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Abstract
More than a century after the discovery of superconductors (SCs), numerous studies have been
accomplished to take advantage of SCs in physics, power engineering, quantum computing,
electronics, communications, aviation, healthcare, and defence-related applications. However,
there are still challenges that hinder the full-scale commercialization of SCs, such as the high
cost of superconducting wires/tapes, technical issues related to AC losses, the structure of
superconducting devices, the complexity and high cost of the cooling systems, the critical
temperature, and manufacturing-related issues. In the current century, massive advancements
have been achieved in artificial intelligence (AI) techniques by offering disruptive solutions to
handle engineering problems. Consequently, AI techniques can be implemented to tackle those
challenges facing superconductivity and act as a shortcut towards the full commercialization of
SCs and their applications. AI approaches are capable of providing fast, efficient, and accurate
solutions for technical, manufacturing, and economic problems with a high level of complexity
and nonlinearity in the field of superconductivity. In this paper, the concept of AI and the widely
used algorithms are first given. Then a critical topical review is presented for those conducted
studies that used AI methods for improvement, design, condition monitoring, fault detection and
location of superconducting apparatuses in large-scale power applications, as well as the
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prediction of critical temperature and the structure of new SCs, and any other related
applications. This topical review is presented in three main categories: AI for large-scale
superconducting applications, AI for superconducting materials, and AI for the physics of SCs.
In addition, the challenges of applying AI techniques to the superconductivity and its
applications are given. Finally, future trends on how to integrate AI techniques with
superconductivity towards commercialization are discussed.

Keywords: artificial intelligence, big data, deep learning, superconductors, machine learning,
optimisation, prediction

(Some figures may appear in colour only in the online journal)

Nomenclature

2D Two dimensional
3D Three dimensional
AC Alternative current
AEDNN Auto-encoder deep neural network
AI Artificial intelligence
ANFIS Adaptive neuro-fuzzy inference system
ANN Artificial neural network
ARCS Automated remote-control systems
ASIC Application-specific integrated circuit
ATHENA Advanced telescope for high energy

astrophysics
BC2 Upper magnetic flux density
BCS Bardeen–Cooper–Schrieffer
BD Big data
CGCNN Crystal graph CNN
CICC Cable-in-conduit conductor
CMG Co-axial magnetic gears
CNN Convolutional neural network
CORC Conductor on round core
CS Central solenoid
DC Direct current
DCS Dual-capacitor switching
DG Distributed generator
DL Deep learning
DS Data science
DSV Diameter of spherical volume
DT Digital twin
DTM Decision tree model
EBSF Electron-boson spectral function
ECM Equivalent circuit model
EDXS Energy dispersive x-ray spectrometry
EMPS Electro-magnetic property measurement system
EPC Electron-phonon coupling
FCC Future circular colliders
FEM Finite element method
FPGA Field-programmable gate array
GA Genetic algorithm
GBDR Gradient boost decision tree
GE General electric
GPR Gaussian process regression
GPU Graphics processing unit
GRU Gated recurrent unit
HEP High energy physic
HET Hybrid energy transfer
HSFCL Hybrid SFCL

HTS High temperature superconductor
HVDC High voltage direct current
iCGCNN Improved crystal graph CNN
IoT Internet of things
KNN K-nearest neighbours
LCOE Levelized cost of energy
LHC Large hadron collider
LNG Liquefied natural gas
LSTM Long short-term memory
LTS Low temperature superconductor
MAE Mean absolute error
MAPE Mean absolute percentage error
MCM Majorana correlation matrices
MgB2 Magnesium diboride
ML Machine Learning
MRI Magnetic resonance imaging
MSE Mean squared error
NASA National Aeronautics and Space Administration
NbTi Niobium titanium
NIST Standards and Technology
NLP Natural language processing
NMR Nuclear magnetic resonance
NN Neural Network
NNM Neural network model
NSE Nash-sutcliffe efficiency
OPEE One-particle entanglement eigenvectors
OPES One-particle entanglement spectra
PHIL Power hardware in the loop
PID Proportional integral derivative
PM Permanent magnets
PSO Particle swarm optimization
QPS Quench protection system
R2 Goodness of fit
RAD Ionic radii
RBFNN Radial basis function neural network
RCF Richer convolutional feature
RL Reinforcement learning
RML Reinforcement ML
RMSE Root mean squared error
RNN Recurrent neural networks
RPT Reading periodic table
RQ Research question
RRR Residual resistivity ratio
RTS Room temperature superconductors
RvNN Recursive neural networks
SC Superconductor
SFCL Superconducting fault current limiter
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SLA Superconducting linear acceleration
SLD Structural lattice distortion
SMES Superconducting magnetic energy storage
SML Supervised ML
SQUID Superconducting quantum interference device
SVM Support vector machine
SWT Stationary wavelet transforms
TFIH Transverse flux induction heating
THD Total harmonic distortion
TS-LTSM Temporal sliding long short-term memory
UML Unsupervised ML
XRD X-ray diffraction
XRPS X-ray photoelectron spectroscopy
YBCO Yttrium barium copper oxide

1. Introduction

SCs and superconducting apparatuses are broadly used
in commercial imaging technologies such as MRI, NMR.
Superconductivity-based devices are promising options in
modern power grids, cryo-electrified aviation units, novel ter-
raqueous transportation vehicles, high energy physic (HEPs),
fusion, and many other applications.

1.1. Brief history of superconductivity

In 1911, Onnes found that at temperatures lower than a spe-
cific threshold and critical temperature, some materials transit
into a whole new state. This was the beginning of the phe-
nomenon that was later called superconductivity [1]. About 20
years after Onnes’s discovery, Meissner and Ochsenfeld have
found out that the static magnetic flux lines are expelled out
of SCs, which was later known as the Meissner–Ochsenfeld
effect [2].

In 1935, Fritz and Heinz London have proposed a simple
theory for SCs, which explained the Meissner–Ochsenfeld
effect [3]. However, their theory could not explain the exact
thermoelectric behaviour of SCs. In 1950, Ginzburg and
Landau have proposed another theory to bridge the gap of
London’s theory [4]. In 1957, Bardeen et al took advantage
of quantum physics to establish their theory, which was called
BCS theory [5].

Due to the high cost of cooling units, which provide cryo-
genic temperatures for early discovered SCs—known as LTS
materials—and their extremely low critical magnetic field,
the BCS theory was the origin of many efforts to find SCs
with higher critical temperatures. Finally, Bednorz and Müller
discovered a brand-new type of SCs with a critical tem-
perature of about 30 K with the chemical formulation of
BaxLa5−xCu5O5(3y) [6]. Nowadays, rare-earth barium copper
oxide SCs, also called REBCO, are recognised as one of the
most promising options for superconducting devices with a
critical temperature of around 92 K [7].

In 2001, superconductivity in MgB2, a long-known com-
pound with two cheap abundant elements, was discovered
[8]. More recently, another type of SCs was discovered in
2008 by the Hosono group with a Fe-based structure [9].

A brief timeline of the history of superconductivity is shown
in figure 1.

1.2. Applications of SCs and the challenges

Since the appearance of commercially available SCs, much
research has been conducted to use SCs in various applica-
tions, such as healthcare, transportation, power systems, elec-
tronics, communications, HEPs, fusion, defense, and astronav-
igation. During the last few years, the large-scale applications
of superconducting materials in the form of coated conduct-
ors, tapes, and wires have gained significant attention in aca-
demic research [10, 11]. Figure 2 shows some of the large-
scale applications of SCs.

Both LTS and HTS superconducting machines are con-
sidered to be used in large power wind turbines with >10 MW
power [12]. Superconducting propulsion units in hydrogen-
based aircraft with specific power density above 20 kW kg−1

are considered for future cryo-electrified aircraft. However,
to commercially use these machines in aviation industry, the
main challenges are the further reduction of their weight and
size to increase the specific power density, manufacturing
issues, and AC loss [13–16].

SMES has the potential to be used in future micro- and
smart-grids. SMES increases the stability and reliability of
power grids in which they are installed. However, their design,
control, power density, and cost must be further improved to
be competitive with other storage systems [17–22].

SFCLs have been introduced in many types, such as the
resistive, saturated iron core, and shielding SFCL, and oth-
ers. Recently, several commercial transmission-scale 220 kV
SFCL had been installed in Russia and Germany [23]. In the
near future, SFCLs will be installed not only in power systems
but also in cryo-electrified transportation systems [24–28].
The challenges that SFCLs face are AC loss reduction in
steady-state, faster quench and recovery time, optimisation of
volume, cost, weight, and performance against high imped-
ance faults. In the electric systems of power grids or electric
aircraft with SFCLs, an ultra-fast protection system is required
to coordinate with the operation of SFCL to cut off the fault
circuit in time. Superconducting circuit breakers could accom-
plish this role and clear the fault. Coordinated operation of
SFCLs and superconducting circuit breaker limits interrupts
the fault current, and hence increases the protection level of
the electric system [29].

HTS transformers are another up-and-coming supercon-
ducting apparatuses in large-scale power applications. Super-
conducting transformers are more compact, lighter, and more
efficient than their conventional counterparts. The ability to
continuously overload operation without degradation of insu-
lation due to thermal stresses is another advantage of HTS
transformers. Fault tolerant HTS transformers operate not only
to regulate the voltage level but also to limit the fault current
[30–35].

HTS cables, both AC and DC, are used in the
transmission/distribution of electrical energy in power grids
or stand-alone power systems, with a high current carrying
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Figure 1. The timeline for evolving superconductivity: from discovery to the latest efforts.

Figure 2. The role of superconductors in the near future in any part of the power systems, aviation industry, fusion, healthcare systems, and
space programs.
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capability. From the technology point of view, the main chal-
lenge is their operation in high voltages and long lengths
without efficiency reduction [36–41].

Superconducting magnets are the most commercialised
superconducting applications, operating in MRI scanners,
fusion applications, and electric machines. They provide high
magnetic fields in a much smaller size. However, they face
some challenges, such as manufacturing and operation support
issues and quench protection in HTS magnets [42–47].

Magnetic levitation, bearing and shielding are other applic-
ations of SCs that are used in railways and flywheels. They
offer a compact structure and high magnetic field. Recently,
many investigations were made on these superconducting
devices, along with sharply increasing attention on energy
storage units in space programs [48, 49].

Busbar is another potential large-scale application of SCs,
often used in the fusion industry and systems, and also in alu-
minium and chlorine plants. They are capable of carrying an
extremely high current in comparison to conventional busbars.
Hot spots on the body of the busbars, insulation, and their cor-
rosion issues are known challenges of this technology [50–52].

Superconducting flux pumps are devices that deliver mag-
netic flux density to a closed superconducting loop, such as
coils, magnets, and machines. It is expected that by using
them, the problem of high-value heat load generated by cur-
rent leads is tackled. They have been proposed for many
applications, such as magnets in MRI and fusion systems,
electric machines and coils. Their main challenges are the
need for very accurate control, operation stability, cost of
HTS materials, adding extra weight in aviation applications,
etc. [53–55].

Superconducting filters are used in telecommunication
industry, e.g. mobile communication, radar, and radio astro-
nomy. Due to the low surface resistance of SCs, the quality
factor of superconducting filters is way higher than their con-
ventional filters made out of normal metals. On the other hand,
these filters come in a more compact size compared to their
conventional counterparts. The main challenge of these filters
is the stabilization of the cryogenic temperature to enhance
the quality performance of the filter. This is normally achieved
by design improvements of these filters and recalculating their
design parameters [56]. Recently, these filters have been gain-
ing attention for large-scale power applications.

Due to the utilisation of superconducting qubits in super-
conducting computers, as a new type of application, they have
higher performances, longer coherence time, and many other
advantages. However, the need for dilution refrigerators to
remain at the superconducting state, the need for enhancement
in qubit connectivity, and improvements in gate fidelity are
issues that must be addressed [57].

The SQUIDs are highly sensitive detectors of magnetic
fields. So they are used for the detection of magnetic signals
in the human brain, fluctuations of the Earth’s magnetic field
for earthquake predictions, and in many other fields of science.
They are categorized as DC SQUID and radio frequency (RF)
SQUID [58].

Superconducting RF cavities are one of the superconduct-
ing parts in particle accelerators as, e.g. the LHC. They show

lower losses in comparison to copper cavities, as their surface
resistance is 109–1010 times lower than the surface resistance
of the latter. Accordingly, they are very suitable for accelerat-
ors that demand a continuous wave or long pulse accelerating
field of more than a few million volts per meter [59].

Superconducting antennas have higher efficiency in com-
parison to conventional antennas which results in a higher
radiation resistance compared to loss resistance of conven-
tional antenna. Due to the compact size of superconducting
antennas compared to conventional ones, it becomes a prom-
ising choice for space programs [60].

The Josephson effect is a physical phenomenon that
describes the electromagnetic characteristics of SCs. Concern-
ing this phenomenon, an application of SCs was invented,
known as the Josephson junction. This is a quantum applica-
tion in which two SCs are separated by a non-superconducting
part, known as a barrier. They are normally used in SQUIDs,
superconducting qubits, and digital electronics [61, 62].

Superconducting receivers and superconducting analogue-
to-digital converters are the most common applications of SCs
in the field of electronics. Low loss and compact structures are
the most common properties of these elements [63, 64].

1.3. AI for superconductivity

Broad applications and the commercialization of supercon-
ducting technologies require advances in science, unit and sys-
tem design, manufacturing and maintenance, including super-
conducting, cryogenic, mechanical and other components. The
electromagnetic coupled with thermal characteristics, effi-
ciency, and reliability of the SCs in their applications must
be enhanced, while the manufacturing, purchasing, operation,
andmaintenance costs should beminimised. SCs have to oper-
ate at cryogenic temperatures, provided by a cooling system.
Cryocoolers are one of the main components in a cooling sys-
tem, which require high input power and sometimes expens-
ive coolant fluids to provide the desired cryogenic temperat-
ure. Often, a cryocooler demands stern vacuum conditions and
thermal insulation, which results in cost-inefficiency of SCs
in many applications, especially AC ones [65]. Thus, to over-
come this issue, it is desirable to increase the critical temperat-
ure of commercial SCs and/or to discover new composition of
superconducting materials with a much higher critical current
at relatively the same temperature range in comparison to cur-
rently used SCs. However, for DC applications, the cost of the
SCs is the driver. Therefore, the increased critical temperature
is not a killing factor for most DC applications. In addition,
AI techniques can be applied as predictors and estimators to
fasten the discovery procedure of new SCs with higher critical
temperatures, as well as supporting the design of cryogenics
leading to more adequate and cost-effective ratings. Improv-
ing the weight, size, and other geometrical factors of supercon-
ducting devices is another challenging issue for future trans-
portation applications. These parameters are affected by the
cooling system, and non-superconducting parts. To improve
these factors, the design procedure becomes a complex prob-
lem with numerous constraints and limitations, and tight man-
ufacturing tolerances. It is time-consuming and sometimes
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requires an extremely high-performance computer to solve this
problem.

Regardless of the increasing attention to HTS tapes, their
cost is still higher than what is expected, while the cost of
LTS materials is in an acceptable range. For instance, the
price of NbTi wire is about 0.8–1 $ kAmp-m−1 at 4 K–4 T,
while the cost of rare-earth barium copper oxide (REBCO)
tapes is around 227–230 $ kAmp-m−1. The cost of bismuth
strontium calcium copper oxide (BSCCO) tapes is also about
17.4 $ kAmp-m−1 and the cost of copper at room temperature
is about $10 kAmp-m−1 [66]. This originates in some sophist-
icated and expensive manufacturing processes and also types
of stabilizers and shields used in superconducting wires, tapes,
and filaments.

Non-destructive condition monitoring of superconducting
devices and monitoring local hot spots along the length of
SCs are other hindrances that must be addressed before the
massive implementation of HTS materials in industries, and
these issues can be addressed using AI techniques. The condi-
tion monitoring includes methods of temperature estimation in
each period of time, AC loss and other types of loss estimation
under different electromagnetic-thermal circumstances, fault
detection and location of superconducting devices, critical cur-
rent weak point detection of superconducting tapes, etc. Con-
dition monitoring approaches are ideally based on real-time
techniques.

In addition, AI techniques can be used to improve the
design and the efficiency of superconducting devices by
optimizing the size, weight, losses, and heat loads. Accord-
ingly, they are vital tools in the field of superconductivity and
have been receiving attention during the last few years.

For further illustration of AI technique applications for
superconducting devices, a comprehensive example is presen-
ted in the following. For this purpose, consider an HTS
machine that is used as a propulsion unit of a cryo-electric
aircraft. Firstly, there is a need for the reduction of cost, AC
loss, and size of the HTS tapes, while the manufacturability,
heat capacity, critical current density, and engineering cur-
rent density of the tape must be increased. To do this, an
AI-based optimisation procedure could be conducted while
there is also a need for highly smart and intelligent super-
vision in the assembly line and manufacturing stages of the
tape. After finding an optimum structure for HTS tapes with
minimum possible defects and critical current weak points,
the very next step is to manage the design procedure of the
HTS machine. The objective function must be concerned with
minimisation of weight, cost, AC loss, field inhomogeneity,
while the efficiency, power density, and maximum delivered
power must be maximised. There are also numerous trade-
offs related to the flight conditions of cryo-electric aircraft,
manufacturing process and constraints, cooling system, etc.
These considerations and trade-offs, with respect to objective
function, make the optimisation problem a highly nonlinear
and highly complex one. Regardless of the complexity and
nonlinearity of the problem, analysing the characteristics of
the HTS machine by means of FEM-based models is a time-
consuming problem with high computational cost and bur-
den. Optimisation methods based on AI could help engineers

and designers to get to the optimum structure of the machine,
while surrogate models could replace the FEM-based methods
to increase the calculation speed and reduce the computation
burden. After installing the machine, unsupervised condition
monitoring methods without human interferences are required
to guarantee the safe operation of HTS machines. AI tech-
niques could help and perform as unsupervised operators to
monitor the machine against any internal, external, and other
types of failures. To do this, AI must be able to discriminate
different transients in the power systems of aircraft, make the
right choice and send the command to the physical parts and
components. In addition, after each flight, the model could
be updated based on the operational conditions during the
mission and this procedure makes the condition monitoring
method specific for the mission and type of aircraft. At the
last stage, AI could make a prediction based on historical data,
reliability data, and flight data to precisely forecast the main-
tenance time of HTS machines.

In this paper, we aim to present a topical review on the
application of AI techniques in superconductivity. This will
help the researchers to understand the previous developments
around AI in superconductivity and also the future trends in
this regard, and hence follow the path towards future utilisation
of AI techniques to address the challenges of superconductiv-
ity in the next decade. The paper is written in such a way to
provide answers to the following RQs, for the readers.

• RQ1: What is the concept of AI?
• RQ2: What kind of studies using AI techniques were done

in superconductivity and its applications?
• RQ3: What are the areas that previous studies in the literat-

ure overlooked?
• RQ4: What are the major challenges of superconducting

applications and how is AI able to solve them?
• RQ5: How are AI techniques, superconducting applications

and manufacturing related to each other in the future?

The rest of the paper is organised as follows: section 2
is dedicated to explain the concept, history, different types,
and applications of AI techniques. This section will help
the superconductivity community readers to familiarise them-
selves with AI before getting into other sections. A literature
review on conducted studies using AI techniques for super-
conductivity applications is presented in section 3. Statistical
analysis is given based on the review of large-scale, mater-
ial, and physics-related applications, electronics, and commu-
nication, mainly according to the publication date and type of
AI. After that, an application-based review study was conduc-
ted. The next section focuses on the challenges of applying
AI techniques to superconductivity. Finally, future trends are
discussed in section 5.

2. Concept of AI

AI is defined as a smart system that evaluates inputs and takes
actions to obtain a particular goal. AI is a booming field with
many practical applications and active research topics [67].
We look to intelligent software to automate routine labour,
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Figure 3. Artificial intelligence historic perspective [81].

understand speech or images, make diagnoses in medicine and
support basic scientific research. AI-based systems could be
categorised into two groups: software-based systems that act
in a virtual world, such as image-processing software, face
recognition programs and embeddable in autonomous hard-
ware devices such as robots, cars, aircraft, domestics/smart
homes, and Internet-of-Things—IoT—applications).

Discovering the knowledge and making decisions are the
most significant characteristics of AI methods by which it tries
to transcend the abilities of humans and thus could be used for
numerous fields of science and other industries. Nowadays,
AI is also used in the engineering world as a shortcut to
solve problems, discover new structures and devices, find new
materials, manage the systems, and so on. To improve the per-
formance of AI techniques, data is the necessary requirement.
Thus, if their performance is improved, they can be used for
making automated decisions. For instance, fault and abnor-
mality location and detection in power transformers could be
accomplished based on data from the network or system and
by training an AI model.

2.1. AI historic perspective

With the advent of computers, an important question emerged,
both from a philosophical and a practical point of view: ‘Could
a computer ever behave intelligently, exhibiting behaviour
similar to a human being?’. The idea that technology could one
day replicate human logical thinking was advocated by Alan
Turing in 1950, when he published the paper ‘Can a machine
think?’ [68]. The term ‘AI’ was proposed by the scientific
community at the Dartmouth Summer Research Project on AI,
hosted by John McCarthy and Marvin Minsky, in 1956 [68].
AI was described as the ability of machines to perform certain
tasks that require the intelligence showcased by humans. Since
then, several definitions and developments have been proposed
by the scientific communities.

AI methods include multiple techniques, namely ML tech-
niques with specific examples of DL and RL; automatic reas-
oning, such as planning, programming, knowledge representa-
tion and reasoning, search, and optimisation, and robotics [69].

Since its proposal in the 1950s, AI has evolved from an
academic field into a powerful engine of social, technolo-
gical, and economic change. AI is now the foundation for a
wide range of technologies, including web search, smartphone
applications, medical diagnostics, voice recognition, and more
recently, autonomous vehicles. Several definitions and devel-
opments have been proposed in the literature, but it is consen-
sual that the main objective of AI is to provide the systems and

their components with characteristics inspired by human intel-
ligence [67]. In this context, developments and contributions
have emerged, considered as subareas of AI: ML/DL [70–73],
Industrial AI [74], Generalized AI [75], Safety AI [76–79],
among others. Figure 3 depicts and identifies some of the most
relevant milestones in AI history.

From 1957 to 1974, AI prospered (referred as the first AI
age): computer information storage capacity increased with a
faster computation speed, and more accessible and cheaper
characteristics. ML algorithms improved, and researchers
were better at choosing the most appropriate algorithm
for their specific problems. Early presentations of problem
solvers, such as Joseph Weizenbaum’s ELIZA and Newell
and Simon’s General Problem Solver, showed great promise
towards the goals of the interpretation of spoken language and
problem-solving, respectively. The period from 1974 to 1980
suffered a drop in government funding, a period known as ‘AI
Winter’ when some criticised progress in the field.

The second age ofAIwas initiated in 1980 according to out-
standing technological advancements: expert systems based
on rules, a heuristic form of logical reasoning based on sym-
bols, and an NNs recovery triggered by the appearance of
novel algorithms for training.

With the appearance of novel symbolic-reasoning systems
based on algorithms, in year 2000, the last age of AI has been
started that enabled the capability of solving a specific type
of problems called 3SAT and, with another advance called
Simultaneous Localization andMapping, which is a technique
for map creation while a robot moves in a specific region.
At the beginning of the 2010s, the aforementioned wave had
accumulated new powerful momentum with new computa-
tional resources and the rise of NN learning from massive data
sets. A Stanford vehicle won the Defense Advanced Research
Projects Agency (DARPA) Grand Challenge in 2005, driv-
ing autonomously for 211 km. In 2011, IBM’s Watson won
‘Jeopardy!’ andApple introduced the virtual personal assistant
Siri. OpenAI introduced, in 2020, the GPT-3, the autoregress-
ive natural language model that uses DL to produce human-
like text [74]. Now the age of big data (BD) is initiated, in
which mankind has the capacity and capability to collect a vast
amount of data and information, which is too difficult to be
analysed by any person.

2.2. ML

Arthur Samuel is considered the first researcher that pro-
posed the term ML ‘as a subfield of computer science that
gives computers the ability to learn without being explicitly
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Figure 4. The relationship between AI, ML, DL, and NN, GRU
stands for gated recurrent unit (GRU).

programmed’ [80]. The term was introduced, in 1959, in a
paper under the IBM Journal of Research and Development
dedicated to the use ofML in the game of checkers [80, 81]. An
indispensable characteristic of ML is the self-learning concept
that is defined as the application of statistical models for
the recognition of patterns and empirical information-based
performance improvements, without any direct programming
commands. ML is responsible for constructing computer pro-
grams that is automatically improved based on experiences
[71]. ML algorithms observe behaviours or the environment,
detect a pattern, make a generalization, and infer an explana-
tion. The resulting probabilistic correlations may predict out-
comes with a high degree of accuracy. The output of an ML
algorithm is entirely dependent on the data it is exposed to. If
the data changes, the result can change. It is possible to solve
the same task using different algorithms with different per-
formance (accuracy or speed). Sometimes, to achieve better
performance, different ML algorithms can be combined.

It is possible to identify three categories of ML algorithms,
which are distinguished by the type of information handled, as
mentioned in the literature [70–72]: Supervised Learning (for
structured/labelled data); Unsupervised Learning (for unstruc-
tured/unlabelled data); and RL (with the aim of maximizing
a reward). To clarify some semantic confusion between the
terms AI, ML, and DL, figure 4 depicts a representation of the
relationship between them. AI is driving the development of
machines capable of simulating cognitive abilities. Several AI
subfields can be identified in the literature, including search
and planning, reasoning and knowledge representation, per-
ception, NLP, and ML [82].

In ML, there are different algorithms (Decision Trees,
NNs, KNNs, SVM, and others) to solve problems. DL, or
Deep Neural Learning, is a subfield of ML, concerned with
algorithms inspired by a structure and function, like the human
neural system, called ANNs with multiple layers and other
techniques. DL performs well in certain tasks, such as image
recognition and NLP [81].

ANNs are simplemodels of the way the nervous system and
the human brain processes information. The basic units are

Figure 5. The internal structure of an artificial neural network,
which comprised inputs, weights, activation function, and output.

neurons, which are typically organized into layers, as depic-
ted in figure 5. It works by simulating many interconnected
processing units that represent conceptual neurons versions.
The basic principle under an ANN is a collection of basic ele-
ments, generally artificial neurons or perceptrons. They take
several binary inputs, x1, x2, …, xN and produce a single bin-
ary output if the sum is greater than the activation potential.

If the inputs do not have the same influence, weights are
assigned to the inputs, xi to allow the model to assign more
significance to some inputs. The output is 1, if the weighted
sum is greater than activation potential or bias, according to
equation (1):

Output=Σjwjxj + bias. (1)

In practice, this simple form is difficult, due to the abrupt
nature of the step function. A modified form was proposed to
perform more predictably, and small changes in weights and
bias produce a small variation in output. The literature refers
to two main modifications [83]:

• The inputs can take any value between 0 and 1, instead of
being binary.

• To make the output behave more smoothly for given inputs,
x1, x2, …, xN, and weights. w1, w2, …, wN, and bias, using
the sigmoid function, equation (2):

Output= 1/(1+ exp(−Σjwjxj − bias)) . (2)

The smoothness of the exponential function, or σ, means
that small variations in weights and bias values will produce
a small update in the neuron output (the update could be a
linear function of variations in weights and bias). In addition
to the usual sigmoid function, other nonlinear functions are
frequently used, allowing the train of the network with gradi-
ent descent, including [83]:
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• ReLU: Rectified linear unit. This keeps the activation
guarded at zero. It is computed using the following function
(equation (3)):

Zj = fj (xj) =max(0,xj) (3)

where xj, the jth input value, and Zj is its corresponding output
value after the ReLU function f.

• LReLUs (Leaky ReLUs)—These mitigate the issue of
dying ReLUs by introducing a marginally reduced slope
(∼0.01) for values of x less than 0. LReLUs do offer suc-
cessful scenarios, although not always.

• ELU (Exponential Linear Unit)—These offer negative
values that push the mean unit activations closer to zero,
moving the learning process quickly, by moving the nearby
gradient to the unit natural gradient.

• Softmax—Also referred to as a normalized exponential
function, this transforms a set of given real values in the
range of (0, 1), such that the combined sum is 1. A softmax
function is denoted in equation (4):

σ(z)j = ezj
/ k∑

j=1

ezj for j= 1, . . . , K. (4)

Different types of ANN can be identified in the literature, vary-
ing in complexity. They share the intended goal of imitating
the behaviour of the human brain to solve complex problems.
The structure of each type of ANN in some way simulate neur-
ons and synapses. However, they differ in terms of complexity,
use cases, and structure. Differences also include how neurons
are modelled within each type of ANN, and the connections
between each node. Other differences include how the data
may flow through the ANN, and the density of the nodes.

2.3. DL

DL is considered as an advanced form of ML that makes the
experience-based learning of computers possible and causes
the computers to conceive the world based on hierarchical con-
cepts [73] and makes use of sophisticated and multi-layered
NNs, whereby non-linear transformations of input data and
the level of abstraction gradually increases [73]. The term DL
arises as the generated models are significantly more complex
or deeper than traditional NNs. The term ‘deep’ is related to
the number of hidden layers in the ANNs; traditional ANN just
have 2–3 hidden layers, while DLmay have around 150 layers.

The architecture of ANN was inspired by the brain, in
which signals are transmitted by neurons and synapses. Each
input in an ANN neuron is summed up and then an activation
function is applied for output determination. Figure 5 shows
the internal structure of an ANN with respect to the actual
structure of NNs in the body creatures.

Deep ANNs can discover structures, known as learning of
features, from unlabelled/unstructured data, such as images
(pixel data), documents (text data), or files (audio, video data).

The development of the DL research area was motivated
by the limitations of traditional ML algorithms to generalize

Figure 6. How the accuracy of DL techniques scales with the size
of data [83].

well. Many ML problems become exceedingly difficult when
the number of dimensions in the data is high—the curse of
dimensionality. Themain differences betweenML andDL can
be summarised as follows:

• The functionality of an ML is started by a manual feature
extraction of data. Then, the extracted features are used to
create a model that categorises the objects in the data.

• In ML, feature selection is conducted manually, while in DL
feature selection and modelling steps are conducted auto-
matically.

• DL performs ‘end-to-end learning’ which means if raw data
(inputs), and a task to perform (activation function), are
given to an ANN, it learns how to do this automatically.

• DL algorithms scale with data, whereas shallow learning
converges. Shallow learning refers to ML algorithms that
maintain a certain level of performance when you add more
examples and training data to the network.

• DL has improved the ability to understand and analyse the
characteristics of engineering devices, such as power lines,
buried pipes, aircraft, and many others.

This has been made possible with major advances in ML
research as well as vast increases in both massive available
data and computing power [81]. There are different archi-
tectures for DL, such as Unsupervised Pre-trained Networks,
CNNs, RNNs, and RvNNs [83, 84].

A vital advantage of the DL approach is performance
improvements with respect to increasing the size of data.
Figure 6 depicts the performance of traditional ML and DL
algorithms with respect to the size of input data [83]. The per-
formance of DL techniques is higher than simple ANN mod-
els, however their required time for training is higher than
ANN models. Due to the appearance of the massive volume
of data, GPU computing, and transfer learning, the training of
DL algorithms in the current technological context has become
easier and more efficient [84].

2.4. BD and DS

BD describes large, hard-to-manage volumes of
data (structured and unstructured) generated in the
organizations/devices/processes. BD can be analysed for
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insights that improve decisions and give confidence for
making decisions. Modern computing systems provide the
speed, power, and flexibility needed to quickly access massive
amounts and types of BD. Although accessing and storing a
large amount of information and data for has been around for
a long time, the concept of BD was presented by the Gartner
Group in 2001 [85].

Most DL algorithms are based on the concept of ANN, and
the training of such algorithms has been more efficient and
effective with the increasing of data volume and computational
resources. With the increase of data volume, the perform-
ance of DL models continues to improve. A representation of
the behaviour of DL algorithm performance scalability when
compared with traditional ML this can be depicted in figure 6.

DS is a field of science that includes algorithms and systems
for the sake of knowledge and awareness extraction from com-
puters andmodels that use data. There are several definitions in
the literature considering its recent popularity in mathematics,
statistics, computer science, engineering, materials, science,
and finance [85, 86]. DS is concentrated on the large data set
analysis and also the data generation from different sources.
Systems could be trained so that they make decisions while
training is a continuous process for them, where the system
updates its learning and improves its decision-making capab-
ility with more data [85]. DS requires the language and tech-
niques necessary for understanding and dealing with data. It
includes the design, collection, assessment, and the interpret-
ation of numerical data, to recognize patterns and other prop-
erties of data [86–89].

3. A review on different applications of AI
techniques in superconductivity: past and current
developments

Before getting to the review section, the aims and methods
used to conduct the review must be clarified and explained.
Note that papers themed with AI for SCs are reviewed. So,
papers that involved superconducting nanowires or any other
form of SCs for improvements of AI methods are out of our
scope.

To answer these questions, literature on this topic is
reviewed, analysed and represented according to the follow-
ing structure:

(a) Categorization of the papers based on the application.
(b) Highlighting the significant points and findings of the

papers at the body of the topical review.
(c) Explaining the shortcomings of each specific study/applic-

ation.
(d) Identifying the further development needed as a future

path of the AI and SCs in each specific study/application.

According to the aforementioned reviewing methodology,
the reviewed papers are categorised into three subclasses:
large-scale, materials and physics-focused, and electronics-
communications.

Among the overall-reviewed papers, above 61% are
themed with the application of AI techniques in large-scale

Figure 7. The number of published papers in the literature with
respect to all the conducted studies in the last three decades.

superconducting applications; 33% aim at the prediction and
estimation of the characteristic of superconducting materials,
classified under material and physics-related applications; and
only around 5% fall into the scope of the electronics and com-
munications fields. China, South Korea, Japan, the USA, Italy,
and the UK contribute the most in the studies to apply AI tech-
niques for SCs. Among them, the majority of the studies under
a large-scale subclass focus on the design and improvements of
superconducting transformers, machines and fusion systems.
By looking at the statistics of the publication shown in figure 7,
a sharp tendency to useAI techniques for large-scale supercon-
ducting applications is observed during the last decade. About
70% of the publication are dated from 2011 to 2021. Around
82% of the literature has been seen in the last decade, which
means that during the last few decades special attention has
been drawn on linking superconductivity and AI-techniques.

This phenomenon can be understood by the remarkable
progress not only in the advancement of AI techniques but also
the increased funding and investment for large-scale supercon-
ducting applications. If materials and physics class are con-
sidered, significant attention in recent years is obviously clear.
More than 70% of papers on the application of AI for materials
and quantum topics were published during the last 4 years. AI
was also used in the field of electronics and communications
for the sake of design optimisation, control, and modelling.
We note insufficient publications related to potentially com-
mercial large-size superconducting devices such as >10 MW
generators, >30 MW motors, >1 MVA fault current limiters
and transformers, etc.

3.1. AI for large-scale applications

Further advancements and improvements in large-scale
superconducting applications are required to make them
cost-competitive in power systems and cryo-electrified trans-
portation units.

Optimisations throughAI techniques canmaximise the effi-
ciency, reliability, and safety of superconducting apparatuses,
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Figure 8. The different goals that AI techniques help to achieve in large-scale applications of superconductors.

while the cost, size, and thermal losses are minimised. Facilit-
ating these improvements is the most significant contribution
of AI techniques for SCs. AI algorithms can predict, estimate,
and characterise the behaviour of LTS and HTS devices in dif-
ferent operating conditions, such as temperature, field, stress,
and so on. Therefore, AI could be used for the characterisation
and condition monitoring of devices.

Figure 8 represents the different types of tasks that are
accomplished by AI-based techniques in the literature for
large-scale superconducting applications. Accordingly, they
are categorised into three classes: optimisation, condition
monitoring, and modelling. The first class involves with the
reduction of operational cost, harmonic effects, weight, and
losses in superconducting apparatuses, by means of AI. Usu-
ally, each aforementioned factor has its own priority with
respect to the application of the superconducting devices and
they are prioritised through the optimisation process by apply-
ing weights of the different terms to the objective function. As
an illustrative example, when one designs a superconducting
machine for electric aircraft, the efficiency of aircraft propul-
sionmachines, weight and size aremore important factors than
cost.

The second class adopts AI to reduce the risk of failures,
faults, and burnouts of superconducting devices under abnor-
malities in the power grid, such as faults, short circuits, over-
loadings, and over-voltages, among others. AI enables the
finding of hot spots in superconducting tapes/wires.

Another use for AI in the large-scale application of SCs
is known as black box and grey box modelling. Black box
models are the models that are reviewed as inputs and out-
puts, in which the internal functions that change the inputs to
outputs are unrecognisable. On the other hand, grey box mod-
els use a combination of the DS and theoretical knowledge to
turn inputs into outputs and results. Due to the complex char-
acteristics of SCs under different operation conditions, con-
ventional models tolerate a high computational burden. How-
ever, this can be simplified by using AI techniques, and hence
superconducting devices could be characterized in a much
shorter time, lighter load and acceptable accuracy or even
higher accuracy.

3.1.1. AI for superconducting MRI scanners. MRI is one
of the most practical instruments to diagnose diseases and
tumours. Superconducting MRI systems can provide higher
and more homogenous magnetic fields, lower heat, and higher
quality images in a compact structure, in comparison to con-
ventional, resistive or PM MRI scanners. In superconducting
MRImagnets, main coils are used to generate the desired mag-
netic field, while shield coils are placed in the structure of
the magnet to supress the magnetic field out of the imaging
area. Subsequently, many investigations were performed to
enhance the efficiency and reduce the manufacturing/purchas-
ing cost [42, 46, 90–95]. AI techniques were used to optimally
design superconducting MRI scanners and increase their ima-
ging quality. The most applied methods of AI for gaining an
optimal design of MRI are GA and ANN [42, 96–99].

The design and structure improvement of superconducting
MRIs were initiated in the last years of the twentieth century
[100]. Recently, an ultra-compact, small-bore HTS MRI was
proposed in [101]. This MRI provided a high-quality image of
an ultra-compact size. The model of this 1.6 T MRI was ana-
lysed using FEM in the COMSOL software package. Through
a Live-Link of COMSOL and MATLAB, the structure of the
magnet was optimised by performing a GA on the design para-
meters. The aimwas to reduce the inhomogeneity produced by
the superconducting magnet, and hence to increase the ima-
ging quality, which can be achieved by restructuring the super-
conducting MRI. The results indicated that inhomogeneity of
this type of MRI reached 2.36 ppm in DSV. This number was
3.3 ppm before applying GA optimisation. The 28.5% reduc-
tion in inhomogeneity led to better image quality. These res-
ults were obtained in the 2D analysis of superconductingMRI,
while 3D analysis could hand more precise values.

Many structures were proposed to increase the homogen-
eity and subsequently the quality of the image. One of them
is an open-structure MRI that consists of ferromagnetic and
superconducting magnets, as shown in figure 9. This is a
research project done by IEE CAS (China). Commercial units
used only a tiny volume of magnetic materials for passive
shimming [102]. Mechanical forces in magnets, i.e. Lorentz
force, should be carefully considered since they can cause
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Figure 9. An MRI system using superconducting and
ferromagnetic coils [102].

quenches in superconducting magnets. If the imposed force
approaches the maximum tolerable force of superconduct-
ing wire/tape, impregation or other components, mechanical
energy will be released in the coil and a quench is highly pos-
sible. In fact, Lorentz force and inhomogeneity are a func-
tion of the structure and the design parameters of the magnets.
Thus, an optimisation procedure will address the mechanical
issues simultaneously with the inhomogeneity while the size is
minimised. Therefore, there is a need for the consideration of
applied Lorenz force in the optimisation procedure of a mag-
net design. By performing this optimisation using GA, 98.33%
of inhomogeneity was reduced, while Lorenz force decreased
from 40 kN to 0.1 kN, the equivalent of 99.73% reduction. The
improvement in inhomogeneity and Lorenz force led to high-
quality images, safe operation of the superconducting MRI for
patients, and also better performance of the cooling system.

Another type of superconducting MRI is the linear acceler-
ator MRI (LinacMR). As shown in figure 10, this type of MRI
has a non-axial superconducting magnet with a 0.5 T mag-
netic field. To reach a compact structure, a design optimisa-
tion based on the PSO algorithm was performed with a cost
function concerning the outer surface of the plate pole [103].
The results showed the objective function for five spokes was
reduced to 69.76% of the plate pole, and for the nine-spoke
case, this value reached 55.55%, which led to a much more
compact LinacMR.

Performing such design optimisation can reduce the possib-
ility of quenching for superconducting magnets during their
operation. Also, high-quality images obtained by optimised
superconducting MRIs can help doctors diagnose diseases
and tumours better, faster, and more precisely. However, the
cost of cooling units and their impact on the magnetic beha-
viour of superconducting MRIs could be evaluated in future
research. In addition, transient loss/loads, quench protection,
and cost analysis are other topics that can be improved by
AI optimisations and enhance the techno-economic consid-
erations of superconducting MRIs. Intelligent quench protec-
tion for superconducting coils/magnets in MRIs is extremely
important as huge energy released during a quench can dam-
age SCs. Therefore, AI-based techniques must be developed
to provide intelligent condition monitoring methods for MRI
magnets.

Figure 10. A 3D view of LinacMRI consists of MgB2-based coils
[103].

3.1.2. Superconducting magnets for fusion and accelerator.
Superconducting magnets are the essential components in the
fusion industry and systems [104, 105]. Thus, AI techniques
were developed widely to design, monitor, and model the
behaviour of SCs in these systems [107–114].

The LHC is one of the world’s largest experimental nuc-
lear research facilities, founded on the border of France and
Switzerland, at CERN. Studies and investigations carried out
at the LHC aim to prove and verify the physical theory known
as the Standard Model. In addition, another objective of the
LHC is to establish a physical theory about the universe [106].
The LHC consists of many electrical, mechanical, and mag-
netic components. Among them, superconducting magnets are
themost vital and also vulnerable components, and their accur-
ate testing and operation are crucial for experiments that use
the LHC. A sample of such a test system is shown in figure 11.
Therefore, many responsible teams were formed by many
experts, such as related to cryogenics, superconducting mater-
ials, control engineering, and even software engineering. The
main goal of these teams is to prevent faults, malfunctions,
and failures in superconducting magnets and their related sys-
tems, such as cooling systems. One of these teams has created
a model based on RNN to characterise the electromagnetic
behaviour of superconducting magnets. Due to the distributed
nature of the data gathered from these magnets, RNN is put to
work using a time series of voltage and current to make pre-
dictions and assessments of the electromagnetic characterist-
ics of magnets. To gain high accuracy and efficiency out of
RNNs, the structure was selected to be either LSTM or GRU.
To properly detect malfunctions and failures in superconduct-
ing magnets, the regression task is replaced by classification.
Accordingly, data in the training and test phases are categor-
ised. Thus, the developed model is capable of predicting some
time steps coming in the future. By doing this, the maximum
error of prediction is between 5% and 10% [115–117].

Due to the vulnerability of magnets in the LHC against
quenches, an QPS was developed based on current signals
[118]. The challenging issue for the QPS is that usually the
quench detection can be accomplished after the abnormality
occurs. Consequently, there is need for very fast protection

12



Supercond. Sci. Technol. 35 (2022) 123001 Topical Review

Figure 11. Test facilities for testing quadrupole magnet [106].

Figure 12. AEDNN for fusion magnet protection in [119].

schemes that aremore expensive than slower versions. Tomeet
this challenge, dynamic learning is used, which consists of an
Auto-Encoder Deep Neural Network as shown in figure 12. In
static learning, firstly input data are trained to build a model.
Afterwards, the test data are fed to the built model for estim-
ations and predictions of the output, and comparing the out-
put with target value, i.e. the real output. This of course leads
to some error between real output data and estimated one.
Due to the sensitivity of the QPS in superconducting magnets,
a dynamic learning method must be used instead of a static
one. In dynamic learning, the basic model is upgraded every
10 s based on a triggering process. Triggering can change the
basic model to operate in a real-time manner, based on the test
data. In this method, the weight of the network is updated to
be adapted to changes in the main problem. An overview of
dynamic learning is shown in figure 13. By doing this, 77%
of the quenches were detected about 25 s before its occur-
rence [119]. This can provide tremendous protection for the
superconductingmagnets in either the LHCor any other fusion
industry. However, the accuracy and prediction timespan can
be further improved in the near future by using more advanced
DL methods.

Due to the high Bc2 of Nb3Sn wires (around 30 T), the
critical temperature around 18 K, and the high critical current
density of these wires, around 106 A cm−2, they are widely
applied in superconducting magnets in fusion systems, such
as CERN and LHC magnets. So, the condition monitoring
of magnets, as a key component, is a vital step towards the
safety enhancement of the related projects. To detect copper
voids in these wires, x-ray micro-tomography can be applied

Figure 13. An overview of dynamic learning used in the LHC as a
predictor [119].

Figure 14. An x-ray micro-tomography presenting the copper voids
and other sub-element voids in a Nb3Sn wire [120].

as a powerful tool along with ML methods. By using such an
approach, copper voids and sub-element voids can be detected
with high accuracy. The process begins with acquiring some
images of Nb3Sn wires with x-ray micro-tomography. Then,
each image pixel is compared with a threshold colour to find
voids. As a result, copper voids must be separated from others,
which is performed by an ML method. The clustering of ML
is based on the well-known k-means method. Pixel brightness
is implemented here as the input while the type of void is the
output [120]. A sample of x-ray micro-tomography is shown
in figure 14, which includes copper voids and voids of other
sub-elements.

Cryoplants are one of the crucial parts of any large fusion or
accelerator superconducting system. To evaluate the behaviour
of the cryoplant of the ITER project, a program known as
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4 C was developed [121]. This program modelled and sim-
ulated thermohydraulic transients. To reduce the simulation
time, ANNs were used to split the model of CS into prob-
lems with a lower order of complexities. To model the CS with
ANN, inputs are the total power of each CS module, and out-
puts are thermohydraulic parameters, such as pressure, tem-
perature, and mass flow rate.

By implementing the ANN, pulsed heat load induced by
CS to liquid helium baths was estimated with an error range
between 0.04% and 0.22% [122, 123]. Restructuring the ANN
further improved the results. Some parameters of ANNs were
changed, such as network topology, activation functions, num-
ber and types of inputs and outputs, and training time step, to
increase the accuracy. By performing optimisations on these
parameters, the ANN model became 500–1000 times faster
and about 8% more precise than the un-restructured ANN
[124, 125].

CICC is another important part of the superconducting
magnets in fusion power plants. Improvement of the struc-
ture led to a better operation of the whole power plant. So,
ANN could be used as a solution to find the optimum struc-
ture of this type of cables, which results in a fast optimisation
without any possibility of sticking to local optima. The results
of finite element analysis were used as inputs of the training
phase for ANN, under the objective function to maximise the
generated magnetic field in the pancake, while the temperature
of hot spots, mechanical force, and the pancake volume must
remain below a limited value. After applying such a model, the
calculation time was 90% reduced, whilst the accuracy of the
model was about 99.994% [126]. As stated in [127], the stray
magnetic field around the International Thermonuclear Exper-
imental Reactor (ITER) tokamak is around 200 mT that could
jeopardize the reliability of electrical, electronic, and sensor
devices installed around the tokamak device. So, an immune
zone for installing the electronic and electric devices must
be recognized with the lowest possible magnetic field. This
immune zone is a function of the structure of superconducting
coils, which could be the outcome of an optimisation prob-
lem. Thus, in [127], an NSGA-II optimisation algorithm was
used for designing a magnet system with four coils, 1 m side
length, 275 mT magnetic field, and homogeneity of 1.05 that
is shown in figure 15. For this purpose, the objective function
is considered so that the power loss in coil system and the mass
of the superconducting tapes are minimized. After the imple-
mentation of such an objective function, the optimum design
of the coil system was acquired and the next level was mod-
elling the designed coil. Figure 16 shows the distribution of
power loss and magnetic field of the coil system after optimal
design process. After comparing the result of simulations—
based on NSGA-II algorithm—and the experiments, a high
level of agreement was observed.

3.1.3. AI for superconducting cables. Superconducting
cables are candidates to transmit and distribute electric power
in future power grids and cryo-electrified transportation sys-
tems. Advantages of the HTS cables include minimised
cable resistance, minimized impedance, and compact size.

Figure 15. The four-coil system with a 275 mT magnetic field
[127].

Figure 16. The field and loss distribution of the four-coil system
after the design process with NSGA-II [127].

Challenges for the commercialisation of these cables include
high manufacturing cost, high thermal loads, requirements for
reduction in size and weight, electrical joints, and long HTS
cables, among others. They lead to a decrease in the efficiency
of the cable, cooling system, and the reliability of both. To
tackle these issues, AI techniques have been proposed as a fast
and effective solution. Condition monitoring of superconduct-
ing cables for analysing their temperature, operation mode,
and AC loss is a challenging issue on its own.

Due to the novel structure of the cables, it is almost
impossible to simply use those condition monitoring meth-
ods developed for conventional power cables. The different
structure of coated conductors in comparison to conventional
wires and the arrangement of tapes/wires in a novel cable
structure makes it crucial to bring in new monitoring pro-
cedures for these cables. AI approaches can be used to over-
come this problem, as accurate and reliable condition mon-
itoring methods. As a matter of fact, an accurate condition
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Figure 17. The location of electrical joints in the system of the
154 kV/600 MVA HTS cable [128].

monitoring method can be used for monitoring the character-
istics of superconducting cables under steady state meanwhile
it can be used also as a part of the protection system and help
the real systems to isolate the faulty cable.

A condition monitoring method using TS-LSTM was pro-
posed in the technology development project [128] for the
sake of determining the dielectric and electrical characterist-
ics of a 1 km 154 kV/600 MVA HTS transmission cable as
shown in figure 17. TS-LSTM was used to monitor the con-
dition of the joints, which cannot be accomplished with con-
ventional methods due to voltage signal reflections. To do
this, firstly the location of joints and terminations in the cable
was analysed through time-frequency domain reflectometry.
After that, for joint monitoring, the voltage signals were ana-
lysed with a chirplet transform operating in the time-frequency
domain parallel with TS-LSTM. Thus, by implementing such
a model, joints can be analysed and in the case of any fail-
ures and faults in these elements, the location of faults on
HTS cables is identified. To extract the features of the invest-
igated voltage signal, in each step time, they were divided into
sub-signals known as sections (n), which played an important
role in gaining the highest possible accuracy of the monitoring
procedure. The accuracy of this model reached 99.27% when
n= 3 while the accuracy for section number of 2 could be just
about 89.4%. By applying this method, the reliability of the
cable operation was increased by reducing the risk of long-
duration faults.

On the other hand, the proposed condition monitoring
method could be applied during the test phase of the HTS cable
and before implementing in a real power system to improve
the lifetime of the cable by monitoring its performance under
different circumstances.

The conditionmonitoring ofHTS cables in a real-timeman-
ner is a key factor in increasing their reliability and lifetime,
and enhancing their performance in the long run. However, no
evidence in this paper clarifies if the proposed method is uni-
versal enough to apply to all kinds of superconducting cables.
In addition, there was no discussion on the suitability of the
method to detect any other abnormalities or in any other loca-
tion apart from joints.

Another approach for condition monitoring of supercon-
ducting cables is to use ML methods to train a system that
could discriminate faulty conditions from normal ones. To

Figure 18. The S-parameter block for condition monitoring of the
22.9 kV HTS cable presented in [129].

Figure 19. The loss rate of the HTS tapes for fault detection in
22.9 kV HTS cable by machine learning [129].

implement such a model, an S-parameter block can be used
to represent a magnetic signature in both transient and steady-
state conditions as an index for fault detection [129]. The
S-parameter block of a 22.9 kV HTS cable based on a lumped
model is shown in figure 18 as a two-port linear time-invariant
network system. In this figure R, L, C, and G represent
resistance, inductance, capacitance, and the conductance of
the understudied cable, per unit length, respectively. To per-
form fault detection, firstly, the electromagnetic characterist-
ics of a cable are experimentally acquired. Afterwards, the
S-parameter model is built based on the experimental data.
Finally, an ML method is applied to predict the type of fault,
based on the magnetic signature. The ML method gains the
multiple linear regression of the voltage and current waveform
of the normal operation mode of the cable and compares other
voltage and current signals with that. By doing this, series
faults can be identified and characterized, based on the loss
rate of HTS tapes. A loss rate model shows an average accur-
acy of 98.06%, as can be seen in figure 19.

AI techniques can also assist in monitoring over-voltage in
any HTS cable during operation in a power grid. To do this, a
PSO-SVM-based approach is an effective option to recognize
the lightning and the internal overvoltages in a 110 kV HTS
cable [130]. Firstly, the signals of over-voltage were acquired
by highly sensitive sensors at the grounding tap of transformer
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Figure 20. The experimental setup in a 110 kV AC HTS cable that
feeds the input data to an ANN model for fault detection [131].

bushing. After that, a hierarchical pattern recognizing struc-
ture used the PSO-SVM as the classifier to extract the fea-
tures of different types of over-voltage. The accuracy of this
approach was above 90.4% [131]. The error might be further
reduced by applying NNs to the model and the accuracy may
even reach above 99%. This can be conducted by using ameas-
urement and test system, as shown in figure 20 [131].

The role of AI-based approaches in the condition
monitoring and fault detection of superconducting cables
becomes more significant, compared to conventional methods.
Althoughmost of these studies aimed to perform an estimation
procedure, there is a lack of online or even real-time monit-
oring methods that predict short-term future conditions of the
cable. These types of models, if successfully built, would be
able to predict the behaviour of a cable with respect to the
parameters of the power systems, such as voltage, current,
frequency, and even loading. By implementing a prediction-
based model, a proper protection setting could be adjusted
for HTS cables. This protection can isolate the cable when
the predictions imply the high probability of cable burnout.
Note that conventional relay-based protection is incapable of
predicting a fault before it occurs.

A discriminative method of fault detection for a
33 kV/202 MVA/5 km distribution cable was proposed in
[132]. This method uses two kinds of feature extraction tech-
niques, SWTs and two AI-based approaches, ANN and SVM.
A method was proposed for the identification of internal faults
from external faults and other transient events in power sys-
tems such as load switching. Internal faults refer to any fault
that occurs within the HTS cable, while other faults are cat-
egorised as external faults and have origins outside the cable.
First, the three-phase voltage and current signals were received

and SWT was used to decompose the signals. The next step
was the feature extraction of samples to feed them into the
binary classification. The binary classification was conduc-
ted with ANN and SVM. Results showed that both methods
achieved high accuracy around 99.6%, while ANN had an
outstanding action time (i.e., less than 1.5 ms) which was
430% faster than SVM. The high accuracy and fast response
time of the proposed ANN-based method made it an excel-
lent choice for protecting the HTS cables not only in power
systems but also in future electric aircraft. However, it was
not discussed whether this model was adoptable for any other
structure of the HTS cables upon some modifications based
on other cables.

Making high-current cables out of the superconducting
tapes can usually be accomplished by three methods: manual
winding, acceptable for technology Demo only, device-
assisted winding, and fully automatic winding. By perform-
ing each one of these methods, the distribution of a critical
current is different. Winding methods also impact the quality
of the cable and could increase the possibility of weak points
and burnout during the operation of the cable. To avoid this,
an AI-based technique with three steps was presented in [133]
to analyse the quality of winding in a CORC cable. The first
step was data preparation based on video of winding process
and turning them into a couple of image samples. After that,
all image samples were binirized as ground truth for the train-
ing phase. However, the amount of data at this stage was not
appropriate to train a systemwith high accuracy. Thus, the data
set must be enlarged to increase the stability and accuracy of
the trained model.

This was done by flipping the images or by rotating them
90 degrees, clockwise. In the second step, an RCF network
was used to detect the quality of winding, based on the input
data. This model is accomplished in five steps. The first step
is a modified residual NN, ResNet50, consisting of bottleneck
models with a 1× 1 kernel size and a 1× 21 channel, consist-
ing of convolutional layers. By applying the input images to
the network, the output is a series of grayscale images, which
are converted again into a series of binary images with two
parts. The white part was the predicted interval of the cable
and the black part was the background of the image. These
black-white images could have noises and holes that make the
detection procedure inaccurate. To overcome this issue, in the
third step of the detection procedure, the output images were
post-processed to increase the accuracy of detection.

Since the first application of HTS cables, specifically the
triaxial type, uniformity of current distribution in supercon-
ducting layers is always a very complicated fabrication task.
To achieve such uniformity, the preliminary structure of the
cable should be adjusted. This procedure could be analysed
as an optimisation problem and can be solved by using
AI techniques [134]. To solve such an optimisation prob-
lem, many constraints and limitations are imposed on the
feasible domains, such as maximum irreversible strain and
maximum tolerable Lorentz force for HTS tapes. The total
AC loss of the cable can be considered in the optimisation
algorithm and should be minimised [135]. The reliability of
the designed HTS cable is another constraint [136]. Another
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Figure 21. The structure of a hybrid-HTS cable for transmitting
electrical energy and LNG simultaneously [139].

imposed constraint is related to mechanical load considera-
tions, such as stress, strain, torsion, and twisting, among oth-
ers, which could also reduce the feasible domain to essentially
find the optimal solution faster [137, 138]. The optimum struc-
ture of the cable could have some of the following results.
One of them is that the size and the weight of the cable are
reduced. This can fit them for future electric ships and aircraft.
Another consequence of design optimisation is that the value
of AC loss is reduced. This results in an enhancement in the
total efficiency of the cable where less heat load is imposed
to the related cooling system and results in a lower opera-
tional cost. These optimisation techniques, for reducing the
size, weight, and cost of superconducting cables, can be used
to assist the design procedure of HTS cables. For instance,
recently, a novel concept was presented for HTS cables, such
as HET [139]. HET implies the simultaneous transmission
of different types of energy. An HTS cable can transmit not
only electrical energy but also LNG as shown in figure 21. In
this figure, the main electrical structure of the cable is shown.
In addition, other parts related to the LNG transmission are
shown with ‘Other Layers’. A PSO optimisation problem was
carried out on a 500 kV/2 kA/1 GWACHTS cable to improve
the design parameters of the cable with HET capability [139].
The objective of this optimisation was to maximise the cur-
rent sharing uniformity in different superconducting layers by
applying changes in twisting angles and twisting directions of
HTS tapes, while maximum and minimum applicable angle
and assigned total current limit the feasible domain [139].
Finally, the values for twisting pitch length, magnetic fields,
critical currents, and the structure of the cable were optim-
ised. Indeed, the optimised structure of the depicted cable has
445 mW m−1 of AC loss, about 15%–20% less than the non-
optimised structure.

3.1.4. AI for SMES. Implementing energy storage devices in
power grids increases their stability and reliability [140–142].
SMES stores energy through a superconducting coil/magnet,
and also by integrating power converters, a cooling system,
transformer and a fast solid-state switch. The weight, size,

and cost of these components can affect the total structure,
efficiency, and final price of the energy-storing procedure in
SMES. Thus, an optimisation problem can be conducted to
find the optimal values of design parameters. By optimising
these parameters, the power density and efficiency could be
increased, while losses, cost, size, and weight can be signific-
antly reduced [143].

To optimally design SMES, AI techniques presented a fast
and accurate solution for optimisation problems [144, 145].
In addition, they were capable of estimating any magneto-
mechanical characteristics of SMES based on acquired data
such as maximum applied force to the superconducting coil,
the maximum magnetic field of SMES, and mechanical char-
acteristics of HTS tapes used in SMES, among others.

To optimise the structure of SMES, the size or/and the cost
of the device could be set as the objective function(s), while
AC loss, the stored energy, and the stray magnetic field could
be defined as constraints [146–148]. This leads to an SMES
with higher power density and higher energy storage capabil-
ities. Power density is an important factor when the SMES is
designed for applications such as microgrids, cryo-electrified
aviation systems, and space.

There are many AI-based algorithms to find the optimum
design parameters. Among those, GA and simulated annealing
(SA) are commonly used [149–151]. It is worth noting that the
SA is an optimization algorithm that is adapted based on the
slow cooling of metals where atoms inside the metal lose their
lattice defect density by reducing their movements.

Due to the rapid increase in penetration of DG and the
uncertainty regarding their capability in providing the deman-
ded load at all times, SMES could be used as a vital compon-
ent in smart-grids with DGs. To optimally operate of SMES
in future modern smart grids, constraints and uncertainties of
DG must be also taken into consideration during the design
stage. In such grids, SMES can inject a high amount of power
into the power system at a short time, which will benefit the
suppression of around 20% of fluctuations in the grid caused
by overloading and other abnormalities [152].

Mechanical constraints also affect the optimum structure of
SMES. These mechanical issues can include hoop and radial
stresses or any other kind of stress, strain, and mechanical
deformation of superconducting tapes, considering mechan-
ical stresses in the design stage of SMES are vital, due to the
possibility of establishing weak points and hot spots caused by
mechanical issues. These may lead to burnout of SC and also
SMES malfunction [153–155].

If SMES is optimally designed, the stability of the grid can
be remarkably enhanced when it experiences events such as
overloading, generation unit disposal, frequency oscillations,
and even faults and over-voltages. However, the majority of
studies have focused on the design optimisation of SMES
itself. Therefore, some new studies on the design optimisation
of SMES concerning system parameters need to be conducted
to improve the reliability, stability, and even protection of the
power grid.

To model SMES, there are multiple options on the table,
such as ECMs, FEM, and analytical models. FEM offers high
accuracy but with a high computation burden, which makes it
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a non-real-time approach. ECMs also offer acceptable accur-
acy and lower simulation time if compared with FEM. How-
ever, ECMs have issues in defining some mechanical and
thermal constraints. Finally, there are analytical methods with
a geometry-dependent accuracy and computation speed.

To overcome previous challenges in modelling the SMES,
ANNs are one of themost convenient approaches to model and
characterise the behaviour of such devices without any com-
plexity of computation, e.g., for the calculating magnetic field.
Usually, ANN-based approaches consist of a training phase,
in which the system is trained with respect to the inputs and
outputs, and a test phase that can be used for the sake of pre-
diction and estimation of the behaviour of SMES [156]. By
applying ANN to estimate the magnetic field and AC loss of
a 150 kJ SMES, a high accuracy, e.g. with an error of 0.1%–
3.7% can be achieved. In this process, the inputs are operating
current and load parameters, while the output is AC loss. Also,
the supervised training is used to increase the accuracy of the
model, which was reduced due to the highly non-linear rela-
tion between current and AC loss [156].

Due to the high speed and accuracy of the ANN-basedmod-
els, they are implementable in a real-time manner. This makes
the online conditionmonitoring of SMES available when oper-
ating in a grid or cryo-electrified transportation system. How-
ever, there is a lack of a complete model for SMES that can
predict magnetic, electric, mechanical, and even thermal beha-
viours of SMES, under different conditions of the grid.

So far, AI methods are applied to relatively small techno-
logy demonstration units. Potentially commercial units with
energy above 10 MJ and deliverable power above 3 MW will
require different AI approaches. Depending on the purpose,
SMES optimization will use different constraints and weight
functions. For example, 5–10 MJ, 1–5 MW micro-SMES for
support of critical loads have relatively few discharges on the
order of 10 a year. These units will be optimized with size,
cost, minimized lead losses. Larger SMES units were pro-
posed for the line stabilization. These units experience fre-
quent charge/discharge cycles and AC loss optimization is one
of the design drivers.

To increase the stability, reliability, and safety of power
systems, including wind farms, SMES units were proposed as
they are efficient, and optimum control is a critical concern.
The Archimedes optimisation algorithm is a novel AI-based
optimisationmethod that was used in [157] for determining the
operating condition and parameters of the proportional integ-
ral (PI) controller of an SMES. By doing this, under differ-
ent grid conditions, the charging and discharging of SMES
would be regulated and as a result, grid stability increases.
The SMES is installed at the load side while a wind farm
delivers the power to the load. For this purpose, the object-
ive function is selected so that the difference between the
required active/reactive power of the grid and the delivered
active/reactive power by SMES is minimised. GA and PSO
algorithms were also used for the sake of comparison with
the proposed Archimedes optimisation algorithm. By doing
this and under a 400 ms line to ground fault, 80% of terminal
voltage drop is reduced in comparison to when GA method is
used and 800% of voltage drop is reduced in comparison to

the situation that no SMES is implemented. A line-to-line to
ground fault was also tested and the results showed the superi-
ority of the proposed Archimedes optimisation method. The
PI controller of SMES units could be also adjusted based on
the NNs. For this purpose, an enhanced block-sparse adaptive
Bayesian algorithm (EBSABA) is presented in [158] to control
the PI parameters of a 10 MW/20 MJ SMES. By using such
a method, the output power of the wind farm is smoothened.
As a result of simulation of 23-bus power system with two
wind farms and 100 MVA base power, while the EBSABA
is applied to the PI controller of wind farms, more than 10%
of the farm output power is smoothened in comparison to the
situation where EBSABA is not applied to the PI controller.

3.1.5. AI for superconducting machines and transformers.
Significant advances in technology and manufacturing are
required to enable commercialisation of superconducting
machines. Among these requirements is the increase of mag-
netic field in the excitation area between rotor and stator, the
increase of the power density, reduction in size and weight,
efficient cryogenic system with the minimized use of liquid
cryogens, improved system reliability with minimized main-
tenance, a long system operation period of over ten years,
and the availability of the operation of superconducting com-
ponents over 99% of the time, which have higher priorit-
ies. AI techniques are powerful tools to deal with the chal-
lenges related to optimisation as well as condition monitoring
[159–163].

Rotating machines including motors and generators are the
most common types of electrical machine. However, there are
other types of electrical machines where AI can optimise their
structure and operation conditions, for instance, supercon-
ducting transformers [164] and linear HTS machines [165].
Generally speaking, rotating machines consist of two major
components. One of the components, typically called a rotor,
practically generates a DC magnetic field that varies in space.
In generators, the stator converts mechanical energy to electric
energy. In motors, AC currents in the stator cause the rotor
rotation vs the stator. The low-loss DC component may use
either LTS or HTS superconducting winding. The high level
of AC loss (especially the eddy loss) in superconducting arma-
ture windings remains an unsolved challenge for high-speed
superconducting motors [166]. It was shown that the stator
may benefit from operation at a higher temperature despite the
penalty in SC cost.

Relatively high cost of cryogenic vessel and other com-
ponents of the superconducting rotating machines cause only
large-size machines to be commercially competitive with con-
ventional units. For generators, only units with output power
not below 10 MW are expected to be competitive. The motor
power should be above 3 MW for competitive superconduct-
ing units [167].

Cost is a vital factor in designing superconducting
machines. While the capital cost for superconducting
machines is generally higher than for the mature conven-
tional devices, the lifecycle cost promises to be competitive.
Their cost could be minimised by conducting an optimum
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restructuring process on some parts in machines. One of these
candidate parts for being optimised is the excitation system,
which is responsible for magnetic field generation. In super-
conducting machines, the excitation system could be either
composed of superconducting tapes/wires, resistive or PTs.
In the case of designing a machine with a superconducting
excitation system, there are multiple trade-offs. Although
minimising the size and number of coils in it would make
the cost to be minimised, minimization alone has significant
limits [167, 168]. Cooling consideration is another factor that
can highly impact the total cost and weight of the machine.
For instance, due to the lower cost of first generation (1G),
bismuth-based HTS tapes compared with second generation
(2G), REBCO-based tapes, at temperatures near 20 K, 1G
are the best economic option in AC. However, as a matter
of fact, NbTi version is the only DC architecture that can
compete with conventional motors and generators in terms of
cost. However, the AC regime may be different, depending
on different AC loss components [168, 169]. However, the
cooling cost of the required cryogenics to provide such a low
temperature would be significant, which must be considered
in the cost evaluation stage. As a result, temperature could be
assessed in future research as an effective factor on the cost of
superconducting machines and the total power density of the
energy unit (i.e., the total weight of the machine plus cooling
system must be considered) [170].

Superconducting machines were proposed and studied for
wind turbines to convert the mechanical energy of the wind to
electrical energy, as a green energy solution. The EcoSwing
project aims to deliver a 3 MW HTS generator, and the gen-
erator has operated on a tower for about 4 months. Previ-
ously, the related research and investigations about the design
of superconductingmachine happened in Japan, 1990s–2000s,
and the coils of themachine consisted ofNbTi SCs operating at
1.8 K [171]. There are limitations for such applications, which
can change the structure of the machine and consequently its
cost [172, 173].

The efficiency and power density of superconducting
machines are two important design factors. Power density is
the ratio of generated/consumed power of the machine to its
weight (kW kg−1). So, by minimising the weight and the size
of the machine, its power density increases. GA is usually
used for dealing with the challenges of power density and effi-
ciency increase in superconducting machines. Armature wind-
ings, stator iron yoke, and field windings are the most suscept-
ible parts to minimise the weight and the size of the machine.
By performing an optimisation based on the size and weight
reduction of a 200 kW/220 V/250 rpm nonsalient magnetic-
cored superconducting synchronous machine using the GA
method [174], volume and weight was reduced around 28%
and 36%, respectively, in comparison to the size and weight
of the un-optimised machine. The efficiency of the machine
with the optimum design was 1.15% more than the prelim-
inary non-optimised design. Consequently, the power density
was 156% increased, which is quite significant for a machine
with 200 kW power.

In [171], a sensitivity analysis was performed to find
the optimal solution of a 74.7 MW/10 kV LTS generator

composed of NbTi wires. Multiple objective functions were
defined in this study with different constraints and aimed to
solve them by performing a sensitivity analysis on the para-
meters of GA and SA algorithms. However, these changes did
not make a significant improvement in the power density and
efficiency of the machine. The range of changes was between
0.3% and 0.7% for the specific power of the machine. In fact,
the authors compared GA and SA algorithms, and show that
the two approaches converge. Within such constraints, there is
not much room for optimization.

The power density of a superconducting machine is crit-
ically important in electric aircraft applications, as the low
weight of the propulsion system is quite vital for flying at a
longer distance [175]. For the superconducting machines pro-
posed in aerospace applications, specific mass of the cooling
system is another factor to be considered and minimised. It
is defined as the ratio of the weight of the cooling system to
its cooling power, and is shown based on kg kW−1. When
designing a cryo-electric aircraft, this factor must be taken into
consideration. As shown in [176], depending on the operating
temperature, the cooling system is responsible for 24%–90%
of the total mass of the whole system of a 50 kW supercon-
ductingmachine designed for aviation purposes. Near the 20K
operational temperature of the machine, most of the total mass
belongs to the cooling system. Meanwhile, when the temper-
ature approaches 77 K, the mass of the cooling system, espe-
cially the cryocooler, is significantly reduced. These results
seem about right for low power machines; however, in future
aviation applications superconducting machines with power in
the MW range are required to achieve the reported values for
mass and weight. This great finding should certainly be con-
sidered in the design procedure of an electric aircraft. As repor-
ted in [176], for low-power 50 kW machine, the best operat-
ing temperature was 66 K, which led to a 0.6 kW kg−1 overall
power density (cooling system included); whilst for a 1 MW
machine, the overall power density can be up to 6 kW kg−1,
at 50 K. A schematic of the understudied machine is shown
in figure 22 [176]. The research considering the aircraft lim-
itations could accelerate the implementation of SCs in elec-
tric aircraft and commercialisation. AI techniques demonstrate
their effectiveness in the development around superconducting
devices in aviation technology.

Harmonics are an inevitable part of a system with power
electronic devices. They have destructive impacts on the
equipment such as generating a higher loss, producing
more heat load, and reducing its life span. Superconducting
machines are normally subjected to harmonics either in the
current or voltage. Harmonics increase the amount of AC loss
in superconducting machines, lowering the efficiency of the
cooling system, exposing the superconducting tapes/wires to
extra heating, and many other devastating consequences. To
avoid such harm to superconducting machines, they should
be optimally restructured considering harmonic constraints
[177]. The PSO algorithmwas implemented on a 50 kW super-
conducting synchronous generator to optimally design it to
reduce the THD of the output voltage [178, 179]. This optim-
isation in the design of the machine by PSO algorithms has
led to a THD reduction of 13.5%–5.8% in comparison to the
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Figure 22. A 3D schematic of the 50 kW superconducting machine
designed for aviation purposes [173].

preliminary design. Thus, the THD of the air gapmagnetic flux
density of the machine varied from 21.64% to 9.65%. The val-
ues of THD are significantly reduced, however, there may be
room for further reduction using a new type of meta-heuristic
optimisation algorithms.

Investigations on THD reduction with AI algorithms have
not been accomplished for other types of superconducting
machines, such as induction homopolar DC and PMmachines.
This could be an excellent opportunity for further investiga-
tions, knowing that homopolar DC machines and high-speed
induction machines are attracting attention recently.

The main issue with superconducting transformers is their
heat load mainly coming from AC losses in superconducting
windings carrying AC current with harmonics, heat leakage of
cryosts, heat load of current leads, etc, particularly for high
power transformers [180]. The unavoidable significant AC
losses make LTS transformers not commercially-competitive
if technically feasible. The heat load causes the rise of the
conductor temperature and imposes extra cooling power on
the cooling unit. So, loss must be minimised to increase the
techno-economic advantages of the superconducting trans-
formers [181]. Electromagnetic and Lorentz forces are other
challenging parameters that should be taken into account to
achieve a better performance out of HTS transformers.

GA and SA are two common AI techniques to optimise
the AC loss while thermomechanical limits are considered
[182]. Performing these optimisation methods on a 315 kVA,
20/0.4 kV HTS transformer caused the reduction of AC loss,
the heat load of the cooling unit, the increase of the lifetime
of the transformer, the decrease of the possibility of mech-
anical damage in tapes, and the increase of the efficiency of
the cooling system and transformer by size reduction. As a
consequence of this, AC loss is reduced according to different
scenarios between 20% and 85% and themechanical force var-
ies between 120.3 N and 272.6 N concerning the preliminary
design of the transformer.

Some novel ideas about the utilisation of AI techniques for
modernising superconducting transformer technology were
discussed in [183]. The stated ideas can be considered as a
roadmap for making changes in transformer manufacturing,

and also apply to other superconducting applications such
as machines, SFCLs, and cables. One of the ideas published
in [183] was using additive manufacturing along with AI to
completely eliminate the old manufacturing process of tapes,
insulations, and other components of transformers and make
them way lighter, cheaper, and more environmentally friendly.
Online loss prediction of superconducting transformers is
achievable with the help of AI techniques. To do this, a meta-
heuristic model of transformers needs to be built based on
regression techniques.

After verifying the model, it can be used as a package to
predict values of AC loss, online and in real-time. Real-time
monitoring of superconducting transformers can be realized
by AI. As a matter of fact, the monitoring of superconducting
transformer can be done for hotspot finding, fault location and
detection, as well as finding any other anomalies in windings.

Another type of superconducting transformer is used when
there is a need to supply a large current to other supercon-
ducting devices. Under such circumstances, the sample cur-
rent passing through the conductor is reduced. To address this
issue, a controllable sample current was proposed based on
the PID control strategy. RBFNN was used to adjust the con-
trol parameters of PID. As a result, a self-learned adaptive
algorithm is available that adjusts the control parameters of
the current loop. The structure of such a method is shown in
figure 23 [184].

Superconducting tapes/wires, well known for their high
current carrying capability, are the beating hearts of any super-
conducting apparatus including machines and transformers. In
fact, they are the most expensive part of machines and also the
origin of the AC loss heat loads. The peculiar non-linear char-
acteristics of SCs and large width-to-thickness ratio are the
main reasons for the heavy computational load of the mod-
els. There have been also some investigations on the super-
conducting tapes/wires with respect to the limitations which
are imposed by superconducting machines. The goal of these
studies is to prepare and analyse tapes and wires for the sake
of being used in superconducting machines [185, 186].

The imposition of elliptical magnetic fields on HTS tapes is
one major limitation for HTS machines. These fields have two
elements, one as a pure AC field, and the other one as a rotating
field purely out of phase. These fields impose a new-shaped
AC loss. The AC loss values were predicted using ANN to
speed up the model of the HTS rotating machine [187]. It
took a few milliseconds for an ANN to predict the AC loss of
superconducting round filaments superconducting tapes with
an average error of 3%. In this model, inputs were the prop-
erties of a superconducting filament, dimensions of the SC,
external magnetic field, and transport current while the output
was AC loss. The estimated values were also validated with
respect to the results of FEM-based software, COMSOL [187].
However, the lack of real-time analysis of the proposed model
is completely tangible. The model should be implemented in
parallel with an FEM or ECM model to be verified.

Superconducting motors, as a promising technology for
propulsion of future electric aircraft, are subjected to current
and voltage harmonics and inter-harmonics caused by power
electronic drive systems. This can significantly increase the
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Figure 23. The self-learned adaptive algorithm for PID controller [184].

Figure 24. The mean error of AC loss prediction in
superconducting tapes under harmonic conditions [188].

AC loss and jeopardise the proper function of the cooling
system. Therefore there is a need for a fast model to cal-
culate the AC loss of the tapes, under harmonic distortions.
AI approaches are the fastest option to calculate AC loss, for
example, NNs, SVMs, and generalised linear regressions, can
predict the AC loss of superconducting tapes with high accur-
acy [188]. These methods were applied to a YBCO tape, man-
ufactured by SuperPower to predict AC loss under different
currents. The amplitude, phase angle, and THD of current har-
monics acted as inputs of the models [188]. Among the afore-
mentioned methods, RBFNNs has the highest accuracy; how-
ever, the mean errors for each method are shown in figure 24.
By a precise prediction of AC loss under harmonic conditions,
proper sizing for the cooling system could be selected in the
design stage. The next step is to verify the real-time perform-
ance of AI techniques in a stand-alone grid, e.g., in the electric
system of an airplane.

3.1.6. AI for SFCLs. Due to the automatic phase transition
of SCs, and the high resistivity of SCs in the normal state,
SCs are used to fabricate a limiting component for suppressing

fault currents, called SFCL. As a matter of fact, unlike other
superconducting apparatuses, SFCLs are used in the power
grids for their intrisic phase transition behavior [189]. SFCLs
can improve the stability and the reliability of the grid to
which SFCL is connected with [190]. AI techniques, espe-
cially SVM, GA, and ANN, were used to improve the design
optimisation of SFCLs [191–193].

As mentioned before, the pecular non-linear characteristic
of superconducting tapes leads to a long simulation time and
a massive computation burden [194]. To avoid long compu-
tation, AI is used to present a fast empirical model. Empir-
ical models are based on observation and do not use the-
ory to get the results. The main idea in such models is to
observe how an output of a system behaves with respect to
variations of inputs. This model characterised the thermomag-
netic, electromechanical, and other behaviours of an SFCL
[195]. Another application of the empirical models is to help
the condition monitoring process of SFCLs. The accuracy of
these approaches reached between 96.5% and 99.3% for mod-
elling the magnetic-thermal characteristics of a 22.9 kV/630 A
SFCL used in the power grid of South Korea. Cooling units of
the same SFCL were modelled using AI techniques with an
accuracy range between 98.75% and 99.97% [196, 197].

HSFCL is composed of two resistances (Ru and Rd), a
superconducting inductance (LSC), a high-speed controlled
switch (Shs), and ametal oxide surge arrester (MOSA) (RMOA),
as shown in figure 25. Resistance and inductance limit any
power frequency fault current while MOSA restricts the
induced lightning and switching over-voltages. Design of an
HSFCL was optimised in [198]. The objective was to increase
the fault current limitation capability of HSFCL by optimizing
its geometrical parameters such as winding height, winding
thickness, and iron core parameters, among others. The amp-
litude of the fault current is 36.77% reduced in comparison to
the preliminary design of HSFCL, through applying optimised
parameters to the model.

Most of the AI-based models are concerned with the beha-
viour of the SFCL in transient states. However, the AC loss
and thermal loads in a normal state must also be taken into
consideration.

Under the steady-state of the grid, harmonics are one of
the reasons for AC loss increase, which could result in SFCL
malfunction. In a transient state, optimisation of the structure
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Figure 25. The structure of the hybrid-SFCL, introduced in [198].

can be affected by the fault and grid parameters, such as fault
resistance, ground resistance, location and duration of fault,
or power factor of the grid during faults, among others. The
impact of these terms on the optimal design of SFCLs has not
been studied yet. Therefore, the fault behaviour of a grid with
a SFCL can be characterised and promoted, by designing an
SFCL with optimum parameters using AI techniques.

3.1.7. AI techniques for magnetic levitation. Contact-free
levitation has been investigated for a long time, especially
for rail transit systems. Superconducting materials are prom-
ising options that can realize the MagLev concept. To acquire
an excellent performance out of superconducting MagLev, it
went through a design optimisation procedure for the structure
using AI approaches [199, 200]. AI approaches are provided
to control strategies for HTS MagLevs as well [201].

HTS MagLevs consist of superconducting bulk material,
HTS electromegnets, and PMs. To maximise the levitation
force, and cost reduction, an optimisation is performed using
GA [202] considering maximum allowable cross-sections as
constraints. As a matter of fact, the price of the MagLev is
minimised during optimisation while the aim is to maintain
the maximum levitation force at the operational level. Cost
is reduced by decreasing the utilisation of SCs. To do this,
geometrical parameters of the MagLev system are chosen
as optimisation variables. By accomplishing this optimisa-
tion, the levitation force is increased by 30.7%, while the
cross-section is one-sixth of the maximum allowable value
[202, 203]. If cost is considered as the objective function, it
can be 25.3% decreased while the levitation force is still way
higher than the minimum allowable force [204]. In fact, both
cost and volume can be considered as objective functions.
This leads to a multi-objective optimisation, which results in
a high computational burden and time. To address this issue,
an equivalent permeability model can be used. Using such
a model on a D5 levitation bearing reduces the simulation
time by 91.95% and changes it from more than a day to a
couple of minutes. After the optimisation, 16.2% and 22.4%
of the volumes of HTS material and PM are reduced, respect-
ively. As a consequence of volume reduction, the cost is 16.6%
decreased [205].

Five types of NNs were implemented in [206] to anticipate
the magnetic levitation and guide forces based on 3720 data.
These five types of NNs are RBF NN, DNN, CNN, RNN, and

Table 1. Comparison of different NNs for estimation of the MagLev
guiding forces.

NN

Test

R2 MSE RMSE MAPE

RBF 0.9763 518.49 22.770 60.232
DNN 0.9992 20.145 4.488 8.135
CNN 0.9981 42.167 6.493 12.112
RNN 0.9916 102.604 10.129 30.620
LSTM 0.9984 17.820 4.221 11.934

LSTM. The aforementioned force was estimated by applying
these methods. The error of the force calculation according to
different methods is tabulated in table 1. The parameters of
this table are expressed in equations (5)–(8):

RMSE=

√√√√ N∑
k=1

(Ak −Fk)
2

N
(5)

R2 =

∑N
k=1 (Ak − Ā)(Fk − F̄)√∑N

k=1 (Ak − Ā)
2∑N

k=1 (Fk − F̄)2
(6)

MSE=
N∑

k=1

(Ak −Fk)
2

N
(7)

MAPE=
100
N

×
N∑

k=1

∣∣∣∣Ak −Fk

Ak

∣∣∣∣ (8)

where, N is the number of data, Ak is the value of real exper-
imental data, Fk is the value of the forecasted data, Ā is the
mean of experimental data, and F̄ is the mean of forecasted
data.

3.1.8. Other applications of SCs combined with AI. SCs are
used in other applications that are less noted by researchers,
or are less widespread. In these applications, AI techniques
were adopted for optimising structure [207–213], monitor-
ing the condition of a device, and estimating characteristics
[214–216]. This section provides an overview of the conduc-
ted studies in less investigated applications of SCs, such as
special issues in aviation [217] and fusion [218–222].

Passing a high-frequency current through an inductive coil
is the basic operation of induction heating. As a matter of
fact, induction heating is used in many fields, such as fur-
naces, welding, brazing, sealing, heat treatment, and plastic
processing. TFIH are more commercially conventional than
longitudinal flux induction heating, due to the lower frequency
and higher efficiency. However, inhomogeneity of the tem-
perature distribution remains a main challenge for conduction
heating. By optimising the superconducting coil geometry,
this issue can be tackled. Although the restructuring process
is a complicated and highly nonlinear problem to solve, ANN
and GA can be used to simplify it. The problem consists of two
parts: magnetic parts, which are concerned with the calcula-
tion of the magnetic field generated by eddy current, while the
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Figure 26. The procedure of using coupled GA and FEM to model
temperature of a coil in a superconducting induction heating system
[223].

second one is related to the computation of temperature distri-
bution. In the first part, ANN inputs are the wall width of the
inductor, the distance of the calculation point from the central
line of the inductor, while the output is the absolute value of
eddy current. In the thermal part of the problem, inputs are the
heat source, the geometry of the elements, and the direction of
moving, while output is the temperature. The next step is to
link ANN and FEM, to gain the exact distribution of temper-
ature. To optimise the structure of the superconducting coil,
GA was applied to solve the optimisation problem, shown in
figure 26 [223]. A maximum of 1%–8% error was obtained
using ANN. Also, the number of computations by FEM was
reduced to seven after design variables were chosen by GA.
However, the values of error can be further decreased by the
utilisation of novel structures of ANN, i.e., CNN, and RNN as
well as increasing the input data.

AC induction heating is largely used in the metallur-
gical industry to preheat metal billets before hot working. In
conventional AC heaters the billet is exposed to the AC field
produced by a water-cooled copper coil. The efficiency of the
process was around 90% for magnetic metals, whereas for
nonmagnetic materials like aluminum, copper, or brass the
efficiency drastically dropped at about 50% [224].

DC induction heating methods enabled by superconduting
technology have been proposed, and recently introduced at the
practical level [225, 226]. In DC induction heating, the billet
was forced to rotate inside a transverse DCmagnetic field pro-
duced without losses by superconducting coils, thus reaching
an overall efficiency above 90%. Temperature homogeneity
and heating time were influenced by the profile of the applied
DC field profile. Hence, the coil’s shape must be optimised to

obtain suitable performance of the heating process. In [227] a
split saddle coil for optimal induction heating was designed.
The layout was obtained by first calculating the field pro-
file needed to produce required uniformity of final temper-
ature distribution inside the billet and then applying GA for
determining the optimum current distribution suitable to pro-
duce the required field profile. Temperature inhomogeneity
was decreased to 2.5% with the optimised coil, compared to
17.6% obtained using a uniform field, fulfilling the require-
ments of the subsequent extrusion process.

High field LTS magnets are used as EMPS for accurately
measuring magnetic fields and other magnetic properties in
low temperatures and high fields. GA is used to optimise the
size and the structure of the magnet, which is usually fabric-
ated by NbTi wires. The optimisation is also limited by some
constraints, such as the necessity of a larger central field than
5 T, field homogeneity lower than 1%, and the necessity of
the operational current lower than 70% of the critical current
[228, 229]. After the optimisation process, the maximum hot
spot temperature during a quench was reduced by 15.5% and
the quench voltage was reduced by 45.46%. This led to lower
applied quench energy to the magnet and, as a result, the mag-
net was well protected [230, 231].

The space mission of ATHENA mission will start its space
program in 2028. The magnetic diverter of ATHENA is made
of superconducting magnets, which have a maximum mag-
netic field 0.74 T and 2.1 kJ stored energy. Tomeet the require-
ments of launch, a GAwas used to optimise the mass, size, and
total current. The variables of this optimisation are coil size,
distance from the field, and magnetomotive force. Accord-
ingly, the mass of the coil with MgB2 wires and ancillaries
was 114 kg, while the mass of winding with REBCO and its
ancillaries was 76 kg [232]. However, the mass of ancillaries
had not gone through the optimisation and maybe it could also
be reduced.

SLA systems, shown in figure 27, are proposed as a solu-
tion to the melted pellet in fusion reactors. To reach the plasma
core, SLA includes an HTS film and has 5 km s−1 speed.
The acceleration performance of the SLA can be increased
by using a multi-objective GA optimisation. The first-level
objective function of such optimisation is to maximise the
velocity of the pellet for a homogenous current profile while
the structure is optimised by weight and size reductions. The
second level objective function concerns minimizing the HTS
filaments. After optimisation, it turns out that the velocity of
acceleration is highly increased by the enhancement of the
length of HTS filaments and coil [233].

Quenching is a phenomenon that may happen in many
superconducting applications. Quenching can cause damages
to the superconducting device and threaten the stability of the
system in which the latter is implemented. To have a fast and
predictive quench, CNN-LSTM is a popular choice instead
of using the conventional quench detection method. The first
phase is to gather a large number of data and divide them
into three sets, i.e. training, validation, and test sets. The first
one is used to train the system, the validation set is used to
apply adjustments and modifications, and the test set is pre-
pared to examine the generalisation ability of the model. For
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Figure 27. Superconducting linear accelerator system with a
detailed look to different components [112].

quench detection, time series of voltage signal is selected as
input of the model. This is due to the different characteristics
of voltage during steady-state and quench-state. However, to
avoid low accuracy or inaccurate feature selection, voltages of
more than 5 µV cm−1 were extracted among the training data
and removed from the training process. This data were used
to train, validate, and test the model. As a result of this, any
quenches can be detected in a time between 1.3 and 2.8 s after
the occurrence [234].

By the fast detection of quenching in any superconducting
device, proper protection decisions could be made to protect
it. This is crucial, especially for some applications of SCs,
like cryo-electrified transportation systems, fusion applica-
tions, and military and space programs. However, there is a
need for improvements not only in speed but also in the accur-
acy of methods. There are many considerations to make, such
as the impact of geometry on results, detection of false signals
due to malfunctions, and the stability of the system connected
to the superconducting device.

DCS protection was proposed as a method of protection
against quenches for high energy density magnets and is
shown in figure 28. To gain better protection by DCS, its
design and structure were optimised using a GA. Rp2, C, RC,
REE, shown in the previous figure, and the frequency of switch-
ing were optimisation parameters. By performing a GA-based
optimisation according to figure 29, the quench load of the sys-
tem decreased between 15.31% and 17% [235].

Flywheels are new types of energy storage units using
superconducting materials and magnetic bearings to store
electrical energy. Through the optimisation of their structure,
the stored energy in a flywheel can be maximised. The phys-
ical parameters of the rim, the type of materials used in the
flywheel, and its size, are three parameters that play a role in
maximising the stored energy. By applying a PSO algorithm
to this problem, the density of the stored energy and also
the maximum velocity increased by 12.3% and 5.98% com-
pared with the flywheel when no optimisation was conducted
on the structure. A schematic of such a flywheel is shown in
figure 30 [236].

Figure 28. The dual-capacitor protection circuit for protecting high
energy magnets against abnormalities [235].

Figure 29. The performance procedure of a dual-capacitor
switching system for magnet quench protection [230].

Figure 30. 2D schematic of a superconducting flywheel [236].

Flux pumps are used to generate magnetic fields in cir-
cuits like magnets without any physical connection. Similar
to other superconducting applications, they are investigated
experimentally or based on simulations. Usually, FEM is used
to model the characteristics of flux pumps and simultaneously
evaluate all their design parameters, which is quite time-
consuming. To avoid this, a simulation approach based on AI
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Table 2. A comparison of the accuracy and error indices of the
different ML methods used in [234] to gain the best performance in
modelling of the flux pump.

Method RMSE MAE MAPE NSE

NNM 58.56 39.73 9447.38 0.975268
GPR 2.68 1.25 0.0684 0.999949
SVM 3.07 1.51 0.0743 0.999936
DTM 79.07 49.28 0.5356 0.957424
KNN 60.40 35.74 0.5627 0.975355

techniques was proposed in [237]. This model takes advantage
of ML methods to analyse the correlation of circuit voltage
with the design parameters of a rotary flux pump. These para-
meters include the frequency response, air gap and the width
of the superconducting tape. For the sake of comparison, four
indices were studied, i.e. SE, RMSE, maximum absolute error
(MAE), and MAPE. Multiple types of ML approaches have
been analysed for the aforementioned inputs and output, such
as the neural network model, GPR model, SVMmodel, DTM,
KNN model. A summary of the results of these ML methods
is shown in table 2.

To evaluate the critical current distribution of supercon-
ducting tapes, several methods are proposed, such as experi-
mental analyses or FEM-based models. However, they are not
capable of being used in real-time for online condition mon-
itoring systems. Performing this type of condition monitoring
AI-basedmodel is an excellent choice. In [238] an ANN-based
estimator is developed to characterise the critical current dens-
ity of three types of 2G HTS tapes including SuperOx, Super-
Power, and SuNAM. Themagnitude and angle of the magnetic
field and the temperature are the inputs of ANN while the out-
put is the value of the critical current. The conducted estima-
tion is compared with the resulting values by a fit function in
MATLAB, known as ‘Scatterred Interpolant’.

The estimated values of critical current has R2 value from
0.99942 to 0.99999, for different HTS tapesAnother important
finding of this paper is that the ANN-based estimator outper-
forms the fit-based estimator in large amount of data, higher
than 106. With such a number of data, ANN-based estimator
has around 1 s computation time while this value for fit-based
estimation is around 3 s. Another application ofAI-basedmod-
els for SCs was studied in [239] as a method of quench and
hotspot detection in superconducting apparatuses. Two classi-
fication techniques based on the ML method in parallel with
a discrete wavelet transform (DWT) were used to extract the
features of hot spots in superconducting devices. DWT was
used to convert the experimental data into the feature vector,
whileML-basedmethods are used to extract the features of hot
spots from the translated data. The selected and analysed fea-
tures were mean absolute value, root mean square, standard
deviation, variance, variance third-order, average amplitude
change, average power, and skewness. By considering these
features, the quenches were detected with only 3 out of 63
samples misclassified.

Magnetic gears are increasingly used in the indus-
trial world and are replacing mechanical gears. These
electromagnetic devices have an extremely low acoustic noise,

free maintenance, and protection against overload. Recently,
HTS materials have been used in these types of gears to
increase their flux leakage and torque. CMGs are one of
the many types, which is proposed in [240] as a dual-flux-
modulator CMG for an HTS-based magnetic gear. The dual-
flux modulator is composed of iron and added to the con-
ventional structure of CMGs. In this structure, the segments
are specified with slots are un-even, which means they have
different sizes. The rest gear consists of two rotors, inner
and outer, the outer rotor consists of 17 pairs of PMs. Four
pairs of PMs are also implemented in inner rotor and at last,
there is a stationary part consisting of ferromagnetic and non-
ferromagnetic materials. The GA has been used in this ref-
erence to enhance the magnetic performance of the proposed
CMG by variations of the thickness of PMs at the inner and
outer rotors. By applying the GA optimisation algorithm, the
torque is about 190% increased, while the weight of the PMs
are 48% reduced and at last the torque density of the proposed
CMG also increases, which is due to the fact that the volume
of the CMG remains constant during optimization.

The value of the critical current in superconducting tapes
varies with respect to many factors, among which temperat-
ure, magnetic flux density, strain value, and tape properties are
important considerations. Also, the maximum applied stress
to the HTS tapes is a function of temperature, strain value,
and type of tapes. Usually, the exact value of critical cur-
rent/stress is obtained by some basic polynomial fitting meth-
ods. However, fitting methods cannot be used to consider all
aforementioned parameters and the interdependencies among
them. To overcome this issue, a novel method was proposed
in [241] based on ANFIS to estimate the value of critical cur-
rent/stress of different types of 2G YBCO HTS tapes while
the interdependencies of the electromechanical factors impact-
ing critical current/stress are considered for all kinds of 2G
HTS tapes. The inputs for critical current estimation were tem-
perature, magnetic flux density, strain, width and thickness
of tapes while the output was the normalised critical current
value. The magnetic flux density was removed from inputs
when stress was estimated and the same system was used to
stress estimation procedure. Three clustering methods were
used to increase the accuracy of train and test phases and to
choose the most accurate method, the fastest method, and a
method with both acceptable accuracy and computation time.
This has led to an estimation of critical current with the max-
imum R2 value of 0.92 and 0.047 RMSE value, while the fast-
est method requires 628 ms computation time. These values
for stress estimation are 0.989 as R2, 41.988 as RMSE, and
689 ms as the computation time. The model is also capable
of performing appropriately when the test data are out of the
training range with 0.95 as R2, 0.019 as RMSE. However, fol-
lowing concerns better discussed in the future to increase the
efficiency of the proposed method:

• Further reduction of computation time, which needs high-
performance computation resources.

• Make the estimation real-time.
• To increase the comprehensiveness of the model, try to con-

sider more inputs related to the geometry and properties of
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Figure 31. Critical current/stress estimation of 2G HTS tapes using
the ANFIS method while interdependencies are considered.

the tape, such as thickness of sublayers in HTS tapes, man-
ufacturing process type, etc.

The test results of the critical current and stress estima-
tion of the 2G HTS tapes are shown in figures 31(a) and (b),
respectively.

Manufacturing cost is one of the most significant cost com-
ponents of SCs that impacts the final cost of tapes and wires.
By optimising the available manufacturing approaches, the
marketability of SCs would be enhanced. For this purpose,
the ML-based method was used in [242] to produce REBCO
tapes with higher level of marketability and lower cost. The
data were acquired by drop-on-demand inkjet printing of the
REBCO precursor. The variables of ML model are average
voltage, average pulse length, percentage of ‘Amine’ compos-
itions, average drop volume, drop pitch, line pitch, number
of drops, and total volume deposited. A total of 231 samples
were gathered, which was initiated by using decision tree-
based training methods that fit more to occasions that lower
the amount of data available. The model can predict two para-
meters, number of drops and total volume deposited and is
also capable of showing the impact of each variable on these

Figure 32. The results of ML model to predict (a) the number of
drops on the tape surface, and (b) total volume deposited on the
surface of the tape.

parameters. The results of such estimation for the number of
drops and total volume deposited are shown in figure 32.

HTS bulk SCs have a low mechanical strength and if any
crack exists in their body, under a high magnetic field and
due to Lorentz force, this crack would be propagated and thus
would result in deterioration of HTS bulk. In [243], a GA
method was used to minimise the error between the real loca-
tion and the assumed location of crack based on magnetic field
distribution. By implantation of such a model, the real loca-
tion of crack could be identified with a high value of accur-
acy as shown in [243]. However, it was not mentioned how
this method could be applied for an online and real-time crack
detection system for sensitive applications.

3.2. Material properties of SCs

The increase of the critical temperature in SCs is an inter-
esting topic that has been under research since their discov-
ery. Recently, a new concept was presented as RTSs. These
new types operate near 293 K; however, they still require a
high pressure to remain in the superconducting state in the
range of a million bars [244–252]. To increase the critical
temperature of superconducting materials, multiple scenarios
have been introduced. The first is to chemically restructure
the HTS and RTS materials, to find new SCs with higher
critical temperatures at lower pressure. This solution requires
numerous tests and experimentation to synthesise different
compounds and new materials, which is time-consuming and
expensive. The other scenario is to investigate the electro-
magnetic, mechanical, and chemical characteristics of exist-
ing SCs. This scenario also demands massive funding and
time investment, to show a path to RTS. Also, another scen-
ario expresses a procedure of finding SCs with critical tem-
peratures the same as currently known SCs while the crit-
ical current is higher. Once again, AI techniques can provide
their efficient performance to avoid huge computation burdens
and costly experiments. These techniques can be applied to
predict electromagnetic, mechanical, physical, and chemical
behaviour of SCs, in an ultra-fast manner [254–258]. In fact, a
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Figure 33. Accuracy of different methods for predicting the critical
temperature of MgB2 [253].

data bank of electromagnetic, mechanical, physical, and chem-
ical properties of existing materials and SCs has been estab-
lished to provide an opportunity to use AI techniques to ana-
lyse them and predict the critical temperature and properties of
any new compounds. As a consequence of this, many research-
ers have taken advantage of AI techniques to forecast the struc-
ture and characteristics of novel SCs [259–273].

3.2.1. SVR-based investigations. Hydrogen as the lightest
element turns into a solid metal state under massive pressure
[274]. The solid metal hydrogen is one of the possible SCs
with a high critical temperature [274]. However, the hydro-
gen is a dielectric at pressures lower than 342 GPa. Therefore,
many elements were proposed to be combined with hydrogen
to form SCs at low pressure. GA was used simultaneously
with first-principles density functional theory to estimate a
new structure for boron hydrides with low enthalpy and high
pressure. This results in the discovery of a new crystal struc-
ture for H-based SCs with BH2 formulation. The new mater-
ial became an SC when the pressure reached 50–250 Gpa.
The predicted critical temperature of this structure was 28.18–
37.31 K at 250 Gpa [275].

Due to the low fabrication cost, high current density in
low temperatures, and long coherence length, MgB2 wires are
gaining massive attention. MgB2 SCs can be used in super-
conducting machines and cables in future aircrafts. Thus, their
critical temperature is a vital parameter that is adjustable by
the insertion of some other materials. To acquire the transition
temperature of MgB2 many methods were proposed. Among
them, an GA-SVR-based model can be applied which uses
room temperature resistivity, RRR, and SLD as inputs, and
the output of this model is the transition temperature of the
material. This results in an accurate estimation of the transition
temperature, which is shown in figure 33 [253, 276, 277].

Data-driven models are used for the estimation, prediction,
and characterisation of different types of SCs. They can speed
up the procedure of investigations and analyses of the new
and present SCs. For instance, in [278] a prediction software

Figure 34. The correlation between pressure, critical temperature,
and resistance in AgIn5Se8 [279].

was presented which predicted the critical temperature of SCs
based on their chemical formulation.

One of the materials that operate as an SC under high
pressure is AgIn5Se8. The chemical behaviour of the single
crystals of this material can be evaluated by different meth-
ods, such as XRD, EDXS, and XRPS. By performing these
approaches and gaining the resistivity of a sample using dia-
mond anvil cell, a data-driven model was established. The res-
ults of such analysis show that AgIn5Se8 transits from the insu-
lation region to metal in 24.8 GPa and from metal region to
superconducting state at 52.5 GPa. Themaximum critical tem-
perature observed for this material is 3.8 K [279]. The charac-
teristic of the AgIn5Se8 is shown in figure 34. The same pro-
cedure was also conducted for PbBi2Te4 in [280, 281].

To approximately determine the critical temperature of
high-temperature SCs, multiple algebraic formulations are
also provided. They normally use different chemical and phys-
ical properties, like pressure, doping parameters, and number
of valences, among others. However, these methods and for-
mulations cannot satisfy the accuracy needed for finding new
SCs. Thus, to gain the most possible accuracy AI techniques
can replace these formulations [282, 283].

One way is the combination of support vector regression,
PSO, and rough set theory (RST). RST is a preprocessing step
that analyses data before the estimation process is initiated.
RST categorises the data into two classes, overestimated and
underestimated values. By doing this, a weight is dedicated
to each set of data and this results in more accurate predic-
tions. After applying RST, the data are inserted as inputs and
outputs to a PSO-SVR prediction package. In this step, pre-
dictions are conducted in two phases, training and tests. To
compare the prediction results, two indices were used, such
as MAE and RMSE. If RST is not applied to the PSO-SVR-
based prediction procedure, MAE is 14.8% higher in compar-
ison to the computed value by the aforementioned algebraic
equation, and this value for RMSE is about 8.4% higher. Sur-
prisingly, by application of RST, MAE of prediction is 4.22%
reduced and RMSE is also 12.99% reduced when compared to
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Figure 35. A decision tree-based convolution neural network for transition temperature prediction of superconductors [303].

the values for equation-based calculations. It is worth noting
that the reported results are the mean values in [284], which
include the estimation of different SCs, such as YBa2Cu3O6.92,
HgBa2CuO4.15, and RuSr2GdCu2O8, among others.

Electric connectivity index and valence energy-level con-
nectivity index are two important factors that can increase
the accuracy of critical temperature predictions. If they are
considered for MgB2 and at the same time, an SVR-PSO-
based prediction procedure is carried out, TC can be pre-
dicted precisely. The average accuracy of such a prediction is
about 83.22% while this value for ML models was 45.01%
[285, 286]. SVM was also used for the sake of predictions
and estimations in Fe-based SCs, which took advantage of the
lattice parameters. By using SVM, a 98.65% accuracy was
gained for the training phase and a 99.42% accuracy for the
test phase [287].

3.2.2. A review on CALYPSO. PSO is used to predict the
structure of materials. This has led to the fabrication of a
new software package known as Crystal structure AnaLYsis
by Particle Swarm Optimization (CALYPSO), which stands
for crystal structure analysis by PSO. Therefore, numerous
efforts and investigations were conducted using this package
to predict the crystal structure of SCs and estimate their critical
temperature [288–299]. Many SCs were studied by this pack-
age including rare-earth metal hydrides, alkaline earth metal
hydrides, transition metal hydrides, boron group hydrides, tet-
ragon hydrides, pnictogen hydrides, and noble gas hydrides.
As a matter of fact, CALYPSO is one of the major meth-
ods to predict the properties of hydrogen-based SCs [290].
CALYPSO was used in [300] as a prediction tool for yttrium
hydrides, such as YH4 and YH6. These two compounds are
stable at a pressure of around 150 GPa. Under such high
pressure, these compounds have a critical temperature of
around 84–95 K and at the 120 GPa, these values reach 251–
264 K. This proves that CALYPSO also has an appropriate
performance in lower pressures. The same has been predicted
for CS2 in high pressures using CALYPSO in [301].

3.2.3. Estimation of critical temperature by NN. NNs are
another powerful tool for the sake of estimating and predict-
ing the critical temperature and microstructure of SCs [302].
In [303], an GBDR-based CNN was adapted to classify the
materials into three superconducting groups, cuprates, Fe-
based, and others. First, the features of the structures of SCs
were extracted using the element property of materials based
on CNN. In the next step, the prediction model was improved
by implementing GBDR into conventional CNN. Lastly, the
test phase was initiated and critical temperatures were pre-
dicted. Figure 35 represents the used GBDR-based CNN for
the sake of predictions. The results show that the accuracy
of the normal CNN model is about 83.1% while by imple-
menting GBDR in the model, the accuracy reaches 93.7%.
NNs have numerous different types, which can be used as
prediction techniques. Among all these types, CGCNN and
its iCGCNN were designed especially for the sake of pre-
dicting and estimating the properties of materials and their
crystals. They were also used as predictors of the thermody-
namic stability of inorganic SCs. Thermodynamic stability is
defined as the difference between the formation energy of a
compound and the lowest energy of a linear combination of
phases corresponding to that composition [304]. By applying
CGCNN and iCGCNN to ThCr2Si2 and Li2O2 SCs, the results
show that iCGCNN has a 20% higher accuracy in comparison
to CGCNN. The iCGCNN also found more superconducting
compounds than CGCNN [282]. This shows the high capabil-
ity of the iCGCNN approach not only for estimating the char-
acteristics of the existing SCs but also for exploring new SCs.

Atomic vectors are another approach to identify the rela-
tionship between atoms and the surrounding environment of
the atom. This approach combinedwith NN can be used to pre-
dict the critical temperature of SCs. Firstly, there is a need for a
dataset containing different properties of materials. After that,
an atom-environment pair must be generated for each possible
compound.

The environment has two properties: the number of target
atoms of the material and the number of different atoms in the
residue. The procedure of atomic vector generation is shown
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Figure 36. Generating process for atomic vector of materials [305].

in figure 36. By applying an atomic vector to a CNN-LSTM,
a high accuracy prediction of about 90% was reported. This
means that the accuracy of CNN-LTSM is 4.17% higher than
the LSTM predictor, while this value of the CNN predictor is
34.38% [305]. To take advantage of ML methods for the pre-
diction of the critical temperature [273], more than 34 000 data
are gathered in the SuperCon database. They are divided into
two subclasses, i.e., SCs with TC higher than 10 K, and those
with a critical temperature lower than 10 K. AFLOW Online
Repositories can also be put to work to increase the accuracy
of the predictions by ML methods. Lastly, Inorganic Crystal-
lographic Structure Database is another data bank that shares
information about newly discovered SCs [306]. By applying
an ML-based estimation to these data, an accuracy of about
93% was achieved. It is worth mentioning that 85% of data
in the SuperCon database are SCs while 15% of them are
non-SCs [307]. Using data sets is a common approach to pre-
dict the structure and the critical temperature of SCs. How-
ever, this data could consist of some duplicated information.
Duplications reduce the accuracy of the predictions and estim-
ations. So, they must be removed to increase the precision of
predictions [308].

3.2.4. ML and DL-based methods. ML methods are classi-
fied into three groups, namely SML, UML, and RML. SML
types require human intervention for the sake of classification
and pattern recognition. UML, however, can perform this task
without human intervention. RML trains intelligent agents to
take actions and decisions for a system. Normally, SML is
used to prediction critical temperature and structure of SCs.
An SML is applied to a deformed one-dimensional topological
SC in [309] to identify the existence of Majorana zero mode.
McMillan formulation and Allen and Dynes theory are the two
most commonly used analytical methods to predict the critical
temperature of SCs.

By using ML methods these approaches can be improved.
By applying ML to Allen and Dynes theory, surprisingly,
recently discovered SCs with an EPC higher than two-
dimensions, neither follow the Allen and Dynes theory nor the
ML model. This shows that new indicators are needed to pre-
dict the characteristics of new SCs [310].

Many structural improvements can be made in ML to
increase the accuracy of its prediction to discover new SCs
and their properties. One of them is the application of GPR,
which is a kernel-based nonparametric probabilisticmodel. An

GPR-based ML algorithm was used to predict the transition
temperature of SCs, including Bi2223, where four process
parameters were chosen, namely the amounts of bismuth and
oxygen, sintering time, and sintering temperature. As a con-
sequence, an accuracy between 88% and 98% was achieved
[311]. Fe-based SCs are another type of SCs whose critical
temperature could be estimated using GPR. By implementing
such a model for Fe-based SCs, 99.99% accuracy was repor-
ted. The accuracy of the GPR-based model in comparison to
the NN-based model was also 5.981% higher [312]. Hybrid
intelligent computation methods, which consist of PSO and
SVR, were used to predict the properties of Fe-based SCs.
To do this, tetragonal to orthorhombic lattice structural trans-
formation or RAD as descriptors were used. Consequently,
the obtained prediction accuracy was between 86.37% and
98.97% [313]. These results show that the algorithm achieves
a better performance when RAD is designated as a descriptor.

There are also other considerations and properties that were
used as inputs to predict the critical temperature of SCs, known
as descriptors [314]. These can include the average atomic
mass of a compound, the average number of electrons in
an unfilled shell, the average ground state atomic magnetic
moments, and the maximum difference of electronegativity.
By applying these descriptors to anML-based prediction pack-
age for 2500 data, the critical temperature was estimated with
an accuracy 92% [315].

To find a strong correlation between lattice parameters and
the value of critical temperature in Fe-based SCs, an ML
approach was adopted. The gathering data were divided into
four classes, namely 11, 111, 122, and 1111 Fe-based SCs.
Each of these has a specific degree of discreteness and a non-
linear relationship, which are known as the lattice parameters
of these classes. Thus, the lattice parameters of each group
were selected as inputs to the ML and the output was a critical
temperature. An accuracy between 89.42% and 91.29% was
obtained for SCs including SmFeAsO0.93F0.07, LiFeP, FeSe,
NaFeAs, and others [316]. These indicate that dividing the Fe-
based SCs into subclasses can increase the prediction accur-
acy. A method was proposed as RPT, which adopted the DL
approach to identify new SCs [317]. This model can read peri-
odic tables even better than an expert. Computers can recog-
nise the data and all their chemical properties while humans
have a limited capacity for this at a time. The concept of
RPT is shown in figure 37. The relative positions of the ele-
ments on the table can be learned by the convolutional lay-
ers, which is due to the utilisation of the same local weights
to the whole periodic table [317]. By applying this method
to the SuperCon database [318], 95% accuracy in the pre-
diction of SCs was achieved. However, the main finding of
the RPT method was the discovery of new SCs, which were
never reported in SuperCon. These materials were CaBi2 and
Hf0.05Nb0.2V2Zr0.3 [317].

Critical currents at specific cryogenic environment and
pressure is one of the most importance parameters for SCs,
which are a function of vortex dynamics and its interaction
with nonsuperconducting defects. During the manufacturing
and operation process, the critical current value of SCs can be
changed and deteriorated. An optimisation procedure using AI
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Figure 37. The procedure of reading periodic tables by deep
learning [316].

techniques can be helpful to predict the critical current at any
condition. In fact, the mathematical approaches could also be
used; however, the approaches must be chosen that are adapt-
ive with changes in the geometry of the problem, such as the
Nelder–Mead method. It is worth mentioning that the object-
ive is to maximise the critical current by the optimisation of
pinning centres. PSO, pattern search, adaptive pattern search,
andNelder–Mead algorithmswere candidates for solving such
problems [318].

3.3. AI for physics of SCs

AI techniques are adopted to solve the issues around the link
between quantum mechanics and SCs, mainly for predictions,
curve fitting, and speeding up calculations [319].

Theories that describe the origin of SCs are mostly based
on quantummechanics, such as the BCS theory andGinzburg–
Landau theory. Many classical intuitions are controversial in
quantum mechanics.

As a matter of fact, numerous novel concepts are defined
and proved in this branch of physics. In quantum mechan-
ics, the physical system is supposed to be a black box, which
contains preparation and measurement to show the probabil-
ities of experiments as outcomes. In fact, the time evolution
of such a system has a stochastic nature and can be explained
by the Schrödinger equation. Here, the quantum trajectory is
defined as the time evolution with the stochastic nature of
the wave function. The knowledge on this wave function is
extractable using quantum filters. A variety of physical para-
meters of the filters need to be identified by AI techniques,
such as RNN [320].

BCS theory is unable to elucidate the origin of super-
conductivity for materials with strong EPC. This has been
solved for normal metals by Midgal. Eliashberg has used the
Midgal’s method and proposed a modification to BCS theory.
This means that Eliashberg proposed a model to originate the
superconductivity in materials with strong EPC. The collab-
oration between fermions and bosons has a massive impact
on the superconductivity of such materials. Many research-
ers have tried to discover a bosonic mode in such SCs, to
gain higher TC. One of the obstacles to such achievement is
the calculation of (EBSF) and to address this, supervised and
UML methods were applied. The results showed that the pro-
posed methods could precisely predict EBSF with an accur-
acy above 99.9% [321]. Much research has been conducted to
analyse the static properties of in-gap bound states for single
and multiple quantum dots. The main aspects of two quantum
dots are related to the ground state configuration, which can

Figure 38. The structure of N-DQD-S [322].

alter the even–odd parity and zero-biased conductance with a
honeycomb structure. The accomplishment of the on-dot and
inter-dot electron pairing is achievable through many arrange-
ments of two quantum dots. One of them is S-DQD-S and the
other possibility is N-DQD-S, where DQD stands for double
quantum dots. N-DQD-S is shown in figure 38. The value of
zero-biased conductance is calculated by solving differential
equations and ML is helpful for such problems. By applying
this method, high accuracy of conductance prediction (around
98.7%) was obtained [322].

According to the BCS theory, many physical and subatomic
interactions, including isotope mass, the interaction of elec-
trons and phonons, and the formation of Cooper pairs, could
have an impact on the critical temperature of an SC. Some
properties could affect the EPC constant, which is listed in
table 3. These properties can be extracted by using ML meth-
ods [323]. Properties for various pairing symmetries of spin-
polarised local density of states can be extracted using DL
methods. To do this, a different Hamiltonian model should be
built first’ after that a fitting on experimental data or the first
principal calculation could present the parameters of such a
model, and, at last, the data can be fed to deep NNs for the
purpose of training [324]. The ability to create multicentre
bonds in allotropes and borides, and an electron deficiency
of boron, makes this element interesting for SCs. A swarm
intelligence-based ML was used to predict the boron phase
with a 24 atom cubic unit cell at ambient pressure [299]. The
noisy voltage signals are produced by weak measurements
of a superconducting qubit. These noisy voltages are weakly
related to the qubit state. Detection and monitoring of these
signals were conducted using LSTM-NN, which was trained
with experimental data and compensates for the delays and
correlations [325].

Defect densities play an important role in the occurrence
of the mixed state of SCs. Studying these densities experi-
mentally could be highly expensive and very time-consuming.
So, to tackle these challenges,a simulation approaches are
proposed. Normally, simulations take advantage of thermally
coupled time-dependent Ginzburg–Landau equations to char-
acterize the vortex penetration of a superconducting film under
an increasing magnetic field. However, ANNs can be used as
estimators for predicting defect densities. To do this, the mag-
netization and free energy density of various defects densities
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Table 3. Effective properties on electron-phonon coupling constant,
which can be extracted using ML techniques [323].

Priority Properties

1 Hall coefficient
2 Electron-phonon coupling constant
3 Work function
4 Melting temperature
5 Atomic volume
6 Effective U
7 Bulk modulus
8 Ionization potential
9 Debye temperature
10 Electrical conductivity
11 Magnetic susceptibility
12 Specific heat
13 Ionic mass
14 Thermal conductivity

were considered as inputs of ANN and the vortex penetration
was the output. This led to a model with 93% accuracy [326].

DL is a useful technique to analyse the topological phase
transition of SCs. Various types of information are proposed to
be used as input of a DL-based model, namely MCMs, OPES,
and OPEEs. The impact of the data on the form of matrices or
tensors originating from MCM on the transition point is obvi-
ous. There are three important spatially dependent quantities
in OPEEs, which are intensity, phase of particle, and the phase
of the whole components. By taking these considerations, DL
can be used as an effective method to analyse the topological
phase transition of SCs [327].

SCs have some other applications related to communic-
ations and electronics. AI techniques have been applied to
these applications. They have been used for resonant con-
trol systems of superconducting radiofrequency cavities [328]
and their fault classifications [329], design modification of
superconducting antennas [330, 331], computing new tongues
for superconducting logic [332], optimizing superconducting
digital circuits [333], damage detection in SQUIDs and mod-
elling them [334–337].

4. Challenges to apply AI techniques in
superconductivity

In this section, the following points will be discussed in detail:

• AI-related manufacturing and operation experience from
other industries. Helpful approaches and techniques are dis-
cussed.

• The objective of AI: to minimise the production and oper-
ation costs, and maximise the yield of superconducting
devices.

• Requirements for data collection and assessment: con-
sistency and integrity of data, reasonably minimised data
set, avoiding excessive/overlapping data, cyber-security and
other factors.

Figure 39. The impact of the pre-processing of the data on the
training and test-phase results and accuracy.

• Collect system data beyond superconducting components
for future improvement of both superconducting unit(s) and
the whole system. Evaluate system interactions.

• Approaches to minimise biased conclusions: ‘False posit-
ives’ and ‘False negatives’.

4.1. Data generation and management

The input data for AI techniques must be re-organised, and
those over-fitted, bad, and unrelated data must be removed.
Over-fitted data specify multiple values of outputs for a spe-
cific series of inputs. Over-fitted data could result in false
estimation of the outputs and should be firstly identified and
removed. Bad data originates errors and failures in opera-
tion of the measurement units, sensors, and their wiring. This
means that the aforementioned devices report the false input
value of voltage, current, frequency, and temperature, to model
and this data is gathered and used for AI techniques. Bad
data could also be a result of cyber-attackers that try to inject
false numbers and unreal data into the system. There are many
methods, known as pre-processing methods, that locate, detect
and remove tbad data among all data sets. Usually, these pre-
processing methods are AI-based methods that can discrimin-
ate between bad data and over-fitted ones, which again shows
the capability of AI methods. This can be seen in figure 39.

This can increase the reliability, accuracy, and stability of
the solutions resulting from AI techniques. For instance, when
an AI-based system is trained to compute AC loss in super-
conducting tapes/wires, one should notice that for an assigned
value of current, magnetic field, and harmonic just one spe-
cific value of AC loss exists [338]. Therefore, if for one series
of inputs more than one output exists, the data must be refined
so that the over-fitted data is removed.
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Also, there is common mistake among researchers that
increasing the amount of data must improve the results of
AI techniques, but it is not necessarily correct. However, the
amaount of of data is an important factor, and data sets must
have other properties, such as variety, non-over-fitted charac-
teristics, non-bias distribution, data quality, etc., to result in
high accuracy during test and training processes.

Data sets must be selected so that they cover the whole
domain of possible changes while over-fitted data must be
avoided. Usually data is gathered through some experiments
and tests on real apparatuses or through some simulations
based on exact and reliable models. The correctness of the
predicted/estimated values by AI highly depends on the accur-
acy of the input data, as well. Thus, before implementing any
data set to the AI-based predictors, the accuracy of the data
or even simulation/test procedure must be verified [338]. All
of this translates into the need for advanced (fast & accur-
ate) model-based calculation tools as well as innovative testing
approaches for SCs apparatuses that must be massively used to
create the conditions for reliable AI training and exploitation.

In the coming future, SCs are going to be installed in
power systems, cryo-electrified applications, fusion industry,
and many other applications. Preserving the data against
cyber-attackers is an important challenge when AI is going
to be merged by superconducting technology [339]. There
is another challenge of AI technique in the case of ‘unseen
data’. Suppose that an AI model is used in a superconducting
machine to discriminate between the faulty conditions from
normal ones by analysing the voltage and current signals. This
means that any condition in the system would be classified
as one of these two states. Now consider that a third condi-
tion occurs, which is neither a fault nor the steady state, such
as the switching of a capacitor or low-frequency oscillations.
Under such circumstances, it is highly possible that AI model
considers this condition as a fault and makes some protect-
ive decisions, rather than asking for more information. This
is the main difference between artificial and human intelli-
gence. Usually, humans declare that they ‘do not know’ the
right decision and ask for help or more details [340].

4.2. Integration of AI with cloud computation

The internet has caused many changes in the way of life of
human beings, one of these changes was approaching from
parallel computing by multiple computers to grid computation
through internet. The concept of grid computation has been
also changed with further improvements in internet infrastruc-
tures to a whole-new concept known as cloud/internet comput-
ing. By the implementation ofAI techniques into the supercon-
ducting applications, there is a high opportunity to perform
all computations and simulations through the internet/cloud,
instead of doing them on the personal computers. However,
cloud computation has some challenges, the most significant
one is data security through the internet, while another import-
ant challenge is a delay in the receiving data due to interrup-
tions of the internet. In some applications of SCs, like those
used in fusion or future transportation applications, this delay
in receiving data could be catastrophic [341].

4.3. Implementation of AI techniques in existing systems

Most of the currently used superconducting devices are
designed so that no AI-based controller, estimator, detector
is considered to be implemented. Therefore, by drastically
increasing in utilization of AI for SCs, these devices must
be designed so that sensors, computing resources, and other
required tools fit into new designs.

4.4. The increase of computation burden along with the
increment of data sets

Learning-based AI techniques can be used in the future to
model the characteristicd of the SCs or fault diagnosis of the
superconducting devices. Dynamic learning (a type of ML in
which data is fed to the AI system in an online and dynamic
manner and the system would use them to train itself in each
period of time) can be used to adapt the learning phase with
the changes of new input data and increase accuracy. How-
ever, this large amount of data could jeopardise the ultra-fast
aspect of the surrogate and predictive models by increasing
their computation burden. Predictive models are used to pre-
dict the characteristics of a specific type of SC or supercon-
ducting device under certain circumstances. For instance, they
can predict the critical temperature and critical current of a
composite of materials under a specific pressure. On the other
hand, surrogate models are used to simulate the outcome of a
complicated system by means of observation and data rather
than exact formulations. For instance, it is possible to design
a surrogate model for magnet design optimization. To over-
come this issue, the AI-based systems should be designed so
that the old and unused data or repetitive ones removed to keep
the computation speed high.

4.5. Biased estimation of algorithms with respect to the fed
data

AI techniques could also experience another abnormality dur-
ing their test phase, known as biased estimation. For instance,
consider an ML method that is trained to predict the AC loss,
critical current, or other values for different 1G and 2G HTS
tapes, under different fields, temperature, strain, etc. Suppose
that 10 types of 1G and 2G HTS tapes are selected for this
purpose, while temperature, field, and strain vary in the range
of 4.2–80 K, 0–19 T, and 0%–1.5%, respectively. If most of
the trained data relate to temperature range of 20–60 K while
the field and strain vary through their whole range, the estim-
ation of the desired parameter in 20–60 K is highly accurate,
while out of that range the prediction is deemed inaccuracies.
This phenomenon is known as biased estimation and to avoid
this, data sets must be homogenous and uniformly cover and
distribute over the whole range of inputs. To avoid the biased
decisions, three procedures are proposed [342]. The first type
of procedure occurs before feeding data into the learning sys-
tem, which is known as pre-processing. This can be accom-
plished by means of assigning a weight to each group of data
or using a probabilistic fairness-aware framework. The second
group is referred to as the in-processingmethods, whichmeans
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that during training, fairness of data is improved. Usually, this
is accomplished by reformulating the classification problem
or by training on latent target labels [343]. The next level is
post-processing of the model and data when the learning is
complete. This can be done either by changing the model’s
internals, known as the white box approach, or by changing its
estimations and predictions, known as the black box approach
[342]. Another classification for managing the data to avoid
bias is presented in [340], which are substantiate assumptions,
vet training data, bias evaluation, data production monitoring,
creation of supportive processes, and creating feedback loops.

4.6. Model integrity and stability challenges

Most of theAI techniques, such asGA, PSO,ANN,ML, SVM,
etc., works based on stochastic probability functions and thus
suffer some levels of uncertainty in reporting results [343]. For
instance, if one optimally designs a superconducting machine
with GA and reduces 10% of its weight, there is a chance that
if the optimisation is done another time, the result be slightly
different from the earlier reported one. However, sometimes
due to the ultra-complicated nature of the optimization/estim-
ation problem, this instability of the solution could result in an
inaccurate or infeasible solution. To prevent any instability in
the report, and to get rid of such uncertainty, the optimisation
procedure must be conducted multiple times, e.g. more than
100 times, and then, the mean objective value of the 100 runs
must be reported as the final results.

4.7. Lack of familiarity among researchers in
superconductivity community

Usually, researchers in the field of applied superconductivity
tend to use conventional modelling methods and their efforts
are concentrated in improving the performance of these con-
ventional approaches. For instance, to model a superconduct-
ing tape, usually either analytical methods or FEMs are used
and researchers try to make improvements in the computa-
tion speed and accuracy of these methods. However, AI tech-
niques can be a great solution, as they simultaneously offer the
same accuracy as FEMs together with almost computational
speed of simple analytical approaches. On the other hand,most
researchers in the superconductivity community might not be
familiar with AI techniques, at the same level of their expertise
in mathematical and physical-based models. Therefore, when
they decide to implement an AI-based method for addressing
a challenge in the field of superconductivity, they may need
to consult with AI experts to find the most suitable techniques
depending on the type of challenge and topology of data. This
is due to the fact that, if the chosen AI technique does not have
an appropriate harmony with the nature of the problem, we
might end up facing inaccurate results or results with higher
errors compared with FEMs. However, one needs to pay atten-
tion to this point that this error could be because the AI tech-
nique was chosen as a wrong match with the nature of problem
in the first place, and therefore, simply comparing those res-
ults with FEMs is not a fair comparison [344]. In addition, each
of the AI-based techniques has its own controlling parameters

and their setting has a significant impact on the final results
in the output. Therefore, the suggestion is consulting with AI
experts, however the trouble is that many AI experts has no
idea about the challenges in superconductivity and nature of
the SCs therefore, either a common language is needed or a
better one to personally get familiar with the nature of the AI-
based techniques.

4.8. Lack of a common data base for using AI in
superconductivity

AI methods that use data to predict failure estimate the char-
acteristics, solve complex design problems, or to detect and
locate faults and hotspots. Thus, data is the beating heart of
AI-based methods and without it, no AI model or estimator
exist. This is one of the major hindrances in using AI-based
techniques in superconducting apparatuses. To overcome this
problem, researchers make tests and gather experimental data
and with this data, the AI model can be organised. Usually,
the low budget hinders conducting numerous studies and tests
under different circumstances. As a result, an organised AI
model is highly possible to be limited to test conditions and
out of that range of data, the probability of accuracy drastic-
ally reduces. Establishing an open access data bank in which
the test and experimental data of different superconducting
devices are gathered is highly beneficial. Although there are
databases such as those of National Institute of Standards
and Technology [345] and IEEE council on superconductivity
[346], and what is presented [347] that share some data about
SCs and their applications, many other types of data cannot
be found in this databases, which is due to the fact that for
profit, companies will not disclose proprietary manufacturing
and operation data.

Emerging laboratory-distributed, co-simulation and testing
is also a beneficial approach to be pursued [348]. Furthermore,
the increasing penetration of PHIL testing, whereby real hard-
ware is submitted to a wide range of actual operating condi-
tions by means of power systems emulated by power ampli-
fiers, is opening new perspectives in this regard. Establishing
more in particular, in PHIL testing, the full voltage and cur-
rent experienced by of power superconducting apparatus in
real grid operation are reproduced by means of power ampli-
fiers [349]. PHIL systems allow production of a large amount
of data, by reproducing multiple operating scenarios, includ-
ing contingencies and faults, without using long and costly in-
field installations. An open access data bank in which the test
and experimental data of different superconducting devices are
gathered is highly beneficial.

4.9. Challenges of sensors to receive the data needed for AI
techniques

Sensors are one of the main parts of AI-based condition mon-
itoring, modelling, forecasting, and design as they are the
source of inputs. The better performance they show, the higher
accuracy and speed AI-based models can have. However, the
sensors themselves face some challenges. The first challenge
is related to the calibration of sensors to increase the accuracy
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of themeasured data and somehowmake it error free. For sens-
itive applications of SCs, like those used in the aerospace or
fusion industry ,this calibration plays a significant role in redu-
cing the risk of failure in devices and the whole system. The
selection of an improper zero reference could cause inaccurate
data to be processed by AI [332]. The second consideration
relates to the proper function of the sensors under different
thermal and electrical conditions. This is an important con-
sideration for sensors used in cryogenic temperatures for SCs.
The best way to avoid the de-calibration of sensors is to calib-
rate them periodically [350]. Robustness with respect to ambi-
ent conditions and immunity to electromagnetic interference is
also of paramount importance as SC devices are to be used in
harsh and power-dense operating environments (e.g., electric
aircraft or ships). Another challenge for sensors is the quality
of the received data. This means how to organise the data in a
way that it is interpretable for AI techniques. BD management
is also another consideration in this level of sensor considera-
tion. This means that all the BDmust be received by sensors or
there is a need for another AI technique to refine the data. This
data, received by sensors, could also experience electromag-
netic interferences and this necessitates the use of another AI
technique for the sake of pre-processing of data and de-noising
them [351]. Lastly, there are also considerations about the cost
of sensors. Their cost usually consists of three components: the
purchasing cost, the implantation cost, and the communication
cost of sensors. The first component is affected by the accur-
acy of the sensor, type of sensor, its performance under hazard
environments, and its speed. The second component of cost is
related to the procedure of implementation of sensors. Finally,
the type of data transmission by sensor is a highly important
factor. The data could be transferred through Wi-Fi, ZigBee,
and Bluetooth [352].

The cost of data acquisition comprises components that
can be categorized in system specification cost, system setup
cost, software development cost, system test and calibration
cost, and the cost of required hardware. System specification
cost deals with the demanded properties that one data acquis-
ition system (DAS) must have to fulfil the requirements of the
application. System setup cost is related to the cost thatmust be
paid to engineers, specialists, or technicians for installing the
DAS. The cost of purchasing and licencing the required soft-
ware is another important and significant cost of DAS. There
are other costs, such as cost of sensors, communication lines,
etc that also contain their calibration cost.

5. Future trends in AI for superconductivity

5.1. A critical review on the application of AI in
superconductivity: manufacturing perspective

5.1.1. AI for prediction of new superconducting materials.
The prediction of the structure and properties of new SCs were
conducted extensively through AI techniques, such as NNs,
PSO, or ML, among others. These approaches could estimate
the critical temperature, mechanical properties, critical cur-
rent, and index values with appropriate accuracy. However,
there are still challenges to address in future. Although most

of the proposed estimation/prediction techniques are based
on datasets like SuperCon, with valid information about SCs,
there is a lack of reports that firstly suggest a compound as
an SC and then verify the superconductivity of the discovered
material by experimental analyses. This results in an uncer-
tainty of predictions of new SCs. Another gap is the lack of
standards to validate the proposed methods. There is some
research that claims that they have presented a method con-
sisting of novel classifications of material properties and new
AI approaches with high accuracy. This has raised some ques-
tions. Firstly, some works have proved the proper functions
of their approaches with less than 100 data, some with data
around 1000, and some others with data more than 10 000. The
question is: how much data can express the proper function of
an approach? Then, a second question comes into play, which
is: if a method is approved with high accuracy for a specific
type of SCs, for instance, Fe-based, is it applicable for other
types? Or was it valid just for that specific type? This means
that a universal model capable of being used for any type of
SCs is needed.

5.1.2. AI for design and condition monitoring of
superconducting devices. According to figure 8, AI has
been used in large-scale applications of SCs for three general
purposes: design optimization, condition monitoring, and AI-
based modelling. Although numerous papers have been pub-
lished under these categories, there are issues in these papers
that are better to deal with. Usually, most of the authors have
claimed that they have used AI to design a superconducting
apparatus with a lower cost, size, weight, and maybe AC loss.
The first issue in these studies is related to a correct formu-
lation and definition of the objective function and problem
constraints. Often, a simple single-objective minimization
fitness function is designed, whose constraints also do not
reflectthe real practical issues in superconducting device pro-
duction/manufacturing. For instance, if one just considers the
size or the volume of the SCs as an objective function of
a minimization problem with some magneto-electrical con-
straints, the optimised device might not be capable of oper-
ating appropriately under really sophisticated conditions of
operation, or the device may not be consistent with available
components or manufacturing practices. The authors believe
that there are more complicated practical trade-offs than some
simple electromagnetic or thermo-mechanical constraints for
a simple single-objective fitness function, which are used
in papers published in the literature. For example, there are
many other concerns rather than simply size, volume, loss,
and efficiency when designing a superconducting apparatus
for terrestrial and stand-alone power applications, which must
be taken into account. For example, constraints related to the
interaction of superconducting components with the system
components are often neglected. The designed device must be
capable of enduring transients, faults, and other abnormalities
that may originate either inside or outside of the supercon-
ducting unit. Another question is: if the size or volume is
reduced, how does the reliability and safety of the designed
devices change? With the reduction of size and volume, many
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manufacturing issues may come into play and the resultant
dimensions may be infeasible to achieve due to manufac-
turing tolerances and limitations. The solution is to formulise
these limitations and trade-offs for the sake of gaining a highly
reliable, manufacturable, and efficient devicewith strict effect-
ive constraints coming from technical and manufacturing
issues.

Most of the reviewed papers in section 3.1, claimed that
cost, loss, or weight of a superconducting device is optimised.
There are two types of issues with these studies. The first one
is related to the way results were presented; as they did not
present any characteristics of their device before implementing
the optimisation technique to show how effective optimisation
were, or if it is worth applying such a sophisticated proced-
ure to gain better performance. There is not enough evidence
in the published papers to assure us that what the computer
came up with as the optimal solution will finally be found
after production or in some cases after manufacturing will sat-
isfy the requirements (as discussed in the previous paragraph).
The second issue is that most of these studies claimed redu-
cing the cost of superconducting devices with the reduction of
the size of the superconducting parts without mentioning the
impact of the type of cost. For instance, the cost of a supercon-
ducting device may be interpreted as initial purchasing cost,
cooling cost, operation cost, maintenance cost, or total owner-
ship cost. The purchasing cost is a function of the size and the
volume of the superconducting parts and the type of SC, as at
the moment the SC price significantly contributes to the high
initial purchasing price of a superconducting device. Given
that if a paper reported some tens of a percent cost reduction
achieved by a design construction optimization, this may look
very significant; however, if we consider total ownership cost
of a superconducting device, the effect of initial purchasing
price would be smoother in that and, therefore, going through
the hassle of using AI for a sophisticated optimisation problem
may not look effective enough. In fact, when total ownership
cost is considered, other components of cost, such as cooling
and maintenance costs would be as important as initial price,
and therefore their values would need to go under an optim-
isation process too. Therefore, there is a need for formulating
other components of cost and participating them in optimisa-
tion procedures.

The second application of AI in large-scale is the condi-
tion monitoring of different superconducting devices. There
are some questions to be dealt with in this application, the first
question is: how many computational resources are needed to
gain an ultra-fast and accurate condition monitoring and how
could these computational resources impact the manufactur-
ing process, total size, reliability, and final cost of the device.
Another significant challenge is to find a condition monitoring
method that is able to differ from all types of faults, abnormal-
ities, quenches, local hotspots, and transients and make proper
modifications in the design and manufacturing practices. As a
matter of fact, the consistency is a challenging issue in condi-
tion monitoring applications of AI techniques.

Each application of SCs has its own real-world require-
ments, constraints, and a range of standard sizing. Our aim is
to address how AI techniques can satisfy these requirements,

while the constraints are fulfilled for real-size devices rather
than laboratory-size demonstrators.

In MRIs and NMRs, usually two main considerations were
taken into account with the help of AI techniques, volume
reduction of superconducting coils and field homogeneity
maximization. These considerations were formulated with
many simplifications. while this is not the case in the real
world of manufacturing and engineering. Suppose that one
has designed a superconducting magnet with a 1 ppm homo-
geneity in the DSV border and have validated the design
with FEM-based or analytical models. In the real world, there
are impurities in superconducting tapes/wires, imperfections,
machining accuracy, cold shrinking of the magnet frame, tol-
erances in manufacturing line, and non-uniformities in the dis-
tribution of critical current density. These parameters could
result in a whole different value, homogeneity, and stabil-
ity of the magnetic field, which impacts the performance of
the NMRs and MRIs. Although shimming methods have been
proposed to overcome the issues related to homogeneity, the
implementation, manufacturing, and optimum sizing of shim-
ming coils is a complex problemwith many variables. Also, as
a matter of fact, considering such simplifications in the design
procedure of the magnets of MRI and NMR causes a huge dif-
ference between the results of simulations and experimental
ones. However, imposing these concerns on conventional sim-
ulations and design procedures makes them extremely com-
plex and sometimes infeasible to solve. Thus, to solve such
complex problems, AI techniques can be trained as a shortcut,
which could hand us similarities between results of simula-
tions and results of tests in the real world. To take advantage
of AI techniques at this level, first, simulations are conducted
without using any AI method to design a magnet with a high
level of homogeneity. After, the magnet is manufactured and
the real field and homogeneity are acquired and their differ-
ences is calculated and fed to an AI technique to change the
simulations. Thus, without exact modelling of the impurities,
defects, and other manufacturing issues, their impact could be
inserted into the models, which may cause an error in model-
ling and simulations. Electromagnetic forces and mechanical
stresses that are imposed onto the coils during the operation
of the MRIs and NMRs are other challenges, which can be
handled by AI in two manners: firstly AI can be used to estim-
ate their disturbance at the whole body of the coil and predict
the locations with the highest forces and stresses. On the other
hand, AI is also applicable for stress and force reductions by
varying design parameters. A design optimisation problem can
also include all types of coils used in MRIs and NMRs, rather
than just main coils. This problem can optimally design the
main coils, shimming coils, radio-frequency coils, and even
current leads and cooling systems. This means that a whole-
system design optimisation (WSDO) is extremely necessary
for having an MRI/NMR system that operates at the minimum
possible loss, minimum required cooling power, maximum
stability, and maximum homogeneity. Usually, WSDO is a
very complex problem. AI techniques could be also applied
here to reduce the computation time of the optimum solution.
WSDO may increase the reliability, stability, protection level,
and availability of the system, while most of the trade-offs
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are taken into account. Real-time condition monitoring of the
magnets and their cooling system is another role of AI in MRI
and NMR industry. The most significant goal of condition
monitoring in these magnets is to protect the system against
quenches. Real-time methods can reduce the risk of failures in
magnets by a fast response and highly accurate AI technique.
This is done by training an AI-based system (usually DL) with
possible inputs of voltage, current, temperature, vibration, and
magnetic field signals. AI can do much more than that by gen-
erating a predictive model that would predict the condition of
the magnet in a coming time span to protect it before quenches
are even happening. At last, AI is also applicable for the sake
of determining the safety zones around the magnets, as dis-
cussed in [353]. All these efforts must be conducted to lead
the researchers and engineers to the MRIs with 1–3 T mag-
netic field and 1–10 ppm homogeneity and also NMRs in the
range of 500–1200 MHz [46, 354].

SFCLs are one of the large-scale superconducting power
apparatuses that are promising to become commercialised in
future, if more utility companies invest in it, meanwhile a few
devices were implemented in the grid already [355]. AI can
be used for SFCLs to establish a surrogate model or to optim-
ally locate their installation sites in power systems, however,
there are other concerns that must be considered. In the near
future, SFCLs are going to be used in HVDC systems with
voltage levels higher than 100 kV. Selection of the proper type
of dielectrics and their thickness is a challenge for SFCLs,
which can be dealt with as an optimisation problem. One of
the trade-offs of this optimisation is that the massive temper-
ature imposed by the fault current could reduce the lifetime
of dielectrics. Choosing the appropriate dielectric and estim-
ating the lifetime of this dielectric is better solved by AI rather
than costly experiments and simulations with high computa-
tional burden. To do this, the thickness and the type of dielec-
tric material are varied to change the maximum temperature of
the SFCL. After that, the maximum temperature is fed as input
to an AI model to hand us the loss of life of dielectrics. There-
fore, not only the optimisation method with variable of thick-
ness and material type could be solved by AI but also the loss
of life of the dielectrics is estimable using AI methods. This is
the case, especially when HVDC systems are connected to the
renewable energy resources that increase the short circuit level
of the grid. Meanwhile for airborne and marine applications,
SFCL weight is the more important issue than insulations. In
these applications, weight is minimised by considering mul-
tiple trade-offs, such as fault current limitation constraints, the
possibility of tape/wire burnout, and operation temperature.

Usually long HTS cables face more challenges, due to the
temperature increase along the length of these cables, and
cooling issues. Previously published AI-based papers have
dedicated their efforts mostly to the design optimisation of
the cable, and offline fault locations. However, there are more
concerns about these cables to be considered if commercial-
ization is the target. One of them is to locate the optimal
placement of the pumping stations, which must be dealt as
a thermal, hydraulic, mechanical, and electromagnetic prob-
lem with many trade-offs and constraints. This optimisation
must be conducted to avoid the high number of pumps, which

could significantly increase the cost of whole system and
reduce its reliability. The design of other elements of the
HTS/LTS cables could be merged by the design procedure
of the cables to increase the system integrity. These elements
are current leads, terminations, busbars, cooling systems, and
cooling pipes. Cable design must be conducted with respect
to the application of the HTS cable, which includes terrestrial,
airborne, and naval applications. Usually, the cables used in
terrestrial applications, have a GW-range power, 20–200 kV
voltage, and if installed in HVDC systems have a length of
more than 100 km while an airborne cable has a MW range of
power with a voltage of maximum 20 kV and a length lower
than 10 m.

Many papers have dedicated their efforts to reduce the ini-
tial purchasing cost of superconducting machines, optimiz-
ing their design, and reducing their losses. However, there
are more to be considered when using AI for superconducting
machines and transformers. The first challenge is the reduction
of the LCOE rather than the initial cost. This can be reduced
by increasing the reliability, reducing the operation and monit-
oring costs. Fault location, fault detection, and condition mon-
itoring of the superconducting machines are other issues that
AI could present a solution. Dielectric/impregnation goodness
test, winding quality of the coils, core weight and cryostat
weight reduction are other complicated problems that are to be
handled by AI techniques. Another important issue is the fact
that many studies have been conducted to analyse the super-
conducting machines/transformers under a specific structure
or condition, while their characteristics are better discussed in
a systematic way. This means that with the help of AI, a com-
prehensive analysis is conductive to analyse the performance
of the superconducting machine and its auxiliary accessories
in a complete and complex system with many elements, vari-
ous transients, and varying power factor. For instance, optim-
izing the machine construction is important but what would
be the benefit of having a slightly lighter active part that has a
very heavy cryostat? Therefore, system optimisation is a key
research step for the future. Future superconducting machines
will operate at the MW and kV scale, while transformers are
economic for powers higher than 25MVA. In addition, for avi-
ation applications, the specific power density of superconduct-
ing rotating machines must be higher than 16–20 kW kg−1

[356, 357].
Superconducting magnets, superconducting CICC cables,

and superconducting busbars are used as main components at
the most of the fusion systems. AI techniques have potential to
be applied in these components and at the whole body of the
fusion systems to control, estimate, predict, and even design
the related components [358, 359]. The main requirement here
is to protect the whole system against any kind of abnormit-
ies and breakdowns, especially the magnets of fusion systems.
To satisfy such a goal, there are many considerations to make,
such as fast and even real-time quench detection and location,
mechanical stress reduction of the coils and magnets, suppres-
sion of the radiation impacts on the superconducting devices,
and protecting the cooling system. Most AI-based efforts in
fusion systems are conducted to deal with these problems
and challenges, with special attention to quench phenomenon.
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However, more accurate, real-time, and predictive AI tech-
niques are needed to increase the performance of the system.
Also, AI techniques must be applied so that the whole fusion
systems come into play to improve the efficiency rather than
just considering cryogenic and superconducting parts for this
purpose.

SMES systems based on low-temperature SCs are an estab-
lished power-intensive storage technology. In-grid installation
of SMES systems with power rating up to 10 MW for the
protection of critical industrial load have already existed for
more than 20 years [22]. Despite complete and fully qualified
systems having been developed, LTS-SMES technology has
failed to find market penetration due to the high cost (capital
and operational) related to liquid helium. Beside the high cost,
liquid helium also implies complicated management, supply
(also facing shortage concerns), maintenance and safety (over-
pressure and explosion risk in the case of quench), which
make its use in the grid or industry systems unviable. Improve-
ments of SMES prototypes based on first-generation HTS
materials (Bi2223/Ag conductor) and cryogen-free cooling
(not using liquid helium) at 20 K has been obtained with the
successful development of 800 kJ demonstrator [360]. How-
ever, the high cost of practical 1G-HTS conductors (requiring
high silver content) does not offer prospects for commercial
development of this SMES technology. Possible alternatives
based on the use of MgB2 (and industrial SC with intermedi-
ate electro-thermal performance compared to LTS and HTS),
now under investigation [361] are also nontrivial due to the
reduced electro-thermal performance of this SC. A drastic
improvement in SMES technology, able to create a break-
through increase in both technical and economic attractive-
nesses, has become viable today with the advent of 2G-HTS
materials. These can operate at a highmagnetic field at drastic-
ally increased temperature in the range of 20 K–40 K (and
beyond), creating breakthrough improvement in cost and effi-
ciency of the system and opening completely new perspect-
ives in SMES technology. Substantial research is still needed,
however, to contain the AC loss of the coil during charge/dis-
charge at a level compatible with appropriate efficiency and
continuous operation in realistic functioning regimes. This
will require the investigation of innovative solutions concern-
ing the layout of the coil, the architecture of the conduct-
ors (including multi-filamentary configuration), and the selec-
tion of the magnetic field and the temperature levels allowing
the best break-even between heat losses, cooling power, and
conductor usage. An optimisation-oriented design, assisted by
AI, and a modular approach is of paramount importance for
successful SMES technology. The development of a quench-
detection system immune to false triggering during fast ramp-
ing is another innovation that can be enabled by AI for arriving
at a robust and correctly operating SMES system.

Magnetic levitation trains can integrate either low- or
high -temperature SCs and can be designed for high-speed,
long range, or low-speed, urban range. A Japanese LTS high-
speed maglev train, the Yamanashi test line, based on elec-
trodynamic suspension (EDS) with superconducting coils has
achieved a world record of more than 600 km h−1, levitating
10 cm above the tracks [362]. In EDS, levitating forces are due

to the interaction of superconducting magnets on the vehicle
and inducing coils on the guide way, which requires enough
speed for levitation (around 100 km h−1), and therefore wheels
are also needed. In Brazil [363] and China, HTS low-speed
MagLevs have been developed based on purely SML, i.e.,
obtained through the interaction of HTS bulks and PMs [364].
EDSMagLevs require massive investments in dedicated trans-
portation infrastructure, and no expected market opportunity
(due to, e.g., competition with other transportation systems)
and associated economic viability are expected in the medium
term, as was the case for the Yamanashi train. Yet, prospects
for the opportunity of low-speed MagLev, in urban routes,
have been considered in the literature, due to their lower vibra-
tions and noise, and lower maintenance, when compared to
conventional systems. Despite the fact that they use PMs all
along the guide way, with a relevant impact on the cost of the
system, investments of around 30% of the required for imple-
menting a subway are foreseen by the authors of the Brazilian
maglev. SML MagLevs use linear induction motors for devel-
oping thrust forces, where the armature may be onboard to
avoid implementing coils [365] that would be switched by sec-
tors, all along the guide way. Therefore, energy storage means,
namely batteries, also need to be onboard, as well as dedicated
power converters to charge them at stations, while the train
is stopped. These batteries need to supply the linear motor
(although only tenths of kWh have been reported for Cobra,
the Brazilian MagLev, to travel between stations 200 m apart),
but also all ancillary systems, as air conditioning, which can be
several orders above the energy required for the motor [366].
The technical and economic optimization of SML MagLevs
is thus a multi-objective problem where AI provides power-
ful tools for its solution. Design parameters include the con-
figuration of magnets on the line, the geometry, arrangement
and cooling temperature of the HTS bulks, the capacity and
mass of the batteries, the power of the charging systems on
the stations, and the cryogenic technology, among others, sub-
jected to restrictions as the minimum required energy between
stations or the headway (time between consecutive departures
from a station).

5.1.3. AI for manufacturing and operation of superconducting
apparatuses. At this stage, many papers have presented AI
techniques as a useful option that find the solutions for some
theoretical problems, mostly at an academic level. However,
AI can offer much more than that and can be used to find solu-
tions for many unsolved manufacturing and production prob-
lems of superconducting tapes/wires and apparatuses or as a
real-time solution for monitoring and detecting abnormalities,
quenches, and faults in real operational regimes. Local hot spot
detection of superconducting tapes/wires, fault detection of
superconducting cables, quench prediction of superconduct-
ing magnets, and condition monitoring of superconducting
machines are the best examples of these tasks. For instance,
quench detection in superconducting magnets could be iden-
tified by importing the voltage, temperature, current, temper-
ature and vibration signals as inputs to an AI-based model.
The model receives these inputs and can digest the normal
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conditions from quenches. AI can also be used as predictive-
models to forecast any incoming quench, fault, failure, etc
before they are capable of jeopardizing the superconducting
elements.

5.1.4. AI for reducting the number of test for acceptance
of manufactured devices. Each superconducting apparatus
consists of many components with different kinds of materials.
To gain the best performance of superconducting devices, each
one of these components must be tested separately to gain an
acceptance to be used in superconducting devices, for example
in MRI applications. Testing them is a time-consuming and
complicated procedure, which requires a huge effort and also
might be destructive to the device. AI can play a significant
role at this stage of manufacturing in two manners. AI can
manage these tests on its own without any need for an external
human-based operator. On the other hand, AI can be also used
to intelligently choose the components that need to be tested
(based on possible defects sensed by it in production line) and
also as a feedback loop to improve the manufacturing process.
However, there is a need for improvements in AI techniques
to make them available for such applications.

5.1.5. The capability of AI methods to deal with quenches,
from manufacturing to operation. In the literature, some
efforts were carried out to establish an AI-based approach
for detecting quenching and protecting the magnets to reduce
the risk of failures or damage. However, not all quenches
are operational condition-originated. Quench can originate in
some inherent parameters of superconducting wires/tapes dur-
ing assembly process, or as a consequence of some errors in
the manufacturing process in the production line, or as a res-
ult of unexpected interactions with the system components.
AI is used here to back track these quenches by finding the
patterns among those magnets, which already failed or were
faced with quenches, and revise the superconducting compon-
ent design accordingly. The failures in the manufacturing pro-
cess could be diagnosed and removed to increase the reliabil-
ity and quality of the magnet and coil production. This is also
valid for defects and voids in the main body of SCs. Many
of the defects are due to manufacturing problems. Therefore,
by accessing a highly accurate AI-based pattern recognition
method, the reasons for quenches, defects, voids, and other
types of imperfections in the manufacturing process of super-
conducting tapes/wires could be detected.

5.1.6. The role of AI in cost reduction of superconducting
devices. One of the most important issues that must be con-
sidered during the design procedure is the LCOE, which is
defined as the total cost of the device over the MWh char-
acteristic of the device over its lifetime. Most of the related
design papers tried to reduce the initial purchasing cost of the
superconducting devices rather than total ownership cost or
even LCOE [367]. However, LCOE reduction could increase
the competitiveness of superconducting devices with respect
to their conventional counterparts. It should be mentioned that

the total price of any superconducting device consists of fol-
lowing components [367]:

5.1.6.1. Initial cost. This cost is related to the purchasing of
the superconducting device, cooling system, and auxiliary ser-
vices like transportation and installation. To reduce this cost,
it is often to reduce the volume of superconducting parts as
one of the most expensive components in any superconduct-
ing device. After that, the cooling system must be optimised
with respect to present trade-offs that result in a cooling system
with minimum cooling stages and adjusted cooling power.

5.1.6.2. Maintenance cost. Each superconducting device
needs to be repaired at a specific period of time. This can
be conducted at a planned time, known as preventive main-
tenance, or could be conducted during failures and errors of
the device. The cost of purchasing the required components
of the superconducting device, the salary that must be paid
to the technician team, and the cost of the unavailability of
the device. Usually this cost is reduced by increasing the time
spans in which maintenance is needed.

5.1.6.3. Cost of operation. Regardless of the type of super-
conducting devices, they have a cost known as operation cost,
which originates in the required cooling power, electrical
power, engineer’s salary, cryogenic fluid cost, and many other
components. As a matter of fact, some of these costs are con-
stant and cannot be reduced, while some of these costs could
be reduced, such as cooling power cost.

5.1.6.4. Protection, monitoring, and testing costs. The fin-
ance needed for purchasing, installation, implementation, and
maintenance of the protection system could be accounted for
as protection cost. The level of protection and the type of the
protection system are two important factors that impact this
cost. The reduction of this cost has many system-level con-
sequences, which is out of the scope of this paper.

To monitor the superconducting devices, sometimes many
sensors and logging systems are needed. These sensing sys-
tems also have wiring and could induce a thermal heat load to
the cooling system and reduce the efficiency of the devices. In
addition, the extra wiring requirement can often be translated
to extra space and size increment, thus lower specific power
density. As a result, monitoring cost is considered as a signi-
ficant cost for SCs, which must be minimised by reduction the
number of sensors and the optimal sensor placements.

In addition, many components in a superconducting device
would need to be tested before either application or before
the final release to costomers. Some of the testing procedures
would need full-scale testing of a component, and therefore, it
imposes another element of cost for the final device.

5.1.6.5. Redundancy and reliability cost. Usually SCs are
selected as the main parts of a system, which need back-up
units and extra redundant devices to increase the reliability of
the system. Due to the high cost of superconducting devices,
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conventional counterparts are selected as their reserve units.
The cost of these units is another component that must be taken
into consideration.

Reducting each one of the aforementioned costs results in
a significant reduction in the LCOE and, therefore, increases
the competitiveness of the superconducting devices over con-
ventional counterparts. However, such a reduction process is a
highly nonlinear problem with many limitations, constraints,
and trade-offs along with a high level of complexity. AI tech-
niques can be used to solve this nonlinear and complex prob-
lem. First, swarm-based optimisation methods can be used to
reduce the initial cost of superconducting devices by minim-
ising the volume of used superconducting tapes and wires.
This optimisation should be linked to AC loss, manufacturing-
related issues, maximum temperature, etc. These AI methods
can be also used to predict the maintenance time of supercon-
ducting devices to reduce the risk of failures in these devices.
Operation cost can be minimised by using intelligent systems
that make decisions, control, and manage the superconducting
devices, instead of using human operators. By doing this, the
risk of human failure is reduced, which could affect the oper-
ating cost of superconducting devices. The reduction of con-
dition monitoring cost is another challenge that AI strategies
could deal with. Lastly, cost manufacturing process, assembly
line, etc are other possible applications of AI methods.

5.1.7. Reduction of manufacturing tolerances by means of AI
methods. The design and manufacturing of superconduct-
ing devices is a highly sensitive procedure and any change in
the size of the designed device could end up being a whole
different manufactured device, based on its thermomechanical
and electromagnetic characteristics. For instance, in super-
conducting transformers incapable manufacturing tolerance
may lead to higher loss, and in superconducting machines,
it may lead to eccentric faults. Conventional manufacturing
processes always have some tolerance to produce the devices,
even sometimes unacceptable. However, AI can be used here
to produce all devices of the same size with minimised toler-
ance, especially when combined with transformative additive
manufacturing methods. With additive manufacturing, accur-
acy of dimensions, low tolerance, and low waste would be
guaranteed by using many sensors in the 3D printer. However,
loggingmany data points in real-time from thosemany sensors
is exhaustive, and analysing them in real-time is impossible
except by using DL and other AI approaches. This can lead to
highly efficient design procedures and help engineers to have
the same characteristics with what was estimated.

Due to unavoidable manufacturing tolerances in MRI, the
as-built magnets have a non-uniformity of several hundred
ppm. In addition, effects of a magnetic environment such
as metal beams or passive shielding of the room must be
compensated for. The shimming system is used to reduce
the non-homogeneity to the necessary level of 10 ppm. The
over-design of the shimming system is counter-productive:
the oversized shims may occupy expensive space in the sys-
tem and increase interaction with other components. Statist-
ical analysis of the manufacturing tolerances and environment,

regression and prediction, and classification methods may be
applied.

5.1.8. The capability of AI for defect recognition of SCs at
the manufacturing stage. In quality assurance of a manu-
factured device/product many parameters are involved. Con-
trolling these parameters surely has an impact of the quality
of manufactured SC or superconducting devices. When the
number of input parameters are low, perhaps simple math-
ematical fitting methods will help to understand the impact
of input parameters on the manufacturing output. However,
if the number of inputs increases or the interdependencies of
the inputs are complex, then the mathematical fitting meth-
ods have no use anymore. This is where AI techniques can
play a role in finding patterns among the output of manufac-
turing lines, by regression-related input and output parameters,
and also consider all interdependencies as well. In addition, AI
techniques can bring one more brilliant benefit for the manu-
facturing process, and that is finding the priority of impact for
input parameters on the output of manufacturing/production
line. In other words, it can help manufacturers to know which
input parameters are really affecting the quality of their man-
ufactured objects.

5.1.9. The role of AI to establish multi-physical surrogate
models for technician and manufacturing-line personnel.
Although FE models are an excellent choice for academic
research because of their high level of accuracy in simula-
tions, which is comparable with experimental results, they
are difficult to deal with and slow to be used at any level
apart from design level, for instance, manufacturing and oper-
ational levels, by engineers and technicians. AI-based surrog-
ate models seem to be a better option for this level of integrity
with industry. Engineers and technicians could use them and
with only changing the desired parameters, the results of the
changes in design factors and characteristics are accessible. If
using surrogate models, engineers and technicians would not
need to be familiar with the full construction, topology, and
components of the under-studied system. Therefore, there is
no need for an age-long model establishing procedures con-
ducted by FEMs, however, the multi-physical characteristics
of FEMs make them popular options among engineers and
researchers. To gain multi-physical characteristics for surrog-
ate models, AI methods, such as ML, ANFIS, NNs, and SVM,
can be used. By applying them, temperature, magnetic field,
current, voltage, strain, stress, etc could be set as inputs and
outputs could be design factors, characteristic of device, and
many other parameters. In addition, data coming from sensors
in the production line and manufacturing process can be feed-
backed to this model in real-time to keep it up-to-date.

5.1.10. Insulation goodness for coil, winding, magnets, and
cables during the manufacturing process, by AI. Insula-
tion is one of the most important parts of any superconducting
device, and therefore, part of the manufacturing process. The
quality of the insulated devices needs to be approved under
different circumstances before the device is built. While AI
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can be used to test the quality and goodness of the insulation,
during the manufacturing process with the help of some pat-
tern recognition and image processing. A picture can be selec-
ted as the highest insulation goodness of any superconducting
device, and when each sample is manufactured and an image
is taken from it, the picture can be decomposed to some data
and be compared with the basic picture to show the insulation
goodness. The findings of such an image-processing approach
can be used to correct the insulating process in the manufac-
turing procedure [368–371].

5.1.11. Quality assurance. The AI method can be used to
increase the quality of manufactured superconducting devices,
known as quality assurance. This means that with the help
of some AI-based techniques like ML the parameters, which
cause the quality reduction of a superconducting device, the
appearance of defects in superconducting tapes, and genera-
tion of local hot spots in tapes/wires could be diagnosed and
removed to increase the quality of superconducting devices,
increasing their reliability and lifetime. These parameters
could be some impurities in raw materials, or some failures
and unbalanced settings of manufacturing machinery, or even
some human-based mistakes in the basic design or production
process.

5.1.12. Preventive maintenance. Preventive maintenance is
defined as a routine check-up and maintenance of any electric-
al/mechanical device before any costly and unplanned repair is
needed. Usually, these are calculated based on some formula-
tions, such as mean time before failures, mean time to failures,
and mean time to maintenance. These old methods are usu-
ally used for simple devices or some basic processes. Using
them for complicated systems like superconducting devices,
which contain many subsystems requires a huge computation.
AI techniques can be used here to predict themaintenance time
of the device. To do this, the lifetime historical data of the
device is needed along with some electrothermal properties
of the device at each time step. By feeding them into the AI
techniques as inputs, the preventive maintenance time could
result in the output. As a result, the computation time is highly
reduced and the accuracy of the results is extremely increased.

5.1.13. AI for finding manufacturing margins. Another issue
that not only in superconductivity but also in other indus-
tries can be solved by using AI techniques is manufactur-
ing margin. This factor is defined as the difference between
sales and the total variable cost of goods sold. This factor is
affected by many parameters, such as the value of the sup-
ply of other manufacturers and demand of the costomers. The
price of rawmaterials, net profit, sale earnings, and merchand-
ise cost are other factors that affect the manufacturing margin.
Finding the exact value of manufacturing margin for sophist-
icated devices like superconducting apparatuses is a bit of a
difficult task through conventional methods, however, AI sys-
tems can be trained so that it gains all the aforementioned
effective parameters as inputs, and finds the hidden pattern of

interdependencies among them, and finally hand us manufac-
turing margin as output.

5.1.14. ARCSs. In the coming future, AI techniques may
help the emergence of the ARCSs into superconductivity.
These systems will be able to detect quenches in supercon-
ducting magnet systems, faults and abnormalities in power
applications of SCs and failures in other superconducting com-
ponents. After that an ARCS must be capable of differing
false alarms from signals, which indicates the real failures and
faults. The next level is that ARCS must make a protective
decision independently and automatically to reduce the risk of
damage to the superconducting apparatuses. These decisions
could isolate the faulty component, restricting the system/-
grid in which the superconducting device is implemented, or
any other protective decision. Lastly, ARCS must apply the
decision to protect the device. All of this must be done auto-
matically and without any human interferences.

5.1.15. Cost of data acquisition. Data is acquired by mean
of sensors that are among the most expensive part of the intel-
ligent systems. The high number of sensors results in a higher
quality and quantity of data, however, this increases the cost
of the whole superconducting system. Thus, the number and
the location of sensors must be minimised so that their cost be
as minimal as possible. However, we do not wish to lose any
valuable data, therefore a trade-off problem exists here, which
is a good candidate for AI techniques to be implemented in.
AI can perform such minimization of sensor numbers by loc-
ating the points in which sensors must be installed. FCCs are
one example of this which would need many superconducting
magnets. All of these magnets require a sensitive quench ana-
lysis, conditionmonitoring, and fault locationmethods. There-
fore, thousands of sensors and wiring is needed and as a result
of this cost of data acquisition rapidly increases. Thus, AI can
be applied in FCCs to minimise the number of sensors, optim-
ise their location, and maximise their accuracy.

5.1.16. Lessons to learn from other industries. AI tech-
niques have been used for a longer time in other industries
and fields of research, such as power grids, gas-oil systems,
automation, power electronics, medicine and healthcare, agri-
culture industry, and security rather than superconductivity.
For instance, in power systems, AI has been used to con-
trol the power generation units, predict the future demanded
electrical power, optimum location finding of devices, state
estimation, performing the power flow, and designing the elec-
tromechanical devices. Due to these efforts not only in power
systems but also in other industries, many experiments have
been acquired and many novel structures, methods, and design
algorithms have been established. The lessons learned in other
industries are applicable to SCs. Design procedures of con-
ventional machines, cables, and transformers can be applied
to superconducting versions of these devices with some justi-
fications. This is also valid for fault detection, condition mon-
itoring methods, protection issues, and many other methods.
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5.1.17. The systematic analysis of the superconducting
devices. Most of the papers that have used AI techniques for
superconducting technology have focused on devices rather
than their systematic role. AI can help us to recognise how
much impurity is allowed in SCs to result in the desired mag-
netic field distribution. How do these impurities affect the
field, temperature, and the volume of the coils and magnet?
SCs are currently used in fusion systems [372, 373] which
contain many electrical, magnetic, cryogenic, and mechan-
ical devices as their subsystem. The impact of these non-
superconducting devices on the characteristics of the optim-
ised superconducting apparatus is to be identified by using AI
techniques. On the other hand, in fusion systems, radiation
is an important effect that can re-characterise the behaviour
of superconducting magnets, while no design optimisation or
condition monitoring investigations has been accomplished
with respect to the impact of the radiation. In fact, like other
industries, superconducting devices must be analysed in the
whole-system level and under more realistic considerations.
These systems could be bulk power grids, stand-alone power
grids of electric aircraft and ships, the micro-grids with their
specific constraints, and many other systems.

5.1.18. Hardware implementation. So far, we have dis-
cussed the application of AI for SCs, the challenges of super-
conducting devices, challenges of AI, and their future trends,
types, investigated studies, and many other points and there is
one more discussion to make which is the answer to the fol-
lowing query: suppose that one has selected the required AI
technique, has purchased a superconducting device, has iden-
tified the role of AI (especially ANN,ML, and DL), purchased
the sensors, and has installed them at the required site, still
there is a need for hardware implementations. There is FPGA,
GPU, ASIC, Raspberry pi, etc. to implement an AI technique.
Among them, FPGAs and GPUs are more commonly used,
while others still need further improvements. GPUs require
the highest level of programming skills, while the implementa-
tion time of the ASICs are the highest among hardware. ASICs
also have the highest energy efficiencies, while GPUs are the
lowest ones and ASICs have a higher cost in comparison to
other hardware. The important point is that GPUs operate in
the software level, while two others are at the hardware level.
Lastly, many frameworks were reported for this hardware such
as [374]:

• DeepBurning
• DNNWEAVER
• Caffeinated FPGAs
• FPDeep
• fpgaConvNet
• Field Programmable DNN.

5.2. Future developments

As discussed in section 3, the utilization of AI techniques
in superconducting applications has already started and is
receiving dramatically increasing attention. AI methods, such

as ML and DL approaches, can create a shift from traditional
model-based design and can be employed to find new solu-
tions for existing scientific and technological challenges in
superconductivity and to make superconducting applications
more competitive against conventional options. Therefore, we
believe AI has a key role in the future for superconductivity in
the following areas:

• Assisting SC science for finding new materials with higher
critical temperature/current and/or improving the intrinsic
performance (critical temperature and upper critical field)
of existing ones.

• Designing practical SCs tapes, wires and assembled con-
ductors with optimised performance (engineering current
density, pinning and in-field behaviour, AC loss, mechan-
ical strength, uniformity and stability) and reducing cost
through improving manufacturing and production lines per-
formances.

• Setting up advanced manufacturing process, also by
enabling the use of the latest machinery and additive manu-
facturing, to produce improved and cost-effective supercon-
ducting apparatus and systems.

• Introducing a system approach for effective integration and
of different components (SC elements, cooling and vacuum
systems, electrical insulation, among others) obtaining
improved overall performance and reduced capital and oper-
ating costs.

• Implementing lifelong and intelligent condition monitoring
of SC apparatus and system for detecting contingencies and
for optimizing operation via real-time communication with
the hosting system (also managed by AI methods).

• Based on the conducted studies in the materials field of
superconductivity, MgB2 is one of the promising SCs and it
is expected that by some modifications or doping, their crit-
ical temperature and critical current increase. On the other
hand, lattice parameters are other important factors that
could be initiated in critical temperature increase. However,
to be more specific, the main question is: what is the aim in
searching for new SCs? The increase of critical temperature?
To increase the critical current? To reduce themanufacturing
cost? To reduce losses? Therefore, there are many different
considerations that lead to different target materials.

While the first applications were mostly focused the design
optimisation of devices and improvements in available mater-
ials, new AI trends will be more holistic approach and will
have a dramatic impact at the level of the system integration
andmanagement and play an important role also in the dissem-
ination of superconducting-based technologies. Together with
the advent of IoT, AI enables whole new paradigms through-
out the operation lifecycle of those technologies, also assisting
the decision-making process for adopting, in particular, high-
investment, large-scale systems.

The massification of low-cost sensors and the availab-
ility of a large offer of communication technologies sup-
port the application of data-driven-based AI methodologies,
where DL, in particular, emerges, fed by real-time operational
information that can be used for various purposes.

41



Supercond. Sci. Technol. 35 (2022) 123001 Topical Review

This is the concept of DT, ‘a virtual representation of a
physical asset enabled through data and simulators for real-
time prediction, optimization, monitoring, controlling, and
improved decision-making’ [375]. Among others, the digital
twinning of superconducting devices and systems is foreseen
to enable the following major advances [376]:

• Real-time accurate monitoring and prediction of the per-
formance of superconducting devices obtained by DL mod-
els is fed by actual, currently acquired, operational data. To
achieve this , DL must be able to handle data from multiple
sensors, monitoring the condition of the former (e.g., detect-
ing hotspots and critical current weak points or equipment
failures) while continuously updating the complex underly-
ing models with new data, as the system dynamic evolves
throughout the lifecycle of the device. It is stressed that
physical-based FEM models cannot be used for real-time
prediction due to the long execution time required. Nev-
ertheless, hybrid models can be implemented on the vir-
tual twin where the solution for a given operating condi-
tion is obtained by regression on a set of pre-calculated FEM
solutions.

• Predicting faults or malfunctions in advance, thus allow-
ing for taking maintenance or corrective actions. This is
obtained by real-time comparison of measured data with the
predicted data of the DT running in parallel. Information can
be extracted from possible mismatches that can be due, for
example, to internal faults, ageing of components or the need
for maintenance and corrective action can be taken timely.

• Assessing compatibility of the required set-point of the host-
ing systemwith the current state and the safe operation of the
SC apparatus. A bidirectional interaction is needed between
the power hosting system controller and the DT to cope with
the case where the requested set-point cannot be satisfied
due to incompatibility with its current state (this may be, for
example, the case when an increase in power is required in a
superconducting transformer or cable that is already operat-
ing at too high an I/Ic ratio). DT will allow to run a what-if
analysis, simulating the reaction of the system to the event,
thus allowing to define rescheduling or appropriate mitiga-
tion measures in advance.

• DTs are also envisaged to support decision-making pro-
cesses, associated with the high investments required by
superconducting-based technologies (as related to fusion or
power grid devices). DT can be integrated and interact with
other models and twins, allowing simulation of the beha-
viour of the devices, and assessing operational scenarios and
the economics of the technology throughout its lifecycle,
and even beyond.

DTs can be used in all lifecycle steps of superconducting
devices, including design, production, and service. In each of
these steps, DTs play different roles. At the design stage, DTs
are used to improve the design factors of the superconduct-
ing device and overcome the problems and difficulties dur-
ing the design procedure. In the manufacturing stage, DTs
can be used, especially on the assembly line, to manufacture
a device exactly as it was designed. In fact, DTs are used at

this stage for the sake of as-built and as-designed homogen-
ization. DTs can be applied to many manufacturing systems,
such as supporting autonomous production systems. They can
be used to improve the manufacturing throughput, which is
defined as the required time for a device to be manufactured
from raw materials. In fact, with the application of the DTs,
a real-time condition monitoring is accessible to detect the
failures and imperfections of the produced device during the
manufacturing process. Lastly, at the service stage DTs are
used to monitor the characteristics and behaviour of super-
conducting apparatuses [377]. At the moment, some indus-
tries use DTs to improve their manufacturing, assembly line,
designs, and performance of their devices and tools. NASA,
GE, Airbus, Northrop Grumman, and Boeing have used DTs
for aircraft maintenance, safety analyses of their aircraft, mal-
functions predictions, and decision optimisation for assembly
lines [378–380]. In electrical energy generation, GE has used
DTs to revolutionise the future of wind farms by continuously
gathering data to minimise the required maintenance, increase
the reliability of wind power plants, and lastly significantly
improve the generated power by wind turbines. Siemens has
also created a DT for the Finish power system to help them
manage the planning, operation, protection, and maintenance
of their entire power system. DTs are also used in automot-
ive, oil, gas, healthcare, agriculture, and many other industries
[377, 380–383]. As discussed in [377], the aerospace industry
is the most appropriate industry for DTs with an acceptable
value of funding. This is the same industry in which SCs are
going to be applied as cryo-electric transportation airborne
systems. It is highly possible to use DTs for electric aircraft
and spacecraft to protect these precious devices. This could
be an excellent opportunity to consider many trade-offs dur-
ing design procedures, service life, maintenance, and condi-
tion monitoring of SCs used in aircraft. Also, lessons learned
from the application of DTs into power systems could be use-
ful for the sake of using the DTs for power superconducting
apparatuses.

Quantum computation has revolutionised many engin-
eering sciences and technologies. AI techniques, especially
machine and DL methods, can also further improved by using
quantum computation. This can increase the accuracy and
speed of the learning procedure, especially for ultra-complex
and nonlinear characteristics. Thus, with advancements in the
field of quantum computation and their integration with AI-
based approaches, an eye-catching improvement is predicted
in accuracy and speed of the AI techniques [384]. This can be
a great opportunity for superconductivity, aerospace, etc.

In 2020, a new concept has been established in the AI field,
known as no-code AI. This means that the AI platform is
organised so that all users without any special expertise in AI
coding can drag and drop data into the platform to gain a high
accuracy model [385]. This can be very helpful in the field of
SCs and the researchers can create their own special models
with the highest and fastest characterisation. The main advant-
ages of such AI platform is their fast computation time, as well
as the low cost of hiring data scientists for projects.

Lastly, it should bementioned that relatively newMLmeth-
ods and NNs were introduced that are dedicated to problems
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with a supervised learning nature, while these specific types
of ML can be informed about the physical nature of the
data by using partial differential equations. Thus, in future,
these physics-informed NNs could be used for modelling,
design, and condition monitoring of superconducting devices
under different electrical, magnetic, thermal, mechanical, and
hydraulic conditions [386].

6. Concluding remarks

The last few years have been called the age of AI. This spe-
cific field of science has entered into all aspects of human life,
such as managing airplanes, controlling power systems, social
communication, healthcare systems, andmanymore. SCs, like
any other field of science, have been investigated with the help
of AI techniques, recently. These techniques have been used
for many purposes in superconductivity and its related applic-
ations. This paper has provided a critical topical review on the
application of AI in superconductivity. The most important
contributions of this paper are shown below:

• A short review of AI concepts, categories, history and devel-
opments.

• A review is conducted on the existing state of the art of
applying AI in different superconducting applications and
materials.

• Challenges that AI methods face being used in supercon-
ducting apparatuses and materials are discussed.

• A critical review is also presented in a form of discussion
showing how AI must be applied to enhance the efficiency
and reliability of superconducting devices and their manu-
facturing processes.

• Finally, future trends and developments are suggested and
discussed for using AI techniques in the field of applied
superconductivity.

From what has been reviewed, we note that most of the
previous works and investigations are focused on tackling
the design optimisation problems of superconducting devices,
such as those in large-scale power and material applications
or communication systems. Usually, these types of problems
are too complex to be solved by mathematical methods. The
most useful algorithms for design optimisation of supercon-
ducting devices are GA, PSO, and some other metaheuristic
algorithms.

On the other hand, AI is used to build models for SCs
based on DS rather than formulations and theory. These mod-
els reduce the computation time andmay increase the accuracy
of the results. However, the main goal of using AI models
is to present a real-time characterization of superconducting
apparatuses. There is also another way to take advantage of AI
in superconductivity, namely for condition monitoring. This
term refers to continuously analysing the receiving signals of
superconducting devices and by a combination of these signals
and AI methods, the working condition of the device can be
understood. These signals could be voltage, current, AC loss,
or magnetic field, among others. Condition monitoring issues
include, but are not limited to, fault location, fault detection,

and fault discrimination in superconducting devices. Condi-
tion monitoring can also be used as a quench detection pro-
cedure in magnets. The aim of using AI is here to make the
monitoring as fast as possible to make it real-time. ANNs,ML,
and DL are the most used methods for the sake of condition
monitoring and database models.

There is another application for AI in superconductivity
known as critical temperature estimation of new materials. In
this application, AI is used as an estimator or predictor to find
the structure of newSCswith a glance at the invention of room-
temperature SCs at low pressures. If room temperature SCs
come into play, their cooling cost will be drastically reduced.

So far, the main applications of AI in superconductivity
was firstly the critical temperature prediction of new SCs, con-
trolling and modelling the superconducting magnets of fusion
systems, electrothermal characteristic estimation of YBCO
tapes, basic, superconducting machine design, and fault detec-
tion in HTS cables. Other methods and applications require
further improvements and justifications.

We have discussed the challenges and obstacles that restrict
the application of AI into the superconductivity technology.
These challenges are explained and categorised into nine
groups. By addressing these challenges in future, AI will bene-
fit from a high level of the technology readiness level (TRL)
in applied superconductivity.

Besides, we have also discussed a critical review and future
trends for integrating AI technology with superconductivity,
which is followed by a series of questions, in the aspects of
design, condition monitoring, reducing cost, etc.

According to what was explained above, AI techniques
show great advantages in addressing the existing challenges
that face the applied superconductivity and SC materials in
increasing their TRL. By following future trends, AI could
play a more outstanding role in the field of applied supercon-
ductivity and SC materials.
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