforms. Third, this study has only provided a snap-
shot of the relationship between built environment features and ride-
sharing accessibility due to the current data availability of both Uber 
wait time and GSV. Future work can apply alternative sources of ride-
sharing services (e.g., Lyft) and GSV (e.g., Mapillary and StreetSide) to 
provide a complete view of this relationship. Likewise, we could only 
infer the correlations between built environment features and ride-
sharing accessibility. In the future, additional studies can be conducted 
with quasi-experimental designs to reveal the causal relationship be-
tween the two. Moreover, this study uses Uber as an example to explore 
the impacts of the built environment on ridership accessibility. How-
ever, there are other ride-sourcing companies, such as Lyft (a major 
competitor of Uber in the US). There have been studies comparing Uber 
and Lyft in terms of their pick-up waiting time, trip duration, and the 
associated influential factors including trip characteristics and weather 
conditions (e.g., Shokoohyar et al., 2020). Future studies should 
consider exploring the differences in the relationships between built 
environments using SVI and ridership accessibility for Uber and Lyft. 

The outbreak of the COVID-19 pandemic has had profound impacts 
on the sharing economy industries and provided both challenges (such 
as car-sharing) and opportunities (such as dockless shared bikes/e- 
bikes) to sustainable shared mobilities (Shokouhyar, Shokoohyar, Sob-
hani, & Gorizi, 2021). On the one hand, built environment features are 
associated with COVID-19 cases and deaths (e.g., Li, Peng, He, Wang, & 
Feng, 2021). On the other hand, policies such as lockdown and the 
consideration of avoiding physical contact between individuals through 
several types of shared mobilities have severely restricted individuals’ 
usage of ridesharing services. The concern of keeping social distancing 
also contributes to the changes in urban mobility patterns because of 
changes in individuals’ demands for social participation and activity. 
Although previous studies have acknowledged the importance of the 
built environment in sustainable transportation (e.g., Shokoohyar, 
Jafari Gorizi, Ghomi, Liang and Kim, 2022), it is worth exploring 
whether the built environment features still played an important role in 
the usage and accessibility of ridesharing services in and after the 
pandemic era. 
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