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A Continuous Robot Vision Approach for Predicting
Shapes and Visually Perceived Weights of Garments

Li Duan1, Gerardo Aragon-Camarasa1

Abstract—We present a continuous perception approach that
learns geometric and physical similarities between garments by
continuously observing a garment while a robot picks it up from
a table. The aim is to capture and encode geometric and physical
characteristics of a garment into a manifold where a decision can
be carried out, such as predicting the garment’s shape class and
its visually perceived weight. Our approach features an early stop
strategy, which means that a robot does not need to observe a full
video sequence of a garment being picked up from a crumpled to
a hanging state to make a prediction, taking 8 seconds in average
to classify garment shapes. In our experiments, we find that
our approach achieves prediction accuracies of 93% for shape
classification and 98.5% for predicting weights and advances
state-of-art approaches in similar robotic perception tasks by
22% for shape classification.

Index Terms—Computer Vision for Automation, Deep Learn-
ing for Visual Perception, Visual Learning, AI-Enabled Robotics

I. INTRODUCTION

PERCEPTION and manipulation of deformable objects
remain an open problem in robotics. This is because gar-

ments have an infinite number of possible configurations that
cannot be modelled easily via simulations [1], [2]. Specifically,
the main challenges in deformable objects perception and
manipulation are twofold. First, they usually have a complex
initial configuration, which means they are wrinkled, crumpled
or folded, and not in a known configuration state that can
be used for manipulation tasks. Second, garments deform in
unpredictable ways, making predictions of their deformations
difficult during dexterous robotic manipulations.

Robots manipulating deformable objects without prior
knowledge about their geometric and physical properties (e.g.
shapes, weights or stiffness parameters) can result in robots re-
quiring to plan actions using a complex and high-dimensional
space. This causes failures in motion planning since robots
are prone to fail due to minor variations in the deformable
object’s configurations. We propose in this paper an online
continuous perception approach that equips a robot with the
ability to predict garment shapes and allows a robot to stop a
manipulation task if the prediction belief is above a threshold.
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Fig. 1. An example of our experimental setup for capturing a database of
garment’s deformations. That is, a dual-armed robot grasps garments from a
pre-defined fixed point and dropped. An Xtion camera is placed in the front
of the robot to record a video sequence of RGB and depth images.

Compared to previous research focusing on wrinkles [3]
and other local features [4], [5], we propose to learn the
dynamic properties of garments from video sequences and
allow a robotic system to recognise the shape and weight of
a garment continuously. For this, we implement a Garment
Similarity Network (termed GarNet in the scope of this paper)
which is based on a Siamese neural network architecture that
learns the physical similarity between garments to predict
shapes (geometric) and visually perceived weights (physical)
of unseen garments. We define a visually perceived weight in
three discretised levels using an electric scale to physically
weigh garments; namely, light, medium and heavy garment
weights. We hypothesise that our approach can predict shapes
and discretised weights in approximately 0.1 seconds per
image frame (with a size of 256× 256) by learning geometric
and physical properties and predicting the garment’s shape
and weights continuously during a robotic garment pick and
place task.

To test the above hypothesis, we have built a database
that consists of RGBD video sequences of a robot grasping
and dropping garments on a table, see Fig. 1. This database
simulates a sorting scenario (e.g. [3], [4]) where a robot can
sort based on shape or weights. We then train GarNet to
learn garments’ geometric and physical similarities based on
their shape and discretised weight labels. GarNet’s objective
is thus to cluster garments of the same categories (shapes or
discretised weights) together and pull garments of different
categories apart using a triplet loss function, and these clusters
are mapped into a Garment Similarity Map (GSM). To predict
unseen garment shapes and weights, we introduce the concept
of decision points which depend on previously mapped points
in the GSM. We use these decision points to implement an
early-stop strategy by fitting confidence intervals for each
cluster to allow us to determine whether decision points
are within a statistical significant interval around a cluster.
Figure 2 shows an overview of our approach. The contributions
of this paper are threefold:
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Fig. 2. Top: Training GarNet. A positive, negative and anchor image samples from a video sequence of the training dataset are input into GarNet. Training
consists of identifying whether any two of the input triplet comes from the same shape or discretised weight categories. GarNet maps input image frames
into a Garment Similarity Map (GSM) in which input frames are mapped into clusters if they are similar; otherwise, new points are pulled apart from the
cluster. Confidence intervals are computed for each cluster in the GSM as described in Section III-A. Bottom: Continuous Perception (Testing GarNet). An
image from a video sequence of the testing dataset is input into a trained GarNet to get the mapping onto the garment similarity map. A video sequence of
a garment in our database contains 60 frames. The plots show that GarNet gains confidence in predicting that the perceived garment is a shirt. That is, as
knowledge is being accumulated into the GSM, most of the decision points belong to the shirt category. In the example shown, the prediction is stopped at
frame 30 because 80% of all decision points belong to the shirt category.

1) We have advanced the state-of-art by adopting a con-
tinuous perception paradigm in a neural network which
improves the prediction accuracy from 70.8% to 93%
for shape classification;

2) Our approach can visually estimate weights of unseen
garments with a 98.5% prediction accuracy;

3) We propose an early stop strategy so that our approach
is faster during inference compared to the state-of-art by
taking 8 seconds in average to classify shapes.

II. LITERATURE REVIEW

Previous approaches have proposed learning geometric and
physical properties of deformable objects before manipulation.
Geometric properties of garments include shapes [4] [5] [3]
and physical properties such as weight [6], stiffness (e.g.
bending, stretching and shearing) [1], damping factors and
elasticity [7].

A. Geometric properties

Maitin-Shepard et al. [8] proposed a multi-view grasp-point
detection approach for finding grasping points to manipulate
towels. Their work demonstrated the importance and effec-
tiveness of learning geometric features of deformable objects
before manipulation. However, their approach only enables a
robot to manipulate towels rather than garments of various
shapes. Similarly, Seita et al. [9] proposed a robotic making-
bed approach by finding grasping points using a deep neural
network. The network was trained on depth images capturing
crumpled bed sheets with manually annotated ground-truth
grasping points and demonstrated effectiveness in flattening
bed sheets in a real environment. However, their method did
not include experiments involving multi-shaped garment flat-
tening. Qian et al. [10] developed a cloth region segmentation
approach to find grasping points to manipulate towels. Their
pipeline is divided into three steps: cloth region segmentation,
grasp configuration and grasp execution. The key in their work
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was finding grasping points using edge and corner detection
approaches. They demonstrated their approach by using a
robot to find grasping points and grasp the found grasping
points. Similar to [8] [9], only garments of one shape are
tested.

B. Physical properties

Simulated environments [6] [2] that model deformable
objects, have been used in the literature to learn the phys-
ical properties of these objects and extrapolate the learned
knowledge into the real world. For example, Ruina et al. [6]
devised an approach where they predicted the area weights of
fabrics by learning the physical similarities between simulated
fabrics and real fabrics using a spectral decomposition network
(SDN). Closing the gap between a simulation and the real
world is effective because the physical property parameters
of simulated objects are easily accessible compared to those
of real objects. However, their approach is not applicable for
online evaluation because it requires aligning the simulation
with reality, creating an extra overhead before a prediction can
be carried out. Hoque et al. [2] proposed learning dynamic
physical properties of towels via a Vision-Spatial Foresight
network (VSF), which is trained on simulated towels but tested
on real towels. VSF predicts a sequence of towel deformations
and corresponding robot actions based on the towels’ initial
and desired configurations. They used RGB plus depth images
instead of RGB images in their experiment, and they obtained
a success rate of 90% on manipulating (flattening) the towels.
Even though the robot used to deploy VSF takes unneces-
sary actions while folding a towel, their proposed approach
demonstrates that prior knowledge on understanding geometric
and physical properties of deformable objects enables an
effective manipulation of deformable objects. Therefore, this
paper investigates whether a continuous perception approach
coupled with an early-stop strategy can extend beyond simple
fabrics and one single shape class. That is, we propose learning
the similarity between garments to predict unseen garment
shapes and discretised weights based on a ‘garment similarity
map’. Compared to previous works (e.g. [5], and [3]), our
work features an early-stop strategy, where a prediction can
be halted earlier without observing the entire interaction.

C. Garment shape prediction: from single-shot perception to
continuous perception

Mariolis et al. [11] proposed to use a CNN network to
classify garment shapes, which are rotated by a dual-arm robot.
The CNN network learns garment dynamics via episodic depth
images and achieves an accuracy rate of 89% after training.
However, they train and test the network on synthetic datasets
of simulated garments and their validation image set contains
the garments that are already in the training dataset, failing to
generalise for unseen garments of similar classes. Chi et al.
[12] proposed estimating poses of garments by completing
their shape from single images. Similar to this paper, the
authors allowed a robot to grasp and drop garments to learn
their poses. However, they only captured images after the
garment was grasped and hanging from the robot’s gripper. In

this paper, we explore a continuous perception paradigm where
a network learns to accumulate knowledge by observing video
sequences in order to classify garments shapes and weights.

Sun et al. [4] presented an approach where local and global
features are extracted from single images and are used to
predict unseen garment shapes. This approach makes use
of local and global visual characteristics of garments, such
as wrinkle features, for shape prediction. Compared to [11],
their approach does not require interactions with garments,
allowing it to be faster to predict shapes and is robust while
being presented with unseen samples. However, prediction
accuracies are constrained by the inability of the robot to
interact with the garments, and no new knowledge can be
captured. For this, Sun et al. [3] proposed a Gaussian process
regression classifier to predict unseen garment shapes while
the robot interacted with them. That is, the robot in their
experiment shakes or flips and then drops garments on a table
to obtain a new state to increase the classification score. If
the classification score of a garment is above a threshold,
the garment is sorted based on their shape. This approach,
therefore, demonstrated that interacting with garments enables
an autonomous system to improve its prediction confidence
over interactions and leads to higher classification accuracies.

However, [3] captured the garment’s state while being static
and on a table which results in making the system slow at
predicting shapes as it requires multiple interactions. Martinez
et al. [5] removed this limitation by introducing the concept
of continuous perception to enable a robot to predict shapes
by continuously observing video frames from an Xtion depth-
sensing camera rather than single image frames. They showed
higher accuracy in predicting unseen garment shapes compared
to [3] and [4]. However, the limitation in [5] is that they
let the robot to observe the entire video sequence before a
decision can be made, which means that the robot takes a
significant amount of time to predict a garment shape category,
and this is given by the length of the video. In their work, they
sample a garment for approximately 6 seconds which consists
of sampling the garment from a crumpled to a hanging state.
In this paper, we, therefore, explore the possibility of adopting
the continuous perception paradigm to allow a robot to change
its manipulation strategy on the fly, i.e as soon as the class
of the garment is predicted even if the garment is still being
manipulated from a crumpled to a hanging state.

III. GARNET: GARMENT SIMILARITY NETWORK

Our proposed Garment similarity Network (GarNet) consists
of a Siamese network [6], [13] which clusters garments
into groups according to their shape and discretised weight
categories. In previous work, Siamese networks provided the
ability to cluster similar features such as colour features [6]
for predicting flag area weights and physics parameters [13].
Thus, the objective of clustering garments in this paper is to
learn common geometric and physical features of garments
of the same categories. Our GarNet network comprises a
residual convolutional block that extracts features from input
data and a fully connected layer that maps features onto a
2D Garment Similarity Map (GSM). A garment similarity
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Fig. 3. The Garment Similarity Map (GSM) after training GarNet.

map is a 2D manifold that encodes a garment’s geometric
and physical characteristics according to its shape and dis-
cretised weight categories. Garments of the same categories
are clustered together, while garments of different categories
are pulled apart. Figure 3 shows the garment similarity map
in our experiments where each cluster in the map is called
a Garment Cluster (GC). Our GarNet training process is
expressed mathematically as P = fθ(I) where fθ denotes
a neural network that contains residual convolutional layers
and fully connected layers parameterised by the parameters
θ, and I denotes an input video frame. We define P as
a garment similarity point (GSP). Each frame in the input
video sequence of the garments is converted into one garment
similarity point (GSP). We also define a Garment Similarity
Distance (GSD) as GSD(x, y) = Pi − Pj ; where i and j
are the ith and jth garment similarity point. GSD increases
between garments with different labels and decreases between
garments with the same labels. Therefore, to train GarNet, we
use a triplet loss [14]:

PP =
∣∣Ppositive − Panchor

∣∣
NP =

∣∣Pnegative − Panchor

∣∣
TripletLoss = max(0, PP −NP +margin)

(1)

where PP is a positive pair between positive and anchor
samples and NP is a negative pair between negative and
anchor samples. An anchor sample is an image of a garment. A
positive sample is an image of a garment of the same category
as the anchor sample. A negative sample is an image of a
garment of a different category to the anchor sample. The
margin is a value that promotes the network to learn to map
positive and negative samples further away from each other.
We set this margin to 1 as suggested in [6].

Two GarNets are trained separately and predict the shapes
and discretised weights independently. That is, the GarNet for
shape predictions is trained on shape categories, while GarNet
for discretised weight predictions is trained on discretised
weight categories, e.g. light, medium and heavy weights.

A. Garment Cluster Confidence Intervals

To decide which category (either shapes or discretised
weights) a mapped garment similarity point in the similarity
map belongs to, we propose to fit statistical confidence inter-
vals to each garment cluster in this map. That is, we define a

confidence interval using a non-parametric probability density
function for each garment cluster, GC via a kernel density
estimator [15] that is defined as:

f̂h(GC) =
1

n

n∑
i=1

Kh(P − Pi)

=
1

nk

n∑
i=1

K(
P − Pi

h
)

(2)

where GC is the garment cluster, K is a Gaussian kernel,
h > 0 is a smoothing parameter called bandwidth which
regulates the amplitude of confidence intervals, and f̂h is an
estimated probability density function for a garment cluster.
We have conducted an ablation study on the confidence
interval’s bandwidths (h) and results are presented in section
V-B. After training a GarNet, the centroid of each garment
cluster is defined as:

GCmean = (
1

m

m∑
i=1

xPi ,
1

m

m∑
i=1

yPi) (3)

where GCmean is the mean value of garment similarity points
mapped from one garment cluster (in Figure 3) and m is the
number of garment similarity points in the cluster.

In our experiments, we directly input unseen image frames
of garments acquired by the robot to GarNet to map them
into the garment similarity map. To decide the shapes and
discretised weights, we define a Decision Point (DP) that is
the mean value of garment similarity points (GSPs):

DP = (
1

n

n∑
i=1

xPi ,
1

n

n∑
i=1

yPi) (4)

where n is the total number of frames observed. To predict
the shapes and discretised weights, we find whether a DP is
within any confidence interval and has the minimum distance
to the confidence interval’s GCmean. For this paper, we use
the Euclidean distance to evaluate how close a DP is with
respect to GCmean.

Each video sequence has 60 frames (6 seconds); therefore,
we will have 60 decision points. To predict the shape and dis-
cretised weight, we establish that a predicted category should
have at least 80% of decision points belonging to a garment
cluster. If none of the categories fulfils this requirement, we
denote that the observed garment does not have a known
class. That is, if a decision point is outside any confidence
interval, the network is not confident about which category
the input garment belongs to. By clustering garments and
defining confidence intervals, it is possible to define an early-
stop strategy to allow a robotic system to stop its execution
if it is confident about the garment shape or weight. After
observing a number of image frames of a garment (20 images),
if any of the trained categories takes 80% of the decision
points, the process is terminated, and the category is chosen
as the predicted category.
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Jeans Shirts Sweaters Towels T-shirts

Fig. 4. The garment database used in our experiments: Five categories (pants (jeans), shirts, sweaters, towels and t-shirts), and each category has four garment
instances. For each garment instance, we show an RGB image frame and its corresponding segmented depth image

IV. EXPERIMENTS

A. GarNet Architecture

Our GarNet comprises a ResNet18 [16] as a feature ex-
traction and fully connected networks (FC). The FC networks
comprise three linear layers, where a PReLU activation layer
is placed between adjacent linear layers. The source code
for GarNet and experimental scripts are available at https:
//liduanatglasgow.github.io/GarNet/.

We use an Intel-i7 equipped with an Nvidia GTX 1080 Ti to
train the network. We use the Adam optimizer with an initial
learning rate of 1× 10−3, controlled by a learning scheduler
with a decay rate of 1 × 10−1 and a step size of 8 epochs.
The network is trained for 270K iterations with a batch size
of 28, taking approximately 30 minutes.

B. Data Collection and Experiments

The video database in this experiment consists of 20 gar-
ments of five different shapes, namely, pants, shirts, sweaters,
towels and t-shirts. Figure 4 shows garment samples for each
garment instance in our database, i.e. five categories and
four garments for each category. For each shape, there are
four garments of different colours and materials. We used
an electric scale to weigh every garment and divide their
weights into three discretised levels, namely, light, medium
and heavy weights. Therefore, in these experiments, we do
not predict the real weight values of tested garments but
predict the discretised weights levels in order to enable a
robot sort garments as we do before putting garments into
a washing machine. We train one GarNet for shape and one
for weights. This is because each encodes knowledge based on
the observed features, which result in different, uncorrelated
2D manifolds as can be observed in Fig. 3. For example, pants
and sweaters (heavy weights) are close together in Fig. 3(left)
but are encoded into heavy in Fig. 3(right) which does not
correlate to the shape manifold if we merge their clusters.

To validate our network and test our hypothesis (Section
I), we propose to carry out a leave-one-out cross-validation
methodology. That is, we group all garments into four groups
and each garment category as shown in Fig. 4, has four differ-
ent garment instances. Hence, four experiments are conducted,
where three groups served as training groups and one group
served as a testing group. The testing group only contains
image frames of unseen garments, which means these images
are not included in the three training groups. We ensure that the

garments in the testing group are entirely ‘new’ and ‘unseen’
to the robot. We averaged accuracies for each category output
from the four experiments and used the testing group to
validate the classification performance of our approach. For
each of the four experiments, the training group represents
80% of our video sequence database, while the testing group
represents 20% of our database.

We have used a Baxter robot to manipulate garments. The
Baxter robot grasped garments from a fixed point, lifted the
garments to a point above the table (height is 1m) and then
dropped the garments to fall on the table. The running time is 6
seconds where the robot grasps a garment, and stops in the air
for 2 seconds before dropping the garments off to the table. An
Xtion depth-sensing camera is used to capture garment video
sequences. Each garment is captured ten times, which means
that the grasp-and-drop operation is conducted ten times. There
are 200 videos in total, and each video contains 60 frames
(sampling frequency is 10Hz; video sequence length is 6
seconds). Therefore there are 12,000 image frames in total.
Figure 1 shows the experimental setup of the robot grasping
and dropping garments.

Our experiments include 50 unseen garment videos con-
taining ten videos for each of the four leave-one-out cross-
validation experiments. For each video sequence, we predict
the shape and discretised weight of the garment in the video.
Therefore, we have ten predictions for each category (one
prediction for each video) and 50 predictions in total. The
prediction accuracy for each category is defined as the per-
centage of correctly predicted videos of each category.

We compare our approach with four state-of-art (SOA).
Duan et al. [17] proposed classifying shapes and discretised
weights by leveraging a convolutional neural network and a
long-term short memory unit (CNN-LSTM). Sun et al. [3]
provided an interactive approach to classifying garments based
on a multi-class Gaussian-Process classifier where a robot
gains confidence in predicting garment shapes by shaking and
flipping the garments. In their later project [4], they propose to
classify garment shapes with a global-local-features classifier,
where the classifier captures two local features: local B-Spline
Patch (BSP) and locality-constrained linear coding, and three
global features: Histogram of Shape Index (SI), Histogram of
Topology Spatial Distances (TSD), and Histogram of Local
Binary Pattern (LBP). Martinez et al. [5] introduced a contin-
uous perception method to classifying the shapes of garments,
where a robot observes video sequences being grasped and

https://liduanatglasgow.github.io/GarNet/
https://liduanatglasgow.github.io/GarNet/
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Fig. 5. Examples of the early-stop strategy proposed in this paper. As observed
in both plots, GarNet becomes confident over time, and the early-stop strategy
activates if 80% of decision points in the garment similarity map are within
a correct category. Plots for all unseen predictions can be accessed at https:
//liduanatglasgow.github.io/GarNet/

dropped and makes decisions on garment shapes based on
these video sequences. We compare our approach with these
four approaches on shape classification accuracy and running
time if reported.

V. RESULTS

While training GarNet, our approach achieves a validation
classification performance of 93.9% for shapes and 94.9%
for discretised weights. Figure 3 shows the mappings of
testing garments onto the similarity map, where it is possible
to observe that garments of different categories are pulled
apart; while garments of the same categories are clustered
together. These results confirm that GarNet coupled with a
triplet loss function (Eq. 1) is able to extract physical dis-
similarities between categories while maintaining inter-class
physical properties within well-defined clusters.

A. Continuous Perception Experiments

Examples of our experimental results are shown in Figure 5.
We can see that although GarNet does not recognise garments
correctly from the beginning (because most of the decision
points belong to an incorrect category), GarNet gradually
gains confidence in predicting a correct category for each
garment because more decision points are within the correct
category and percentages of decision points are eventually
over 80%. The classification task is consequently stopped
early, and the system does not need to observe the full
video sequence to make a correct prediction of the garment
class. We conduct two ablation studies for the continuous
perception experiment. The first study is about comparing
predictions only on local garment similarity points (GSPs)
rather than on decision points (DPs). The second ablation
study compares the performance of GarNet trained on RGB
and depth images. Tables I and II show the results of the
leave-one-out cross-validation experiments, where the network
achieved 93% for shape classification and 96% for discretised
weight classification. The results show that our network has
an expected ability to classify shapes and discretised weights
of unseen garments.

We use decision points, DPs, (Eq. 4) to make predictions
on unseen garment shapes and discretised weights. That is,
the position of a decision point on the garment similarity

map (in Figure 3) depends on all previously observed image
frames rather than on currently observed image frames. From
Tables I and II, we can observe that using decision points
has better performance than using garment similarity points
(93% vs 78% for shapes and 98.5% vs. 80% for discretised
weights, respectively). This shows that GarNet benefits from
using accumulated knowledge via decision points rather than
episodic knowledge as in [4], [11].

To investigate whether the type of image affects the overall
prediction of a garment class, we trained GarNet using RGB
and depth images. Tables I and II show that a GarNet trained
on depth images outperforms a GarNet trained on RGB images
and a GarNet trained on RGBD images (93% vs 53.5% vs
47.5% for shapes and 98.5% vs 65% vs 58.5% for discretised
weights, respectively). The increase in performance is because
depth images capture structural and dynamic information of
the garment being manipulated and are better suited to capture
the physical properties of garments as opposed to RGB images
as proposed by [6]. We have explored this phenomenon in
our previous work [13] and found that RGB images capture
visual texture information of garments, but this information
is affected by lighting conditions that vary between exper-
iments, resulting in worse performance than depth images.
Furthermore, texture information from the RGB images is
not constant because accessories of garments, colours and
lighting conditions quickly change across different garments.
We can observe that the GarNet trained on the RGBD dataset
unperformed compared to only training on depth or RGB
images in Tables I and II. We can conclude that RGB and
depth images capture different features of garments and the
combination of them makes GarNet to loose the ability (as
suggested by [18]) to learn distinctive features that can be
used for the shape and weights classification task.

Note that the intra-class variability for the pants category is
consistent (i.e. we use jeans for this category, see Fig. 4, top
row). Therefore, classification scores in Table I for pants are
high across the ablation studies with respect to other shape
categories of which they have high intra-class variability. This
result shows that in order to generalise to unseen garments,
depth images and decision points offer the best combination
for the continuous perception task.

B. Ablation study on the confidence intervals bandwidths
A bandwidth, as defined in section III-A, determines the size

of a confidence interval. We, therefore, evaluate the effect of
the bandwidth selection with respect to the performance of
GarNet. A confidence interval of a garment cluster is a region
in the garment similarity map of which a certain percentage
of GSPs are grouped together.

A decrease in the bandwidth value denotes a decrease in
the percentage of GSPs included within the garment cluster.
An increase in the bandwidth means that almost all GSPs
should be included, while a small portion of points are
relatively far away from a cluster. This means that a confidence
interval may overlap with other confidence intervals, or even
multiple confidence intervals will be generated for one garment
cluster. The the final classification prediction depends on the
bandwidth.

https://liduanatglasgow.github.io/GarNet/
https://liduanatglasgow.github.io/GarNet/
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TABLE I
TABLE: PREDICTION RESULTS (SHAPES)

Category depth, DP depth, GSP RGB, DP RGB, GSP RGBD, DP RGBD, GSP
pants 97.5% 82.5% 97.5% 87.5% 57.5% 10.0%
shirts 77.5% 75% 87.5% 62.5% 55.0% 80.0%

sweaters 97.5% 85% 25% 20.0% 60.0% 5.0%
towels 92.5% 65% 50% 17.5% 17.5% 0.0%
t-shirts 100% 82.5% 32.5% 22.5% 47.5% 37.5%

Average 93.0% 78.0% 53.5% 42% 47.5% 26.5%
Standard Deviation 8.1% 7.3% 29.5% 28.1% 15.6% 29.7%

TABLE II
PREDICTION RESULTS (DISCRETISED WEIGHTS)

Category depth, DP depth, GSP RGB, DP RGB, GSP RGBD, DP RGBD, GSP
lights 97.5% 50% 37.5% 5.0% 90.0% 55.0%

mediums 97.5% 87.5% 72.5% 58.75% 48.75% 65.0%
heavies 100% 87.5% 71.25% 71.25% 52.5% 18.75%
Average 98.5% 80.0% 65.0% 53.0% 58.5% 44.5%

Standard Deviation 1.2% 15.0% 13.8% 24.6% 15.8% 21.3%

TABLE III
BANDWIDTH ABLATION STUDY.

Bandwidth Shapes Discretised weights
10% 2.0% 4.0%
25% 16.0% 26.5 %
50% 46.0% 26.5%
75% 84.5% 79.5%
95% 93.0% 98.5%
99% 82.0% 99.0%

In Table III, we find that a bandwidth of 95% has the best
performance, and we use 95% as the bandwidth for the rest
of the experiments. However, at a 99% bandwidth, we can
observe that the prediction accuracy drops while classifying
shapes; this is because GSPs are grouped into incorrect
categories.

C. Comparison with the state-of-art methods
We have compared our results with the results from [4]

[5] [3] [17]. The garments use in this paper are the same
as those reported in [3] [5] [4] [17] in order to ensure fair
comparison between approaches. As observed in Table IV,
our GarNet outperforms previous work on predicting unseen
garment shapes. Also, compared with [17] (17 seconds) and
[4] (180 seconds), our method is also faster (8 seconds)
because the robot continuously perceives garments without
interruptions. There are several reasons why our network has
the best performance and we discuss these below.

1) The use of a garment similarity map to encode knowl-
edge of garment shapes and weights: Inspired by [6], where
the authors proposed learning the physical similarity between
simulated fabrics and predicting physical properties of real
fabrics, we find that the similarity network effectively predicts
unseen deformable objects, such as garments and fabrics. In
our previous work [17], where we focused on utilising solely
classification approach rather than the clustering approach in
our network, we found that our clustering approach presented
in this paper improves over the classification approach. Com-
pared with a traditional classifier that regresses embeddings

TABLE IV
COMPARISONS WITH THE STATE-OF-ART. THE RUNNING TIME IS GIVEN IN

SECONDS AND NA MEANS NOT AVAILABLE

Method Accuracy (%) Time
CNN-LSTM (classification) [17] 48% 17

Interactive Perception [3] 64.2% NA
Single-shot category recognition [4] 67.0% 180

Continuous Perception in [5] 70.8% 6
GarNet (Continuous Perception, Ours) 93.0% 8

of data into labels (which is equivalent to asking which
shape/discretised weight classes the data belongs to), our
GarNet network learns geometric and physical characteristics
that makes them the same or different (which is equiva-
lent to asking why the data presents the same or different
shapes/discretised weights). Therefore, for unseen garments,
the network only needs to decide similarities of the garments
for each garment cluster rather than classify them into certain
classes, reducing the prediction difficulty.

2) Continuous Perception.: Traditional methods such as
[4], [11] that predict shapes and weights of garments are based
on static garment features such as wrinkles, outlines, creases,
to name a few. Instead, we propose to carry out predictions on
encoded knowledge in the GSM while learning the dynamic
properties of garments.

3) Early-Stop strategy.: Compared with [3] [5], where the
proposed approaches consist of having a robot observing the
entire interaction with a garment, our approach only requires a
robot to observe interactions partly if termination requirements
are satisfied. Therefore, our approach has a mechanism to stop
a manipulation on the fly as GarNet can process images every
0.1 seconds, taking an average of 4 seconds to generate a
prediction.

VI. CONCLUSION

We have presented a garment similarity network (GarNet)
that learns the similarity of the garments and predicts contin-
uously their shapes and their visually perceived weights. We
have also introduced a Garment Similarity Map (GSM) that
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encodes garment shapes and weights knowledge into clusters.
These clusters were then used to decide on which cluster
unseen garment samples belongs to heuristically. Our experi-
mental validation shows that, GarNet obtains high prediction
accuracies while classifying shapes (93%) and discretised
weights (98.5%), Fig. 5. Similarly, we have compared Gar-
Net’s performance with the state of the art, and GarNet showed
an increase of 22.2% of classification accuracy performance
(Table IV).

Compared with previous work on continuous perception [5],
GarNet has the advantage of an ‘early stop’ strategy. That
is, a robot does not need to observe the full motion (video
sequences) to make predictions which could enable robots
to be more responsive and effective while manipulating gar-
ments and deformable objects in a laundry pipeline. However,
GarNet, in this paper, does not support online learning of
unknown garment shapes. For instance, we train GarNet on
five shape categories, and it can predict shapes of unseen
garments from those categories. Enabling a robot to recognise
garments of unknown categories is pivotal in our future work.
Currently, our approach only supports classifying garments
into known categories. To extend Garnet to unknown cate-
gories, we propose to implement a novelty detection approach
and using the GSM to detect whether the observed garment
is unknown based on the distance from the known clusters.
Then, a continual learning approach (e.g. [19]) can be adopted
to allow GarNet to be retrained without loosing previous
knowledge.

In future work, we plan to devise an online-learning ap-
proach for GarNet to investigate complex manipulations inter-
actions (enabled by a behaviour-based reinforcement learning
agent [20]), such as twisting garments, shaking garments
or rotating garments. From those interactions, differences in
stretching and bending characteristics of garments can be
exploited to evaluate garments’ stiffness parameters, which can
potentially help to develop a robot dexterous garment manipu-
lation approach for folding [21], flattening [22], to name a few,
that requires fewer iterations. Furthermore, knowledge of the
garments weights, i.e. whether it is light, medium or heavy,
can enable a robot to plan for these complex manipulation
interactions since it will be possible to reduce the search space
while estimating the dynamic physical properties of garments.
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