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Abstract—Computation offloading via device-to-device communications can improve the performance of mobile edge computing by
exploiting the computing resources of user devices. However, most proposed optimization-based computation offloading schemes lack
self-adaptive abilities in dynamic environments due to time-varying wireless environment, continuous-discrete mixed actions, and
coordination among devices. The conventional reinforcement learning based approaches are not effective for solving an optimal
sequential decision problem with continuous-discrete mixed actions. In this paper, we propose a hierarchical deep reinforcement
learning (HDRL) framework to solve the joint computation offloading and resource allocation problem. The proposed HDRL framework
has a hierarchical actor-critic architecture with a meta critic, multiple basic critics and actors. Specifically, a combination of deep
Q-network (DQN) and deep deterministic policy gradient (DDPG) is exploited to cope with the continuous-discrete mixed action
spaces. Furthermore, to handle the coordination among devices, the meta critic acts as a DQN to output the joint discrete action of all
devices and each basic critic acts as the critic part of DDPG to evaluate the output of the corresponding actor. Simulation results show
that the proposed HDRL algorithm can significantly reduce the task computation latency compared with baseline offloading schemes.

Index Terms—Computation offloading, resource allocation, mobile edge computing, device-to-device, deep reinforcement learning.
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1 INTRODUCTION

THE development of smart mobile devices (MDs) pro-
motes the booming of new applications, such as natural

language processing, face recognition, interactive gaming,
virtual/augment reality, e-health and e-education. Accord-
ing to Grand View Research, the global mobile application
market size is expected to grow at a compound annual
growth rate of 11.5% from 2020 to 2027 [1]. These emerging
applications usually demand extensive computing capabil-
ity, vast battery energy, and short response time. However,
the computing capability and battery level of MDs are in
general constrained. Executing computation-intensive ap-
plications or tasks locally at MDs poses severe challenges
to users’ quality of experience (QoE).

To address this issue, mobile cloud computing (MCC),
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which allows MDs offload the computation tasks to remote
clouds for processing, has been intensively investigated [2],
[3], [4]. However, the long transmission distances from MDs
to the remote cloud usually cause high transmission latency
of MDs. To address this problem, mobile edge computing
(MEC) has emerged as a promising paradigm to provide
cloud-computing capabilities within radio access networks
(RANs) [5], [6], [7]. By offloading the computation tasks
to MEC servers in proximity to MDs, the computing per-
formance, including the latency and energy consumption,
could be greatly improved.

Meanwhile, with the device-to-device (D2D) commu-
nication mode specified by the Third Generation Partner-
ship Project (3GPP) [8], offloading the computation tasks
to nearby MDs via D2D communication links has been
considered as an efficient solution to support computing in-
tensive applications [9]. This computation offloading mode
can effectively reduce the transmission latency and energy
consumption of MDs. By taking the advantages of the
proximity, spatial reuse, traffic offloading gain, and better
coverage of D2D communications, D2D-assisted MEC of-
floading architectures can help mobile users enjoy ubiq-
uitous edge computing anywhere and anytime. However,
most current optimization or game based methods [10], [11],
[12] require the prior information of environment statistics
and cannot be efficiently applied to dynamic D2D-assisted
MEC offloading systems.

In fact, deploying D2D-assisted MEC offloading service
faces several challenging issues. First, various computation
nodes (i.e., MEC servers and MDs) have different network
conditions and resource constraints, and it is necessary to
design efficient offloading policies while considering the
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complex and dynamic network and resource states. Second,
some computation tasks can be partitioned for local and
remote executions. Partial computation offloading mode
makes offloading policy design even more complicated.
Third, computation offloading at RANs requires abundant
spectrum resource for data transmission. Spectrum reuse
may result in interference which may further increase the
transmission latency, e.g., due to Automatic Repeat Re-
quest (ARQ). Hence, radio spectrum resource allocation
is critical for improving users’ QoE in a spectrum shared
D2D-assisted MEC offloading system. Last, intuitively time-
varying wireless channel condition may greatly affect the
optimal offloading decision in a D2D-assisted MEC system.
Thus, it is non-trivial to design an optimal offloading policy
which can robustly and dynamically adapt to time-varying
wireless environment.

To address the afore-mentioned challenges, in this paper,
we investigate joint computation offloading and resource
allocation problem for D2D-assisted MEC networks with
aim to minimize the total task computation latency. We con-
sider a multi-cell, multi-server, multi-user heterogeneous
network where each MEC server is co-located with a base
station (BS). An MD can partially offload its computation
task to either an MEC server or a nearby MD via a cel-
lular or a D2D link, respectively. The joint computation
offloading and resource allocation problem is formulated
as a mixed-integer and non-convex programming problem
and the difficulty of solving the problem lies in three aspects:
time-varying wireless environment, continuous and discrete
mixed action spaces, and coordination among MDs. To han-
dle this problem, we propose a hierarchical deep reinforce-
ment learning (HDRL) framework with a hierarchical actor-
critic architecture. The proposed HDRL framework can
automatically learn the network environment and generate
the continuous action (offloading ratio) and discrete actions
(offloading node and sub-channel selection) to minimize the
total task computation latency. Simulation results show that
the proposed HDRL framework can significantly reduce
the average task computation latency when compared with
other popular offloading schemes. The main contributions
of this paper are summarized as follows.

1) Combination of DQN and DDPG: A combination of
DQN and DDPG is exploited to cope with the
continuous-discrete mixed action space. It utilizes
actor to output continuous action, while uses crit-
ic to evaluate the action of actor and output the
discrete action. The continuous action and discrete
action can be jointly obtained without discretizing
or relaxing the action space.

2) Hierarchical Actor-Critic Architecture: To learn contin-
uous actions and joint discrete actions simultane-
ously, we propose a hierarchical actor-critic archi-
tecture with two level hierarchy. At the first level of
hierarchy, each basic critic acts as the critic part of
DDPG to evaluate the actions of the corresponding
actor. At the second level of hierarchy, the meta critic
acts as a DQN to output the joint discrete action
of all devices, to realize the coordination among
devices.

3) Adaptive Offloading Method: The proposed HDRL

algorithm is an online learning method which is free
of offline training phase and updates deep neural
networks (DNNs) online. The proposed method can
robustly and dynamically adapt to time-varying
wireless environment.

4) Higher Computation Offloading Performance: Simula-
tion results show that our proposed HDRL based
algorithm achieves 12% performance improvement
on average task computation latency compared with
DQN based offloading scheme.

The remainder of this paper is organized as follows.
The related work is surveyed in Section 2. In Section 3, we
present the system model and formulate the joint computa-
tion offloading and resource allocation problem. An HDRL
framework is proposed to solve the problem in Section 4.
In Section 5, we evaluate the performance of the proposed
algorithm by simulation. Finally, we conclude this paper in
Section 6.

2 RELATED WORK

The design of computation offloading policies has been in-
tensively investigated in recent years. Most studies exploit-
ed optimization or game theory methods to solve the com-
putation offloading problems [13], [14], [15], [16], [17], [18],
[19], [20], [21]. Considering binary offloading where a task
has to be executed locally or offloaded to the edge server as
a whole, a Lyapunov optimization-based dynamic compu-
tation offloading algorithm was proposed in [13] to jointly
decide the offloading decision, CPU-cycle frequencies, and
transmit power. Under the assumption that a task can be
arbitrarily partitioned for parallel processing, the authors
of [14] exploited partial offloading and proposed a locally
optimal algorithm with the univariate search technique to
minimize the execution latency and energy consumption.
They demonstrated that partial offloading can achieve lower
execution latency and energy consumption when compared
with binary offloading. Chen et al. [15] studied the multi-
user computation offloading problem in a multi-channel
wireless interference environment and proposed a game
theoretic approach for achieving efficient computation of-
floading in a distributed manner. Zhang et al. [16] investi-
gated the energy-efficient resource allocation problem for
cloud services and proposed a two-phase framework to
minimize the energy consumption, where a multi-threshold-
based classification scheme was used to classify various
hosts into different groups in the first phase, and then a
metaheuristic search method was developed to search an
energy-efficient host for allocating its resource to different
services in the second phase.

To maximize the utilization of the computation resources
in both MEC servers and mobile devices, He et al. [17]
proposed an optimal task offloading policy to maximize the
system computation capacity for a multi-user D2D-enabled
MEC system. A computation offloading scheme based on
alternating direction method was proposed in [18] to mini-
mize the computation latency. To reduce the implementation
complexity, a heuristic scheme based on greedy task assign-
ment was developed in [19]. Considering the interference
between cellular and D2D links with shared spectrum, a
joint partial offloading and resource allocation scheme was
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proposed in [20] to minimize the overall computation laten-
cy. With the involvement of vehicular computing and fog
computing, Yadav et al. [21] proposed a heuristic approach
based offloading policy to minimize energy consumption
and service latency in a vehicular fog environment. Howev-
er, these optimization or game based solutions require the
prior information of environment statistics and cannot be
efficiently applied to dynamic D2D-enabled MEC systems.

Some studies have applied machine learning techniques
to solve the computation offloading problems [22], [23], [24],
[25], [26], [27]. Addressing the issue of time-varying channel
state information (CSI) in MEC systems, a reinforcement
learning (RL) based offloading policy was developed in [22]
to maximize users’ long-term utilities. To speed up decision-
making time, the authors of [23] proposed an RL based
computation offloading scheme to minimize latency and
energy consumption for edge-enable sensor networks. Con-
sidering random user arrivals, Huang et al. [24] proposed
to integrate RL and stochastic gradient descent to improve
system performance in an online manner. To handle the high
dimensionality in state space, the authors of [25] used a
DQN to learn the optimal offloading policy in which deep
neural network is used to approximate the Q-function. A
double DQN (DDQN) based algorithm was developed in
[26] to solve the computation offloading problem without
knowing a priori knowledge of network dynamics. In [27],
the authors investigated the joint resource allocation and
task scheduling problem and proposed a deep RL (DRL)
based offloading approach which adopts the actor-critic
architecture to generate continuous action and then maps
the action to a discrete one to handle the large action space.
However, these studies only deal with the computation
offloading problems with either a discrete action space
or a continuous action space. In reality, the action space
of the computation offloading problem is often discrete-
continuous mixed, i.e., discrete and continuous actions need
to be jointly decided to accomplish the offloading process.
For example, we should not only select the offloading node
or the transmission channel, but also decide the offloading
ratio to minimize the computation latency.

The authors of [28] proposed a multi-task learning
method to jointly optimize the offloading decision and
computational resource allocation. However, this method
is based on offline training and requires training datasets.
Since appropriate training datasets may not be available at
hand, it is more suitable to use an online learning method
to make the offloading decision over the time. A hybrid
decision controlled actor-critic learning method was pro-
posed in [29] for the dynamic offloading problem, where
the actor uses deep deterministic policy network to output
continuous action and the critic uses deep Q-network to
output discrete action and also evaluate the actor’s output.
However, the authors ignored the transmission interference
by allocating orthogonal channels to different users in an
MEC system. In general, D2D communication operating in
underlay mode shares the cellular spectrum by frequency
reuse. With the involved D2D communications, the coordi-
nation among devices need to be addressed to satisfy the
constraints in offloading node selection and spectrum reuse.
Therefore, an efficient learning based method is needed
to solve the joint computation offloading and resource al-

location problem with time-varying wireless environment,
continuous-discrete mixed actions, and coordination among
devices for a D2D-enabled MEC system.

3 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first present the network model and then
describe the task, computation and communication models
in details. Thereafter, we formulate the joint computation
offloading and resource allocation problem with the aim of
minimizing the total task computation latency.

3.1 Network Model

We consider a multi-cell, multi-server, multi-user heteroge-
neous network with D2D communications, as illustrated
in Fig. 1. There are M BSs deployed in the network and
an MEC server is deployed with each BS which provides
computation offloading service to the mobile devices [30].
In general, an MEC server can be either a physical server
or a virtual machine with a certain computation capability
and can communicate with the mobile devices via cellular
links provided by the co-located BS [31]. The set of MEC
servers is denoted as M = {1, 2, ...,M}. For convenience
of expression, we will refer to the BS set and MEC server
set interchangeably. There are two types of mobile devices,
namely, request devices (RDs) and service devices (SDs)
[32]. Let U = {1, 2, ..., U} denote the set of RDs which have
a computation task in a time slot t, t ∈ T = {1, 2, ..., T},
where T is the finite time horizon. The set V = {1, 2, ..., V }
of SDs consists of all idle mobile devices which can offer
computation offloading services for RDs.

: BS

: MEC server

: RD

: D2D link

: Cellular  link

BS 1

BS 2 BS M

RD 1

RD 2

RD 4

SD V

RD 3

SD 2 RD U

RD 5

SD 1

: SD

Fig. 1. The system model.

Let LBS,m ∈ R2, LRD,u ∈ R2 and LSD,v ∈ R2 denote
the locations of BSm,m ∈M, RD u, u ∈ U and SD v, v ∈ V ,
respectively. We adopt a simple communication protocol to
determine the coverage area of BSs and the neighbouring
SDs for D2D communications [33]. Essentially, RD u is in
the coverage area of BS m if ‖LBS,m − LRD,u‖ < RBS ,
where RBS is the cell coverage radius. Note that each RD
can be located in the coverage area of one or more BSs.
For example, in Fig. 1, RD 2, which lies in the overlapping
coverage areas of BS 1 and BS 2, can communicate with
either one of these BSs. Moreover, SD v is a neighbour of
RD u if ‖LSD,v − LRD,u‖ < RD2D, where RD2D is the
maximum distance of D2D communication.
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Each RD can offload its computation task to ei-
ther an MEC server or a neighbouring SD via cellular
or D2D link respectively. The set of MEC servers that
RD u can communicate with is defined as NMEC,u =
{m |m ∈M, ‖LBS,m − LRD,u‖ < RBS }. Moreover, the set
of neighbouring SDs of RD u is denoted by ND2D,u =
{v |v ∈ V, ‖LSD,v − LRD,u‖ < RD2D }. We assume that an
SD can serve at most one offloading RD at a time, resulting
in non-overlapping D2D pairs in the network. Note that the
network can stimulate and reward the SDs to serve others
and benefits from that [9]. We focus on the resource manage-
ment in this paper and leave the incentive mechanism for
future work. For better readability, we list the key notations
used in this paper in Table 1.

TABLE 1
Notations

Notation Definition
M Set of MEC servers
U Set of RDs
V Set of SDs
K Set of sub-channels
btu Task input data size
ctu Required number of CPU cycles per bit
αtu Offloading ratio
f tRD,u Computation capacity of RD u

f tSD,v Computation capacity of SD v

f tMEC,m Computation capacity of MEC server m
xtu,v D2D offloading indicator
Xt
u,m MEC offloading indicator

ytu,v,k Sub-channel assignment indicator for D2D link
Y tu,m,k Sub-channel assignment indicator for cellular link
ptu Transmit power
Ht
u,m,k/htu,v,k Channel gain of cellular/D2D link

W t
u,m,k/wtu,v,k Transmission rate of cellular/D2D link

EtRD,u Energy consumption of RD u

EtSD,v Energy consumption of SD v

Ltu Task computation latency

3.2 Task Model
Let us denote the computation task generated by RD u in
time slot t as tuple J tu = (btu, c

t
u), where btu and ctu denote

the size of input data (in bits) and the number of CPU
cycles required for computing one-bit data respectively. In
this paper, we consider data-partition applications, where
the input data can be arbitrarily partitioned for parallel
processing due to bit-wise independence. Such kind of
applications include virus scan, image compression and
recognition applications, etc. [34]. This implies that a fraction
of this kind of task can be processed locally, and the rest can
be offloaded either to an MEC server or a neighbouring SD
for parallel execution.

We define the offloading ratio as αtu ∈ [0, 1] for task J tu,
which can be considered as the percentage of the input data
size (in bit) to be offloaded. Specifically, (1−αtu) · btu bits are
processed locally, while αtu · btu bits are offloaded for remote
execution. Hence, the computation of a task involves local
execution, remote execution and communication, which are
discussed in the following in detail.

3.3 Computation Model
1) Local Execution: Let f tRD,u (in cycles/s) denote the available
computational capacity of RD u, u ∈ U in time slot t. Thus,

the task execution time for processing a fraction of task J tu
locally in RD u can be derived as

Lu,tloc,exe =
(1− αtu) · btu · ctu

f tRD,u
, (1)

where (1 − αtu) · btu · ctu is the total CPU cycles required for
computing (1− αtu) of task J tu. The energy consumption of
RD u for processing (1− αtu) of task J tu locally is given as

Eu,tloc,exe = κ0 · (f tRD,u)
2 · (1− αtu) · btu · ctu, (2)

where κ0 is the energy coefficient depending on the chip
architecture [18], [20] and set as 10−27 [18].

2) D2D Execution: Let f tSD,v (in cycles/s) denote the avail-
able computational capacity of SD v, v ∈ V in time slot t. We
use D2D offloading binary variable xtu,v ∈ {0, 1} to indicate
whether RD u, u ∈ U offloads its task to neighbouring SD v,
v ∈ ND2D,u or not: xtu,v = 1 if RD u offloads its task to SD
v and 0 otherwise. We assume that SD v can serve at most
one offloading RD at a single time slot, and thus we have∑
u∈U x

t
u,v ≤ 1. The task execution time of processing αtu of

task J tu in neighbouring SD v can be calculated as

Lu,tD2D,exe =
∑

v∈ND2D,u

xtu,v · αtu · btu · ctu
f tSD,v

. (3)

The energy consumption of SD v for processing αtu of task
J tu can be calculated as

EtSD,v =
∑
u∈U

xtu,v · κ0 · (f tSD,v)
2 · αtu · btu · ctu. (4)

3) MEC Execution: Let f tMEC,m (in cycles/s) denote the
available computational capacity of MEC server m, m ∈M
in time slot t. We use MEC offloading binary variable
Xt
u,m ∈ {0, 1} to indicate whether RD u, u ∈ U offloads

its task to MEC server m, m ∈ NMEC,u or not: Xt
u,m = 1

if RD u offloads its task to MEC server m and 0 otherwise.
We assume that each MEC server adopts a non-preemptive
CPU allocation scheme, i.e., MEC server m allocates all
computation resource to a task until the task is completed
[35]. Each MEC server can execute the tasks based on the
first-come first-served (FCFS) policy [18]. Let qtm,u be the
index of task J tu in the process sequence of MEC server m,
and tasks are executed in the ascending order of qtm,u. The
task execution time of processing αtu of task J tu in MEC
server m can be calculated as

Lu,tMEC,exe =

∑
m∈NMEC,u

Xt
u,m ·

αtu · btu · ctu +
∑
i∈U,

qtm,i<q
t
m,u

Xt
i,m · αti · bti · cti


f tMEC,m

.

(5)

3.4 Communication Model

We assume that the cellular and D2D communication links
share the same frequency band. We adopt OFDMA scheme
in the uplink [17]. The available bandwidth Btot is divided
into K orthogonal sub-channels. Let K = {1, 2, ...,K}
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denote the set of K orthogonal sub-channels, and the band-
width of each sub-channel is B (in Hz). Since we consider a
kind of data-partition applications (e.g., the face detection
and recognition application) which usually have similar
input data sizes, it is reasonable to assume that each RD
is assigned to one sub-channel [12], [17], [36]. In addition,
to ensure the orthogonality of uplink transmissions among
RDs in the same cell, we assume that RDs in the same
cell are allocated with different sub-channels, and only
the suffered interferences from other cells and D2D links
are considered [18]. Note that the communication resource
allocation mainly involves the allocation of available sub-
channels. The appropriate sub-channel allocation can de-
crease the mutual interference and transmission latency.

We define sub-channel assignment binary variable
Y tu,m,k ∈ {0, 1} to indicate whether RD u, u ∈ U linked
to MEC server m, m ∈ NMEC,u is assigned sub-channel
k, k ∈ K in time slot t: Y tu,m,k = 1 if RD u linked to
MEC server m is assigned sub-channel k and 0 otherwise.
Let binary variable ytu,v,k ∈ {0, 1} indicate whether RD u,
u ∈ U linked to neighbouring SD v, v ∈ ND2D,u is assigned
sub-channel k, k ∈ K in time slot t: ytu,v,k = 1 if RD
u linked to neighbouring SD v is assigned sub-channel k
and 0 otherwise. To make effective use of the spectrum, we
assume a sub-channel can be shared by at most two RDs
simultaneously [20].

Let Ht
u,m,k and htu,v,k denote the channel gain of the

communication links from RD u, u ∈ U to MEC server
m, m ∈ M and SD v, v ∈ V on sub-channel k, k ∈ K
in time slot t, respectively. The channel gains incorporate
independent Rayleigh fading and distance based path loss
[20], which can be expressed as, respectively

Ht
u,m,k = Gtu,m,k ·D−ςu,m, (6)

and

htu,v,k = gtu,v,k · d−ςu,v, (7)

where Gtu,m,k and gtu,v,k denote independent Rayleigh fad-
ing;D−ςu,m and d−ςu,v are path loss. Here,Du,m and du,v are the
distances from RD u, u ∈ U to MEC server m, m ∈ M and
SD v, v ∈ V , respectively; and ς is the path loss exponent.

Let ptu denote the transmit power of RD u, u ∈ U . Then,
the transmission rates W t

u,m,k and wtu,v,k from RD u, u ∈ U
to MEC server m, m ∈ NMEC,u and neighbouring SD v,
v ∈ ND2D,u on sub-channel k, k ∈ K in time slot t can be
derived using Shannon formula as, respectively

W t
u,m,k = B · log2(1 + SINRu,m,k,tMEC ), (8)

and

wtu,v,k = B · log2(1 + SINRu,v,k,tD2D ), (9)

where SINRu,m,k,tMEC and SINRu,v,k,tD2D are the signal to inter-
ference plus noise ratios (SINRs) at MEC and SD, which can
be expressed as, respectively

SINRu,m,k,tMEC =

ptu ·Ht
u,m,k

σ2 +
∑
i∈U
i6=u

pti ·Ht
i,m,k · (

∑
j∈ND2D,i

yti,j,k +
∑

n∈NMEC,i

Y ti,n,k)
,

(10)

and

SINRu,v,k,tD2D =

ptu · htu,v,k
σ2 +

∑
i∈U
i 6=u

pti · hti,v,k · (
∑

j∈ND2D,i

yti,j,k +
∑

n∈NMEC,i

Y ti,n,k)
,

(11)

where σ2 is the additive white Gaussian noise (AWGN).
Therefore, the transmission time of RD u for offloading

αtu of task J tu to MEC server m and neighbouring SD v can
be calculated as, respectively

Lu,tMEC,trans =
∑

m∈NMEC,u

∑
k∈K

Y tu,m,k · αtu · btu
W t
u,m,k

, (12)

and

Lu,tD2D,trans =
∑

v∈ND2D,u

∑
k∈K

ytu,v,k · αtu · btu
wtu,v,k

. (13)

The energy consumption of RD u for offloading αtu of
task J tu to MEC server m and neighbouring SD v can be
calculated as, respectively

Eu,tMEC,trans =
∑

m∈NMEC,u

∑
k∈K

Y tu,m,k · ptu · αtu · btu
W t
u,m,k

, (14)

and

Eu,tD2D,trans =
∑

v∈ND2D,u

∑
k∈K

ytu,v,k · ptu · αtu · btu
wtu,v,k

. (15)

Note that only the latency of uplink transmission is
considered, and the latency of computation outcome trans-
mission from the MEC server or neighbouring SD to RD
u is neglected in this paper. This is because the size of
computation outcome data in general is much smaller than
that of the computation input data including the system
settings, input parameters and program codes [37].

3.5 Problem Formulation

Since each task can be processed locally and offloaded for
remote execution concurrently, the computation latency of
task J tu is determined by the maximal value of Lu,tloc,exe,
Lu,tD2D,trans + Lu,tD2D,exe and Lu,tMEC,trans + Lu,tMEC,exe. Thus,
the computation latency of task J tu can be written as

Ltu = max{Lu,tloc,exe, L
u,t
D2D,trans + Lu,tD2D,exe,

Lu,tMEC,trans + Lu,tMEC,exe}.
(16)

In addition, the energy consumption of RD u for task J tu
includes the energy consumed by local execution and data
transmission. Therefore, the energy consumption of RD u
for task J tu can be calculated as

EtRD,u = Eu,tloc,exe + Eu,tD2D,trans + Eu,tMEC,trans. (17)

The objective of the joint computation offloading and
resource allocation problem is to minimize the long-term



6

total task computation latency, which can be formulated as
follows:

min
αt

u,x
t
u,v,X

t
u,m,y

t
u,v,k,Y

t
u,m,k

∑
t∈T

∑
u∈U

Ltu, (18)

s.t. αtu ∈ [0, 1], u ∈ U , t ∈ T , (18a)∑
v∈ND2D,u

xtu,v +
∑

m∈NMEC,u

Xt
u,m =

⌈
αtu
⌉
, u ∈ U ,

t ∈ T ,
(18b)

∑
u∈U

xtu,v ≤ 1, v ∈ V, t ∈ T , (18c)∑
k∈K

ytu,v,k = xtu,v, u ∈ U , v ∈ ND2D,u, t ∈ T , (18d)∑
k∈K

Y tu,m,k = Xt
u,m, u ∈ U ,m ∈ NMEC,u, t ∈ T , (18e)∑

u∈U
Y tu,m,k ≤ 1,m ∈M, k ∈ K, t ∈ T , (18f)∑

u∈U

∑
m∈NMEC,u

Y tu,m,k +
∑
u∈U

∑
v∈ND2D,u

ytu,v,k ≤ 2,

k ∈ K, t ∈ T ,
(18g)

EtRD,u ≤ Emax
RD,u, u ∈ U , t ∈ T , (18h)

EtSD,v ≤ Emax
SD,v, v ∈ V, t ∈ T , (18i)

xtu,v, X
t
u,m ∈ {0, 1}, u ∈ U , v ∈ ND2D,u,

m ∈ NMEC,u, t ∈ T ,
(18j)

ytu,v,k, Y
t
u,m,k ∈ {0, 1}, u ∈ U , v ∈ ND2D,u,

m ∈ NMEC,u, k ∈ K, t ∈ T .
(18k)

In (18b), d�e represents the ceiling function, and (18b)
indicates that each RD can only choose one of the com-
putation offloading nodes for remote execution when the
offloading ratio αtu 6= 0. Inequality (18c) indicates that SD
v can serve at most one offloading RD at a specific time
slot. (18d) and (18e) indicate that once an RD chooses a
node to offload its computation task, a sub-channel should
be assigned to the RD. (18f) and (18g) are the sub-channel
reuse constraints, where (18f) indicates that a sub-channel
can only be assigned to one cellular link in the same cell
and (18g) indicates that a sub-channel can be shared by
at most two links. (18h) and (18i) indicate that the energy
consumption of RDs and SDs are restricted, where Emax

RD,u

and Emax
SD,v are the maximum energies provided by RD u

and SD v in each time slot, respectively.
It can be seen that problem (18) is a mixed-integer and

non-convex programming problem, and the difficulty of
solving the problem lies in many aspects. First, it involves
both the continuous variable αtu and 0-1 integer variables
xtu,v, X

t
u,m, y

t
u,v,k, Y

t
u,m,k. Second, we consider the realistic

scenarios, where the wireless channel conditions, the com-
putation resources of mobile devices and MEC servers are
changing dynamically. Third, with the constraints in offload-
ing node selection and spectrum reuse, the decisions of all
RDs on offloading node selection and sub-channel selection
need to be jointly addressed. Therefore, it is difficult or
infeasible to find the optimal solution by employing con-
ventional optimization-based methods. Thus, in this paper,
we resort to the reinforcement learning (RL) techniques to
solve this problem.

4 HIERARCHICAL DEEP REINFORCEMENT LEARN-
ING BASED COMPUTATION OFFLOADING AND RE-
SOURCE ALLOCATION

Although the RL techniques have been widely used in
solving the dynamic offloading problems, most studies deal
with either a discrete action space or a continuous action
space, which are not suitable for the discrete and continuous
mixed action spaces. To cope with this, a hybrid decision
controlled actor-critic learning method [29] is exploited,
where the actor uses deep deterministic policy network
to output continuous action and the critic uses deep Q-
network to output discrete action and also evaluate the
actor’s output. However, due to the constraints in offloading
node selection and spectrum reuse, the joint discrete actions
of all RDs need to be learned to make the global decisions
on offloading node selection and sub-channel selection.
Therefore, a hierarchical actor-critic architecture [38], which
additionally uses a meta critic to learn the joint discrete
actions in a centralized way, is employed to design our
hierarchical deep reinforcement learning (HDRL) algorithm
for solving the joint computation offloading and resource
allocation problem. In the following, we first give the defi-
nitions of the state space, action space and reward function
for the problem. Then, the HDRL algorithm for computation
offloading and resource allocation is presented in detail.

4.1 State, Action, and Reward Definition
There are three key elements in RL: 1) the state space, 2)
the action space, and 3) the reward function. The definitions
of the state space, action space and reward function for the
proposed problem are given as follows.

1) State space: At the beginning of time slot t, the state
includes the computation tasks J tu of RDs, the computation
capacities f tRD,u, f tSD,v and f tMEC,m of RDs, SDs and MEC
servers, respectively, and the channel gains Ht

u,m,k and
htu,v,k of cellular and D2D links respectively. For notational
convenience, we denote J t, f tRD , f tSD, f tMEC , Ht and ht

as the vectors of the corresponding states:

J t = [J t1, J
t
2, ..., J

t
U ], (19a)

f tRD = [f tRD,1, f
t
RD,2, ..., f

t
RD,U ], (19b)

f tSD = [f tSD,1, f
t
SD,2, ..., f

t
SD,V ], (19c)

f tMEC = [f tMEC,1, f
t
MEC,2, ..., f

t
MEC,M ], (19d)

Ht = [Ht
1,1,1, H

t
1,1,2, ...,H

t
U,M,K ], (19e)

ht = [ht1,1,1, h
t
1,1,2, ..., h

t
U,V,K ]. (19f)

Thus, the state st at time slot t can be defined as:

st = [J t,f tRD,f
t
SD,f

t
MEC ,H

t,ht] ∈ S. (20)

2) Action space: The action of each RD consists of
three parts, namely, offloading ratio αtu, offloading node
selection and sub-channel selection. We define N t

u as the
action of offloading node selection, where N t

u ∈ Nu ,
{m |m ∈ NMEC,u }∪{M + v |v ∈ ND2D,u }. Note thatN t

u 6=
N t
i , u, i ∈ U , if N t

u ∈ ND2D,u. Then, the offloading binary
variables Xt

u,m and xtu,v can be determined by

Xt
u,m =

{
1, N t

u = m,
0, otherwise, (21a)
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xtu,v =

{
1, N t

u = M + v,
0, otherwise. (21b)

We also define Kt
u as the action of sub-channel selection,

where Kt
u ∈ K. Note that Kt

u 6= Kt
i , u, i ∈ U , if N t

u = N t
i ,

and
∑U
u=1 I(K

t
u = k) ≤ 2, k ∈ K, where I(�) is the indicator

function. Then, the sub-channel assignment binary variables
Y tu,m,k and ytu,v,k can be determined by

Y tu,m,k =

{
1, N t

u = m,Kt
u = k,

0, otherwise, (22a)

ytu,v,k =

{
1, N t

u = M + v,Kt
u = k,

0, otherwise. (22b)

For known offloading node selection N t
u and sub-channel

selection Kt
u, constraints (18h) and (18i) provide feasibility

conditions on αtu, which can be derived as

αtu ≥
κ0 · (f tRD,u)

2 · btu · ctu − Emax
RD,u

κ0 · (f tRD,u)2 · btu · ctu − ptu · btu/W t
u,m,k

, N t
u = m,Kt

u = k,

(23)

αtu ≥
κ0 · (f tRD,u)

2 · btu · ctu − Emax
RD,u

κ0 · (f tRD,u)
2 · btu · ctu − ptu · btu/wtu,v,k

, Nt
u =M + v,Kt

u = k,

(24)

αtu ≤
Emax
SD,v

κ0 · (f tSD,v)2 · btu · ctu
, N t

u = M + v. (25)

Thus, the action atu of RD u performs at time slot t can be
defined as:

atu = [αtu, N
t
u,K

t
u] ∈ Au. (26)

The joint action at of all RDs at time slot t is denoted as:

at = [at1, ...,a
t
U ] ∈ A. (27)

3) Reward function: In general, the reward function should
be related to the objective function of the proposed problem.
Since the target of RL is to maximize the long-term reward and
the objective of our optimization problem is to minimize the
long-term task computation latency, the reward function should
be negatively correlated with the task computation latency
function. Hence, we define the reward function Rt =

∑
u∈U R

t
u

at time slot t, where Rtu is the reward function of a certain RD
u, which is defined as

Rtu =
Ltlocal,u − Ltu
Ltlocal,u

. (28)

where Ltlocal,u =
btu·c

t
u

ft
RD,u

is the task computation latency of RD u

at time slot t for totally local computing (i.e., αtu = 0) and Ltu is
denoted as (16).

4.2 HDRL Based Computation Offloading and Re-
source Allocation
In RL, the policy refers to the mapping relationship between
state space and action space π : S → A. The goal of the RL
agent is to find an optimal policy which maximizes the expected
future rewards. In general, the future rewards are discounted
by a discount factor γ ∈ (0, 1], and the expected long-term
discounted reward starting from state s with policy π can be
expressed by the state value function:

V π(s) = E

[
∞∑
t=0

γtR(st,at)|s0 = s;π

]
. (29)

Another important concept in RL is the state-action value
function (also known as Q-function). It denotes the expected
long-term discounted reward for a given state-action pair (s,a)
with policy π:

Qπ(s,a) = E

[
∞∑
t=0

γtR(st,at)|s0 = s,a0 = a;π

]
. (30)

The RL problem can be efficiently solved by using con-
ventional RL methods (e.g., Q-learning) when the dimensions
of state space and action space are not large. However, our
optimization problem is formulated in a dynamic wireless
environment, which leads to a huge state space. To avoid
the curse of dimensionality, deep RL (DRL), which uses deep
neural network (DNN) to approximate the value function, is
employed. There are two typical DRL algorithms, deep Q-
network (DQN) [39] and deep deterministic policy gradient
(DDPG) [40]. For discrete action spaces, DQN can be realized
with two major techniques, experience replay and Q-target
network. For continuous action spaces, DDPG uses an actor-
critic architecture and two neural networks to approximate the
policy function and value function, respectively. Each network
also has its corresponding target network.

However, for an RD u, the action au = [αu, Nu,Ku] is
composed of continuous action (i.e., αu) and discrete actions
(i.e.,Nu and Ku), which leads to a mixed continuous-discrete
action space. It is thus difficult to solve the problem directly
by using DQN or DDPG. Fortunately, it can be observed that
the decisions of offloading node selection Nu and sub-channel
selection Ku depend on the offloading ratio αu. Thus, by
exploiting the hybrid decision controlled actor-critic learning
method [29], for each RD, we can first calculate the optimal
continuous action αu for each discrete action pair (Nu,Ku), and
then find the optimal discrete action pair (Nu,Ku) based on the
calculated continuous actions among all discrete action pairs.
However, due to the constraints in offloading node selection
and spectrum reuse, the joint discrete actions of all RDs need
to be learned to make the global decisions on offloading node
selection and sub-channel selection. Hence, we employ a hi-
erarchical actor-critic architecture [38], which additionally uses
a meta critic to learn the joint discrete actions in a centralized
way, to design our HDRL algorithm for computation offloading
and resource allocation.

The hierarchical actor-critic architecture is illustrated in Fig.
2, which consists of a meta critic, multiple basic critics and
actors. At the first level of hierarchy, each actor takes the state
based local observation su = ou(s) as input and uses a deep
deterministic policy network µu(su|θµu) to output continuous
actions αu = [αu,Nu,Ku ]Nu∈Nu,Ku∈K for all discrete action
pairs. Each basic critic takes the local observation su and the
output αu of the corresponding actor as input and uses a deep
Q-network Qbu(su,αu, Nu,Ku|θQb

u
) to output Q-function Qbu

for evaluating the actions of the corresponding actor. At the
second level of hierarchy, the meta critic takes the state s and
the outputs α = [α1, ...,αU ] of all actors as input and uses a
deep Q-networkQm(s,α,N ,K|θQm) to output Q-functionQm

for joint discrete action pairs (N ,K), where N = [N1, ..., NU ]
and K = [K1, ...,KU ].

Based on the hierarchical actor-critic architecture, we de-
velop an HDRL algorithm for computation offloading and
resource allocation. At time slot t, the state is st. If RD u ∈ U ,
the corresponding actor takes the local observation stu as input
and outputs continuous actions αtu = [αtu,Nu,Ku

]
Nu∈Nu,Ku∈K

.
To encourage exploration, each actor employs an exploration
policy αtu = µu(stu|θµu) +υt, where vector υt is the exploration
noise which follows a normal distribution with zero mean and
variance συ [41]. The meta critic takes the state st and αt =
[αt1, ...,α

t
U ] as input and outputs Q-function Qm for joint dis-

crete action pairs (N ,K). To achieve the trade-off between ex-
ploration and exploitation, the meta critic employs an ε-greedy
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Fig. 2. Illustration of hierarchical actor-critic architecture.

policy to select the joint discrete action pair, i.e., with probability
ε, a random joint discrete action pair (N t,Kt) is selected,
and otherwise the joint discrete action pair with the highest
estimated Q-value (N t,Kt) = arg maxQm(st,αt,N ,K|θQm)
is selected. Then, the continuous action αtu can be determined
by αtu = αtu,Nt

u,K
t
u

, u ∈ U .
After interacting with the environment, the state transits

into the next state st+1 while certain reward is obtained.
Then, the meta critic and basic critics store experience tu-
ples (st,αt,N t,Kt, Rt, st+1) and (stu,α

t
u,N

t
u,K

t
u, R

t
u, s

t+1
u ),

u ∈ U into their replay buffers, respectively. Random mini-
batches of experience tuples are sampled from their replay
buffers for training the actor and critic networks. Besides,
the target actor network µ̄u(su|θµ̄u), target basic critic net-
work Q̄bu(su,αu, Nu,Ku|θQ̄b

u
) and target meta critic network

Q̄m(s,α,N ,K|θQ̄m) have the same architectures as the actor,
basic critic and meta critic networks with parameters θµ̄u ,
θQ̄b

u
and θQ̄m , respectively. After calculating the target Q-values,

the critic and actor networks are updated by minimizing the
corresponding losses, and then the target networks are updated
by tracking the learned networks.

Meta critic network updating: Since the meta critic acts as a
DQN to output the joint discrete action pair with the highest
Q-value, the deep Q-network Qm(s,α,N ,K|θQm) can be iter-
atively updated to estimate the Q-values of joint discrete action
pairs. Specifically, the meta critic network can be updated by
minimizing the mean square error (MSE) loss:

L(θQm) =
1

Ω

∑
i

[
zimeta −Qm(si,αi,N i,Ki|θQm)

]2

, (31)

where Ω is the batch size, and

zimeta = Ri + γ · max
N ′,K′

Q̄m(si+1,αi+1,N ′,K′|θQ̄m) (32)

is the target Q-value calculated from the target meta critic
network, where αi+1

u = µ̄u(si+1
u |θµ̄u). Therefore, the gradient

for updating the meta critic network can be obtained by differ-
entiating the loss function:

∇L(θQm) =
1

Ω

∑
i

(zimeta −Qm(si,αi,N i,Ki|θQm))

· ∂Q
m(si,αi,N i,Ki|θQm)

∂θQm
.

(33)

Basic critic networks updating: Since each basic network acts
as the critic part of DDPG to provide guidance for the training
of the corresponding actor network, it can be updated by
minimizing the MSE loss:

L(θQb
u

) =
1

Ω

∑
i

[
zibasic,u −Qbu(siu,α

i
u, N

i
u,K

i
u|θQb

u
)
]2

, (34)

where

zibasic,u = Riu + γ · Q̄bu(si+1
u ,αi+1

u , N i+1
u ,Ki+1

u |θQ̄b
u

) (35)

is the target Q-value calculated from each target basic critic
network, where αi+1

u = µ̄u(si+1
u |θµ̄u), and (N i+1,Ki+1) =

arg max Q̄m(si+1,αi+1,N ,K|θQ̄m). The gradient for updating
each basic critic network is:

∇L(θQb
u

) =
1

Ω

∑
i

(zibasic,u −Qbu(siu,α
i
u, N

i
u,K

i
u|θQb

u
))

·
∂Qbu(siu,α

i
u, N

i
u,K

i
u|θQb

u
)

∂θQb
u

.

(36)

Actor networks updating: Since each actor network acts as
the actor part of DDPG to output continuous actions, it can be
updated by minimizing the loss

L(θµu) =
1

Ω

∑
i

−Qbu(siu,αu, N
i
u,K

i
u|θQb

u
), (37)

where αu = µu(siu|θµu). The gradient for updating each actor
network is:

∇L(θµu) =
1

Ω

∑
i

∂Qbu(siu,αu, N
i
u,K

i
u|θQb

u
)

∂αu
· ∂µu(siu|θµu)

∂θµu

.

(38)

Target networks updating: The parameters θQ̄m , θQ̄b
u

and θµ̄u

of the target meta critic, target basic critic and target actor
networks are updated as follows, respectively:

θQ̄m ← τθQm + (1− τ)θQ̄m , (39)

θQ̄b
u
← τθQb

u
+ (1− τ)θQ̄b

u
, (40)

θµ̄u ← τθµu + (1− τ)θµ̄u , (41)

with τ � 1.
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At decision time, the actors and basic critics can be run at
each RD to make its own decision of offloading ratio, while the
meta critic can be placed at one MEC server to jointly make
the decisions of offloading node selection and sub-channel
selection for each RD in a centralized way. Note that the cost of
running actors and basic critics on RDs is more expensive than
that on servers, and an alternative implementation scheme is to
place all the actors, basic critics and meta critic at one server.
This configuration can reduce the interactions between RDs and
the server, while increasing the burden on the server. It needs to
choose an appropriate implementation scheme according to the
actual situation. The HDRL algorithm for solving the computa-
tion offloading and resource allocation problem is summarized
in Algorithm 1.

The proposed HDRL algorithm has the following advan-
tages. First, with the hierarchical actor-critic architecture, the
proposed HDRL algorithm can solve the joint computation
offloading and resource allocation problem with continuous-
discrete mixed action space. The continuous action and discrete
actions can be jointly obtained without discretizing or relaxing
the action space. The proposed method can not only be ap-
plied to the system in this paper but also adapted to similar
continuous-discrete mixed action based models. Second, the
proposed HDRL algorithm is an online learning method which
is free of offline training phase and updates DNNs online.
The proposed method does not need training datasets and can
robustly and dynamically adapt to time-varying wireless envi-
ronment. However, the implementation of the proposed HDRL
algorithm for the joint computation offloading and resource
allocation problem will lead to additional computation cost in
MEC servers. Note that although the computational complexity
of the proposed HDRL algorithm will be higher than that
of offline learning methods, it is much smaller than that of
conventional optimization methods, such as the Lagrangian
relaxation-based algorithms [17], [18], [19], [20].

4.3 Computation Complexity Analysis
In the following, the complexity of the proposed HDRL al-
gorithm is analyzed. For a DNN, the time complexity main-
ly comes from the training process, which can be calculat-
ed as O (Hi ·H1 +H1 ·H2 + · · ·+Hn ·Ho) for a single sam-
ple, where Hi, Ho and Hn are the input, output and hid-
den layer sizes, respectively. Additionally, the number of
times for training depends on the number of episodes, I ,
and time slots T . Hence, the time complexity of the ac-
tor and basic critic networks in the proposed HDRL algo-
rithm are O (I · T · U · Ω · (Hi ·H1 +H1 ·H2 + · · ·+Hn ·Ho)),
where I · T · U is the number of times for training and Ω
is the batch size. Here, the input layer size Hi depends on
the state space size |Su|, while the output layer size Ho is
determined by the action space size, i.e., the number of dis-
crete action pairs (M + V ) · K. Similarly, the time complexity
of the meta critic network in the proposed HDRL algorithm
is O (I · T · Ω · (Hi ·H1 +H1 ·H2 + · · ·+Hn ·Ho)). Here, the
input layer size Hi depends on the state space size |S|, while
the output layer size Ho is determined by the action space size,
i.e., the number of available coordinated discrete action pairs.

5 PERFORMANCE EVALUATIONS
In this section, simulations are presented to evaluate the perfor-
mance of the proposed HDRL algorithm. There are M = 3 BSs
and a BS coverage radius is 300 m, while the BS-to-BS distance
is 400 m. RDs and SDs are randomly scattered in the coverage
area of the BSs. The maximum distance of D2D communication
is 50 m [20]. The total bandwidth is divided into K = 10
orthogonal sub-channels [32]. The fading of each channel is
assumed to follow Rayleigh distribution with unit variance
[17]. The transmit power of RDs is 0.2 W [32]. We assume

Algorithm 1 HDRL Based Computation Offloading and
Resource Allocation Algorithm

1: Randomly initialize actor networks µu(·|θµu
), basic

critic networks Qbu(·|θQb
u
) and meta critic network

Qm(·|θQm).
2: Initialize target actor networks µ̄u(·|θµ̄u

), target basic
critic networks Q̄bu(·|θQ̄b

u
) and target meta critic network

Q̄m(·|θQ̄m) with weights θµ̄u
= θµu

, θQ̄b
u

= θQb
u

and
θQ̄m = θQm .

3: Initialize the experience replay buffers.
4: for each episode do
5: Obtain the initial state s1.
6: for each time slot t do
7: for each RD u do
8: Get current observation stu.
9: Obtain continuous actions αtu = µu(stu|θµu

)+υt,
where vector υt is exploration noise.

10: end for
11: With probability ε select a random joint dis-

crete action pair (N t,Kt), and otherwise select
(N t,Kt) = arg maxQm(st,αt,N ,K|θQm).

12: for each RD u do
13: Select continuous action αtu = αtu,Nt

u,K
t
u

.
14: end for
15: All RDs take actions.
16: Obtain reward Rt and observe the next state st+1.
17: Store experience tuple (st,αt,N t,Kt, Rt, st+1) in-

to replay buffer Dm.
18: for each RD u do
19: Obtain reward Rtu and get the next observation

st+1
u .

20: Store experience tuple (stu,α
t
u, N

t
u,K

t
u, R

t
u, s

t+1
u )

into replay buffer Dbu.
21: end for
22: Sample a batch of Ω experience tuples

(si,αi,N i,Ki, Ri, si+1) from Dm.
23: Calculate the meta critic target Q-value zimeta ac-

cording to (32).
24: Update the meta critic network θQm by performing

a gradient descent step with the gradient calculated
by (33).

25: for each RD u do
26: Sample a batch of Ω experience tuples

(siu,α
i
u, N

i
u,K

i
u, R

i
u, s

i+1
u ) from Dbu.

27: Calculate the basic critic target Q-value zibasic,u
according to (35).

28: Update the basic critic network θQb
u

by perform-
ing a gradient descent step with the gradient
calculated by (36).

29: Update the actor network θµu
by performing a

gradient descent step with the gradient calculated
by (38).

30: end for
31: Update the target networks according to (39), (40)

and (41).
32: end for
33: end for
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that the computation capacities of RDs, SDs and MEC servers
range from [0.6, 1], [1.6, 2] and [6, 8] gigacycles/s, respectively
[32]. For the computation task, the input data size is uniformly
generated from [0.1, 0.3] Mbits and the required number of CPU
cycles per bit is from 900 to 1100 cycles/bit [17]. We summarize
our default simulation parameters in Table 2, if not specified.

TABLE 2
System Parameters

Parameter Value
Number of mobile edge servers (M ) 3
Number of RDs (U ) 12
Number of SDs (V ) 60
Cell coverage radius (RBS ) 300 m
D2D range (RD2D) 50 m
Number of sub-channels (K) 10
Total bandwidth (Btot) 10 MHz
Noise power spectrum density -174 dBm/Hz
Path loss exponent (ς) 4
Transmit power of RDs 0.2 W
Computation capacity of RDs (f tRD,u) [0.6, 1] gigacycles/s
Computation capacity of SDs (f tSD,v) [1.6, 2] gigacycles/s
Computation capacity of MEC servers
(f tMEC,m)

[6, 8] gigacycles/s

Task input data size (btu) [0.1, 0.3] Mbits
Required number of CPU cycles per bit (ctu) [900, 1100] cycles/bit

The actor, basic critic and meta critic networks in HDRL all
have two fully connected feedforward hidden layers. The learn-
ing rates for the actor, basic critic and meta critic networks are
0.0001, 0.001 and 0.0001, respectively [29]. When the learning
rate is too high, the algorithm may not converge and the loss
will fluctuate. If the learning rate is too small, the convergence
speed of the algorithm is slow, and thus longer training time
is needed. The replay buffer sizes Dm and Dbu are 10000, and
the batch size is 200 [42]. For DNN, large batch size usually
makes the network converge faster, but too large batch size
may lead to insufficient memory or program kernel crash. We
set the maximum time slot number T = 20 in each episode [29],
the discount factor γ = 0.99, and the soft target update rate
τ = 0.001. The exploration noise follows a normal distribution
with variance συ = 0.1 [41]. The exploration probability of ε-
greedy policy is initialized as ε = 0.5 and decreases with the
number of episodes [25].The setting of ε needs to balance the
tradeoff between exploration and exploitation. The algorithm
prefers exploration when ε is large, and the algorithm tends to
exploit when ε is small.

The performance metrics we employ include the average
task computation latency and energy consumption. The task
computation latency and energy consumption of RD u are
calculated by Eq. (16) and Eq. (17), respectively. To verify the
effectiveness of HDRL, we compare it with the following four
benchmark schemes:

1) Local Execution (LE) scheme: Each RD executes its compu-
tation tasks locally and computation offloading is not involved.

2) Random Offloading (RO) scheme: The offloading ratio, of-
floading node and sub-channel selection are decided randomly.

3) Complete Offloading (CO) scheme: Each RD offloads its
computation tasks completely for D2D or MEC execution, while
the offloading node and sub-channel selection are decided at
random.

4) DQN based (DQN) scheme: As the action space of DQN
can only be discrete values, we discretize the offloading ratio
into five actions. Instead of the DDPG part of the proposed
HDRL algorithm, DQN is used to output the discrete actions of
offloading ratios for all discrete action pairs, and the meta critic
network is still used to output the joint discrete action pairs.

First, the convergence property of the proposed HDRL algo-
rithm is demonstrated in Fig. 3. From Fig. 3, we can observe that
the reward increases as the number of episodes until it attains

to a relatively stable value. It is shown that the proposed HDRL
algorithm is convergent. Based on the convergence property of
the proposed HDRL algorithm, the following simulation results
are averaged over 5000 episodes for analysis.

Fig. 3. Illustration for the convergence property of HDRL.

Next, we investigate the impact of the average task input
data size on the average task computation latency and energy
consumption in Fig. 4. It is shown that the average task compu-
tation latency and energy consumption increase with the task
input data size for all the schemes, as larger task input data
size leads to more latency and energy consumption for task
execution and data transmission. In Fig. 4 (a), the HDRL and
DQN schemes have lower increasing rate in task computation
latency than other schemes, as the HDRL and DQN schemes
learn to coordinate the decisions of offloading ratio, offloading
node selection and sub-channel selection to achieve a better
performance. In Fig. 4 (b), the average energy consumption of
HDRL is lower than that of LE and RO. The reasons are as
follows. In our simulation, the average energy consumption of
local execution is higher than that of data transmission. Thus,
LE has the highest energy consumption as it executes its tasks
locally and data transmission is not involved. Moreover, the
offloading ratio of RO is decided randomly while that of HDRL
depends on the benefits of computation offloading. Since the
benefits of computation offloading are significant, the average
offloading ratio of HDRL is higher than that of RO. Thus, the
average energy consumption of HDRL is lower than that of
RO. Furthermore, with the intelligent decision of sub-channel
selection, HDRL can significantly reduce the interference in da-
ta transmission, so as to reduce the energy consumption of data
transmission. However, CO has the lowest energy consumption
since it avoids the local execution cost. Note that HDRL out-
performs the DQN scheme with 12% lower task computation
latency at the cost of only 9% higher energy consumption. Since
we aim at minimizing the total task computation latency, HDRL
can make a better decision than DQN. In Fig. 4 (a), compared
with the LE, RO, CO and DQN schemes, HDRL decreases the
average task computation latency approximately by 73%, 60%,
59% and 12%, respectively, when the average task input data
size is 0.6 Mbits.

Then, we examine the impact of the average required num-
ber of CPU cycles per bit on the average task computation
latency and energy consumption in Fig. 5. As shown in Fig.
5, when the required number of CPU cycles per bit increases,
the average task computation latency increases for all the
schemes, and the average energy consumption increases for all
the schemes except CO. This is due to the fact that with the
increasing required number of CPU cycles per bit, the latency
and energy consumption of task execution increase while that
of data transmission remain unchanged. In Fig. 5 (a), it is shown
that HDRL outperforms the LE, RO, CO and DQN schemes
with the improvement on the average task computation latency
approximately 73%, 57%, 49% and 5%, respectively, when the
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(a) Average task computation latency                                              

 (b) Average energy consumption

Fig. 4. The average task computation latency and average energy
consumption of the HDRL, LE, RO, CO and DQN schemes for different
average task input data sizes.

average required number of CPU cycles per bit is up to 1500
cycles/bit.

In the following, we compare the average task computation
latency and energy consumption for different numbers of RDs
in Fig. 6. As shown in Fig. 6, the average task computation
latency and energy consumption increase with the number
of RDs for all the schemes except LE, since the increase of
RDs leads to increased resource contention. Since the HDRL
scheme can intelligently coordinate the decisions of offloading
ratio, offloading node selection and sub-channel selection, it
achieves the lowest task computation latency than that of other
schemes. In Fig. 6 (a), compared with the LE, RO, CO and
DQN schemes, HDRL decreases the average task computation
latency approximately by 68%, 58%, 62% and 9%, respectively,
when the number of RDs is 16.

Fig. 7 shows the average task computation latency and
energy consumption with respect to the average computation
capacity of MEC servers. In Fig. 7, the performance of LE
dose not change since it is independent of the computation
capacity of MEC servers. The average task computation latency
decreases with the increasing computation capacity of MEC
servers for other schemes, as the MEC execution latency is
improved. The average energy consumption decreases with the
increasing computation capacity of MEC servers for the HDRL
and DQN schemes, because more fraction of computation tasks
can be executed at MEC servers to save the energy of local
execution. In Fig. 7 (a), when the average computation capacity
of MEC servers is up to 9 gigacycles/s, HDRL provides about

(a) Average task computation latency                                              

 (b) Average energy consumption

Fig. 5. The average task computation latency and average energy
consumption of the HDRL, LE, RO, CO and DQN schemes for different
average required numbers of CPU cycles per bit.

76%, 65%, 63% and 7% lower task computation latency than the
LE, RO, CO and DQN schemes, respectively.

Finally, we compare the average task computation latency
and energy consumption when the total bandwidth varies from
5 MHz to 25 MHz in Fig. 8. As shown in Fig. 8, the average
task computation latency and energy consumption decrease
with the total bandwidth for all the schemes except LE. The
reasons are as follows. With the increasing total bandwidth, the
latency and energy consumption for data transmission can be
significantly reduced, while local execution does not require
data transmission. In Fig. 8 (a), for total bandwidth of 25
MHz, HDRL can achieve 73%, 54%, 38%, and 6% less task
computation latency than the LE, RO, CO and DQN schemes,
respectively.

6 CONCLUSION
In this paper, we investigated the joint computation offloading
and resource allocation problem for a D2D-assisted MEC partial
offloading scenario, meanwhile taking into account the dy-
namics of both computation resources and channel conditions.
We jointly formulated the partial computation offloading and
resource allocation problem in shared spectrum with the aim of
minimizing the total task computation latency in the long-term.
We proposed an HDRL framework with a hierarchical actor-
critic architecture to solve the problem, where actors use deep
deterministic policy networks to output continuous actions,
i.e., offloading ratios, and a meta critic considers the outputs
of all actors and learns to coordinate in offloading node and
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(a) Average task computation latency                                              

 (b) Average energy consumption

Fig. 6. The average task computation latency and average energy
consumption of the HDRL, LE, RO, CO and DQN schemes for different
numbers of RDs.

sub-channel selection. Simulation results demonstrated that
our proposed HDRL based algorithm can achieve much better
task computation latency performance than baseline offloading
schemes.

For the future work, we will further develop some practical
strategies for D2D-assistant MEC offloading systems. First, we
have assumed that each RD is allocated with one orthogonal
sub-channel. In the future work, efficient wireless bandwidth
allocation scheme can be investigated to further improve the
system performance for different types of applications, where
joint computation offloading, wireless bandwidth allocation
and interference management should be considered. Second,
we intend to investigate the incentive mechanism to motivate
the D2D cooperation among devices for computation offloading
and communication resource sharing. Third, it is interesting to
study the energy efficiency of D2D-assistant MEC offloading
systems, i.e., minimizing the energy consumption under the
constraint on computation latency.
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