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A B S T R A C T   

In this study, an iterative factorial data assimilation (IFDA) framework is developed to holistically characterize 
the individual and interactive effects of various uncertain factors on hydrological predictions. The IFDA 
framework is flexible and is able to reveal the impacts from different numbers of uncertain factors. An iterative 
factorial analysis (IFA) approach is proposed in IFDA to diminish the biased variance estimation in traditional 
multilevel factorial designs and provide more reliable impact characterization for the considered factors. The 
proposed IFDA framework is applied to quantitatively reveal the individual and interactive effects of hydro-
logical models, data assimilation (DA) methods, and uncertainties in inputs, streamflow observations and sample 
sizes on the deterministic and probabilistic predictions from data assimilation. The results indicate that the 
hydrological models, DA methods and their interactions would have the most dominant effects on hydrological 
predictions. This implies that different hydrological models or DA methods would produce significantly distin-
guishable results. When the hydrological model and DA method have been specified, uncertainties in streamflow 
observations would more likely have a visible effect on the accuracy of resulting predictions. Moreover, the 
inherent randomness, mainly caused by the Monte Carlo sampling procedures in data assimilation, would also 
have noticeable effects on the DA performances, especially when the hydrological model and DA method have 
been pre-identified. These results suggest that enhancement of hydrological models and data assimilation 
methods would be the most efficient pathway to generate reliable hydrological predictions.   

1. Introduction 

In a hydrologic prediction context, model simulations or predictions 
are subject to various uncertainties stemming from model inputs (i.e., 
forcing data), model structures, and model parameters (Liu et al., 2012). 
Sequential data assimilation (SDA) techniques are widely used for 
explicitly dealing with various uncertainties and for optimally merging 
observations into uncertain model predictions (Moradkhani et al., 
2005a; Vrugt et al., 2005; Clark et al., 2008; Xie and Zhang, 2013). In 
SDA, the state variables and parameters in a hydrologic model can be 
continuously updated when new measurements are available, which can 
provide probabilistic quantifications for model parameters, states as 
well as the resulting predictions. The ensemble Kalman filter (EnKF) and 
particle filter (PF) are two of the most widely used sequential data 

assimilation schemes. The approaches of EnKF, PF and their variants 
have been widely used in hydrologic data assimilation (e.g. Moradkhani 
et al., 2005a; b; Parrish et al. 2012; Pathiraja et al. 2016a, b; Fan et al., 
2015; 2017a; b). 

For a data assimilation (DA) scheme, its performance is generally 
influenced by a number of factors such as the hydrological model and 
data assimilation algorithm to be employed, uncertainty reflections in 
inputs and outputs (e.g., streamflow observations), as well as other 
factors. A number of studies have been proposed in the past decades to 
improve hydrological data assimilation through various aspects. For 
instance, advanced data assimilation approaches, based on the bench-
mark methods of EnKF and PF, have been proposed in order to alleviate 
the shortcomings in EnKF and PF. Some of these approaches include the 
normal-score ensemble Kalman filter (NS-EnKF) method (Xu and 
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Gomez-Hernandez, 2016), partitioned update Ensemble Kalman filter 
(PU_EnKF) method (Xie and Zhang, 2013), particle Markov chain Monte 
Carlo (PMCMC) method (Moradkhani et al., 2012; Vrugt et al., 2013), 
implicit particle filter method (Chorin and Tu, 2009; Rafiee et al., 2013), 
Copula-based particle filter (CopPF) method (Fan et al., 2017a) and also 
integrated data assimilation methods (Shen and Tang, 2015; Fan et al., 
2017b). The results indicate that those advanced data assimilation ap-
proaches are able to provide better predictions than traditional EnKF 
and PF methods in some cases. In addition to the improvement of data 
assimilation methods, there are also studies to address other impact 
factors in data assimilation. For example, Xue and Zhang (2014) pro-
posed a multimodel data assimilation method by embedding the EnKF 
into the Bayesian model averaging framework to account for the un-
certainty stemming from the model itself. Ocio et al. (2017) addressed 
the role of rating curve uncertainty in real-time flood forecasting 
through data assimilation, in which they has demonstrated that a stan-
dard flow measurement error can still represent a reasonable trade-off 
between complexity and realism when the rating curve is well- 
defined. A state-dependent model uncertainty estimation method 
(named SDMU) was proposed by Pathiraja et al. (2018) to characterize 
model uncertainty in data assimilation studies, in which an objective 
data-driven approach is adopted to estimate the transition uncertainty in 
model simulations. Moreover, Liu et al. (2012) has argued that the 
“optimality” of data assimilation depends critically on the reliability of 
error estimates for the inputs and the model itself, as well as the proper 
consideration of interdependencies and interactions among uncertain 
model components and/or observations. Nevertheless, the extensive test 
conducted by Thiboult and Anctil (2015) suggests that the updated state 
variables and the hyper-parameters for reflecting uncertainties in forc-
ing data and outputs should be carefully specified for the optimal 
implementation of EnKF, but there is no single and universal optimal 
EnKF implementation for any model. 

Amounts of research works, from improvement of DA methods to 
better quantification for uncertainties in forcing data and outputs, have 
been proposed in order to enhance the predictability of hydrological 
data assimilation. However, the performance of a data assimilation 
scheme is not only influenced by the individual effects from the hy-
drological model, DA approaches, and uncertainties in forcing data (i.e. 
inputs) and outputs (e.g., streamflow observations), but also shaped by 
the interactive effects among these factors. Wang et al. (2017) proposed 
a robust data assimilation system (RDAS) to adopt a multi-factorial 
design to examine the individual and interactive effects of un-
certainties in inputs, outputs and sample sizes on the performances of 
EnKF. The results indicated the pairwise interaction between perturbed 
precipitation and streamflow observations would have the most signif-
icant impact on the performance of the EnKF system. However, such a 
conclusion is obtained for EnKF whilst the impacts from hydrological 
models and different DA methods are not considered. The results in our 
companion paper (Fan et al., 2022) have shown that, for the same un-
certainty settings in inputs, outputs (i.e., streamflow observations) and 
sample size, noticeable differences in prediction accuracies can be 
observed in the results from different DA methods over different hy-
drological models. Wang et al., (2022) developed a disaggregated multi- 
level factorial hydrological data assimilation model to investigate the 
impacts of EnKF and its variants. Lyu and Fan (2021) characterized the 
impacts of inputs and streamflow observations on different DA methods 
through the multilevel factorial analysis. Nevertheless, the impact from 
hydrological models is still overlooked. Moreover, the applicability of 
the multi-factorial design adopted in previous studies (e.g., Wang et al., 
2017; Lyu and Fan, 2021; Huang and Fan, 2021) is restricted by its 
biased variance estimator, which would lead to underestimations for the 
variance especially in small sample sizes (Bosshard et al., 2013; Fan 
et al., 2020; 2021; Di et al., 2021). The iterative factorial analysis (IFA) 
approach, developed by Fan et al. (2020; 2021), is able to diminish the 
biased variance estimation in traditional multilevel factorial designs 
through a subsampling decomposition procedure for those factors with 

multiple levels. But the IFA approach has only been applied to investi-
gate the impacts of uncertain factors on multivariate risk inferences for 
compound extremes such as flood peaks and volumes. The applicability 
of IFA in characterizing the impacts of uncertain factors on hydrological 
data assimilation has not been demonstrated. 

Consequently, this research is to propose an iterative factorial data 
assimilation (IFDA) framework to reveal both the individual and inter-
active effects of hydrological models, DA approaches, uncertainties in 
inputs, streamflow observations and sample sizes on the performances of 
hydrological data assimilation schemes. As an extension of our com-
panion study, the data assimilation with different uncertainty scenarios 
will be introduced into IFA method to formulate the IFDA framework. 
Compared with previous studies (e.g., Wang et al., 2017), the in-
novations of this study include: (i) a flexible framework is developed to 
explicitly quantify the effects for uncertain factors on the performances 
of data assimilation, in which the “flexibility” indicates IFDA is able to 
analyze different numbers of factors with different levels; (ii) the IFA 
method in the IFDA framework can generate more reliable quantifica-
tion for the effects of uncertain factors on both deterministic and 
probabilistic predictions from data assimilation. This research can also 
demonstrate the extensive application potentials of the IFA method 
developed by Fan et al. (2020; 2021) for different hydrological prob-
lems. The applicability of IFDA framework will be demonstrated at the 
River Ouse in UK. The obtained results can help reveal the dominant 
impact factors for hydrological data assimilation and further identify the 
most efficient pathway to enhance the predictability of data 
assimilation. 

2. Methodology 

2.1. Uncertainties in hydrological data assimilation 

Sequential data assimilation approaches have been widely employed 
for real-time streamflow forecasting. Consider a generic hydrological 
model consisting of functions for state transition (i.e. g(.)) and obser-
vational operator (i.e. h(.)) as follows: 

xt = g(xt− 1, ut, θt)+ωt (1)  

yt = h(xtθt)+ vt (2) 

Extensive uncertainties exist in the data assimilation process for the 
above modelling system. These uncertainties may be embedded in 
various components such as model structural uncertainty (i.e., g(.) and h 
(.) in Equations (1) and (2)), uncertainties in the forcing data (i.e., u in 
Equation (1)), different data assimilation methods and uncertainty in 
streamflow to be assimilated. These uncertainties may pose significant 
impacts on the resulting hydrological predictions. 

(1) Model structural uncertainty 
A hydrological model is developed through a series of mathematical 

equations to represent the water processes in a catchment. There are 
uncertainties in the development of hydrological models since the pro-
posed equations are generally simplified representations of real pro-
cesses. Different model developers would employ different equations or 
mechanisms to describe different components in the rainfall-runoff 
process of a catchment. A typical example is that there are two major 
categories of hydrologic models, physical-based distributed models and 
lumped conceptual models. The physical-based distributed models 
divide a catchment into grid cells at fine resolution and assimilate 
different terrain data and precipitation to different cells (Chen et al., 
2016). In comparison, the lumped conceptual models would use the 
same value of parameters for the whole watershed, ignore the spatial 
variability, and provide catchment runoff results in a spatially averaged 
way (Tran et al., 2018; Jaiswal et al., 2020; Hu et al., 2021). Further-
more, there are also extensive uncertainties even for the same category 
of hydrological models. For instance, the Hymod proposed by Moor 
(2007) employs three identical quick-flow tanks to route surface flow, 

Y.R. Fan et al.                                                                                                                                                                                                                                   



Journal of Hydrology 612 (2022) 128136

3

while the IHACRES model proposed by Jakeman et al. (1990) uses a 
linear module consisting of two parallel linear stores to translate effec-
tive rainfall into streamflow. Therefore, the Hymod and IHACRES, as 
described in our companion paper (Fan et al., 2022), applied different 
mechanisms to model the rainfall-runoff process. This implies that for 
the same dataset at one catchment, different models would produce 
distinguishable predictions due to the structural uncertainty in hydro-
logical models. 

(2) Data assimilation methods 
Sequential data assimilation (SDA) approaches have been widely 

used to quantify uncertainties for parameters and state variables for a 
hydrological model and provide probabilistic predictions. Similar to the 
hydrologic model development, different SDA approaches are distin-
guishable among each other. For instance, the traditional particle filter 
(PF) method (Moradkhani et al., 2005b) generally employs a stochastic 
perturbation technique to evolve model parameters to the next step. 
Improving upon the PF method, the particle Markov chain Monte Carlo 
(PMCMC) (Moradkhani et al., 2012) use the Metropolis acceptance ratio 
mechanism to determine the acceptance of the proposed parameter 
candidate generated by the stochastic perturbation algorithm. More-
over, the particle copula Metropolis-Hastings (PCMH) method devel-
oped in the companion paper (Fan et al., 2022) adopts a mixed evolution 
algorithm, consisting of a copula sampling and stochastic perturbation 
schemes, to generate the proposed parameter candidates and then uses 
the Metropolis acceptance ratio mechanism to determine their accep-
tance. Also, as demonstrated in the companion paper (Fan et al., 2022), 
different SDA approaches may have different performances on uncer-
tainty quantification for hydrologic models and thus produce different 
streamflow predictions. 

(3) Uncertainties in forcing data 
In hydrological prediction, uncertainties embedded in the forcing 

data (i.e. ut in Equation (1)), resulting from sampling and measurement 
errors are one of the major uncertain sources under consideration. Some 
approaches have been proposed to reflect uncertainties in the forcing 
data, and the stochastic perturbation method has been widely adopted in 
hydrological data assimilation (e.g. Clark et al., 2008; Liu et al., 2012; 
Fan et al., 2015; Leach et al., 2018). A generic formulation for the sto-
chastic perturbation approach can be formulated as follows: 

ui
t = ut + ξi

t (3)  

where ui
t is the randomized forcing data at time t for sample member i, ut 

is the original forcing data, and ξi
t is the noise added to the forcing data 

to generate the ith sample member (Leach et al., 2018). For different 
forcing data, different noise distributions would be employed to gen-
erateξi

t . In general, the Gaussian distributed noise is recommended for 
the forcing data such as temperature and potential evapotranspiration, 
which is formulated as (Moradkhani et al., 2005a; Fan et al., 2017a, b; 
Leach et al., 2018): 

ξi
t ∼ Ñ

(

0,
∑u

t

)

,
∑u

t
= γut (4)  

where γ is the proportional factor. For the precipitation which is 
recognized as the most influential uncertain model input, the lognormal 
distributed noise is recommended by some studies expressed as follows 
(e.g. Leisenring and Moradkhani, 2012; DeChant and Moradkhani, 
2012; Leach et al., 2018): 

ξi
t ∼ logN

(

0,
∑u

t

)

,
∑u

t
= γut (5) 

(4) Uncertainties in streamflow observations 
In additional to the uncertainties existing in the forcing data, the 

random errors, in observations is also one of the major uncertain sources 
need to be well reflected. Errors in streamflow observations arise from 

several sources such as errors in river stage measurement, and errors in 
the rating curve used to transform stage to discharge (McMillan et al., 
2013). Some approaches have been proposed to reflect observational 
uncertainties (e.g. McMillan et al., 2013; Ocio et al., 2017; Pathiraja 
et al., 2018). The Gaussian random error is the most common one and 
has been adopted in a number of hydrological data assimilation studies 
(e.g. Rakovec et al., 2012; DeChant and Moradkhani, 2012; Leach et al., 
2018; Liu et al., 2019), which can be formulated as follows: 

Qi
t = Qt + vi

t, vi
t ∼ Ñ(0, ηQt) (6)  

where η is the proportional factor for the streamflow. 

2.2. Iterative factorial analysis 

The hydrological predictions for one catchment would be greatly 
influenced by various uncertain factors such as the hydrologic models to 
be used, the parameter estimation approaches, random errors in forcing 
data and streamflow observations. Consequently, it is of great impor-
tance to characterize both the individual and interactive effects of those 
uncertain factors on the resulting hydrologic predictions. To address this 
challenge, an iterative factorial analysis (IFA) approach would be pro-
posed to reveal the dominant factors on hydrological predictions. 

The proposed IFA approach improves upon traditional factorial 
analysis (FA) method, in which a subsampling procedure would be 
adopted for those multi-level factors and generate a series of two-level 
experimental designs. The main and interactive effects of the chosen 
factors are obtained through averaging the main and interactive effects 
of all the two-level experimental designs. Such a process will be illus-
trated through a generic example with three factors. Consider a hydro-
logic prediction system and its predictability is assumed to be influenced 
by factors A, B, and C as follows: 

Y = F(A,B,C) (7)  

Here A, B, and C are factors to be considered, which can be either 
numeric (e.g. proportional factors in forcing data or streamflow) or non- 
numeric (e.g. hydrologic models or data assimilation approaches). F(.) is 
the generic hydrologic prediction system. Y is the index to evaluate the 
predictability of the system such as root-mean-square error (RMSE), and 
Nash-Sutcliffe efficiency (NSE) coefficient and continuous ranked 
probability score (CRPS). 

If each factor has M levels, a subsampling procedure would be 

adopted in IFA to decompose the M levels into a total number of 
(

M
2

)

two-level pairs, expressed as a 2 ×

(
M
2

)

matrix as follows: 

gA(hA, jA) =

(
A1 A1 ⋯ A1 A2 A2 ⋯ AM− 2 AM− 2 AM− 1
A2 A3 ⋯ AM A3 A4 ⋯ AM− 1 AM AM

)

(8a)  

gB(hB, jB) =

(
B1 B1 ⋯ B1 B2 B2 ⋯ BM− 2 BM− 2 BM− 1
B2 B3 ⋯ BM B3 B4 ⋯ BM− 1 BM BM

)

(8b)  

gC(hC, jC) =

(
C1 C1 ⋯ C1 C2 C2 ⋯ CM− 2 CM− 2 CM− 1
C2 C3 ⋯ CM C3 C4 ⋯ CM− 1 CM CM

)

(8c)  

Here g(h, j) indicates the matrix generated from the subsampling of a 

multi-level factor in which the column index j = 1: 
(

M
2

)

represents one 

two-level pair and h = 1:2 shows the two corresponding levels. For 
instance, if the factor of DA is assigned with three levels with each level 
representing a DA algorithm (e.g., PF, PMCMC, PCMH), these three 
levels would be decomposed through the subsampling procedure to 
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formulate a 2 ×

(
3
2

)

matrix as:
( PF

PMCMC

PF

PCMH

PMCMC

PCMH

)

. 

Moreover, the factors A, B and C can have different levels which also 
lead to decomposed two-level pair matrices similar to Equations (8a)– 
(8c). The subsampling procedure in Equations (8a)–(8c) would result in 
(

M
2

)

×

(
M
2

)

×

(
M
2

)

iterations in IFA with each iteration consisting 

of a two-level factorial design. One iteration in IFA is to conduct one 
two-level factorial design formulated by one column from the decom-
posed matrices for A, B and C. 

In the proposed IFA approach, each iteration from the subsampling 
procedure will lead to a two-level factorial design. According to the 
ANOVA theory (Montgomery, 2000), the total variability of Model (1), 
denoted as the total sum of the squares (SST), can be decomposed as 
follows: 

SS(i)
T = SS(i)

A + SS(i)
B + SS(i)

C + SS(i)
I (9a)  

SS(i)
I = SS(i)

AB + SS(i)
AC + SS(i)

BC + SS(i)
ABC + SS(i)

E (9b)  

where, i denotes the ith iteration. SSA, SSB and SSC denote the main ef-
fects of factors A, B, and C, respectively. SSAB, SSAC, SSBC, and SSABC 
present the interactive effects among those three factors, and SSE shows 
the effect of errors. The values of SST, SSA, SSB, SSC, SSAB, SSAC, SSBC, 
SSABC and SSE in the ith iteration can be obtained as follows (Fan et al., 
2020; 2021): 

SS(i)
T =

∑2

hC=1

∑2

hA=1

∑2

hB=1

∑n

l=1
Y2

gC(hC ,jC)gA(hA ,jA)gB(hB ,jB)l −
Y2

gC(o,jC)gA(o,jA)gB(o,jB).

8n
(10a)  

SS(i)
C =

1
4n
∑2

hC=1
Y2

gC(hC ,jC)gA(o,jA)gB(o,jB). −
Y2

gC(o,jC)gA(o,jA)gB(o,jB).

8n
(10b)  

SS(i)
A =

1
4n
∑2

hA=1
Y2

gA(hC ,o)gA(hA ,jA)gB(o,jB). −
Y2

gC(o,jC)gA(o,jA)gB(o,jB).

8n
(10c)  

SS(i)
B =

1
4n
∑2

hB=1
Y2

gC(hC ,o)gA(o,jA)gB(hB ,jB). −
Y2

gC(o,jC)gA(o,jA)gB(o,jB).

8n
(10d)  

SS(i)
E =

∑2

hC=1

∑2

hA=1

∑2

hB=1

∑n

l=1
Y2

gC(hC ,jC)gA(hA ,jA)gB(hB ,jB)l −
1
n

∑2

hC=1

∑2

hA=1

×
∑2

hB=1
Y2

gC(hC ,jC)gA(hA ,jA)gB(hB ,jB). (10e)  

SS(i)
I = SS(i)

T − SS(i)
C − SS(i)

A − SS(i)
B − SS(i)

E (10f)  

where 

YgC(hC ,jC)gA(hA ,jA)gB(hB ,jB). =
∑n

l=1
YgC(hC ,jC)gA(hA ,jA)gB(hB ,jB)l  

YgC(hC ,jC)gA(o,jA)gB(o,jB). =
∑2

hA=1

∑2

hB=1

∑n

l=1
YgC(hC ,jC)gA(hA ,jA)gB(hB ,jB)l  

YgC(o,jC)gA(hA ,jA)gB(o,jB). =
∑2

hC=1

∑2

hB=1

∑n

l=1
YgC(hC ,jC)gA(hA ,jA)gB(hB ,jB)l  

YgC(o,jC)gA(o,jA)gB(hB ,jB). =
∑2

hC=1

∑2

hA=1

∑n

l=1
YgC(hC ,jC)gA(hA ,jA)gB(hB ,jB)l  

YgC(o,jC)gA(o,jA)gB(o,jB). =
∑2

hB=1

∑2

hC=1

∑2

hA=1

∑n

l=1
YgC(hC ,jC)gA(hA ,jA)gB(hB ,jB)l 

Based on Equations (10a)–(10f), the individuation and interactive 
contributions for factors A, B and C can be obtained as: 

η(i)
A = SS(i)

A

/
SS(i)

T (11a)  

η(i)
B = SS(i)

B

/
SS(i)

T (11b)  

η(i)
C = SS(i)

C

/
SS(i)

T (11c)  

η(i)
E = SS(i)

E

/
SS(i)

T (11d)  

η(i)
I = 1 − η(i)

A − η(i)
B − η(i)

C − η(i)
E (11e) 

By averaging the contributions of the studied factors over all itera-
tions, both the individual and interactive contributions can be generated 
as follows: 

ηA =
1
N
∑N

i=1
η(i)

A (12a)  

ηB =
1
N

∑N

i=1
η(i)

B (12b)  

ηC =
1
N
∑N

i=1
η(i)

C (12c)  

ηE =
1
N
∑N

i=1
η(i)

E (12d)  

ηI =
1
N
∑N

i=1
η(i)

I (12e)  

where N indicates the total iteration in IFA and N =

(
M
2

)

×

(
M
2

)

×

(
M
2

)

since three factors with M levels are under consideration. 

2.3. Iterative factorial data assimilation framework 

The hydrological predictions are generally influenced by a number of 
uncertain factors. Particularly in hydrological data assimilation, the 
resulting predictions would be subject to hydrological models and the 
DA approaches to be used, uncertainties in forcing data and outputs (e. 
g., streamflow observations), and other relevant factors such as sample 
sizes. Different factors may have different impacts on the accuracy of 
hydrological predictions. In order to comprehensively investigate both 
the individual and interactive effects of uncertain factors on hydrolog-
ical data assimilation, those uncertain factors would be integrated into 
the proposed IFA approach, which lead to an interactive factorial data 
assimilation (IFDA) framework. 

Fig. 1 presents the framework of the IFDA framework. In IFDA, un-
certainties in inputs, hydrological models, streamflow observations, DA 
approaches, and sample sizes are set to have different levels. These 
levels can be numerical (e.g. uncertainties in inputs and streamflow 
observations) and non-numerical (e.g. hydrological models and DA ap-
proaches). The detailed procedures of IFDA are described as follows: 

Step 1: Select the uncertain factors under consideration. 
Step 2: For one factor with multiple levels (i.e., multiple choices), 

decompose the multiple levels of the factor into two level pairs through 
Equations (8). For instance, if three hydrological models (assumed as 
M1, M2 and M3) are considered in IFDA, the factor of hydrological 
models would have three levels. Such a three-level factor can be 
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decomposed into three 2-level pairs as:
(

M1 M1 M2
M2 M3 M3

)

. Similar decom-

position matrices can be formulated for other factors under 
consideration. 

Step 3: For each column in the decomposition matrices for all factors, 
formulate the 2k (k is the factors under consideration) factorial design 
matrix, in which each row indicates a data assimilation experiment with 
specified hydrological model, DA approach, sample size, and uncer-
tainty representations in forcings and streamflow observations. 

Step 4: Run all data assimilation experiments listed in the 2k factorial 
design matrix. Moreover, each experiment will be run 10 times (i.e., 
replicates) in order to reflect the inherent uncertainty in the Monte 
Carlo-based data assimilation experiment. 

Step 5: Generate the total variability (i.e., SST) for the evaluation 
indices (i.e., Y in Equation (7)) of the data assimilation experiment as 
well as its decomposition components based on Equations (9) and (10). 

Step 6: Obtain the single and interactive effects of the uncertain 
factors on the predictability within the 2k factorial design based on 
Equations (11). 

Step 7: Repeat Steps 3 – 6 for all the combinations of the columns in 
the decomposition matrices, and generate the associated individual and 
interactive effects for the uncertain factors for the generated 2k factorial 
designs. 

Step 8: Generate the overall single and interactive contributions for 
the studied factors to the predictive variabilities in hydrological pre-
diction system through averaging the corresponding results from all the 
2k factorial designs as expressed in Equations (12). 

3. Case study 

3.1. Experiment setup 

The proposed IFDA framework will be applied for River Ouse in UK 
to explore the major factors on the accuracy and uncertainty of hydro-
logical predictions. As a companion paper, the IFDA framework will be 
applied to reveal the major impact factors on hydrological data assim-
ilation based on some results from our first paper (Fan et al., 2022). In 

detail, three levels would be considered to reflect the model structural 
uncertainty, in which each level represent one hydrological model and 
thus three models (i.e., Hymod, GR4J and IHACRES) would be adopted 
in IFDA. Similarly, the impact from data assimilation method would be 
reflected through considering different DA algorithms in the IFDA 
framework. In this study, the factor of DA method would also be 
assigned with three levels consisting of three different DA algorithms. 
The particle filter (PF) method and its two variants (i.e., particle Markov 
chain Monte Carlo (PMCMC) and particle copula Metropolis Hastings 
(PCMH)) would be included in the IFDA framework. Since the precipi-
tation and potential evapotranspiration are used in all the three hy-
drological models, the stochastic perturbation approach with different 
proportional factors (i.e. Equations (3) - (5)) will be adopted to reflect 
the impacts of inputs uncertainties on the hydrological predictions. 
Similarly, the Gaussian perturbation method (i.e. Equation (6)) with 
different proportional factor values would be employed to reflect the 
impact of uncertainty in streamflow observations on the resulting hy-
drological predictions. Moreover, the PF, PMCMC and PCMH methods 
are all based on Monte Carlo simulation, and the sample sizes will be 
another factor under consideration in the IFDA framework. Table 1 
summarizes all the factors and their levels in the IFDA framework. 

The proposed IFDA framework is a flexible framework which can be 
expanded or shrunken based on the factors to be addressed. For instance, 
if the proportional factors in model inputs and streamflow observations 
are merely under consideration, the IFDA framework can characterize 
the impacts of uncertainties in model inputs and streamflow 

Fig. 1. Framework of the IFDA framework.  

Table 1 
Uncertainty factors in the IFDA framework.  

Factors Name Level 1 Level 2 Level 3 

A Hydrological model Hymod GR4J IHACRES 
B Data assimilation method PF PMCMC PCMH 
C Proportional factor in potential 

evapotranspiration (PET) 
0.15 0.25 0.35 

D Proportional factor in precipitation 0.15 0.25 0.35 
E Proportional factor in streamflow 0.15 0.25 0.35 
F Sample size 50 100 200  
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observations on the performance of a specific data assimilation method 
on a specific hydrologic model. Moreover, the IFDA can also be 
employed to reveal whether a DA method would produce a noticeable 
impact on the predictability of a hydrologic model when the sample size, 
DA methods, and uncertainties in inputs and streamflow observations 
are involved in IFDA. 

3.2. Experiment responses 

In the IFDA framework, the response, denoted as Y in Equation (7) 
would be some criteria to evaluate the performances of the chosen hy-
drologic prediction system subject to specific hydrological model, DA 
method, as well as uncertainty settings in inputs, streamflow observa-
tions and sample size. As an extension for our companion study in Fan 
et al. (2022), the root-mean-square error (RMSE), and Nash-Sutcliffe 
efficiency (NSE) coefficient and continuous ranked probability score 
(CRPS) will be used as the responses in the proposed IFDA framework, 
which can be expressed as: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑N

i=1

(
Qobs,i − Qsim,i

)2

√
√
√
√ (13)  

NSE = 1 −

∑N
i=1

(
Qobs,i − Qsim,i

)2

∑N
i=1(Qobsi − Qobs)

2 (14)  

CRPS =

∫ +∞

− ∞

[
Ff (x) − Fo( x

) ]2dx (15)  

where N is the total number of streamflow measurements (or pre-
dictions), Qobs and Qsim are streamflow observations and model pre-
dictions, respectively, and Qobs is the mean value of observations. Fo and 
Ff are cumulative distribution functions for observations and model 
predictions, respectively. In this study, the mean prediction at each time 
step (i.e., Qsim in Equations (13) and (14)) would be adopted to calculate 
NSE and RMSE. In comparison, the ensemble predictions in each time 
step would be used to calculate Ff and the perturbed observations are 
employed to generate the value of Fo. 

4. Results analysis 

The proposed IFDA framework is employed to characterize both the 
individual and interactive effects of various uncertain factors on the 
accuracy of hydrological predictions. In detail, there are six factors in 
total to be examined in the IFDA framework, as presented in Table 1, 
with each factor having 3 levels. For the factor of hydrological model, 
each level represents a specific hydrological model (i.e., Hymod, GR4J 
or IHACRES) whilst each level for the factor of data assimilation method 
represents a specific DA algorithm (i.e., PF, PMCMC or PCMH). The six 
factors with 3 different levels will lead to 729 (i.e. 36) combinations of 
hydrologic data assimilation schemes. Each data assimilation scheme 
will consist of a specific hydrological model (i.e. Hymod, GR4J, or 
IHACRES), DA approach (i.e. PF, PMCMC, or PCMH), sample size (i.e. 
50, 100, or 200), and proportional factor value respectively for precip-
itation (i.e., γ in Equation (5)), potential evapotranspiration (i.e., γ in 
Equation (4)), and streamflow observations (i.e., η in Equation (6)). 
Moreover, 10 runs will be performed for each data assimilation scheme, 
which means that a specified DA scheme would be repeated for 10 times. 
The purpose for repeating is to reveal the inherent uncertainty in those 
Monte Carlo based data assimilation approaches. Consequently, we 
would have a total number of 7290 runs in the IFDA framework. The 
computational burden is relatively high in this case since 10 replicates 
are used. However, the total number of runs in IFA is the same as the 
traditional multi-level factorial analysis (MFA) method, and thus IFA 
would not increase computational requirement compared with the MFA 
method. Nevertheless, this computation requirement would be still less 

than some other global sensitivity analysis methods such as Sobol’s 
method as demonstrated in Wang et al. (2020). Moreover, the replicates 
can be reduced to mitigate the computation requirement in IFA (e.g., 
1458 runs are required if 2 replicates are adopted). In addition, one of 
the most significant merits of IFA is that it can deal with both discrete 
and continuous factors and get comparable results with some bench-
mark methods like Sobol’s method (Wang et al., 2020). 

Fig. 2 presents the performance variation for different data assimi-
lation schemes in the proposed IFDA framework. It indicates that for 
different data assimilation schemes with different hydrological models, 
data assimilation techniques, as well as uncertainties in inputs and 
outputs, their performances would generally vary significantly in terms 
of both deterministic and probabilistic predictions. As for the 7290 runs 
within the IFDA framework, they will lead to mean values for NSE, 
RMSE and CRPS respectively being 0.69, 34.06, 17.63. Nevertheless, the 
90% variation intervals bounded by the 5% and 95% quantiles for NSE, 
RMSE and CRPS would be [0.45, 0.84], [25.24, 45.05], and [9.93, 
28.80], presenting significant changes for different data assimilation 
schemes. These changes may be subject to several factors such as the 
choice of hydrological models and data assimilation techniques, un-
certainties in inputs and streamflow observations, and also the inherent 
randomness in the Monte Carlo based data assimilation methods in IFDA 
framework. Consequently, it is desired to further characterize the 
dominant factors that influence the performances of different data 
assimilation schemes. 

4.1. Impacts of uncertainties in inputs, observations and sample sizes 

The impacts of uncertainties in inputs, observations and sample sizes 
for different sequential data assimilation techniques over different hy-
drological models are firstly characterized through the proposed IFDA 
framework. In detail, the proportional factors are set to be 0.15, 0.25, 
and 0.35 for the potential evapotranspiration (i.e. C), precipitation (i.e. 
D), and streamflow observations (i.e. E) to reflect their uncertainties. 
Three sample scenarios (i.e. F) of 50, 100, and 200 are adopted to reflect 
the uncertainty in sample size in data assimilation process. Since PF, 
PMCMC and PCMH employed in IFDA are random in nature, 10 repli-
cates would be performed for each DA scheme with specific uncertainty 
setting for inputs, streamflow observation, and sample size. 

Fig. 3 exhibits the contributions of the factors C, D, E and F to the 
variations of deterministic predictions from different DA approaches on 
different hydrologic models. It is apparent that the uncertainties in in-
puts, streamflow observations and sample sizes pose different impacts 
on the deterministic predictability of different DA approaches on 
different hydrological models. In detail, for the PF approach, the 
inherent uncertainty (denoted as Residual in Fig. 3) would have the 
dominant effect on its predictability on Hymod and IHACRES, whilst the 
uncertainty in streamflow observation will have a major effect on the 
deterministic predictability from PF on GR4J. This suggest that more 
accurate quantification for inputs and streamflow observations, and 
larger sample sizes may hardly lead to better performances for PF on 
Hymod and IHACRES. Nevertheless, the performance of PF on GR4J can 
be enhanced through better uncertainty reflection in streamflow ob-
servations. For the PMCMC approach, it can be observed that its per-
formances for deterministic predictions are mainly subject to its 
inherent randomness, which can have contributions of 82.5%, 60.8% 
and 85.2% respectively to the variations of NSE for Hymod, GR4J and 
IHACRES. However, uncertainties in streamflow observation and sam-
ple sizes would have apparent impacts (15.8% and 14.5% respectively) 
on the predictability of PMCMC on the GR4J model. Compared with 
PMCMC and PF, the performances of PCMH would be less impacted by 
its inherent uncertainties. For instance, the uncertainty in streamflow 
observations poses a most dominant impact on the predictions of PCMH 
on Hymod and GR4J. Even for IHACRES, the sample size (i.e. F) also has 
a visible impact (7.98%) on the performance of PCMH. The contribu-
tions of these four factors to variations of RMSE show a similar pattern 
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with the results to the NSE fluctuations, which is presented in Figure S1. 
In addition to the deterministic predictions, the probabilistic pre-

dictions from different DA approaches on different models may also be 
influenced by uncertainties in inputs (i.e. C, D), streamflow observations 
(i.e. E) and sample sizes (i.e. F). Fig. 4 presents the contributions of those 
four factors to the variations of CRPS for different DA approaches on 
different hydrological models. It indicates that the impacts of those four 
uncertainty factors on the probabilistic predictions would have some 
similar features with their impacts on deterministic predictions. The 
inherent randomness of PF, PMCMC and PCMH would have a most 
dominant effect on the probabilistic predictions from IHACRES, with a 
contribution of 78% for PCMH and more than 80% for PF and PMCMC. 
For the Hymod, even though the inherent randomness would also have 
noticeable effects on all the three DA approaches, uncertainties in pre-
cipitation (i.e. D), streamflow observations (i.e. E) and sample size (i.e. 

F) would pose more impacts as the DA approach changes from PF to 
PCMH. The impacts of these three factors (i.e. D, E, F) on probabilistic 
predictions of Hymod are different from their impacts on the deter-
ministic results, especially for the PCMH approach, where the factors of 
D and F would have large effects (i.e. 18.8% and 7.7%) on the proba-
bilistic predictions, whilst the factor E has a much less effect (i.e. 
15.4%). For the GR4J model, uncertainty in streamflow observations 
would have a major effect on the probabilistic predictions from PF and 
PCMH, with its contribution to PCMH as high as 86.6%. Moreover, this 
factor, as well as the sample size would also have visible effects on the 
PMCMC approach, with their contributions being 33.7% and 17.6% 
respectively. Such an impact pattern is similar with the results for 
deterministic predictions of GR4J. 

For the uncertainties in inputs (i.e. C, D), streamflow observations (i. 
e. E) and sample size (i.e. F), their impacts on data assimilation would be 

Fig. 2. Performance variation for different data assimilation schemes within the IFDA framework.  

Fig. 3. The contributions of uncertainties in potential evapotranspiration (C), precipitation (D), streamflow observations (E) and sample sizes (F) to the performances 
(evaluated by NSE) for different data assimilation approaches on different hydrologic models. Here Multiple indicates the sum of all multiple interactions (e.g., CDE +
CDF +…) and Residual represents the effect from the randomness of the DA method. 
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different for different DA approaches on different hydrological models. 
However, we can generally conclude that, regardless of the inherent 
randomness of the DA approaches, the uncertainty in streamflow ob-
servations seems to more likely pose a significant impact on the data 
assimilation process. Moreover, for DA approaches, the PCMH approach 
would be less influenced by its inherent randomness. This is because the 
contributions of PCMH randomness over the three hydrological models, 
as shown in Fig. 4, are always less than the corresponding contributions 
for the other two DA methods. This indicates that the PCMH is more 
robust than PF and PMCMC, which has been elaborated in our com-
panion paper. The performance of PCMH is more easily enhanced 
through better quantification for uncertainties in inputs, streamflow 
observations and sample size. 

4.2. Impacts of uncertainties in DA approaches, inputs, observations and 
sample sizes 

In general, different data assimilation approaches would generate 
different prediction results even for the same uncertainty settings in 
inputs, streamflow observations and sample size, which has been 
demonstrated in a number of studies. However, it is not well elaborated 
how much the DA method can contribute to the improvement of the 
hydrological data assimilation process. In current study, different DA 
approaches (i.e. B) including PF, PMCMC and PCMH, as well as un-
certainties in inputs (i.e. C, D), streamflow observations (i.e. E) and 
sample size (i.e. F) are integrated within the proposed IFDA framework 
to explore their contributions to variations in both deterministic and 
probabilistic predictions from hydrological data assimilation process. 

Fig. 4. The contributions of uncertainties in potential evapotranspiration (C), precipitation (D), streamflow observations (E) and sample sizes (F) to the performances 
(evaluated by CRPS) for different data assimilation approaches on different hydrologic models. Here Multiple indicates the sum of all multiple interactions (e.g., CDE 
+ CDF + …) and Residual represents the effect from the randomness of the DA method. 

Fig. 5. The contributions of uncertainties in DA methods (B), potential evapotranspiration (C), precipitation (D), streamflow observations (E) and sample sizes (F) to 
the performances (evaluated by NSE) for different hydrologic models. Here Multiple indicates the sum of all multiple interactions (e.g., BCD + BCE + …) and Residual 
represents the effect from the randomness of the DA method. 
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Fig. 5 presents the impacts of B, C, D, E, and F on the variations of 
deterministic predictions from different hydrological models. The 
randomness of the DA approaches would pose remarkable, or even 
dominant impacts on the performances of the three hydrological models. 
However, it is noticeable that factor B (i.e. DA approaches) would also 
have significant impacts on the deterministic predictions from all the 
three hydrological models, with its contributions being 31.9%, 33.2% 
and 17.2% respectively for Hymod, GR4J, and IHACRES. For the factors 
of C, D, E and F, their impacts in such a circumstance are significantly 
different from their contributions when the factor of DA methods is not 
involved. The uncertainty in streamflow observation would have a 
visible effect on the GR4J model with its contribution less than the 
contribution of factor B. Moreover, the interaction of DA methods (B) 
and sample size (F) also has an explicit effect on the performance of 
GR4J model. For the deterministic predictions evaluated by RMSE, the 
impacts of B, C, D, E and F, as presented in Figure S2, show similar 
features with their impacts on the variation of NSE. In spite of the 
inherent randomness, the DA approaches would pose the most signifi-
cant impacts on the performances of all the three hydrological models, 
larger than other individual or interactive effects. 

For the probabilistic predictions evaluated by CRPS, those five fac-
tors would have similar impacts on the Hymod and GR4J with their 
corresponding effects on the deterministic prediction. Nevertheless, as 
presented in Fig. 6, the DA methods (i.e. B) would contribute more to the 
probabilistic predictions than the deterministic predictions. The factor 
of DA methods would make a contribution of 44% and 37.3% to the 
variation of CRPS from Hymod and GR4J, respectively, higher than its 
contribution to NSE (in Fig. 5) and RMSE (in Figure S2) variations. 
However, the probabilistic predictions from IHACRES seem to be 
dominated by the inherent randomness of the DA approaches, with only 
a small visible effect from the sample size (i.e. F). In fact, the mean CRPS 
values from PCMH, PF and PMCMC on the IHACRES model, over all 
uncertainty combinations (810 runs for each DA approach) for inputs, 
streamflow observations and sample size, are 21.5, 23.2 and 23.0, pre-
senting an indistinguishable difference among each other. 

When the impact of the DA approaches is under consideration, the 
results from the IFDA framework indicate that the DA approach would 
generally have more contributions to both the deterministic and prob-
abilistic predictions than other factors. Such an effect is remarkably 
obvious for the Hymod and GR4J models. These results suggest the 
significance of developing advanced data assimilation approaches, 
which can very probably lead to better predictions for the hydrological 
data assimilation process. Moreover, uncertainty in streamflow obser-
vations would be another factor to be considered, which can have sig-
nificant effects on predictions from some hydrological models. 

4.3. Impacts of uncertainties in hydrological models, DA approaches, 
inputs, observations and sample sizes 

The predictions from hydrological data assimilation are generally 

affected by various factors, such as the hydrological model and DA 
technique to be adopted, uncertainties in inputs, streamflow observa-
tions, and sample sizes. Moreover, the inherence randomness in some 
Monte Carlo based DA methods may also have significant effects on the 
resulting predictions. All these factors are integrated into the proposed 
IFDA framework to quantitatively reveal their individual and interactive 
effects on the predictions from hydrological data assimilation. 

Fig. 7 presents the individual and interactive effects of all the six 
factors (i.e. A ~ F) on the deterministic predictions from hydrological 
data assimilation. The results indicate that, even though the inherent 
randomness (i.e. Residuals in Fig. 7) has the most significant effect on the 
deterministic predictions, the hydrological models (i.e. A), DA methods 
(i.e. B) and their interactions also make noticeable contributions to the 
deterministic predictability of the hydrological data assimilation 
schemes. As presented in Fig. 7, the contributions of A, B, and AB would 
be 14.8%, 16.4% and 9.5%, respectively, which are much higher than 
the individual and interactive effects from other factors. For the pre-
dictions evaluated by RMSE, the effects of all the six factors, as shown in 
Figure S3, are quite similar with their effects on the NSE variation since 
both NSE and RMSE reflect the accuracy of deterministic predictions. In 
comparison, for the probabilistic predictions, the individual and inter-
active effects of factors A ~ F are different from their impacts on the 
deterministic predictions (here the mean predictions are adopted) 
evaluated by NSE and RMSE. As presented in Fig. 8, the hydrological 
model (i.e. A) would have a much higher effect (31.3%) on the variation 
of CRPS than its effect (14.8%) on the NSE variation. Conversely, the 
impact of the DA methods (i.e. B) and its interaction with hydrological 
models would have less effects (13.2% for B and 8.5% for AB) on the 
probabilistic predictions. Moreover, the inherent randomness of the DA 
scheme would pose less effect on the probabilistic predictions than the 
deterministic predictions. 

When uncertainties in hydrological models, DA methods, inputs, 
streamflow observations and sample sizes in a data assimilation process 
are under consideration, the results indicate that the hydrological 
models and DA approaches would have more significant effects than 
other factors on the resulting predictions. This would conclude an 
implication that we would be able to expect better predictions in data 
assimilation through choosing an appropriate hydrological model and 
advanced DA method. Moreover, the inherent randomness in the data 
assimilation process also has noticeable effects on both deterministic 
and probabilistic predictions. The robustness of the DA approach would 
be another factor to be addressed to enhance the predictability of the 
hydrological data assimilation process. 

5. Discussion 

5.1. Impact variations for DA methods and hydrological models 

In the proposed IFDA framework, a number of two-level factorial 
designs would be generated based on those uncertain factors with 

Fig. 6. The contributions of uncertainties in DA methods (B), potential evapotranspiration (C), precipitation (D), streamflow observations (E) and sample sizes (F) to 
the performances (evaluated by CRPS) for different hydrologic models. Here Multiple indicates the sum of all multiple interactions (e.g., BCD + BCE + …) and 
Residual represents the effect from the randomness of the DA method. 
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multiple levels. For different two-level factorial designs, the factor levels 
for a specific factor (e.g. hydrological models, DA methods) may be 
different, which would further lead to different impact characterizations 
for this factor. Fig. 9 presents the contribution variations of hydrologic 
models and DA methods for different hydrologic data assimilation 
schemes obtained by the two-level factorial designs within the IFDA 
framework. It can be observed that, when different levels are applied to 
one factor, the resulting impact on the data assimilation would vary 
significantly. As presented in Fig. 9, the contribution of hydrologic 
model to deterministic prediction remarkably ranges within [0, 0.5], 
with most values located within [0, 0.25]. Similarly, the DA approach 
would have an effect, significantly ranging within [0, 0.5], on hydro-
logical data assimilation. Compared with hydrological model, a large 
part of the contributions of DA method are located within [0.25, 0.5], 
which lead to a higher average contribution of DA method (i.e. 16.4% in 
Fig. 7) than that for hydrological model (i.e. 14.8% in Fig. 7). Moreover, 
for the probabilistic predictions, the contributions of hydrological model 
and DA method would also vary significantly for different levels under 
consideration, as shown in Fig. 9. However, the contribution variations 
of these two factors for probabilistic predictions are not consistent with 
the variations for deterministic predictions. Most contributions of hy-
drological model are larger than 0.25, which also leads to a higher 
contribution in average than that for DA methods. 

5.2. Comparison with traditional multi-level factorial analysis 

In the proposed IFDA framework, six factors with each one having 
three levels are addressed to reveal their impacts on the predictability of 
hydrological data assimilation. Their individual and interactive effects 
can also be characterized by a three-level (i.e. 36) factorial design. 
Figures S4–S7 shows the main effects and their interactions of these six 
factors on both deterministic (evaluated by NSE) and probabilistic 
(evaluated by CRPS) predictions. Significant effects can be observed for 
hydrological model, DA approach and their interactions on both deter-
ministic and probabilistic predictions, which have also been character-
ized by the developed IFDA framework. Nevertheless, for the detailed 
contributions for each factor and their interactions, the values from the 
three-level factorial design are visibly different from those obtained by 
the IFDA framework. As presented in Fig. 10, the three-level factorial 
design would provide an overestimation for the contribution of hydro-
logical models and underestimations for the main effects of other fac-
tors. It is noticed that the contribution characterizations from three-level 
factorial design may also lead to a different rank for these factors. It is 
concluded from the three-level factorial design that the hydrological 
models would have the most significant effect on the deterministic 
predictions while, based on the proposed IFDA framework, the contri-
bution (16.4%) of DA methods is apparently higher than the 

Fig. 7. The contributions of uncertainties in hydrological models (A), DA methods (B), potential evapotranspiration (C), precipitation (D), streamflow observations 
(E) and sample sizes (F) to the performances (evaluated by NSE) for different hydrologic data assimilation schemes. Here Multiple indicates the sum of all multiple 
interactions (e.g., ABC + ABCD + ABCE + …) and Residual represents the effect from the randomness of the DA method. 

Fig. 8. The contributions of uncertainties in hydrological models (A), DA methods (B), potential evapotranspiration (C), precipitation (D), streamflow observations 
(E) and sample sizes (F) to the performances (evaluated by CRPS) for different hydrologic data assimilation schemes. Here Multiple indicates the sum of all multiple 
interactions (e.g., ABC + ABCD + ABCE + ….…) and Residual represents the effect from the randomness of the DA method. 
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contribution (14.8%) of hydrological models. Moreover, the three-level 
factorial design also provides an overestimation for the interactive effect 
of hydrological models and DA approaches. These discrepancies may 
due to the biased estimations for the total sum of the squares and its 
components, as presented in Equations (9) and (10). 

5.3. Impacts of uncertain factors for data assimilation with calibrated 
models 

The above analyses for factor contributions to the predictability of 
hydrological data assimilation are based on the results from the dual 
state-parameter estimation framework in which both model parameters 
and state variables are quantified simultaneously. However, another 
possible pathway for hydrological data assimilation is to quantify the 
uncertainty in state variables with calibrated model parameters. In this 
case, the model parameters would be calibrated before starting the data 

assimilation process and thus probabilistic uncertainties would be ob-
tained only for the state variables and predictions. Consequently, the 
impacts of uncertain factors may have different patterns with those in 
the dual state-parameter estimation framework. 

Nevertheless, the proposed IFDA framework can also be applied to 
reveal the impacts of different factors on hydrological data assimilation 
with calibrated models. In such a case, the 10-year dataset at the River 
Ouse in UK described in our companion paper (Fan et al., 2022) has been 
splitted into two parts with the first 5-year data for parameter calibra-
tion and the latter 5-year data for data assimilation. Since the model 
parameters are not estimated in data assimilation and thus only the PF 
method is needed for this issue. 

Fig. 11 presents the individual and interactive effects of uncertainties 
inputs (i.e., C for potential evapotranspiration, D for precipitation), 
observations (i.e., E) and sample sizes (i.e., F) on both deterministic and 
probabilistic predictions from data assimilation. It is noticeable that, 

Fig. 9. The contribution variations of hydrologic models and DA methods for different hydrologic data assimilation schemes.  

Fig. 10. The contributions of uncertainties in hydrological models (A), DA methods (B), potential evapotranspiration (C), precipitation (D), streamflow observations 
(E) and sample sizes (F) to the performances for different hydrologic data assimilation schemes from the three-level factorial design. Multiple indicates the sum of all 
multiple interactions and Residual represents the effect from the randomness of the DA method. 

Y.R. Fan et al.                                                                                                                                                                                                                                   



Journal of Hydrology 612 (2022) 128136

12

Fig. 11. The contributions of uncertainties in potential evapotranspiration (C), precipitation (D), streamflow observations (E) and sample sizes (F) to the perfor-
mances of data assimilation through different hydrological models with prior calibrated parameters. Multiple indicates the sum of all multiple interactions and 
Residual represents the effect from the randomness of the DA method. 

Fig. 12. The performance variations of data assimilation considering different calibrated hydrological models (A), uncertainties in potential evapotranspiration (C), 
precipitation (D), streamflow observations (E) and sample sizes (F), as well as their contributions. Multiple indicates the sum of all multiple interactions and Residual 
represents the effect from the randomness of the DA method. 
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compared with the results in dual state-parameter estimation framework 
presented in Figs. 3 and 4, the inherent randomness in PF ( i.e., Residuals 
in Fig. 11) would be more controllable especially for the probabilistic 
predictions. For instance, the highest contribution from the inherent 
randomness of the DA algorithm would be found for IHACRES model in 
both data assimilation scenarios. But the contributions of the random-
ness would be around 88% for deterministic predictions (in Fig. 3) and 
87% for probabilistic predictions (in Fig. 4) in the dual state-parameter 
framework, whilst those contributions can be significantly reduced to 
29.5% for deterministic predictions (i.e., Fig. 11(g)) and 19.1% for 
probabilistic predictions (i.e., Fig. 11(i)) if the calibrated IHACRES 
model is adopted. Compared with the reduced contributions from PF 
randomness, some factors would have significantly higher impacts on 
the data assimilation performances for calibrated models. But one spe-
cific factor may have different effects when different models are adop-
ted, in which the uncertainty in precipitation would have the highest 
impact on data assimilation for Hymod and IHACRES and the uncer-
tainty in streamflow observations would have the highest contribution 
for GR4J. Moreover, another interesting promise concluded from Fig. 11 
is that the sample size of PF would not be likely to pose visible impacts 
on data assimilation for calibrated models. This implies that only a small 
sample size may be required for data assimilation through calibrated 
hydrological models, which can significantly reduce computation 
burden in the data assimilation process. 

Fig. 12(a)–(c) present the performance variations for both deter-
ministic and probabilistic predictions considering all the three hydro-
logical models and different uncertain scenarios in inputs and 
streamflow observations. It is obvious that the histograms of NSE, RMSE 
and CRPS values show three peaks, implying a dominant factor to in-
fluence the data assimilation process. Fig. 12(d)–(f) show the detailed 
individual and interactive contributions of the uncertain factors to the 
deterministic and probabilistic predictions of data assimilation. It is 
concluded that the hydrological model would mainly control the per-
formance of data assimilation process whilst impacts from other un-
certainties including the inherent randomness of the DA algorithm seem 
to be negligible. This indicates that using an appropriate hydrological 
model with well calibrated parameters would be the most efficient way 
to improve the data assimilation process. 

6. Conclusions 

Sequential data assimilation (SDA) techniques have been widely 
used for uncertainty quantification and reduction in hydrologic pre-
diction. In a data assimilation scheme, its performance is critically 
influenced by a number of factors such as the hydrological model and 
data assimilation methods to be used, uncertainty representation in in-
puts, streamflow observations and also sample sizes. In this study, an 
interactive factorial data assimilation (IFDA) framework has been 
developed to characterize both individual and interactive effects of 
hydrological models, DA approaches, and uncertainties in inputs, 
streamflow observations and sample sizes on the resulting predictions. 
In detail, three hydrological models (i.e., Hymod, GR4J, IHACRES), 
three DA approaches (i.e., PF, PMCMC, PCMH), and three uncertainty 
settings for inputs, streamflow observations, and sample sizes are under 
consideration in the IFDA framework. The interactive factorial analysis 
(IFA) was then proposed to explore the impacts of these factors on 
deterministic and probabilistic predictions. 

The proposed IFDA framework has been applied to the River Ouse in 
UK. Some key results can be concluded:  

i) When uncertainties in inputs, streamflow observations, and 
sample sizes are under consideration, they would have discrepant 
effects on different data assimilation methods over different hy-
drological models. However, uncertainties in streamflow obser-
vations, except the inherent randomness in data assimilation, 

would more likely pose significant impacts on the resulting 
predictions.  

ii) If the choice of data assimilation methods is further considered, 
these factors also pose different impacts on the predictions from 
different models. However, the data assimilation methods, 
regardless of the inherent randomness, would generally have 
more impacts than other factors on the predictions. 

iii) For uncertainties in hydrological models, data assimilation ap-
proaches, inputs, streamflow observations and sample sizes, the 
first two factors (i.e. hydrological models and data assimilation 
approaches) and their interactions would have much more im-
pacts than uncertainties in other factors on the resulting 
predictions.  

iv) In addition to those uncertain factors, the inherent randomness, 
mainly caused by the Monte Carlo sampling process, would also 
have noticeable effects on the resulting predictions. This is 
particularly obvious if the hydrological model and data assimi-
lation method are not well identified in advance, such as the 
IHACRES model in this study.  

v) Parameter calibration prior to data assimilation can significantly 
reduce the impact from the inherent randomness. The uncer-
tainty in model structure would be dominant the data assimila-
tion process when calibrated model parameters are adopted, 
whilst other uncertain factors may show invisible impacts. 

As an extension of our companion paper, this study firstly proposed 
an interactive factorial data assimilation (IFDA) framework to gives a 
reliable quantification for the individual and interactive impacts of 
uncertain factors in data assimilation process. Such a framework is 
flexible and can explore the impacts for different numbers of factors. The 
obtained results in this study indicate that enhancement of hydrological 
models and data assimilation methods would be the most efficient 
pathway to generate reliable hydrological predictions. Moreover, the 
robustness of a data assimilation method can also enhance the predict-
ability of the hydrological model, which is able to alleviate the effect of 
the inherent randomness in data assimilation. 

7. Data Availability 

Daily precipitation and streamflow data for the River Ouse can be 
accessed from the National River Flow Archive (NRFA) (https://nrfa. 
ceh.ac.uk/). The potential evapotranspiration can be obtained from 
NERC Environmental Information Data Centre, deposited by Tanguy 
et al. (2017) (https://catalogue.ceh.ac.uk/documents/17b9c4f7-1c30- 
4b6f-b2fe-f7780159939c). The IFDA framework are coded in R and can 
be available from the authors upon request (yurui.fan@brunel.ac.uk). 
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