
Tang, S., Meng, Z. and Liang, S. (2022) Dynamic co-embedding model for temporal

attributed networks. IEEE Transactions on Neural Networks and Learning Systems,
35(3), pp. 3488-3502. (doi: 10.1109/TNNLS.2022.3193564).

There may be differences between this version and the published version. You are

advised to consult the publisher’s version if you wish to cite from it.

https://eprints.gla.ac.uk/274878/

Deposited on: 21 July 2021

Enlighten – Research publications by members of the University of Glasgow

https://eprints.gla.ac.uk

https://eprints.gla.ac.uk/274878/
https://eprints.gla.ac.uk/

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. XX, MONTH 2022 1

Dynamic Co-embedding Model for Temporal
Attributed Networks

Shaowei Tang, Zaiqiao Meng, and Shangsong Liang

Abstract—In this paper, we study the problem of embedding
temporal attributed networks, with the goal of which is to
learn dynamic low-dimensional representations over time for
temporal attributed networks. Existing temporal network em-
bedding methods only learn the representations for nodes, which
are unable to capture the dynamic affinities between nodes
and attributes. Moreover, existing co-embedding methods that
learn the static embeddings of both nodes and attributes cannot
be naturally utilized to obtain their dynamic embeddings for
temporal attributed networks. To address these issues, we propose
the Dynamic Co-embedding model for Temporal Attributed
Networks based on the dynamic stochastic state space framework.
Our model captures the dynamics of an temporal attributed
network by modeling the abstract belief states representing the
condition of the nodes and attributes of current time step, and
predicting the transitions between temporal abstract states of two
successive time steps. Our model is able to learn embeddings for
both nodes and attributes based on their belief states at each time
step of the temporal attributed network, while the state transition
tendency for predicting the future network can be tracked and
the affinities between nodes and attributes can be preserved.
Experimental results on real-world networks demonstrate that
our model achieves substantial performance gains in several static
and dynamic graph mining applications compared with the state-
of-the-art static and dynamic models.

Index Terms—Temporal Attributed Network; Network Embed-
ding; Variational Auto-encoder, Dynamic Co-embedding

I. INTRODUCTION

NETWORK embedding techniques, aiming at learning
low-dimensional representations for networks, have at-

tracted a surge of attention in both researches and industries
recently. Many approaches [1–7] for network embeddings
mainly focus on encoding a network by node representations
(also called node embeddings). A number of down-stream
network analysis tasks, e.g., node classification [1, 3], link
prediction [8] and community detection [2, 9], have been

This work was partly supported by the National Natural Science Foun-
dation of China under Grant 61906219.

Shaowei Tang is with the School of Computer Science and Engineering,
Sun Yat-sen University, Guangzhou, China; and the Guangdong Key Lab-
oratory of Big Data Analysis and Processing, Guangzhou, China. (email:
tangshaowei1@gmail.com).

Zaiqiao Meng is with the School of Computing Science, University of
Glasgow, Glasgow, UK. (e-mail: zaiqiao.meng@gmail.com).

Shangsong Liang is with the School of Computer Science and Engineering,
Sun Yat-sen University, Guangzhou, China; the Guangdong Key Laboratory of
Big Data Analysis and Processing, Guangzhou, China; and the Department of
Machine Learning, Mohamed bin Zayed University of Artificial Intelligence,
Abu Dhabi, UAE. (email: liangshangsong@gmail.com)

Shangsong Liang is the corresponding author of the paper. Shaowei Tang
and Zaiqiao Meng contributed equally to the paper.

shown to benefit from the learned embeddings of the nodes
obtained by these network embedding approaches.

However, previous works mainly focus on embedding nodes
for static networks [1–4, 9], and ignore the fact that most of
the real world networks evolve over time, i.e., with the edges
between nodes and the node-to-attribute associations changing
over time. Moreover, in many real world applications, such as
dynamic user profiling [10] and dynamic link prediction [11],
the learned embeddings are required to be able to track the
evolution of the networks. For instance, the goal of the user
profiling task is to learn the semantic representations of users
and words to generate relevant keywords to represent a user’s
profile. Since the relevant keywords that describe users’ status
and interests would change over time, the learned embeddings
of users and keywords should capture and distinguish such
changes [10]. Accordingly, in this paper, we study the problem
of learning dynamic representations for Temporal Attributed
Networks so that the evolving trends of the network topology
and the node attributes can be effectively captured.

In order to capture the dynamic changes for temporal
networks, recently many temporal network embedding meth-
ods [6, 7, 11–13] have been proposed to learn dynamic low-
dimensional vector representations of nodes. These methods
normally optimize an objective function of preserving both
the static structural and temporal information, and thereby
the dynamic embeddings of nodes capturing the evolution
of network can be obtained. With additional temporal in-
formation captured by these methods, the learned dynamic
embeddings are able to boost the performance of many real-
world dynamic network analysis and prediction tasks, such
as dynamic link prediction [5–7, 14] and dynamic network
visualization [6, 7, 12].

However, most of the existing temporal network embedding
methods still suffer from a number of limitations: (1) These
methods learn representations of nodes only, resulting in the
fact that temporal affinities between nodes and attributes in the
dynamic environment cannot be measured. However, capturing
such affinities is of great importance to the success of many
graph mining tasks, as the correlation between two different
types of entities, e.g., user-word correlation in user profiling
task [10], and node-attribute correlation in attribute inference
task [15], needs to be quantitatively measured. (2) How to
explicitly capture the evolutionary tendencies of the network
from a given time step to the next time step is still unknown.
Yet tracking such transition tendency is an effective way to
predict the future states and trends from the historical states
and records [16].

Accordingly, to alleviate the aforementioned limitations in

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. XX, MONTH 2022 2

the existing methods, we propose a Dynamic Co-embedding
model for Temporal Attributed Networks (abbreviated as DC-
TAN) that learns the dynamic representations of both nodes
and attributes at each time step, such that the structure,
nodes, attributes, and the temporal information of the dynamic
attributed networks can be preserved. Specifically, our DCTAN
utilizes two belief state encoders and inference networks to
encode the temporal information into belief state codes and
infer the distributions of the embeddings, two stochastic state
transition and smoothing networks to dynamically embed
both nodes and attributes of a temporal attributed network
into the same semantic space, and a decoder network to
reconstruct the target temporal attributed network based on
the inferred embeddings. With the five well-designed specific
neural networks, our DCTAN aims to preserve not only the
proximities in nodes but also the affinities between nodes
and attributes in the dynamic environment. Meanwhile, the
state transition tendency can be tracked by training two state
transition networks, which use the embeddings at the current
time step to predict those at the next time step. Motivated by
the successful application of VAE-based models like Dynamic
Stochastic State Space Model [16] in learning representations
for temporal data, our DCTAN extends VAE to effectively
incorporate structural information (i.e., edges), graph informa-
tion (i.e., affinities between nodes and attributes), and temporal
information (i.e., tracking the evolving tendency) in a co-
embedding way so as to learn high-quality representations for
both nodes and attributes.

The learned dynamic representations of nodes and attributes
by our DCTAN can service not only for traditional network
analysis tasks (e.g. link reconstruction and attribute inference),
but also for predictive tasks (e.g., predicting the links and
node-attribute associations at the next time step). Furthermore,
the obtained evolution tendency of dynamic network at two
successive time steps by our DCTAN can help to predict the
status (i.e., the links between nodes and attributes of nodes) of
the target network at the next time step based on the learned
embeddings of the current time step. In order to verify the
effectiveness of our proposed methods, we conduct experi-
ments on several network datasets. Our experimental results
show that our models can achieve the best performance in
link prediction and reconstruction tasks compared with state-
of-the-art baseline methods, and yields superior performance
in attribute inference and prediction tasks.

Our contributions in this paper can be summarized as
follows:
(1) We propose the DCTAN, a novel Dynamic Co-embedding

model for Temporal Attributed Networks, to learn the
temporal representations of both nodes and attributes at
each time step based on the dynamic stochastic state space
model, such that dynamic affinities between nodes and
attributes can be effectively captured.

(2) Based on the abstract belief states learned by the Long
Short-Term Memory (LSTM) recurrent neural networks,
we deploy two stochastic state smoothing networks to pre-
dict the transitions between belief states of two successive
time steps so that the evolving tendency of the network
can be captured.

(3) Through DCTAN as an example, we would provide in-
sight and inspiration on how to extend VAE architecture
to dynamically learn graph representations for evolving
networks, especially the non-plain ones containing rich
auxiliary information (e.g., node attributes).

(4) We conduct experiments on several real world dynamic
network datasets in terms of two network analysis tasks
(e.g., link reconstruction and attribute inference) and two
prediction tasks (e.g., link and node-to-attribute asso-
ciation prediction). Experimental results show that our
DCTAN outperforms the baseline methods in these tasks
and validate that our DCTAN can learn high-quality
representations at each time step for dynamic network
and effectively capture the transition tendency of the
embeddings and dynamic affinities between nodes and
attributes over time.

The remainder of the paper is organized as follows. In § II we
briefly review the related work. § III introduces the notations
and formally defines the problem to be addressed. § IV details
our proposed models. § V describes the experimental setup.
§ VI presents the experimental results and analyses. Finally,
we conclude in § VII.

II. RELATED WORK

In what follows, we briefly discuss three lines of related
work, plain network embedding, attributed network embed-
ding, and temporal embedding.

A. Plain Network Embedding

Network embedding methods [17–19] for plain networks
try to preserve topological information of network in the
learned network representations. For example, DeepWalk [1]
and Node2vec [2] learn node embeddings that capture the
local structural information of the plain networks. These two
embedding methods train their models using the Skip-Gram
framework [20] by generating random walks to construct
the sequences of nodes and then optimizing a likelihood
of predicting the surrounding nodes in the sequences. The
LINE [3] model further improves it by considering both the
first-order and second-order proximities between nodes. Wang
et al. [21] apply the deep neural networks to capture the highly
non-linear structure and preserve the global and local structure
of the network. In order to incorporate the community structure
of network into result embeddings, Wang et al. [9] propose
a model to preserve both of the microscopic and community
structures. However, these methods ignore attributes of nodes
that help to provide useful information for encoding nodes as
vectors.

B. Attributed Network Embedding

Many attributed network embedding methods are proposed
to learn representations via both structural information and
auxiliary information, such as the attributes and the textual
contents of nodes [22]. For instance, Huang et al. [23] propose
a model to learn the joint embeddings of nodes by matrix
factorization technique with the graph Laplacian to combine

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. XX, MONTH 2022 3

the topological structure and attributes. Graph convolutional
neural network models (GCNs) [4, 24, 25] are variants of
traditional convolutional neural networks. These models effec-
tively aggregate features from local nodes to learn the node
embeddings in attributed networks. HYPER-SAGNN [26]
is a new self-attention based graph neural network, which
learns node embeddings to extract patterns among higher-
order interaction for hypergraphs. Zhang et al. [27] propose a
customized deep network model called ANRL, which learns
node embeddings via both topological structure and attribute
information. More recently, to further capture the affinities
between nodes and attributes, Meng et al. [15, 28] propose a
variational auto-encoder which learns the embeddings of both
nodes and attributes and represent the learned embeddings
by Gaussian distributions. Fang et al. [29] further extend
it into the Hyperspherical space to obtain more effective
representations of attributed networks. However, the above
methods are restricted to deal with static networks, while most
of real world networks are not static but continuously evolve
with the changes of structure and auxiliary information.

C. Temporal Embedding
Temporal embedding that captures dynamic changes for real

time-evolving data has attracted increasing attention recently
in many fields [30–33]. For example, Kim et al. [34] and
Hamilton et al. [33] model semantic changes of word by
splitting the data into separate time bins and train the model
by some word embedding algorithms, such as word2vec [20].
Bamler et al. [31] propose a dynamic Skip-Gram model to
learn the probabilistic word embeddings. The DUWE [10] is
a model that learns dynamic representations of users and words
to retrieve top-K relevant and diversified keywords to profile
users’ dynamic expertise. Recently, Gregor et al. [16] propose
a dynamic stochastic state space model called TD-VAE to
learn representations containing explicit beliefs about states
several steps into the future and track the transition tendency of
states at different time steps. However, they cannot be directly
applied to co-embed both nodes and attributes for a temporal
attributed network which contains both the topological struc-
ture and attribute information while the network continuously
evolves over time.

In order to deal with temporal networks, a number of
temporal network embedding approaches have been proposed.
Zhu et al. [5] propose a temporal latent space model to
predict the temporal link probability of node pairs for the
link prediction task in temporal networks. Zhou et al. [6]
present a model to track evolution patterns of triads for plain
networks by their triadic closure process. Li et al. [13] build
an online model based on an offline model to maintain the
freshness of embedding on nodes and attributes by leveraging
matrix perturbation theory. Zuo et al. [7] propose a Hawkes
process based Temporal Network Embedding (HTNE) model
that takes the full historical neighbourhood formation pro-
cess into account. Trivedi et al. [35] propose a model that
learns non-linear evolving entity representations for entities
and relations over time by a deep evolutionary knowledge
network. Jin et al. [36] propose Recurrent Event Network (RE-
Net) for modeling complex event sequences, which consists

of a recurrent event encoder and a neighborhood aggregator.
Pareja et al. [37] design a architecture, which uses RNN
to evolve the parameters of GCN, for handling the problem
of temporal network embedding. TGAT [38] is the tempo-
ral graph attention layer for efficiently aggregating temporal
neighborhood features as well as for learning time-feature
interactions. DyREP [39] posits representation learning as
a latent mediation process bridging two observed processes
namely– dynamics of the network (realized as topological
evolution) and dynamics on the network (realized as activities
between nodes). All of the temporal network embedding
algorithms just aim to learn dynamic representations of nodes
only, however, how to capture the dynamic affinities between
nodes and attributes still remains challenging. In addition,
different between previous models, our model has a explicit
objective for tracking the evolving tendency of network in
dynamic environment.

III. PRELIMINARIES

In this section, we first introduce the notations and defi-
nitions used in the paper (§ III-A), and then formulate the
problem that we address in the paper (§ III-B). Next, we
briefly describe the dynamic stochastic state space model,
which exploits the variational auto-encoder (VAE) and the
sequence state model to learn the stochastic latent states for
dynamic observations (§ III-C).

A. Notations and Definitions

In this paper, we use boldface uppercase alphabets to denote
2-dimensional matrices or 3-dimensional tensors. E.g., a 2-
dimensional adjacency matrix of the network can be denoted
by A, where Ai is a row vector of matrix A indicating the
weights of neighbours of user i. We use normal alphabets
to denote the scalars (e.g., the total number of nodes in
the network is denoted by N), while sets are denoted by
calligraphy typeface alphabets (e.g., the set of static networks
for a temporary network is represented by G). The main
notations used across our paper are shown in Table I.

In what follows, we define two categories of networks: the
static attributed networks and the temporal attributed networks,
which are referred in the paper.

Definition 1: Static Attributed Network. Let Gt =
{At,Xt} be a static attributed network, where At ∈ RN×N
is the adjacency matrix with N being the number of nodes,
and Xt∈RN×M is the node attribute matrix with M being the
number of attributes.
A temporal attributed network can be represented as a set of
sequential static attributed networks over different snapshots,
which is defined as:

Definition 2: Temporal Attributed Network. A temporal
attributed network G is represented as a sequence of attributed
networks over time, i.e. G≤T = {G0, . . . ,GT }, recording the
dynamic changes of edges and node attributes by each Gt with
the time steps evolving from 0 to T , where T is the number
of time steps.

Figure 1 shows a toy example of the temporal attributed
network with 34 nodes and 5 attributes. As time evolves,

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. XX, MONTH 2022 4

Time step 1 Time step 2 Time step 3 Time step 4 Time step 5

Fig. 1. A toy example of a temporal attributed network with 34 nodes
and 5 attributes evolving over five time steps. At each time step, links
between two nodes and associations between nodes and attributes are
added or removed randomly, compared with other time steps. To show
the dynamic changes of the network over time clearly, newly created links
and added attributes are marked by red lines and small red rectangles,
respectively.

edges between nodes and associations between nodes and
attributes are constantly added and removed, where evolving
tendency should be captured for predicting the changes in the
future. However, the traditional network embedding methods
can neither track such evolving tendency non-trivially, nor dy-
namically capture the affinities between nodes and attributes.

B. Problem Statement
The problem of temporal attributed network co-embedding

we aim to address in this paper can be defined as follows:
Problem 1: Temporal Attributed Network Co-

embedding.
Given a temporal attributed network G≤T = {G0,G1, . . . ,GT }
with T time steps, the goal of a Temporal Attributed Network
Co-embedding algorithm is to learn a mapping function Ξ:

G≤T
Ξ−→ ZN≤T ,Z

A
≤T , (1)

where ZN≤T = {ZN0 ,Z
N
1 , . . . ,Z

N
T } and ZA≤T =

{ZA0 ,Z
A
1 , . . . ,Z

A
T } are the learned node latent embeddings

and attribute latent embeddings at each time step, respectively.
Specifically, the mapping function Ξ should satisfy the
following: (1) The topological structure information of nodes
and the associations between nodes and attributes can be
preserved by the learned embeddings as much as possible. (2)
The function Ξ is able to capture the temporal information
of the dynamic network such that the observations of graph
after time step T can be predicted by the learned embedding
at the last time step T , i.e., the links and node attributes at
time step T +1 can be predicted according to the embeddings
of the previous time step T .

C. The Dynamic Stochastic State Space Model
We now briefly describe the dynamic stochastic state space

model [16] that our proposed DCTAN builds based on. The
dynamic stochastic state space model [16] is extended from
the state space model [40] by using a modified evidence lower
bound (ELBO) to learn latent stochastic states and stochastic
transitions between states.

Suppose we have an observation sequence O≤T =
(O0, . . . ,OT), and let S≤T = (S0, . . . ,ST) be the cor-
responding latent state sequence of these observations. We

TABLE I
MAIN NOTATIONS USED ACROSS THE WHOLE PAPER.

Symbol Description

G a temporal attributed network
Gt snapshot of temporal network at t
N number of nodes
M number of attributes
T number of time steps
At∈RN×N adjacency matrix of network at t
Xt∈RN×M attribute matrix of nodes at t
D dimension of latent embeddings
ZNt ∈RN×D representation matrix for nodes at t
ZAt ∈RM×D representation matrix for attributes at t
B size of belief code
BNt ∈RN×B belief codes for nodes at t
BAt ∈RM×B belief codes for attributes at t

can obtain an ELBO, by introducing a variational posterior
q(S |O) over the previous states given the observations:

log p(O≤T) ≥

E
S≤T ∼ q(S≤T |O≤T)

[T∑
t=1

log p (Ot|St) + log p (St|St−1)

− log q
(
St|St−1, φ(O≤T)

)]
, (2)

where φ is a function of (O0, . . . ,Ot) for filtering posteriors
or the entire sequence O≤T for smoothing posteriors. Here
the joint state and observation likelihood can be written as
p (O≤t,S≤t) =

∏t
t′=1 p (St′ | St′−1) p (Ot′ | St′), and the

variational posterior q(S≤t | O≤t) has a mean-field factor-
ization form q(S≤t |O≤t) =

∏t
t′=1 q(St′ |St′−1, φ(O≤t)). By

further introducing an online belief state sequence B≤T =
{B0, . . . ,BT } with Bt being defined as Bt = g(Bt−1,Ot),
where g is a recurrent neural network, and decomposing the
data likelihood as: log p(O≤t) =

∑t
t′=1 log p (Ot′ |O<t′),

we obtain the following belief-based ELBO for state-space
models:

log p (Ot|O<t) ≥ E
St∼Bt

St−1∼St,Bt,Bt−1

[
log p (Ot|St)

+ log p (St−1|Bt−1) + log p (St|St−1)
− log p (St|Bt)− log q (St−1|St,Bt−1,Bt)

]
. (3)

Instead of smoothing the state information for two consecutive
times t − 1 and t, one can also learn a jumpy state-to-state
model by choosing the distribution of times (e.g. uniformly),
which leads to the Temporal Difference Variational Auto-
Encoder (TD-VAE) model [16]. In TD-VAE model, the belief
state Bt acts a role of smoothing the stochastic states between
two time steps, and thereby the temporal abstraction from
temporally separated time points can be learned without back-
propagating through the entire time interval of the sequence
observation. However, we need not to consider the jumpy
states in our temporal attributed network embedding problem,
but rather consider the state of the temporal network smoothly
transiting between two consecutive time steps.

Figure 2 shows the graphical representation of the dynamic

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. XX, MONTH 2022 5

St
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

St�2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Decoder network

State transition network
Belief inference network

Belief state network

Smoothing inference network

St+1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Bt�1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Bt�2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Bt
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Bt+1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

St�1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Ot�2
<latexit sha1_base64="KLOEo2OC1smYYeRA+9XoYh284Q8=">AAACBXicbVC7TsMwFHXKq5RXgBGGhAqJhSopSDBWYmGjSPQhNVHkOE5r1bEj20Gqoi4s/AoLAwix8g9s/A1OmwEKR7J8dM69uveeMKVEKsf5MipLyyura9X12sbm1vaOubvXlTwTCHcQp1z0QygxJQx3FFEU91OBYRJS3AvHV4Xfu8dCEs7u1CTFfgKHjMQEQaWlwDz0Qk4jOUn0l99Mg9yzlWefenbTs6eBWXcazgzWX+KWpA5KtAPz04s4yhLMFKJQyoHrpMrPoVAEUTyteZnEKURjOMQDTRlMsPTz2RVT61grkRVzoR9T1kz92ZHDRBaL6soEqpFc9ArxP2+QqfjSzwlLM4UZmg+KM2opbhWRWBERGCk60QQiQfSuFhpBAZHSwdV0CO7iyX9Jt9lwzxrN2/N6yy3jqIIDcAROgAsuQAtcgzboAAQewBN4Aa/Go/FsvBnv89KKUfbsg18wPr4BPXqXrg==</latexit>

Ot�1
<latexit sha1_base64="esiU6KmADzwrZR6bTGcGuJ1njfw=">AAACBXicbVC7TsMwFHXKq5RXgBEGhwqJhSopSDBWYmGjSPQhNVHkOE5r1Ykj20Gqoi4s/AoLAwix8g9s/A1OmwEKR7J8dM69uveeIGVUKtv+MipLyyura9X12sbm1vaOubvXlTwTmHQwZ1z0AyQJownpKKoY6aeCoDhgpBeMrwq/d0+EpDy5U5OUeDEaJjSiGCkt+eahG3AWykmsv/xm6ueupVzr1LUc15r6Zt1u2DPAv8QpSR2UaPvmpxtynMUkUZghKQeOnSovR0JRzMi05maSpAiP0ZAMNE1QTKSXz66YwmOthDDiQr9EwZn6syNHsSwW1ZUxUiO56BXif94gU9Gll9MkzRRJ8HxQlDGoOCwigSEVBCs20QRhQfWuEI+QQFjp4Go6BGfx5L+k22w4Z43m7Xm95ZRxVMEBOAInwAEXoAWuQRt0AAYP4Am8gFfj0Xg23oz3eWnFKHv2wS8YH98785et</latexit>

Ot
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Fig. 2. Graphical representation of the dynamic stochastic state space
model. Note that arrows with different styles represent different data
flows through a different neural networks.

stochastic state space model. The dynamic stochastic state
space model first produces a belief state Bt (blue arrows)
from observation Ot and its previous belief state Bt−1 online,
using a recurrent neural network g. Then it makes a guess of
the current state (St) of the observation by taking its belief
state Bt (yellow arrows) as input to infer pB(St | Bt). And
combing St with the current belief state Bt and a prior belief
state Bt−1, it forms a previous post guess of the state of
prior observation St−1, by computing a smoothing distribution
q(St−1 | St,Bt,Bt−1) and drawing a corresponding sample
St−1 (red arrows). Given the state at t−1, the model predicts
the state at t, which reflects how the states evolve (green
arrows). Meanwhile, the decoder enforces the samples of state
distribution St to be able to reconstruct the current observation
Ot.

The dynamic stochastic state space models, e.g., TD-
VAE [16], are hard to deal with the problem of temporal
network representation learning due to the following reasons:
1) They cannot reconstruct or predict the links between nodes
naturally due to the lack of a well-designed decoder for data
represented in graph domain. 2) The used ELBO of them are
not applicable to the variational inference on graph-structured
data consisting of edges or additional auxiliary information 3)
In the problem of co-embedding temporal attributed network,
it is still tricky to apply the dynamic stochastic state space
models to learn a latent representation space, where the
topological structure of network and affinities between nodes
and attributes should be preserved, even if using a feasible
decoder for them, as there is not an efficient way of them
to simultaneously learn the latent variables for two different
categories of entities, i.e., nodes and attributes.

IV. METHODOLOGY
To address the temporal attributed network co-embedding

problem, we propose a novel Dynamic Co-embedding model
for Temporal Attributed Network (DCTAN) that effectively
captures the dynamics of a network by building an abstract
state representing the condition of the network of current time
step, and predicting the transitions between temporal abstract
states of two successive time steps. An overview of our model
are described in Figure 3. In the following, we illustrate our
DCTAN model by first formulating the variational lower bound
based on the VAE framework [41], then detailing all the neural

network models for constructing a trainable data flow and
finally describing the optimization process.

A. The Variational Lower Bound of DCTAN

For a temporal attributed network G≤T , we have two
types of observation sequences, i.e. the adjacency matrices
A≤T = {A0,A1, . . . ,AT } and the node attributed matrices
X≤T = {X0,X1, . . . ,XT } for each time step. We propose to
learn the representations for both nodes and attributes, so that
the affinities between nodes and attributes can be effectively
captured and measured.

To extend the dynamic stochastic state space model to our
dynamic co-embedding scenario, we begin with maximizing
the log-likelihood of the observation sequence of log p(G≤T),
which can be decomposed as:

log(G≤T) =
T∑
t=1

log p(Gt|G<t), (4)

where log p(Gt|G<t) is obtained by:

log p(Gt|G<t) = log

∫∫
p (Gt,St,St−1|G<t) dStdSt−1

= log

∫∫
p (Gt,St,St−1|G<t)

q (St,St−1|G≤t)
q (St,St−1|G≤t)

dStdSt−1

≥ E
St,St−1∼q(St,St−1|G≤t)

[log p (Gt,St,St−1|G<t)

− log q (St,St−1|G≤t)]. (5)

Here q (St,St−1|G≤t) is the variational distribution of the la-
tent states, and p (Gt,St,St−1|G<t) is the the joint distribution
of the latent states and the observations. The inequality of
Equation (5) is obtained according to the Jensen’s inequality.

According to the Markov assumption, the conditional likeli-
hood p(Gt|G<t) is naturally integrated by only the latent states
of two consecutive time steps, i.e. St and St−1, and the joint
distribution p (Gt,St,St−1|G<t) can be factorized as:

p (Gt,St,St−1|G<t) = p (Gt|St) p (St|St−1) p (St−1|G<t)
(6)

Hence, Equation (5) can be rewritten as:

p(Gt|G<t) ≥ E
St,St−1∼q(χ)

[log p (Gt|St) + log p (St|St−1)

+ log p (St−1|G<t)− log q (St,St−1|G≤t)]
def
=L, (7)

where L is the ELBO for the log conditional likelihood
p(Gt|G<t). For the sake of simplicity, we use q(χ) to rep-
resent q(St,St−1|G≤t). Since the input observations G≤t =
{G0, . . . ,Gt} are given sequentially, it is convenient that we
model the temporal input as conditional generation of data
given a context sequence. Thus, we can train two recurrent
neural networks (e.g. LSTM) that extract the codes of the two
types of sequence observations, i.e. BNt and BAt , according
to:

BNt = fN (BNt−1,Xt,At) (8)

BAt = fA(BAt−1,X
T
t), (9)

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. XX, MONTH 2022 6

where fN (·) and fA(·) are the internal state functions of
two recurrent neural networks for nodes and attributes, re-
spectively. BNt and BAt are called the belief states codes
for nodes and attributes at time step t, respectively. All the
information about the states of temporal attributed network can
be effectively captured using these internal states of recurrent
neural networks, and therefore these belief states are sufficient
to compute the conditional future distribution, due to the
Markov assumption underlying the state-space model. The
latent states St in our DCTAN are represented as two latent
factors, i.e., St = {ZNt , ZAt }, indicating the embeddings of
nodes and attributes at time step t, respectively. Then the
variational distribution can be factorized, according to the
mean-filed assumption, as:

q(St,St−1|G≤t)= q(ZNt ,Z
N
t ,Z

N
t−1,Z

A
t−1 |B

N
t ,B

A
t ,B

N
t−1,B

A
t−1)

= q(ZNt ,Z
N
t−1 |B

N
t ,B

N
t−1)q(Z

A
t ,Z

A
t−1|B

A
t ,B

A
t−1). (10)

To obtain the smooth state tendency of the latent embeddings
of nodes and attributes over time, we further decompose these
variational distributions over the two consecutive time steps
by representing the smoothing posteriors over ZNt and ZAt as:

q(ZNt ,Z
N
t−1|B

N
t ,B

N
t−1)

= qNB,t(Z
N
t |B

N
t)qNt−1|t(Z

N
t−1|Z

N
t ,B

N
t ,B

N
t−1), (11)

q(ZAt ,Z
A
t−1|B

A
t ,B

A
t−1)

= qAB,t(Z
A
t |B

A
t)q
A
t−1|t(Z

A
t−1|Z

A
t ,B

A
t ,B

A
t−1), (12)

where we call qNB,t(·) and qAB,t(·) as the belief inference
networks that infer the latent state distributions over time step
t conditioned by the belief states; and qNt−1|t(·) and qAt−1|t(·)
as the smoothing inference networks that infer distributions
over latent states of time step t− 1 smoothly from the latent
states of time step t and the belief states over time step t− 1
and t.

Then, substituting Equation (8), (11) and (12) into the
ELBO (Equation (7)), the first term of the expectation can
be rewritten as:

pD (Gt|St) =pD
(
Gt|ZNt ,Z

A
t

)
(13)

=pD

(
At,Xt|ZNt ,Z

A
t

)
=pAD

(
At|ZNt

)
pXD

(
Xt|ZNt ,Z

A
t

)
,

which is called as decoder network, while the other two
positive terms of Equation (7) can be rewritten as:

p (St|St−1) = pAT (Z
N
t | Z

N
t−1)p

N
T (ZAt | Z

A
t−1), (14)

p (St−1|Gt−1) =

pNB,t−1

(
ZNt−1|B

N
t−1

)
pAB,t−1

(
ZAt−1|B

A
t−1)

)
, (15)

where pNT (·) and pAT (·) are the state transition networks
that predict the future latent state based on its previous
latent state; pNB,t−1(·) and pAB,t−1(·) are approximated as the
belief inference networks qNB,t−1(·) and qAB,t−1(·) respectively.
Combining Equation (14) and (15) with Equation (11) and
(12), the last three terms of the expectation of Equation (7)
can be reformulated as a form of four Kullback-Leibler (KL)

divergence terms:

E
St,St−1∼q(χ)

[log p (St|St−1)+p (St−1|G≤t)−log q (St,St−1|G≤t)]

=−DKL

(
qNB,t−1‖qNt−1|t

)
−DKL

(
qAB,t−1‖qAt−1|t

)
−DKL

(
pNT ‖qNB,t

)
−DKL

(
pAT ‖qAB,t

)
def
=LKL. (16)

Hence, the total loss for our DCTAN model is:

L = E
ZNt ∼q

N
B,tZ

A
t ∼q

A
B,t

[log pAD

(
At|ZNt

)
+ log pXD

(
Xt|ZNt ,Z

A
t

)
]

+ LKL. (17)

We will detail all these neural networks applied in our DC-
TAN model in the next subsection, with, again, the overview
of DCTAN being shown in Figure 3, where different types
of arrows represent the data flows of the different neural
networks.

B. Neural Network Models

As it is in Figure 3, our model consists of five specific
neural network models, i.e., the belief state network, the
belief inference network, the smoothing inference network,
the state transition network and the decoder network. We
now present the detailed architecture of these neural networks.

The belief state network. To encode the observations
A≤t and X≤t for the target temporal attributed network, we
apply two Long Short-Term Memory (LSTM) recurrent neural
networks to learn the belief state codes for nodes and attributes
at each time steps. Specifically, the belief state codes of nodes
and attributes at time step t (i.e. BNt and BAt) are encoded
by LSTM according to their corresponding input features
(i.e., their adjacency matrices of nodes {A1, . . . ,At} and the
attribute information matrices {X1, . . . ,Xt} at different time
steps). For example, the attribute belief state codes BAt can
be represented as the following:

It = sigmoid(XT
t Wii + bii +Ht−1Whi + bhi) (18)

Ft = sigmoid(XT
t Wif + bif +Ht−1Whf + bhf) (19)

Ct = tanh(XT
t Wig + big +Ht−1Whg + bhg) (20)

BAt = sigmoid(XT
t Wio + bio +Ht−1Who + bho) (21)

Ct = FtCt−1 + ItCt (22)

Ht = BAt ∗ tanh(Ct) (23)

where Ht is the hidden states at time step t, Ct is the cell
states at time step t, XT

t is the input (the transpose of attribute
information matrix) at time step t, ∗ is the Hadamard product,
and It,Ft,Ct are the input, forget and cell gates, respectively.
Since the belief state network is generally a recurrent neural
network, BAt is both the output belief code at current time
step and the contributed factors for belief code of the next
time step. The belief state for nodes BNt can be extracted
with a similar LSTM network, with the only difference that
it takes the concatenation of At and Xt as input at time
step t, i.e., At ⊕ Xt, where ⊕ is the simple concatenation
operation, and preprocesses the node features by multi-layer

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. XX, MONTH 2022 7

Time

t-1

t

 tX

 tA

 1tA

 1tX
 1tX

 1tA

 tA

 tX

 Tp

t-1|tqt-1|tq

 Tp

sample

sample
 tZ

sample

reparameterization

sample

 tZ

reparameterization

reparameterization

reparameterization

Belief state network

Smoothing inference network

State transition network

Belief inference network

Decoder

1tB

 tB

 tB

1tB

 -1tZ

 -1tZ

, 1B tq

, 1B tq

,B tq

,B tq

, 1 1|(||)KL B t t tD q q

, 1 1|(||)KL B t t tD q q

 ,(||)BTKL tD p q
 ,(||)BTKL tD p q

Fig. 3. The overview of our proposed DCTAN at given time steps t−1 and t, from the top to the bottom. The belief state network employs two Long
Short-Term Memory (LSTM) recurrent neural networks with BNt = fN (BNt−1,Xt,At) and BNt = fA(BAt−1,X

T
t), respectively. qNB and qAB are the

Gaussian embeddings of nodes and attributes based on belief state codes respectively, i.e, qNB (ZNt |BNt) and qAB (ZAt |BAt). We use pN
t−1|t and pA

t−1|t for
the inferred smoothing Gaussian distributions at time step t−1, pAT and pNT for the predicted Gaussian distributions of latent variables, i.e., pNT (ZNt |ZNt−1)

and pAT (ZAt |ZAt−1). We sample determinist embeddings from these Gaussian distributions as inputs of decoder network to reconstruct the observations of
the target network.

GCNs (graph convolutional networks) to preserve the high-
order neighborhood information. In our experiments, we only
use 2-layer GCNs, as adding more layers leads to small
performance improvement as mentioned in related literature
[4, 15]. For brevity, we omit the full network formulation for
BNt .

The belief inference network. The purpose of belief
inference network is to infer high-quality and informative
embeddings of nodes and attributes at each time step based on
the above extracted belief state codes. The learned latent state
representations are represented by Gaussian distributions with
their means being the embedding of nodes and attributes and
their variances measuring the uncertainly of their embeddings.
To infer the Gaussian embeddings of nodes and attributes at a
given time step t from the corresponding belief state codes, we
employ a two layer fully connected neural networks composed
of non-linear mapping functions to map the codes (i.e. BAt and
BNt) to the means and variations of two Gaussian distributions,
respectively. Specifically, the means and variances of Gaussian
embeddings for nodes and attributes are inferred according to
the corresponding belief state codes by:[

µNt , (σ
N
t)2

]
= qNB,t(Z

N
t |BNt),[

µAt , (σ
A
t)

2
]
= qAB,t(Z

A
t |BAt), (24)

where µNt , µAt , (σNt)2 and (σAt)
2 are the means and variances

of embeddings for nodes and attributes respectively; qNB,t(·)
and qNB,t(·) are two two-layer-fully-connected networks that
have the same structure but different parameters from each
other, the structure of which is defined as:

H(1) = tanh
(
BW(1) + b(1)

)
H(2) = sigmoid

(
BW(2) + b(2)

)
[
µ,σ2

]
=
(
H(1) �H(2)

)
W(3) + b(3). (25)

Here � is the element-wise product, and W(1), W(2), W(3),
b(1), b(2) & b(3) are trainable parameters.

The smoothing inference network. The smoothing in-
ference network aims at enhancing our model by smoothly
inferring more informative embeddings considering the future
belief states of network. Given two successive training time
steps t−1 and t, the smoothing inference network learns a
smoothing function such that the embeddings at time step
t − 1 can be inferred from the embeddings at time step t,
which make sure that the embeddings at time step t−1 are
also informative about the state of the world at time t. Since
the embeddings of nodes and attributes inferred by the belief
inference networks are Gaussian distributions, we use the
smoothing inference network to infer two similar Gaussian
distributions of time step t− 1 according to the embedding of
nodes and attributes at t (i.e. ZNt and ZAt) and the belief states
of time steps t−1 and t (i.e., BNt−1, BAt−1, BNt and BAt):[

µNt−1, (σ
N
t−1)

2
]
= qNt−1|t(Z

N
t−1|ZNt ,BNt−1,BNt),[

µAt−1, (σ
A
t−1)

2
]
= qAt−1|t(Z

A
t−1|ZAt ,BAt−1,BAt). (26)

Here ZNt and ZAt are the deterministic embeddings samples
of nodes and attributes at time step t from the correspond-
ing Gaussian embeddings by using the reparameterization
trick [41]; µNt−1,µ

A
t−1, (σ

N
t−1)

2 and (σAt−1)
2 are the means

and variances of the smoothing Gaussian distributions over
latent embeddings to be infered at time step t−1. qNt−1|t(·) and
qNt−1|t(·) are two two-layer-fully-connected networks that have
the same structure but different parameters from each other,

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. XX, MONTH 2022 8

the structure of which is defined as:

H(1) = tanh
(
(Zt ⊕Bt−1 ⊕Bt)W

(1) + b(1)
)
,

H(2) = sigmoid
(
(Zt ⊕Bt−1 ⊕Bt)W

(2) + b(2)
)
,[

µt−1,σ
2
t−1
]
=
(
H(1) �H(2)

)
W(3) + b(3). (27)

After inferring the above smoothing distributions at time
step t − 1, we are able to calculate the KL-divergence terms
DKL

(
qNB,t−1‖qNt−1|t

)
and DKL

(
qAB,t−1‖qAt−1|t

)
in Equation

(17). The representation quality therefore can be enhanced
based on the smoothing inference and minimizing the KL-
divergence between the inferred distributions and the smooth-
ing distributions.

The state transition network. An important purpose of our
proposed DCTAN is to track the state transition tendency of
the latent state representations of temporal attributed network
over time. We achieve this by training two state transition net-
works that use the embeddings of current time step to predict
the embeddings of the next time step. Similar to the smoothing
inference networks, we predict the means and variances of the
embedding and minimizing the KL-divergence between these
predicted embeddings and the inferred embedding from the
belief inference networks. To capture the transition tendency
between two state representations at successive time steps t−1
and t, we train two two-layer-fully-connected networks which
predict the states of network at the next time step based on
those at current time step:[

µNt , (σ
N
t)2

]
= pNT (ZNt |ZNt−1),[

µAt , (σ
A
t)

2
]
= pAT (Z

A
t |ZAt−1), (28)

where ZNt−1 and ZAt−1 are the sampled determinist embeddings
of nodes and attributes from the corresponding inferred Gaus-
sian embeddings of them at time step t−1, respectively; µNt ,
µAt , (σNt)2 and (σAt)

2 are the means and variances of the
predicted Gaussian embeddings at time step t for nodes and
attributes, respectively; pNT (·) and pAT (·) are two two-layer-
fully-connected networks defined as:

H(1) = tanh
(
Zt−1W

(1) + b(1)
)
,

H(2) = sigmoid
(
Zt−1W

(2) + b(2)
)
,[

µt,σ
2
t

]
=
(
H(1) �H(2)

)
W(3) + b(3). (29)

Having obtained the predicted Gaussian embeddings, we are
able to calculate the KL-divergence terms −DKL

(
pNT ‖qNB,t

)
and −DKL

(
pAT ‖qAB,t

)
in loss function Equation 16. Maxi-

mizing the above two KL-divergence terms during training
forces the predicted Gaussian distributions to be closer to
the belief based Gaussian embeddings, the state transition
tendency thereby can be learned and captured.

The decoder network. The decoder aims to reconstruct the
target attributed network based on the inferred embeddings
of nodes and attributes. Since the learned embeddings of
each node and attribute are represented by Gaussian distri-
butions, we first sample determinist embeddings from such
distributions by using the reparameterization trick [41]. To

efficiently reconstruct the observations of the target network
at a given time step t, i.e., the adjacency matrix of nodes At

′

and attribute information matrix Xt
′, we employ two inner-

product decoders with nonlinear activation function to predict
the probabilities of each link and node-attribute association
based on the sampled embeddings at time step t, i.e., ZNt and
ZAt :

At
′ = pAD

(
At|ZNt , (Z

N
t)T

)
,

Xt
′ = pXD

(
Xt|ZAt ,Z

N
t

)
, (30)

where (Xt
′)ij ∈ Xt

′ and (At
′)ij ∈ At

′ are the predicted
probabilities of the i-th node having the j-th attribute and an
edge existing between the i-th node and the j-th node at time
step t, respectively; pAD (·) and pXD (·) are two decoders that
perform the similar inner-product operations with nonlinear
function but have different inputs. The inner-product decoder
pAD (·), which decodes the adjacency probability matrix of
nodes by predicting all links from the corresponding sampled
node embeddings, is defined as:

pAD

(
ZNt , (Z

N
t)T

)
= sigmoid

(
ZNt (ZNt)T

)
, (31)

where ZNt is the embedding matrix for all nodes at time step
t. We use a similar decoder pXD (·) to reconstruct the node
attribute matrix by predicting all node-attribute associations
from the determinist embeddings of attributes and nodes (i.e.,
ZAt and ZNt), the inner-product operation of which is defined
as:

pXD

(
ZAt ,Z

N
t

)
= sigmoid

(
ZNt (ZAt)

T
)
, (32)

To train the above probabilistic decoders for reconstructing
the correct observations of the target network, we can max-
imize the two expectation terms in Equation 17, which are
regarded as expected negative reconstruction error loss.

C. Optimization

Since all priors of latent states distributions and the varia-
tional posteriors are assumed to be Gaussian distributions, the
KL-divergence terms in Equation (16) have analytical forms.
However, optimizing the expectation terms of Equation (17)
are intractable commonly. We address this issue by using
the Stochastic Gradient Variational Bayes (SGVB) estimator
and the reparameterization trick [41], so that we can directly
optimize ELBO by sampling deterministic and differentiable
embedding samples from the inferred variational distributions:

−L =
1

L

L∑
l=1

(
log pAD(At|ZN

(l)

t)
)

+
1

L

L∑
l=1

(
log pXD(Xt|ZA

(l)

t ,ZN
(l)

t)
)
+ LKL, (33)

where

Z
N (l)
t = (σNt)(l) � ε+ (µNt)(l), (34)

Z
A(l)
t = (σAt)

(l) � ε+ (µAt)
(l), (35)

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. XX, MONTH 2022 9

ε ∼ N (0, I) is a auxiliary variable, and L is the size
of sampling. To optimize Equation (17), we back-propagate
total loss through the belief state network, inference network,
state prediction network and decoder network whose trainable
parameters are updated by the gradient descent.

Here we provide the time complexity analysis for our
proposed model DCTAN. For per epoch of the training proce-
dures, the total time complexity of our model is O(T |Ã+|(D+
B + HBI + HST + HSI)), where T is the total time steps;
|Ã+| indicates the number of nonzero entires in the Laplacian
matrix, i.e., the symmetric normalized adjacent matrix Ã,
which is generated by ignoring the timestamp of the temporal
edges of a dynamic network; D is the dimension of the latent
embeddings; B denotes the dimension of the belief state codes;
HBI , HST , and HSI denote the dimension of the hidden layer
of the belief inference networks, the state transition networks,
and the smoothing inference networks, respectively.

D. Discussion between DCTAN and TD-VAE

To some extent, DCTAN is relatively linked to TD-VAE,
as both depends on the dynamic stochastic state space model
to track the evolving tendency in a dynamic environment.
However, there are a number of significant improvements of
DCTAN over TD-VAE when tackling the graph embedding
problem in dynamic settings: Compared with TD-VAE [16]
that does not consider the structure information of a graph,
DCTAN is proposed to additionally take into account the
evolving topology of a dynamic network via employing Graph
Neural Network encoders, e.g., Graph Convolutional Net-
work [4]. In the light of prolific auxiliary node attributes
in many real-world scenarios, DCTAN ulteriorly extends the
dynamic stochastic state space model in a co-embedding
way which is efficient in capturing the affinities between
two categories of entities, e.g., user-word correlation in user
profiling [10]. Additionally, in the experiments we take plain
TD-VAE as a baseline and find that DCTAN outperforms it
in most cases, which validates that the superior of our model
over TD-VAE.

V. EXPERIMENTAL SETUP

In what follows, we first introduce the research questions
that we aim to answer in this paper (Section V-A). Then we
describe the datasets (Section V-B). Finally, we describe our
baselines and settings (Section V-C).

A. Research Questions

We evaluate our proposed DCTAN model in this paper
by answering the following research questions: (RQ 1) How
does our DCTAN perform in static graph mining tasks (e.g.
link reconstruction) by utilizing the learned representations
compared with other network embedding methods? (RQ 2)
Can the way of capturing temporal information of a network
benefit the performance of our method on graph mining tasks
(e.g. link prediction)? Is the dynamically modelling way used
in our DCTAN better than other dynamic modelling methods?
(RQ 3) How does DCTAN perform in the task of attribute

inference, where capturing the affinities between nodes and
attributes is crucial? (RQ 4) Can our DCTAN capture the
affinities between nodes and attributes for temporal attributed
networks to predict the future attributes of nodes? How does
our DCTAN perform by utilizing the learned representations
in the task of predicting the future attributes of nodes? (RQ
5) How do the learned embeddings of nodes and attributes of
a temporal network change over time and can we intuitively
evaluate this evolution? (RQ 6) Could the proposed DCTAN
be evaluated through detailed ablation study to help better
understand it?

B. Datasets

We conduct experiments on the following datasets: three
plain temporal networks, three temporal attributed networks
and one synthetic network from static network, the statistics
of which is provided in Table II:
• Email-d, Email [42]: These two networks are generated

using email data from a large European research insti-
tution, where members and e-mails with time labels are
nodes and temporal edges, respectively. Email contains all
the communication information about all the departments
at the institution, and Email-D is a sub-network dataset of
Email corresponding to the communication of only one
of these departments.

• College [43]: It is an online social network at the Univer-
sity of California based on private sent messages, where
nodes are staff and temporal edges are messages with
time labels indicating the message delivery time.

• School [43]: This is a social network of a primary school,
where nodes represent children or teachers, and edges
correspond to contacts between the children and teachers
in that school. Attributes of each node are the class
numbers of children and teachers.

• Cora [44]: The Cora dataset is static citation networks,
where nodes are publications and edges represents ci-
tation links. Attributes of each node are bag-of-words
representations of the corresponding publications.

• DBLP-4000, DBLP-10000: These two datasets are
crawled from the DBLP public bibliography data 1. We
construct the dynamic coauthor networks extracted from
publications in the top 172 computer science conferences,
where the nodes represent authors, the edges are publica-
tions with their time steps being the publishing year, and
the attributes are the keyterms extracted from the paper
titles. The scales of the two network datasets are different.

In order to generate snapshots of temporal network for
different time steps, for each of the above mentioned datasets,
we first evenly split its total time span into a pre-fixed
number of time steps, and determine which time step each
temporal edge belongs to according to its original timestamp.
As shown in Table II, we generate 14 snapshots for Email,
Email-d, DBLP-4000 and DBLP-10000, and 20 snapshots
for School and College. Cora is a static attributed network
and we will detail how to generate its dynamic version for

1Available from: http://dblp.uni-trier.de/xml/.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. XX, MONTH 2022 10

TABLE II
STATISTICS OF DATASETS

Datasets #Nodes #Edges #time steps #Attributes

School 0,238 013,941 20 11
College 1,899 059,835 20 -
Email-D 0,319 061,046 14 -
Email 0,986 332,334 14 -
Cora 2,708 005,429 - 1,433
DBLP-4000 4,000 11,2452 14 2000
DBLP-10000 10,000 17,3124 14 5000

attribute inference/prediction tasks in Section VI-C. We use
the three real-world plain networks, i.e., Email [45], Email-
d [45], and College [46], as they have been widely used in
former works [45, 46]. We find that there are scarce publicly
available dynamic attributed networks upto now, and therefore
we construct two dynamic attributed networks in different
scales (called DBLP-4000 and DBLP-10000, respectively)
from DBLP. Moreover, we create a synthetic dynamic graph
based on a real-world static attributed network, Cora, which
has been used in previous work [15].

C. Baselines and Settings

We compare our DCTAN model with the following baseline
network embedding methods (both the static and dynamic
ones):
• DeepWalk [1]: This network embedding method samples

node sequences by random walks on network, and then
inputs these sequences as sentences to the Skip-gram
model to learn representations for nodes of network. We
set γ = 80 and w = 10.

• Node2vec [2]: The Node2vec model is extended from
DeepWalk by employing a better random walk method to
capture the neighbourhood information of nodes, which
can strike a balance between local and global properties
of a network with biased parameters p and q. In our
experiments, we set the hyper-parameters as γ = 80,
w = 10, p = 1 and q = 0.25.

• TNE [11]: TNE is a dynamic network embedding
method that learns embeddings for nodes in all the time
steps based on matrix factorization. We set the hyper-
parameters as λ = 0.01, ζ =

√
node num and δ =

2ζ
emb dim , where node num and emb dim denote the
number of nodes and the dimension of node embeddings,
respectively.

• CTDNE [12]: CTDNE is a continuous-time dynamic
network embedding method for learning latent graph rep-
resentations, which considers the temporal information of
network structure evolution. We set the hyper-parameters
as γ = 80, w = 10, p = 1 and q = 0.25.

• CAN [15]: CAN is a extended variational auto-encoder
model, which co-embeds the attributes and nodes for
static attributed networks.

• GraphSage [47]: It is a general inductive framework that
leverages node feature information (e.g., text attributes) to
efficiently generate node embeddings for previously un-
seen data. It learns a function that generates embeddings
by sampling and aggregating features from a node’s local

neighborhood. We set its parameters as K = 2, S1 = 25,
and S2 = 10 in our experiments.

• TADW [48]: This method incorporates text features of
vertices into network representation learning under the
framework of matrix factorization. We set the parameters
of this model as k = 80 and λ = 0.2.

In addition, we contrive the following variants of our model
DCTAN for ablation studies:
• DCTAN-N [16]: This model is a simplified version of

original DCTAN that learns latent state representations
for nodes only, which applies TD-VAE model [16] by
replacing a feasible decoder that could reconstruct node-
to-node links. In other words, this variant only preserves
the structural information.

• DCTAN-A [16]: This method is a simplified variant
of DCTAN by applying TD-VAE [16] to reconstruct
the node-to-attribute associations only but neglect the
structural information, i.e., the links among nodes.

• DCTAN-NTI. This variant removes the smoothing in-
ference networks and the state transition networks. Its
objective function is the first two terms of Equation. 17,
i.e., the reconstruction loss.

• DCTAN-NT. This variant removes the smoothing infer-
ence networks but retains the state transition networks.
Its objective function consists of the first two terms
of Equation. 17 and the last two terms of Equation. 16.

• DCTAN-NI. This variant removes the state transition net-
works but retains the smoothing inference networks. Its
objective loss contains the first two terms of Equation. 17
and the first two terms of Equation. 16.

For those static network embedding baselines (i.e. Deep-
Walk, Node2vec, GraphSage, and TADW) that cannot directly
embed temporal networks, we ignore the timestamps of tem-
poral edges to generate static networks, i.e., all the temporal
links are regarded as static links. To investigate the importance
of different components of our DCTAN, we conduct detailed
ablation studies, where five variants of DCTAN, i.e., DCTAN-
A,DCTAN-N, DCTAN-NTI, DCTAN-NI, and DCTAN-NT,
are built by removing some components of DCTAN as base-
lines for comparisons; see the above descriptions.

All the baselines are implemented by the codes published
by the authors, and the parameters in all these baselines are
tuned to be optimal for best performance. For our DCTAN,
we train it for 3000 iterations by Adam [49], with the learning
rate being set to 0.0005, which follows that in TD-VAE [16]
model. For our neural networks, we use 64-dimensional latent
variables in all the experiments. For fair comparisons, the
dimension of embedding for all methods is fixed to be 64. We
implement DCTAN 2, DCTAN-N, DCTAN-A, DCTAN-NTI,
DCTAN-NI, and DCTAN-NT by Pytorch [50].

VI. RESULTS AND ANALYSIS

In the following, we report and analyse our experimental
results, where we answer the research questions (RQ1-RQ5).

2The code of our DCTAN model is published at https://github.com/
tnnls2020/DCTAN

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. XX, MONTH 2022 11

TABLE III
RESULTS OF LINK RECONSTRUCTION. THE BEST PERFORMANCE OF EACH METRIC IS IN BOLD. WE USE ∗ TO DENOTE A SIGNIFICANT DIFFERENCE

BETWEEN OUR BEST MODEL AND THE BEST BASELINES, ACCORDING TO THE PAIRED T-TEST FOR p < 0.05.

Methods Email Email-D College School DBLP-4000 DBLP-10000

AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP

DeepWalk .887 .872 .935 .867 .820 .750 .915 .907 .905 .898 .901 .889
Node2Vec .904 .888 .967 .962 .900 .894 .922 .919 .913 .898 .915 .898
CAN N.A N.A N.A N.A N.A N.A .719 .725 .921 .922 .922 .924
TNE .911 .861 .849 .863 .813 .803 .639 .706 .925 .924 .925 .928
CTDNE .775 .774 .937 .891 .925 .873 .944 .900 .928 .929 .921 .924
GraphSage N.A N.A N.A N.A N.A N.A .921 .924 .911 .908 .909 .905
TADW N.A N.A N.A N.A N.A N.A .944 .949 .938 .944 .930 .937
DCTAN-N .955∗ .954∗ .986∗ .985∗ .944∗ .953∗ .955 .957 .946 .957 .945 .953
DCTAN N.A. N.A. N.A. N.A. N.A. N.A. .979∗ .985∗ .958∗ .969∗ .955∗ .965∗

TABLE IV
RESULTS OF LINK PREDICTION. THE BEST PERFORMANCE OF EACH METRIC IS IN BOLD. WE USE ∗ TO DENOTE A SIGNIFICANT DIFFERENCE BETWEEN

OUR BEST MODEL AND THE BEST BASELINES, ACCORDING TO THE PAIRED T-TEST FOR p < 0.05.

Methods Email Email-D College School DBLP-4000 DBLP-10000

AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP

DeepWalk .875 .849 .937 .898 .687 .707 .879 .838 .890 .884 .891 .879
Node2Vec .884 .851 .950 .918 .709 .718 .926 .903 .904 .886 .905 .888
CAN N.A N.A N.A N.A N.A N.A .689 .701 .915 .918 .921 .922
TNE .923 .899 .849 .884 .719 .738 .609 .695 .920 .913 .925 .928
CTDNE .732 .719 .951 .910 .816 .755 .923 .901 .923 .925 .917 .915
GraphSage N.A N.A N.A N.A N.A N.A .907 .905 .903 .900 .897 .896
TADW N.A N.A N.A N.A N.A N.A .937 .943 .934 .937 .927 .932
DCTAN-N .944∗ .945∗ .990∗ .989∗ .964∗ .958∗ .959 .951 .942 .951 .941 .951
DCTAN N.A. N.A. N.A. N.A. N.A. N.A. .970∗ .975∗ .952∗ .964∗ .943∗ .958∗

A. Link Reconstruction

We first answer research question RQ1 by evaluating our
DCTAN model on the link reconstruction task, which aims at
determining if there is an edge between two nodes at a given
time step t based on the learned embeddings of nodes at that
time step. Following the works in [15, 25], to evaluate the
performance of our DCTAN, for each snapshot, we randomly
divide all edges of the target temporal network into three sets,
i.e., the training set (85%), the validating set (5%) and the
testing set (10%). We also randomly sample an equal number
of non-existing links, which are referred to the negative
instances (two nodes that do not share a link). As shown
in Equation (33), our DCTAN model learns a loss function
reconstructing both the positive edges and negative edges at
each time step during training, and hence we directly use our
inner-product decoder network to predict the probability of
the existence of a link based on the learned embeddings of
nodes. For other baseline methods, we rank both positive and
negative links, according to the L2-norm/euclidean distance of
the learned embedding vectors between two nodes at the time
step of testing link, e.g., the euclidean distance between the
i-th node and the j-th node at time step t, i.e., (ZNt)i ·(ZNt)Tj .

Based on the result showing in Table III, we can obtain
the following observations: (1) In temporal plain networks
(i.e. the Email-D, Email and College networks), DCTAN-N
performs better than any of the static and dynamic baseline
methods. This result indicates that DCTAN-N can effectively
take advantage of the temporal information of network to
improve the quality of the learned representations. (2) Our

DCTAN performs the best in the temporal attributed network
School, DBLP-4000, and DBLP-10000, which demonstrates
that our DCTAN model is able to learn high-quality rep-
resentations of nodes by utilizing both the structure and
attribute information of non-plain networks in the dynamic
environment. DCTAN performs better than dynamic baselines,
e.g., DCTAN-N, TNE and CTDNE, because DCTAN further
incorporates the node attributes to improve the latent embed-
dings of nodes. Compared to the static co-embedding model
CAN, our DCTAN takes the evolution of temporal attributed
network (i.e., the change of links and node attributes) into
account by dynamically co-embedding nodes and attributes
for inferring better network representations in the dynamic
environment.

B. Link Prediction

We now turn to answer research question RQ2 by evaluating
our DCTAN model on link prediction task. This task is similar
to the link reconstruction task, with the only difference that
we aim to predict the existence of an edge at a given time
step t + 1 based on the embedding vectors of two nodes
at time step t. Like the link reconstruction task in Section
VI-A, we randomly divide the edges into three sets (the
testing set, the training set and the validating set) at each
time step and sample an equal number of non-existing links
as the negative instances, then we predict the probability of
the existence of the edges in testing set based on the learned
embeddings of them. Table IV reports the AUC and AP
scores for each method. As we can see, our DCTAN achieves

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. XX, MONTH 2022 12

node2

node1 attributes

node4

node3
node3

node3

node3node3

node4

node4

node4
node4

attributes attributes

attributes attributes

node2 node2

node2 node2

node1node1

node1 node1

A new link is created between

node3 and node 4

A new link is created between

Fig. 4. 2-dimensional visualization of Gaussian embeddings of nodes and attributes at 5 time steps for an example temporal attributed network, the structure
of which is shown in Figure 1. The red nodes are the attributes and the blue nodes represent the nodes in the toy network. The small rectangles around node
represent the attributes of node.

better performance than any of the static or dynamic baseline
models. This result demonstrates that the way of capturing
the temporal information of the target network used in our
our proposed DCTAN benefits the link prediction performance
and is better than other dynamic methods. Moreover, we find
that DCTAN achieves better performance than DCTAN-N on
temporal attributed network School, DBLP-4000, and DBLP-
10000. This is mainly because that DCTAN improves the
quality of the learned embeddings of nodes by utilizing not
only topological network structure but also the associated node
attribute in dynamic environment. It is found that DCTAN
outperforms the static co-embedding model CAN in the task of
link prediction, and this could be explained by that our model
dynamically learns the node representations via leveraging
the temporal information caused by the evolving of dynamic
attributed networks over time.

In addition, we notice that compared with the substantial
improvement of our model over the second-best baseline
DCTAN-N in terms of link reconstruction on other datasets,
the improvement on link prediction task on DBLP-10000
is relatively less conspicuous. We speculate that when per-
forming link prediction, the manually-operated node attributes
which are extracted from the keyterms of paper titles are not
informative enough to facilitate the inference of the future
links. Moreover, another possible reason is that the scales of
nodes and attributes of DBLP-10000 are both 2.5 times larger
than DBLP-4000, which makes precisely predicting the future
more challenging.

C. Attribute Inference

Subsequently, we answer research question RQ3 by
analysing the performance result of our model in the task
of attribute inference. The attribute inference task aims to
predict the probability of a node having an attribute at a given
time step T based on the learned embeddings of them at the
current time step T . As most of temporal network embedding
methods, e.g., TNE [5], CTDNE [12], DynamicTriad [6]
and HTNE [7], learn embeddings for nodes only, which

cannot obtain the affinities between nodes and attributes,
and existing traditional attribute inference algorithms, e.g.,
SAN [51], EdgeExp [52], and BLA [53] performs worse
than the static co-embedding model CAN (the experimental
results in work [15]), therefore we conduct experiments for
attribute inference task with only our DCTAN model and
CAN to verify if our model is able to capture the dynamic
affinities between nodes and attributes in the attribute-oriented
task by utilizing both structure and attribute information. For
evaluation purpose, we employ the AUC and AP metrics to
measure the performance of DCTAN. Table V reports the ex-
perimental results on the School network, a synthetic network
from the static network Cora, where we randomly reduce
10% node-attribute associations and edges for 9 times to
generate the dynamic data for 10 time steps, and two dynamic
academic networks DBLP-4000 and DBLP-10000. From the
performance results, We could find that our DCTAN is able to
achieve better performance on Cora, School, DBLP-4000, and
DBLP-10000 datasets in terms of evaluation metrics AUC and
AP. This result can be explained by the reason that our DCTAN
optimizes a loss function consisting of the reconstruction error
of all the node-attribute associations at different time steps, and
our model utilizes temporal information of attribute change
and dynamic link by building the belief states for all attributes
and nodes at each time step.

In our experiment, we validate the fact that attribute infer-
ence can help to improve link prediction; that is, link predic-
tion accuracy is further improved by first inferring missing
attributes [15, 51] even in dynamic environment. Moreover,
our model could trade the weights between node-to-node links
and node-to-attribute associations without any free parameters
such that our model can lead to notable improvement of the
performance in both node-oriented network problems (e.g.,
link reconstruction) and attribute inference problem (e.g.,
predicting the attributes of nodes).

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. XX, MONTH 2022 13

TABLE V
RESULTS OF ATTRIBUTE INFERENCE. THE BEST PERFORMANCE OF EACH

METRIC IS IN BOLD.

Methods Cora School DBLP-4000 DBLP-10000

AUC AP AUC AP AUC AP AUC AP

CAN .932 .916 .976 .968 .952 .946 .958 .954
DCTAN .942 .933 .986 .986 .976 .968 .982 .975

TABLE VI
RESULTS OF ATTRIBUTE PREDICTION. THE BEST PERFORMANCE OF EACH

METRIC IS IN BOLD.

Methods Cora School DBLP-4000 DBLP-10000

AUC AP AUC AP AUC AP AUC AP

CAN .927 .911 .963 .959 .929 .927 .923 .912
DCTAN .943 .938 .975 .967 .962 .960 .957 .953

D. Attribute Prediction

Next, we turn to research question RQ4 by performing
the task of attribute prediction, which is similar to attribute
inference but aims at predicting the attributes for nodes at
time step T + 1 based on the learned latent embeddings of
nodes and attributes at the previous time step T . Following
the attributed inference task, the node-attribute associations
are divided into the training set (85%), the testing set (10%)
and the validating set (5%), and the equal number of negative
associations are sampled randomly. The performance results
of attribute prediction are presented in Table VI. This result
indicates that our DCTAN performs the best compared to other
baseline methods, which demonstrate that our model could
dynamically co-embed the nodes and attributes in the same
semantic space, where their affinities are preserved. As we can
see in Table V and Table VI, the most of baseline methods
perform worse in attribute prediction than in attribute inference
due to the evolution of attributed network.

E. Dynamic Network Visualization

Here, we turn to answer research question RQ5 by embed-
ding a toy temporal attributed network (shown in Figure 1)
with 34 nodes and 4 attributes for 5 time steps and visualizing
the dynamic changes of the learned latent embeddings over
time. To simulate the evolving of real-word network, we
randomly add links and attributes to the toy network for
each time steps. To intuitively evaluate the result embeddings
of our DCTAN by network visualization, we first obtain 2-
dimensional Gaussian embeddings for nodes and attributes of
the toy network. Then, we plot the means of the resulting
representations into a 2-dimensional latent space. Figure 4
presents the visualization result of DCTAN. From the vi-
sualization results, we have the following observations and
conclusions:
(1) From Figure 4, we can find that all the representations of

nodes and attributes are highly close to each other and
their positions and the distances between each other on
the 2-dimensional plane change over time. This indicates
that our model is able to embed them in the same se-
mantic space, and the learned embedding by our DCTAN
can effectively capture the dynamic changes of nodes and
attributes in a dynamic environment.

(2) As shown in Figure 4, the result embeddings change
over time as the attributes of nodes change. To better
understand this, we take two nodes (i.e. Node1 and
Node2 in Figure 4) from the toy network as an example
and analysis the dynamic change of their embeddings.
As seen in Figure 4, the positions of the two nodes’
representations on the 2-dimensional plane at time steps

TABLE VII
ABLATION STUDY OF LINK RECONSTRUCT. THE BEST PERFORMANCE OF

EACH METRIC IS IN BOLD.

Methods DBLP-4000 DBLP-10000

AUC AP AUC AP

DCTAN-N .946 .957 .945 .953
DCTAN-NTI .931 .953 .922 .930
DCTAN-NT .934 .955 .924 .934
DCTAN-NI .930 .952 .921 .933
DCTAN .958 .969 .955 .965

TABLE VIII
ABLATION STUDY ON LINK PREDICTION. THE BEST PERFORMANCE OF

EACH METRIC IS IN BOLD.

Methods DBLP-4000 DBLP-10000

AUC AP AUC AP

DCTAN-N .942 .946 .958 .954
DCTAN-NTI .924 .942 .910 .928
DCTAN-NT .923 .942 .913 .929
DCTAN-NI .909 .932 .902 .921
DCTAN .952 .964 .943 .958

4, 5 are closer than those at time steps 1, 2, 3. This is
due to the fact that the attributes of Node1 and Node2
change over time. More precisely, at time step 4, Node2
has an attribute which also belongs to Node1, resulting
in the more similarities between them. This observation
indicates that our DCTAN can learn the dynamic latent
representations reflecting the attribute change over time
for temporal attributed network.

(3) To show the embedding changes caused by the network
structure evolves, we take Node3 and Node4 as another
example for analysing the dynamic change of the learned
embeddings over time. As shown in Figure 4, a new
link is created between Node3 and Node4 at time step
4, resulting in that the two nodes become much closer
to each other compared with them in time step 3. This
can be explained by the reason that such link change in
dynamic network enhances the correlation between two
nodes. Moreover, the neighbourhood change of node also
influences its latent vector representation. For example,
at time step 5, we add a new neighbour node to Node4,
which is not adjacent to Node3, resulting in the positions
of Node3 and Node4 on the 2-dimensional plane becom-
ing farther. This observation demonstrates that DCTAN
is able to effectively capture the temporal information of
structure change of network in dynamic environment.

F. Ablation Studies

To answer research question RQ6, we conduct ablation
studies on the real-world attributed networks, DBLP-4000 and
DBLP-10000, with the variants of our original model DCTAN,

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. XX, MONTH 2022 14

TABLE IX
ABLATION STUDY ON ATTRIBUTE INFERENCE. THE BEST PERFORMANCE

OF EACH METRIC IS IN BOLD.

Methods DBLP-4000 DBLP-10000

AUC AP AUC AP

DCTAN-A .952 .946 .958 .954
DCTAN-NTI .962 .964 .965 .966
DCTAN-NT .968 .963 .962 .960
DCTAN-NI .966 .961 .967 .969
DCTAN .976 .968 .982 .975

TABLE X
ABLATION STUDY ON ATTRIBUTE PREDICTION. THE BEST PERFORMANCE

OF EACH METRIC IS IN BOLD.

Tasks DBLP-4000 DBLP-10000

AUC AP AUC AP

DCTAN-A .951 .947 .945 .942
DCTAN-NTI .954 .951 .945 .943
DCTAN-NT .952 .950 .948 .945
DCTAN-NI .949 .943 .944 .946
DCTAN .962 .960 .957 .953

i.e., DCTAN-N, DCTAN-A, DCTAN-NTI, DCTAN-NT, and
DCTAN-NI, for the tasks of link reconstruction/prediction and
attribute inference/prediction. According to the performance
results reported in Tables VII to X, we have the following find-
ings: (1) For all the tasks, the original model DCTAN always
outperforms all its variants DCTAN-A, DCTAN-N, DCTAN-
NTI, DCTAN-NT, and DCTAN-NI, where some components
are removed, e.g., smoothing inference networks. This demon-
strates that each component of our proposed DCTAN model
is necessary for effectively learning higher-quality representa-
tions to attain performance improvement on the down-stream
graph analysis tasks. (2) It is notable that DCTAN-NTI,
removed all the variational components, achieves comparative
performance results, compared with the variants, in one of
which the state transition network is removed and another
the inference network is smoothed, i.e., DCTAN-NT and
DCTAN-NI, respectively. This proves that the two variational
components should be integrated collaboratively to infer better
latent representations for nodes and attributes. (3) Our original
model DCTAN, which tries to preserve both structure and
attribute information, surpasses its variants DCTAN-N that
only considers the topological structure and DCTAN-A that
merely considers the node attributes on corresponding tasks.
This demonstrates the effectiveness of jointly learning the
embeddings of two different categories of entities (i.e., nodes
and attributes) at the same time, and such strategy is also
utilized in previous work [10, 15].

VII. CONCLUSION
In this paper, we propose a dynamic co-embedding model

(called DCTAN) for temporal attributed network, which learns
latent low-dimensional embeddings of both attributes and
nodes while the temporal information of network can be
captured. In order to learn high-quality representations and
track the latent state transition tendency, our proposed model
optimizes an evidence lower bound on the log-likelihood of the
dynamic network sequence observation by five well-designed
neural networks, i.e. belief state network, belief inference net-
work, state transition network, smoothing inference network

and decoder network. Our DCTAN goes beyond temporally
inferring embeddings for temporal networks, as it may provide
valuable insight and inspiration on how to extend VAE archi-
tecture to dynamically learn representations for other types of
temporal data. Experimental results show that our proposed
model can effectively track the latent state transition tendency
for temporal network over time and outperforms both the static
and dynamic network embedding baselines in both the static
and dynamic graph mining tasks, such as link reconstruction,
link prediction, attributed inference and attribute prediction.
Moreover, the visualization of an toy example of temporal
attributed network demonstrates that our DCTAN is able to
learn dynamic latent representations at different time steps for
the target network which reflects the change of structure and
attribute over time in a dynamic environment.

As to future work, we intend to extend the proposed model
to inductively cope with out-of-sample nodes and attributes
which are unseen in the previous sequential networks, and en-
hance the predictive power to handle more intricate scenarios.

REFERENCES

[1] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of
social representations,” in SIGKDD. ACM, 2014, pp. 701–710.

[2] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in SIGKDD. ACM, 2016, pp. 855–864.

[3] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-
scale information network embedding,” in WWW. International World
Wide Web Conferences Steering Committee, 2015, pp. 1067–1077.

[4] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” ICLR, 2016.

[5] L. Zhu, D. Guo, J. Yin, G. Ver Steeg, and A. Galstyan, “Scalable
temporal latent space inference for link prediction in dynamic social
networks,” TKDE, vol. 28, no. 10, pp. 2765–2777, 2016.

[6] L. Zhou, Y. Yang, X. Ren, F. Wu, and Y. Zhuang, “Dynamic network
embedding by modeling triadic closure process,” in Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[7] Y. Zuo, G. Liu, H. Lin, J. Guo, X. Hu, and J. Wu, “Embedding temporal
network via neighborhood formation,” in SIGKDD. ACM, 2018, pp.
2857–2866.

[8] J. Li, K. Cheng, L. Wu, and H. Liu, “Streaming link prediction on
dynamic attributed networks,” in WSDM. ACM, 2018, pp. 369–377.

[9] X. Wang, P. Cui, J. Wang, J. Pei, W. Zhu, and S. Yang, “Community
preserving network embedding,” in AAAI, 2017.

[10] S. Liang, X. Zhang, Z. Ren, and E. Kanoulas, “Dynamic embeddings
for user profiling in twitter,” in SIGKDD. ACM, 2018, pp. 1764–1773.

[11] L. Zhu, D. Guo, J. Yin, G. Ver Steeg, and A. Galstyan, “Scalable
temporal latent space inference for link prediction in dynamic social
networks,” TKDE, vol. 28, no. 10, pp. 2765–2777, 2016.

[12] G. H. Nguyen, J. B. Lee, R. A. Rossi, N. K. Ahmed, E. Koh, and
S. Kim, “Continuous-time dynamic network embeddings,” in WWW.
International World Wide Web Conferences Steering Committee, 2018,
pp. 969–976.

[13] J. Li, H. Dani, X. Hu, J. Tang, Y. Chang, and H. Liu, “Attributed network
embedding for learning in a dynamic environment,” in CIKM. ACM,
2017, pp. 387–396.

[14] P. Sarkar, D. Chakrabarti, and M. I. Jordan, “Nonparametric link
prediction in dynamic networks,” in ICML, 2012, pp. 1897–1904.

[15] Z. Meng, S. Liang, H. Bao, and X. Zhang, “Co-embedding attributed
networks,” in Proceedings of the Twelfth ACM International Conference
on Web Search and Data Mining. ACM, 2019, pp. 393–401.

[16] K. Gregor and F. Besse, “Temporal difference variational auto-encoder,”
ICLR, 2019.

[17] G. Chen, J. Fang, Z. Meng, Q. Zhang, and S. Liang, “Multi-relational
graph representation learning with bayesian gaussian process network,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36,
no. 5, 2022, pp. 5530–5538.

[18] J. Fang, Q. Zhang, Z. Meng, and S. Liang, “Structure-aware random
fourier kernel for graphs,” Advances in Neural Information Processing
Systems, vol. 34, pp. 17 681–17 694, 2021.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. XX, MONTH 2022 15

[19] S. Liang, Y. Luo, and Z. Meng, “Profiling users for question answering
communities via flow-based constrained co-embedding model,” ACM
Transactions on Information Systems (TOIS), vol. 40, no. 2, pp. 1–38,
2021.

[20] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in NIPS, 2013, pp. 3111–3119.

[21] D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,” in
WSDM. ACM, 2016, pp. 1225–1234.

[22] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Chang, “Network represen-
tation learning with rich text information,” in IJCAI, 2015.

[23] X. Huang, J. Li, and X. Hu, “Accelerated attributed network embedding,”
in Proceedings of the 2017 SIAM international conference on data
mining. SIAM, 2017, pp. 633–641.

[24] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in NIPS, 2017, pp. 1024–1034.

[25] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” NIPS
Workshop on Bayesian Deep Learning, 2016.

[26] R. Zhang, Y. Zou, and J. Ma, “Hyper-sagnn: a self-attention based graph
neural network for hypergraphs,” ICLR, 2020.

[27] Z. Zhang, H. Yang, J. Bu, S. Zhou, P. Yu, J. Zhang, M. Ester,
and C. Wang, “Anrl: Attributed network representation learning via
deep neural networks.” in International Joint Conference on Artificial
Intelligence, 2018, pp. 3155–3161.

[28] Z. Meng, S. Liang, J. Fang, and T. Xiao, “Semi-supervisedly co-
embedding attributed networks,” Advances in neural information pro-
cessing systems, vol. 32, 2019.

[29] J. Fang, S. Liang, Z. Meng, and M. De Rijke, “Hyperspherical vari-
ational co-embedding for attributed networks,” ACM Transactions on
Information Systems (TOIS), vol. 40, no. 3, pp. 1–36, 2021.

[30] M. Rudolph and D. Blei, “Dynamic embeddings for language evolution,”
in WWW, 2018, pp. 1003–1011.

[31] R. Bamler and S. Mandt, “Dynamic word embeddings,” in ICML.
JMLR. org, 2017, pp. 380–389.

[32] Z. Yao, Y. Sun, W. Ding, N. Rao, and H. Xiong, “Dynamic word
embeddings for evolving semantic discovery,” in WSDM. ACM, 2018,
pp. 673–681.

[33] W. L. Hamilton, J. Leskovec, and D. Jurafsky, “Diachronic word
embeddings reveal statistical laws of semantic change,” in ACL, vol. 1,
2016, pp. 1489–1501.

[34] Y. Kim, Y.-I. Chiu, K. Hanaki, D. Hegde, and S. Petrov, “Temporal anal-
ysis of language through neural language models,” in Annual Meeting
of the Association for Computational Linguistics, 2014, p. 61.

[35] R. Trivedi, H. Dai, Y. Wang, and L. Song, “Know-evolve: Deep temporal
reasoning for dynamic knowledge graphs,” in ICML, 2017.

[36] W. Jin, H. Jiang, C. Zhang, P. Szekely, and X. Ren, “Recurrent event
network: Global structure inference over temporal knowledge graph,”
ICLR-RLGM, 2019.

[37] A. Pareja, G. Domeniconi, J. Chen, T. Ma, T. Suzumura, H. Kanezashi,
T. Kaler, and C. E. Leisersen, “Evolvegcn: Evolving graph convolutional
networks for dynamic graphs,” ICLR, 2019.

[38] D. Xu, C. Ruan, E. Korpeoglu, S. Kumar, and K. Achan, “Inductive
representation learning on temporal graphs,” ICLR, 2020.

[39] R. Trivedi, M. Farajtabar, P. Biswal, and H. Zha, “Dyrep: Learning
representations over dynamic graphs,” ICLR, 2019.

[40] A. Venkatraman, N. Rhinehart, W. Sun, L. Pinto, M. Hebert, B. Boots,
K. Kitani, and J. Bagnell, “Predictive-state decoders: Encoding the future
into recurrent networks,” in NIPS, 2017, pp. 1172–1183.

[41] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” ICLR,
2013.

[42] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” Jun. 2014.

[43] R. A. Rossi and N. K. Ahmed, “The network data repository with
interactive graph analytics and visualization,” in AAAI, 2015. [Online].
Available: http://networkrepository.com

[44] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-
Rad, “Collective classification in network data,” AI magazine, vol. 29,
no. 3, pp. 93–93, 2008.

[45] H. Yin, A. R. Benson, J. Leskovec, and D. F. Gleich, “Local higher-
order graph clustering,” in Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
2017, pp. 555–564.

[46] P. Panzarasa, T. Opsahl, and K. M. Carley, “Patterns and dynamics
of users’ behavior and interaction: Network analysis of an online
community,” Journal of the American Society for Information Science
and Technology, vol. 60, no. 5, pp. 911–932, 2009.

[47] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation

learning on large graphs,” in Advances in neural information processing
systems, 2017, pp. 1024–1034.

[48] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Y. Chang, “Network
representation learning with rich text information,” in IJCAI, vol. 2015,
2015, pp. 2111–2117.

[49] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
ICLR, 2014.

[50] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” in NIPS, 2017.

[51] N. Z. Gong, A. Talwalkar, L. Mackey, L. Huang, E. C. R. Shin,
E. Stefanov, E. R. Shi, and D. Song, “Joint link prediction and attribute
inference using a social-attribute network,” TIST, vol. 5, no. 2, p. 27,
2014.

[52] D. Chakrabarti, S. Funiak, J. Chang, and S. Macskassy, “Joint inference
of multiple label types in large networks,” in ICML, 2014, pp. 874–882.

[53] C. Yang, L. Zhong, L.-J. Li, and L. Jie, “Bi-directional joint inference for
user links and attributes on large social graphs,” in WWW. International
World Wide Web Conferences Steering Committee, 2017, pp. 564–573.

Shaowei Tang is currently a postgraduate student
at the School of Data and Computer Science, Sun
Yat-sen University. His research interests include
knowledge graph and graph mining.

Zaiqiao Meng received his Ph.D. degree from the
Sun Yat-sen University in 2018. He is currently a
lecturer at the University of Glasgow. His research
interests lie mainly in the areas of information re-
trieval, recommender systems, machine learning and
graph mining.

Shangsong Liang is with the Sun Yat-sen University
and the Mohamed bin Zayed University of Artificial
Intelligence. He received a Ph.D. degree from the
University of Amsterdam in 2014. His expertise lies
in the fields of information retrieval and text mining.
He worked as a (visiting) postdoctoral research
scientist at the University of Massachusetts Amherst
and the University College London, and has exten-
sively published his work in top-tier conferences and
journals, including SIGIR, KDD, WWW, CIKM,
AAAI, WSDM, NeurIPS, TKDE and TOIS. He is

the recipient of an Outstanding Reviewer Award in SIGIR 2017 and is serving
as an editor for Information Processing and Management.

	Enlighten Accepted coversheet
	274878

