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Abstract: Adaptive traffic signal control (ATSC) is an effective method to reduce traffic congestion in
modern urban areas. Many studies adopted various approaches to adjust traffic signal plans according
to real-time traffic in response to demand fluctuations to improve urban network performance (e.g.,
minimise delay). Recently, learning-based methods such as reinforcement learning (RL) have achieved
promising results in signal plan optimisation. However, adopting these self-learning techniques in
future traffic environments in the presence of connected and automated vehicles (CAVs) remains
largely an open challenge. This study develops a real-time RL-based adaptive traffic signal control
that optimises a signal plan to minimise the total queue length while allowing the CAVs to adjust
their speed based on a fixed timing strategy to decrease total stop delays. The highlight of this work
is combining a speed guidance system with a reinforcement learning-based traffic signal control.
Two different performance measures are implemented to minimise total queue length and total stop
delays. Results indicate that the proposed method outperforms a fixed timing plan (with optimal
speed advisory in a CAV environment) and traditional actuated control, in terms of average stop
delay of vehicle and queue length, particularly under saturated and oversaturated conditions.

Keywords: connected and automated vehicles; adaptive traffic signal control; reinforcement learning;
microscopic traffic simulation

1. Introduction

Traffic congestion has been a key urban issue, causing high economic costs in many
cities worldwide. The report carried out by the Institute of Economic Affairs (IEA) claims
that just a two-minute delay to every car journey costs the economy approximately 16 billion
GBP a year, or nearly one percent of GDP (gross domestic product) in the UK [1]. Traffic
lights play an essential role in controlling traffic flow and minimising delay, especially
in an urban area. As a result, the number of traffic lights in England has increased by
25% since 2000, while the number of cars on roads grew by just 5% [1]. However, most of
them use offline control systems based on the historical traffic flow and cannot respond
to unexpected traffic situations (e.g., car accidents) efficiently or predict future traffic
flows. Thus, adaptive traffic signal control (ATSC) approaches have been developed
by numerous researchers [2–4]. Recently, advancements in computer performance and
new optimisation methods have allowed researchers and practitioners to adopt heuristic
methods for the ATSC process (e.g., real-time hierarchical optimising distributed effective
system, RHODES [5]). These systems try to optimise traffic signal parameters in real time
without considering a cyclic time interval. Thus, the signal plan could change at any time
step depending on rapidly changing traffic conditions [6].
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In recent years, autonomous vehicles (AVs) and connected vehicles (CVs) have been
introduced due to the new generation of automation and connectivity technologies. Refer-
ence [7] reported that AVs could save the US economy roughly 211 billion USD annually
with a 50% AV market penetration rate. They also suggested that the combination of
automation and vehicle-to-everything (V2X) communication (vehicle-to-vehicle (V2V) and
vehicle-to-infrastructure (V2I) communication) is called connected and autonomous vehi-
cles (CAVs), and they could further reduce congestion and fuel consumption. These will not
only be an opportunity for transport planners to improve current capacity utilisation but
will also be a research challenge for them in order to adapt the current transport systems to
this new traffic environment [8]. As CAVs are gradually developed, they would also call
for further research on intelligent signal control in the near future traffic environment [9].
Considering CAV technology, vehicles and traffic infrastructure can communicate with
each other. For example, sending real-time trajectory data on speed, location and headway
from CAVs to signal controls enables planners to optimise better traffic signal control plans
based on accurate current and future traffic flow predictions [10–14]. In addition, CAVs can
drive more efficiently by controlling vehicle speed and acceleration in response to signal
timing plans, further improving the overall network performance (reducing the number of
stops, fuel/energy consumption, and emission) [15,16]. Unfortunately, most existing CAV
studies assumed fixed traffic signal timings to optimise the trajectory of CAVs [17–20].

Learning-based methods such as reinforcement learning (RL) have achieved promising
results in lane-change behaviour under CAVs environment with self-learning and high-
efficiency calculation [21]. In this work, we use RL in signal plan optimisation under the
CAVs environment. In an RL approach, the agent (vehicles, traffic signal control) learns
from the state (traffic environment) by taking actions (e.g., lateral control, signal plan
changing) and observing the feedback rewards (e.g., lane changing time consumed, queue
length). That can improve the lane-change manoeuvres or optimise the signal plan. In the
signal plan case, agents learn by replicating traffic signal plans in a closed-loop system,
leading to a model-free, self-learning framework [22] that can adapt to network-wide
real-time traffic changes.

This study adopted an RL-based approach to consider both the optimisation of traffic
signal control plans and CAV environments, given the above motivations and context. The
highlight of this work is the speed guidance algorithm that helps to reduce the stopped
delays of vehicles. The idea of combining a speed guidance algorithm with a reinforcement
learning-based traffic signal control system is new in this area. In our RL approach, the
intersection, as an agent, adopts traffic signal plans to optimise the total queue length.
Simultaneously, the CAVs adjust their speed based on a fixed timing plan to decrease total
stop delays, which are the waiting time for a vehicle when its speed is zero (practically
when its speed is less than 5 mph) [23]. As a result, the agent adapts the traffic signal
control to an adjusted speed of CAVs in real-time (updated traffic flow). Based on this
framework, two different performance measures—minimising total queue length and total
stop delays—are combined into a performance index (PI). The signal controller (agent)
was trained in the fully dynamic traffic environment (traffic flows and CAV speeds) under
different demand levels (unsaturated, saturated, oversaturated) and CAV penetration rate
scenarios (0%, 25%, 50%, 75%, 100%) to show potential interaction effects between signal
plan, CAV penetration rate and traffic flow. Results indicate that the proposed approach
outperforms a fixed timing plan as well as conventional vehicle actuated control in terms
of the average stop delay of vehicles and queue length (performance index). This work
uses a microsimulation model in the VisVAP module of the Vissim 20 program for actuated
control that is based on the guidelines of the Federal Highway Administration (FHWA) [24].
The actuated control prioritises the phase with the primary approach (main road), and
detector actuation partially controls each phase’s time.

The rest of this paper is organised as follows. Section 2 presents the relevant literature
review. Section 3 presents our integrated reinforcement learning (RL) and speed guidance
approach under the CAVs environment. In Section 4, the simulation setup is presented,
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followed by our evaluation results in VISSIM microsimulation software. Finally, in Section 5,
we conclude and provide ideas for future work.

2. Related Work

Adaptive traffic signal control approaches, including SCOOT [25] and SCATS [26],
have been widely used in real-world traffic networks. They are based on an open-loop
control system that does not consider feedback control in the traffic network (Figure 1).
They use a cyclic system with pre-determined time intervals, which means the controller
updates the signal timing plan (cycle length, green signal ratio, and phase difference) at
a specific time interval [27]. Studies show that the traffic flow at intersections may vary
significantly in major cities due to the fluctuation of traffic demand [28,29]. Nevertheless,
these typical adaptive traffic signal control systems cannot respond to such travel demands
(traffic flow varies at shorter time intervals) [6] and require complex computation schemes
that make their implementation costly [30]. This can increase travel delays for road users.
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Figure 1. Open-loop traffic signal control system.

As mentioned in the introduction section, adaptive traffic signal control in a con-
nected vehicle environment has shown a positive effect on the improvement in network
efficiency [10–13]. Connected vehicle technology is a mobile data platform that allows
real-time information to be exchanged among vehicles and between vehicles and infras-
tructure [31].

2.1. Traffic Signal Control under CAVs

As mentioned in [15], there are many novel approaches for CAV-based traffic control.
One of the most common methods, which can be seen in various studies, is the ‘advanced
driver guidance’. In this approach, vehicle speeds and positions are adjusted to minimise
some performance measures. Reference [32] proposed an integrated traffic control model
to optimise the total delay, and the decision variables for this research were vehicle arrival
time and signal timing. They simulated the speed guidance model of CVs in VISSIM
microsimulation software. They concluded that this method could significantly decrease
vehicle delays and the number of stops. Reference [33] introduced GLOSA and assessed
its benefits in reducing vehicles’ stop time behind a traffic light and fuel consumption
using an integrated cooperative ITS simulation platform. Under two simulated scenarios,
reference [34] investigated the positive impacts of the speed guidance on fuel consumption
and driving behaviour for multiple signalised intersections. Other methods can be found in
the literature, for instance, planning-based traffic signal control [35], platoon-based traffic
signal control [36], and signal vehicle coupled control (SVCC) [15,37]. Unfortunately, most
existing CAV studies assumed fixed traffic signal timings to optimise the trajectory of
CAVs [18]. Unlike the current research methods, this paper presents an adaptive traffic
signal control under the CAVs with the advanced traffic control (speed guidance model).

2.2. Closed-Loop Signal Control

Compared to typical adaptive traffic signal control (open-loop) systems, two general
closed-loop signal control approaches exist. The traditional signal control approaches (i.e.,
non-learning-based approach) use a simple feedback loop control system and utilise only
the current traffic flow but not historical traffic flow data. In addition, these approaches
do not have underlying models for state prediction and optimisation. A learning-based
method such as reinforcement learning can learn from the traffic environment by taking
actions (i.e., cycle length and phase split) and observing the feedback that can help us
predict the traffic flow and optimise the signal plan [32].
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2.2.1. Non-Learning-Based Approach

Some studies propose a simple closed-loop system (non-learning-based approach) in
traffic signal control. Reference [38] presented a decentralised feedback control mechanism
aiming to equalise the degree of saturation and queue length on different approaches
toward intersections in a network. Reference [39] showed a localised feedback speed
control for mainline traffic on motorways. The backpressure controller is a distributed
feedback system that does not require knowledge of global network inflow. Reference [40]
introduced the traffic-responsive urban control (TUC) strategy as a network-wide feedback
approach. Based on store-and-forward modelling of the urban network traffic and using the
linear-quadratic regulator theory, the design of TUC leads to a multivariable regulator for
traffic-responsive coordinated network-wide signal control that is also particularly suitable
for saturated traffic conditions. Reference [6] proposed an upgrade closed-loop feedback
signal control strategy, which takes the total amount of instantaneous stopped delay (ISD
Total) as input detector data for measurement frame-by-frame in traffic flow video and
realised real-time switches of the signal status when the amount reaches the threshold, and
adaptively distributes the green interval to the most needed approaches (east–west and
north–south) without the regular traffic signal cycle time. In other words, they still used a
non-learning-based method but with new forms of data.

2.2.2. Learning-Based Approach (Reinforcement Learning)

Reinforcement learning-based adaptive traffic signal control changes traffic signals
based on the feedback from the traffic demand, which can be hypothetical dynamic [41–44]
or based on real-world data [45,46]. The existing literature on using the reinforcement
learning approach can be categorised into two groups: networks consisting of CVs [44,47,48]
and non-CVs environments [45,46,49]. Moreover, two general classifications (i.e., vehicle
positions and queue length) are available for state representation. References [41,43,49,50]
proposed the state as discrete values such as the position of vehicles or different levels of
queue length. Nevertheless, this kind of state needs massive storage space for solving large
problems. Therefore, recent studies recommend the use of continuous states such as queue
length [42,45,51], average delay [44], and waiting time [30,42,48]. Furthermore, all of the
papers relevant to this topic have used simulation platforms in order to obtain their desired
results. SUMO [43,44,49,50], VISSIM [46,47], AIMSUN [45], and PARAMICS [30] are the
most common software packages in which the combination of traffic simulation and RL can
be executed appropriately. Finally, it is worth mentioning that all the previous papers took
the signal controller as an agent for their RL algorithm except [47], which used connected
vehicles as its agents.

This research aims to bridge the gap between the RL-based adaptive traffic signal
control and the advanced traffic control (speed guidance model) under CAVs. The RL based
approach focuses on the intersection as an agent in order to optimise total queue length
while allowing the CAVs to adjust their speed based on a fixed timing plan to minimise the
total stop delays as an agent adapts the traffic signal control to an adjusted speed of CAVs
in real-time (updated traffic flow).

3. Methods

This section discusses the proposed framework for RL, PTV VISSIM microsimulation
platform and implementation details. The RL framework is implemented in Python and in-
tegrated into VISSIM through the component object model (COM) interface (COM interface
of PTV VISSIM).

3.1. Reinforcement Learning (RL)

RL is an area of adaptive control that encompasses algorithms for learning optimal
behaviour policies in sequential decision-making problems from scalar rewards. It is
assumed that a decision-making problem is time-discrete, and it can be represented with
a Markov decision process (MDP) (S, A, Pa, Ra), where S is the state space, A is the space
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of possible actions, Pa(st, st+1) = P(st+1|st, at) is the probability of transitioning into state
st+1 by taking action at in-state st, and Ra(st, st+1) is the immediate reward received after
transitioning st into st+1 by taking action at. The agent is specified by a policy π(a|s)
mapping each state to a probability distribution over actions. An optimal policy maximises
discounted return Gt=0, which is defined as the sum of discounted future rewards (see
(1)). The state-value function Vπ(s) is the expected return of a state s, assuming the agent
follows policy π in all time steps (see (2)).

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... = Rt+1 + γGt+1 (1)

Vπ(s) =
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Model-based RL algorithms assume Pa and Ra to be known, while model-free RL
algorithms learn about them implicitly from the interaction between agents and the MDP.
This paper uses the advantage actor-critic algorithm (A2C), a model-free RL algorithm
suitable for stochastic environments with partially observed states. The policy π(a|s; θ)
and state-value function V(s; θv) are approximated by neural networks with parameters θ
and θv, respectively. Initialised at random, the policy is optimised through iterative policy
evaluation (gathering experience by interacting with the environment using the current
policy) and policy improvement (reinforcing actions that led to greater than expected
rewards and discouraging others) by gradient descent using (3) and (4).

dθ = ∇log π(a|s; θ) (Gt − V(st; θv)) (3)

dθv = ∂/(∂θv) (Gt − V(st; θv))2 (4)

In order to apply A2C to traffic signal control, we need to define the state space S and
the action space A. Monte Carlo samples of Pa(s, s′) and Ra(s, s′) are generated by applying
the agent policy in an episodic microscopic traffic simulation. We defined the action space
of an agent that controls a single intersection as the set of possible signal phases. In this
paper, all intersections have four approaches controlled in three phases. At every decision
time step, the agent selects the next signal phase. An inter-stage is executed (switching
the active signal group to red and the selected signal group to green) if required, and the
chosen phase is applied for a minimum duration before the agent receives its immediate
reward and the subsequent environment state. The state is represented as the concatenation
of the following features:

a. a vector encoding the current queue lengths on all incoming lanes,
b. a one-hot vector encoding of the last chosen signal phase at time t − 1,
c. the elapsed time since the last signal phase change,
d. for each signal phase, the elapsed time since it was last active.

Elapsed time here is measured from the agent’s perspective in the number of decision
time steps. The queue lengths along all approaches represent a partial observation of current
traffic demand, and all other state information summarises aspects of recent signalling
history. The latter allows the agent to anticipate demand from elapsed time or learn a
deterministic signal program (if that was an optimal solution). The instantaneous reward
Ra(s, s′) is defined as the difference between the average queue length across all incoming
lanes in state s and the average queue length in state s′. Thus, a positive instantaneous
reward is given if the average queue length after an action is reduced and vice versa. We
also explored using average vehicle delay as immediate rewards in preliminary experiments
but discovered a simulation artifact that resulted in reward hacking. As the vehicle delay in
PTV VISSIM is only counted after a vehicle passes the intersection, agents would converge
to suboptimal policies that prevented vehicles from crossing the intersection to avoid the
associated penalty. The policy network π(s; θ) consisted of three dense hidden layers with
64 units each and leaky ReLU activations (α = 0.05), followed by a Softmax layer with one
unit per signal phase. The value network V(s; θv) also consisted of three dense hidden
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layers with 64 units each and leaky ReLU activations, followed by a single-unit linear
layer. The state was normalised to [0, 1] independently along each dimension before it
was fed into these networks. During training, the agent gathered experience by interacting
simultaneously with two environment instances, which has been shown to stabilise training
by de-correlating batches of experience. We used the Adam optimiser with a learning rate
1 × 10−4, gradient clipping at value 1.0, and entropy regularisation. The contributions of
the policy loss, value loss and entropy loss were weighted with weights wπ = 1.0, wv = 0.5,
and wh = 0.01, respectively. The agent was able to choose a signal phase once every 5 s of
green time (ignoring the time spent changing signal phases). With this configuration, all
agents were trained for 100 simulation episodes, each simulating two hours of traffic.

3.2. Simulation Platform

In this paper, PTV VISSIM microsimulation software was used to investigate the
impact of the proposed framework on performance measures such as queue length and
stop delay. Therefore, akin to some relevant studies [47,52], an isolated four-leg signalised
intersection was employed in this study (north entry has one line, whereas other approaches
have two lines). This intersection has been taken from a sample example in VISSIM (used
as a template to show the benefits of three-stage vehicle actuated signal control over fixed
time) to represent the functionality of the proposed method in dynamic traffic demand.
As shown in Figure 2, time-varying arrival rates were generated based on the VISSIM
example at 15-min intervals for two hours to consider the fluctuation of traffic demand in a
real-world network.
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3.3. Driving Behaviours

In this study, two vehicle classes were defined for the simulation:

(1) Conventional vehicles: This type of vehicle has typical characteristics of a human-
driven car. The default VISSIM car-following model (Wiedemann 74) was used.
Furthermore, the uniform distribution with a minimum value of 45 km per hour
and the maximum value of 55 km per hour was utilised to generate the speed of
conventional vehicles.
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(2) Connected and automated vehicles (CAVs): driving behaviour for this vehicle class
consists of two major components, autonomous behaviour and connected behaviour,
which will be explained below.

3.3.1. Autonomous Behaviour

Numerous studies have investigated the characteristics of autonomous vehicles (AVs)
through various experiments [53–55]. AVs have some common features which should
be considered for the simulation. For instance, AVs can accept a smaller headway than
conventional cars [53,55]. They can also keep their speed constant without any fluctuation
during free-flow [56], so the constant speed of 50 km per hour was considered for CAVs in
this research, which is the mean speed of conventional vehicles. Furthermore, autonomous
vehicles accelerate more smoothly than conventional cars. Unlike conventional cars, every
particular speed has a unique acceleration and deceleration rate for this type of vehicle,
whose acceleration ranges between the minimum and maximum values [57]. Figure 3
better depicts the last cases.
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In this study, the default AV behaviour of VISSIM, which is based on a European
project called Coexist [59], was utilised. Coexist has tested its cars with four driving patterns
(Rail Safe, Cautious, Normal, and All-Knowing). The main difference between these types
of autonomous vehicles is their capability to accept headways. Cautious AVs are more
conservative than conventional cars. Thus, they keep larger headways than other AV types.
Cautious AVs were selected for simulating the autonomous behaviour of CAVs in this
paper because this vehicle class may be the first generation of highly automated vehicles
and can penetrate in transportation networks sooner than other AV types.

3.3.2. Connected Behaviour

CAVs continuously pay attention to the data transmitted to them from other vehicles
(V2V) and traffic infrastructures (V2I). In particular, CAVs receive information about the
upcoming signal and modify their speed to arrive at the green phase without stopping in
signalised intersections. Therefore, it is essential to use the internal script which reads this
information from PTV VISSIM [58] and updates the desired speed of CAVs to arrive within
green at the signal. This speed guidance is a rule-based algorithm [34] that developed
mainly includes the following steps.



Sensors 2022, 22, 7501 8 of 14

• Step 1. The first question that should be asked of all vehicles entering the network is
if the car is able to receive signal data or not. Therefore, conventional vehicles will
proceed with movement at their desired speed (the speed at which the driver wants to
drive). However, if the vehicle is connected, Step 2 is executed.

• Step 2. The vehicle will continue with its current speed if it passes the intersection
or no signal controller can be found ahead of this vehicle; otherwise, Step 3 must be
performed.

• Step 3. In this step, the following question should be answered. “Is the signal at its
green phase?”. If the response is negative and the signal controller is at its red phase,
the vehicle speed must be adjusted (5). Otherwise, go to Step 4.

Vopt = max(min(Vmax for green start, Vdes) − Vdiff, Vmin) (5)

In this equation, Vopt is the optimal speed of the vehicle, and Vdes is the desired speed
of the vehicle. Moreover, the functionality of Vdiff is to adjust the vehicle speed so that
the vehicle arrives shortly before the signal head. It was assumed to be 2 km per hour
in the simulation. Vmin is the least feasible speed of the vehicles in the network, which
was considered 5 km per hour in this paper. Finally, the vehicle should not drive above
the Vmax for a green start in order to arrive just when the next green starts. This speed can be
obtained from (6).

Vmax for green start =
Vehicle distance to signal head

Time until the next green phase starts
(6)

• Step 4. If Vmin for a green end (a minimum speed required to arrive at the intersection
during the current green) is lower than the desired speed of the vehicle, then Vopt
should be equal to Vdes. Conversely, Step 5 is executed. Vmin for a green end can be
calculated by (7).

Vmin for green end =
Vehicle distance to signal head

Time until the next red phase starts
(7)

• Step 5. If Vmax for a green start is greater than the desired speed of the vehicle, then Vopt
should be equal to Vdes. Otherwise, Vopt = Vmax for a green start. Therefore, the optimal
speed of all CAVs in the network can be calculated through this procedure.

The proposed behaviours were entered in VISSIM for both conventional vehicles and
CAVs. Now, the designated scenarios for this study should be explained.

3.4. Simulation Scenarios

It is important to perform sensitivity analysis on various parameters to achieve more
accurate and comprehensive findings. Therefore, several simulation scenarios were defined
in this paper. Different market penetration rates of 0%, 25%, 50%, 75%, and 100% for CAVs
were the first set of scenarios considered for this study. Moreover, three scenarios for the
total demand were designated. The first scenario was called saturated, which has the travel
demands equal to the capacity for each signal phase. This capacity can be calculated by
(8). The second and third scenarios were called oversaturated and unsaturated, with travel
demands equal to 1.1 and 0.7 of saturated conditions, respectively.

Capacity = s× g
C
× N (8)

where s is the saturation flow rate was considered to be 1900 veh/h for each lane based on
the Highway Capacity Manual [60]. Furthermore, g is the effective green time duration for
the phase in seconds, C is the total cycle length in seconds, and N is the lane number for
each lane group.
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Finally, different signal plans should be compared to measure the relative improve-
ments of our approach compared to other widely used methods. First, the intersection
with fixed signal timing alongside the AVs was investigated. This scenario assumes that
vehicles cannot receive any information from the signal controller (AV scenarios do not
include speed guidance approaches). This situation was called “Fixed AV”. Furthermore,
the fixed signal timing was considered for the intersection again, but AVs, in this case,
have the ability to receive signal data, and they can adjust their speed based on the speed
guidance approach (i.e., CAVs were used for this condition instead of simple AVs). This
situation was called “Fixed CAV”. The actuated signal plan was examined with different
AV penetration rate scenarios (Not CAV). This case was named “Actuated”.

Thus, 60 scenarios (five different vehicle compositions × three different demands ×
four controlling conditions: Fixed AV, Fixed CAV, Actuated (AV), and RL (CAV)) were
generated. Each scenario was typically executed in VISSIM for up to five various random
seeds. This process was also accomplished by the RL, and the expected improvements in
performance measures were assessed under the CAV environment.

4. Results

Two different performance measures are implemented: minimising total queue length
and total stop delays. The main purpose of this paper is to develop a framework to min-
imise the performance measure. The minimisation of queue length is the first part of the
performance index (PI). Queues happen when vehicles cannot pass the intersection at their
green share, and they must stop behind the red light. The average queue length of all
entries in the whole simulation period is assessed to optimise an RL feedback loop as a
reward factor. The second part of PI is the stop delay of vehicles, a common performance
measure in an optimal speed guidance system under a connected environment [28]. This
can be described as a delay (in seconds), the mean stop time of vehicles waiting at the inter-
section behind red lights. In order to use the two aforementioned performance measures
simultaneously in one expression, the transformation strategy has been used to convert
each measure into a non-dimensional term. According to [61], the average queue length (q)
can be divided by its maximum value (Qmax).

Moreover, stop delay (d) can be investigated per cycle length, so it should be divided
by signal cycle time (C) discussed in the previous section. Therefore, (9) to (11) illustrate
how to determine the PI value for each scenario. In these equations, n represents different
replications for the simulation.

Queue Length ratio =
1
n ∑n

i=1
qi

Qmaxi
(9)

Stop Delay ratio =
1
n ∑n

i=1
di
C

(10)

PI = Queue Length ratio + Stop Delay ratio (11)

In the first step, it is worth comparing PI values of various signal plans for both
saturated and oversaturated conditions. The results for the average PI value are shown in
Figures 4 and 5.

As can be observed, the speed guidance approach has worked appropriately due
to the fact that PI values for the fixed CAV condition are less than their corresponding
values for the fixed AV condition in each scenario. In other words, a 100% penetration rate
of CAVs compared to a conventional environment (0% penetration rate of CAVs) in the
saturated scenario can decrease PI by 18% and 43% for fixed AV and fixed CAV conditions,
respectively. Moreover, the fixed CAV situation has performed better than the actuated case.
Therefore, the fixed CAV condition is the best case among all non-learning approaches, and
the RL should be compared with this condition in order to assess its functionality.
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Figure 5. Comparing performance index values of the oversaturated scenarios.

As shown, the RL can noticeably reduce the PI compared to the fixed CAV condition,
especially in 0% and 25% scenarios. However, a slight improvement has occurred in the last
three vehicle composition scenarios (i.e., 50%, 75% and 100%), particularly for the oversatu-
rated scenario. This is mainly because of the assumption that CAVs in this paper only can
obtain the signal data. This assumption makes the simulation more straightforward and
more rapid. Results show that the total network performance could be improved under
this simple CAVs environment. Furthermore, future works should consider the CAVs that
can receive and interpret the information transmitted from other CAVs (V2V). In other
words, the driving behaviour implemented in this study for CAVs only can model V2I,
and it cannot cover the V2V connection whose impact has been pinpointed from the 50%
penetration rate for CAVs.

Another point to note is that in most cases, the queue length ratio increases when the
CAVs penetration rate also increases for the RL. For instance, the maximum value of the
queue length ratio for the RL in the saturated scenario has a growth rate of 43% compared
to its minimum value in the 25% scenario. Although it seems far from the expectation at
first glance, it may stem from the fact that the speed guidance approach defined for this
research does not consider vehicle positions, and CAVs receive the signal data as soon
as they enter the network. Moreover, this algorithm does not specify different ranges for
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the minimum speed of CAVs, and it has been assumed to be 5 km per hour for this study.
Therefore, such a wide range for receiving the signal information in conjunction with this
tiny speed value can cause long queues behind CAVs.

PI values were analysed for both saturated and oversaturated scenarios. One of the
unforeseen outcomes which can be highlighted in Figure 4 is that the PI value suddenly
escalates when moving from 25% to 50% for the RL. In order to better perceive this trend,
we present PI variation in the unsaturated condition for these two aforementioned CAV
scenarios. The final results are displayed in Figure 6.
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approaches.

As expected, fixed CAV, actuated, and RL approaches can improve the conditions of
this intersection compared to the simple fixed AV situation. The average improvements are
23%, 40%, and 70%, respectively. Therefore, RL has the best performance in unsaturated
conditions among all other algorithms. The main reason for this is that despite using
optimal fixed time for CAVs speed guidance, the proposed real-time RL could optimise the
signal plan based on the time-varying traffic demand. This means that more vehicles can
pass the intersection in their green time, and each entry will be vacant at its green share.
That is why the queue length and stop delay will be minimised, and the intersection will
perform at the ideal condition, which is unrivalled.

Furthermore, all approaches show a decreasing PI rate by transitioning from 25% CAVs
to 50% CAVs. Hence, it is concluded that, unlike saturated and oversaturated conditions,
vehicle automation can play an apt role in unsaturated traffic conditions.

The results of this analysis also highlighted the fact that the PI value for a proposed
RL framework with speed guidance under a CAV environment is much less than other
control systems at all penetration rates of CAVs (AVs) and demand scenarios. The proposed
framework is a novel way of framing the RL state based on a CAV environment with speed
guidance that could work more flexibly than RL under a conventional environment or
speed guidance system under CAVs with fixed timing signal control.

5. Conclusions

This study develops a learning-based framework that optimises the signal plan by
training a traffic signal control as an agent in RL to minimise total queue length (reward in
RL) when CAVs receive speed guidance in a fixed-time strategy to minimise the total stop
delays. The signal controller (agent) was trained in the fully dynamic traffic environment
(traffic flows and CAV speeds) under different demand levels (unsaturated, saturated,
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oversaturated) as well as CAV penetration rates (0%, 25%, 50%, 75%, 100%) scenarios to
show potential interaction effects between signal timing plan, CAV penetration rate and
traffic flow.

An isolated four-leg signalised intersection with three phases (training example in
VISSIM as a template of vehicle actuated signal control) was modelled to test the perfor-
mance. The results were compared to a well-tuned fixed timing plan (with optimal speed
advisory in a CAV environment) and actuated signal control. Two objective functions are
implemented in a performance index (queue length and stop delay). An important finding
from this study is that the proposed framework reduced stop delay significantly under all
scenarios and was comparable to other control strategies in queue length.

Finally, the proposed framework only considers simple V2I communication in an
isolated intersection. The framework is designed to handle urban networks, and the
interaction in operations between adjacent intersections (for example, interchanges) under
the V2X environment and evaluation for these conditions is planned. The main limitation
of a network-wide application is the computational time for the RL training. In future
works, offset optimisation could be added to the signal timing optimisation to implement
the proposed approach in an arterial corridor with multiple traffic signals or a city traffic
network. It can improve the overall performance of the proposed approach but increase the
training process complexity for the RL approaches. Future research will also make use of
V2V communication and dynamic speed guidance strategies. Lastly, with dynamic speed
guidance strategies which have different communication and control levels compared to
simple V2I, it might be helpful to analyse reward and state options of RL with different
performance measures.
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