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The information content of CDS implied volatility and
associated trading strategies

Abstract

Using the theoretical link between put options and credit default swaps (CDS)

in a very general setting, we develop a robust measure of CDS implied volatil-

ity (CIV) that captures the information content of CDS markets. Specifically,

we use the unit recovery claim to bridge CDS and deep out-of-the-money put

options of the same firm and then back out CIV via the binomial tree. Our

CIV measure strongly co-moves with the option implied volatility (OIV), with

a correlation coefficient of 0.8. Based on the standardized difference between

CIV and OIV, we construct CDS and option trading strategies. Without taking

transaction costs into account, the long-short CDS trading strategy achieves

an annualized return of 58.29% and a Sharpe ratio of 2.97, which can not be

explained by non-parametric skewness and volatility risk.

Keywords: CDS, Implied volatility, Default probability, Unit recovery claim,

Trading strategies
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1. Introduction

Credit default swaps (CDS hereafter) contain important information about their

referencing entities. Studies of the information content of CDS have directly

focus on CDS spreads (Lee et al., 2018). However, theories explaining the

links between CDS spreads and other marketable instruments suggest that these

relationships are mostly nonlinear (Friewald et al., 2014). It is, therefore, useful

to present the information content of CDS spreads in a information measure that

is compatible with other information-rich instruments, preferably dimensionless

information. An ideal candidate for such a measure is implied volatility.

Despite its obvious importance, the fast-growing CDS market has not spurred

the development of a widely accepted measure of CDS implied volatility (CIV).

To fill this gap, we use the unit recovery claim (URC) proposed by Carr & Wu

(2011) to bridge CDS and deep out-of-the-money (OTM) put options of the

same company and then back out CIV via the binomial tree. The URC refers

to a fundamental claim that has a fixed expiration date and pays 1 dollar when

a default event occurs before its maturity, and 0 otherwise. Carr & Wu (2011)

show that American put option prices, especially deep OTM puts, are highly

correlated with CDS spreads due to the URC embedded in these instruments.

We argue that our measure of CIV is better than the existing measures,

not only because we use the American type of options instead of the European

ones, but also due to the fewer assumptions that we make. i) To the best of

our knowledge, the first attempt to construct a CIV measure is Guo (2016),

who equates the conditional default probability in CDS valuation with the 5-

year default probability within the framework of Merton’s structural distance

to default (DD) model (Merton, 1974). ii) The other related work is Kelly et al.

(2019), which also relies on the structural DD model, but makes an alternative

approximation that “equates the value of the put option implicit in firms’ debt

to the capitalized value of future CDS spread payment.”

Despite its popularity, it is well-known that Merton’s structural DD model

produces an insufficient statistic for the default probability, which is only weakly
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correlated with the CDS default probability after conditioning on other variables

(Bharath & Shumway, 2008; Campbell et al., 2008). Following this strand of

literature, we build our measure of CIV via the reduced-form model of Carr &

Wu (2011) rather than the structural DD model of Merton (1974).

We evaluate our measure of CIV against the measures in Guo (2016) and

Kelly et al. (2019) in several ways. First, we check the correlation coefficient

between each CIV measure and the CDS spread of the same company. When

the default risk increases for a firm, widening its credit spread, a good measure

of CIV should be capable of capturing this and thus be strongly correlated with

the CDS spread.

Second, we check the co-movements between the CIV measures and option

implied volatility (OIV hereafter). The price of deep out-of-the-money (OTM

hereafter) put options are mainly driven by the default probability of the com-

pany, similar to credit insurance contracts. The URC of a company can be

constructed using either the American put options underlying its equity or the

CDS spreads referencing its debt. Other things being equal, we conjecture that

a good measure of CIV should be strongly correlated with OIV, and that this

correction will decrease with the maturity difference between the options and

CDS of the same company.

Third, we implement time-series regressions of OIV on each CIV measure

for each company, and of each CIV measure on OIV, controlling for the most

relevant variables such as option delta, open interest, and maturity. We do this

not only for the full sample, but also for subsamples, especially for subsamples

of companies with investment-grade ratings (BBB and above credit rating), and

junk-grade ratings (BB and below credit rating), as they are the most likely to

default.

Fourth, as Carr & Wu (2011) argue that the estimated URC from CDS and

American puts co-mmove and tend to converge later, we examine whether there

exists a co-integration relationship between CIV and OIV, and then build a

zero-cost long-short trading strategy by sorting CDS on the CIV-OIV spread

Z-score, following Balvers et al. (2000). Specifically, we sort the CDS into five
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quintiles based on the CIV-OIV spread Z-score, and long the quintile of CDS

that have the smallest Z-scores and short the quintile of CDS that have the

largest Z-scores (and rebalance whenever necessary). We test the portfolio trad-

ing performance (e.g., profitability) under this specification with three measures

of CIV. Other things being equal, we speculate that a better measure of CIV

should be associated with a better-performing trading strategy.

Two interesting findings emerge when we apply our measure to a sample of

weekly U.S. corporate CDS and OTM put options from our 2002-2014 sample

period.

On the one hand, we demonstrate that our CIV measure is more correlated

with the CDS spread than either of the CIV measures from Guo (2016) or Kelly

et al. (2019). Specifically, our CIV measure is much more strongly correlated

(with a correlation coefficient of 0.8) with the OIV than either of the CIV mea-

sures from Guo (2016) or Kelly et al. (2019), and this correction decreases with

the maturity difference between options and CDS of the same company. The

value of our CIV measure decreases with the moneyness of tradable put options,

whereas the counterparts from Guo (2016) and Kelly et al. (2019) depend on

the moneyness (leverage) of options. Compared to the CIV measures from Guo

(2016) and Kelly et al. (2019), our CIV measure has a larger explanatory power

for OIV, and can be better explained by OIV in both the full sample and sub-

samples. According to a simple univariate regression of OIV on CIV with an

intercept, our CIV measure significantly explains 66.38% (adjusted R2) of the

variation of OIV in the full sample, whereas the CIV measures from Guo (2016)

and Kelly et al. (2019) can only explain 14.46% and 24.10%, respectively. The

estimated coefficient of our CIV measure is 1.0362 for the full sample, whereas

its counterparts in Guo (2016) and Kelly et al. (2019) are 0.8492 and 0.7729,

respectively. We obtain similar values when we use OIV to explain the three

measures of CIV. Those findings are robust to controlling for other option char-

acteristics such as delta, open interest (OI), and maturity.

On the other hand, we identify a co-integration relationship between our CIV

measure and OIV in 85% of the cases in our sample. Based on the standardized
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difference between CIV and OIV, we construct CDS and option trading strate-

gies. Without taking transaction costs into account, the long-short CDS trading

strategy achieves an annualized return of 58.29% and a Sharpe ratio of 2.97 for

our 5-year CIV measure, which can not be explained by non-parametric skew-

ness and volatility risk. The profitability of this trading strategy is higher if we

use our 1-year CIV measure, and to a lesser extent holds for our CIV measure

at other maturities. The profitability of this trading strategy decreases when

we replace our CIV measure with the one either from Guo (2016) or from Kelly

et al. (2019). Hence, we construct a similar option trading strategy. We identify

profitability for the deep OTM puts and deep OTM delta-hedging, but not for

the at-the-money (ATM hereafter) straddle and ATM call delta-hedging, which

suggests that CIV has a strong cointegration relationship with the OTM-OIV

but not with the ATM-OIV, and provides additional support for Carr & Wu

(2011) who emphasize the link between CDS and deep OTM American puts

only. For our CIV measure at all maturity lengthens, we identify a smirk curve

when we plot CIV against the moneyness of tradable options.

This paper makes at least four contributions. First, we are the first to use

the URC proposed by Carr & Wu (2011) to bridge CDS and deep OTM put

options of the same company, and then back out CIV via the binomial tree.

The practical application of URC is limited, and our CIV measure reveals the

uncovered side of URC.

Second, we extend Carr & Wu (2011) and derive the theoretical relationship

between CDS and American put options in a very general setting, decomposing

American options into a down-and-out barrier option, a URC, and an early

exercise premium. This decomposition is not only useful in guiding our empirical

approach, but it also brings insights into the differences in the information

content of CDS and American put options.

Third, we compare our CIV measure with the two existing CIV measures.

We demonstrate that our measure outperforms the existing measures in almost

every aspect of the above and hence provides a useful tool for future researchers

in this area.
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Finally, based on our 5-year CIV measure, we propose a zero-cost long-short

CDS trading strategy that achieves a gross annualized return of 58.29% and a

Sharpe ratio of 2.97, which can not be explained by non-parametric skewness

and volatility risk. The profitability of this strategy underscores its importance,

especially for practitioners.

Our study differs from most studies of the CDS and options markets in at

least two ways. On the one hand, we focus on deep OTM put options, while

most studies focus on the ATM options (Goyal & Saretto, 2009; Yan, 2011;

Cremers et al., 2015). On the other hand, most studies price the derivatives

based on their underlying assets, whereas this paper follows a few very recent

papers and presents a joint framework for derivatives only (Cao et al., 2010;

Carr & Wu, 2011).

The remainder of this paper is organized as follows. Section 2 provides a

brief review of the methodology. Section 3 describes the data and screening

criteria. Based on the results of the regressions and option portfolio strategies,

Section 4 presents the results, robustness checks, and the potential reasons for

the excess return associated with our trading strategy. Section 5 concludes.

2. Estimating CDS implied equity volatility

Carr & Wu (2011) identify a robust link between CDS and American put

options through URC. The URC is an Arrow & Debreu (1954) security with a

fixed maturity T. It will pay one dollar at the default time τ when τ ≤ T , and

zero otherwise.

Denote URC(t, T ) as the value of the URC at time t, the interest rate as r,

and the default arrival rate as λ. The value of URC at time t is

URC(t, T ) = EQ
t

[
e−rτ1(τ < T )

]
=

∫ T

t

λe−(r+λ)sds = λ
1− e−(r+λ)(T−t)

r + λ
(1)
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The risk-neutral default probability1 over the same period can be shown as

D(t, T ) = EQ
t [1(τ < T )] = 1− e−λ(T−t) (2)

Comparing Equations (1) and (2), we find that the present value of the URC

is lower than the risk-neutral probability, and that the forward price of the URC

is higher than the risk-neutral probability, due to different payment times:

URC(t, T ) ≤ D(t, T ) ≤ er(T−t)URC(t, T ), r ≥ 0 (3)

Carr & Wu (2011) show the existence of a default corridor [A, B] that a

stock price may never enter. If there is no default, the stock price will always

be above B, whereas after default the upper bound of the stock price is A. If

the strike price K of an American put option falls into the default corridor, the

put option will be out of money and will never be exercised if there is no default

and in the money if a default happens. Carr & Wu (2011) further prove that

if a default happens, the optimal behavior of the option holder is to exercise it

immediately at the default time τ . We then can construct a portfolio with two

American put options where their strike prices K1 and K2(K1 < K2) both fall

into the default corridor. We long 1/(K2 − K1) of a unit of the K2 put and

short the same amount of the K1 put. If there is no default before expiration,

the payoff of the portfolio is zero. If the firm defaults before or at the expiration

date, the option holder will exercise the option immediately, and the payoff is

(K2 −K1)/(K2 −K1), which is one dollar. The option portfolio will have the

same payoff as a URC contract of the same company with the same maturity T.

Assuming that there are no risk-free arbitrage opportunities, the URC and the

American put options should have the same price. Therefore, the URC can be

constructed using the deep OTM American put options. Therefore, the value

1This risk-neutral probability is the forward price of another Arrow & Debreu (1954)
security paying off one dollar at maturity T if. τ ≤ T , and zero otherwise.

7



of URC American-put is given by

URC American-put =
P1 − P2

K1 −K2
(4)

where [A ≤ K2,K1 ≤ B] are set as the default corridor so that before the default

occurs, the stock price randomly walks above the corridor. However, the price

corridor is totally inaccessible prior to the default. Following Carr & Wu (2011),

we, therefore, make a simple assumption that K2 equals to 0 upon default; then

the URC can be simplified as

URC American-put =
P1

K1
(5)

The most actively traded credit contracts are CDS that references corporate

bonds. A CDS contract helps trading parties to carry out risk conversions on a

designated credit event within a certain period. The buyer of the CDS contract

pays a fixed premium to the seller before the occurrence of the credit event.

Once the prespecified credit event occurs, the CDS contract protects the buyer

against paying a premium, and the seller pays the par value in return for the

corporate bond. Denoting S as the T -year CDS spread and R as a known

recovery rate, the URC can be constructed using the CDS spread as

URCCDS =
S

1−R
1− e−(r+ S

1−R )T

r + S
1−R

(6)

We assume that URCCDS = URC American-put to invert the American put

option price to obtain CDS-inferred implied volatility (σCIV ) by applying the

binomial tree pricing method with 200 steps.

P ∗1 = K1URC
CDS = P (St,K1, T, r, σCIV ) (7)

where P ∗1 denotes the American put option constructed using the CDS spread

with a strike price K1, P is the observed equity American put option with the

same strike price K1, and σCIV is the corresponding implied volatility. We use
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r to denote the risk-free rate related to a deterministic function of time.

Equation (7) relies crucially on two assumptions. First, the interest rate and

the default arrival rate are assumed to be constant across time, and therefore,

the term structure of the CDS spread is flat. We, therefore, infer the price of

the URC across all of the maturities, using the CDS spread of any maturity.

Second, there exists a default corridor [A,B] that the stock price can never enter.

Third, the strike price of the put option K1 is assumed to fall within the default

corridor, more specifically, K1 < B; together with the second assumption, this

means the price of a put option with strike K1 can be expressed as the product

of the URC and the strike price. The first two assumptions are reasonably

supported by empirical evidence and unlikely to cause any issue in our empirical

work. The third assumption, however, is more problematic and warrants further

discussion.

For a small firm with unstable cash reserves and capital structure, one may

safely assume that there exists a deep OTM put option with a strike price that

falls below the upper bound of the default barrier. The same argument does

not apply to a more established firm with no foreseeable credit-related issues;

the lowest strike price on its put option chain may be well above a hypothetical

default corridor. Ex-post analysis of all of the default cases between 2000 and

2017 also shows that firms that defaulted on their debt obligation often had

OTM put strike prices above the actual jump to default prices one year prior

to the default event. In Appendix A, we derive a theoretical link between the

CDS and OTM put outside of the default corridor.

3. Data and descriptive statistics

We analyze the company-level data in a sample of USD-denominated CDS for

every Wednesday from January 1, 2002, to December 31, 2014. The CDS data

are provided by the Markit database. To obtain reliable and less mismatched

data for data calibration, we apply two screening criteria. First, the corporate

CDS should contain at least 1 year of trading data, which means at least 52
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weeks of observations. Second, the CDS must have a modified restructuring

clause, with an unchanged recovery rate, resulting in a smaller pricing error.

The risk-free rates are the constant maturity rates of 1-, 3-, 5-, 7-, 10-year

Treasury bonds which are extracted from the Federal Reserve Board. The equity

options data are obtained from the Option Metrics via Wharton Research Data

Services (WRDS). The way for connecting American put options and CDS are

as follows. (1) bid quotes of options must be greater than 0. (2) the time to

maturity is more than 360 days to minimize maturity mismatch. (3) the delta

of the corporate options must be greater than -0.15. (4) finally, the options

with the highest daily OI are selected. If there are more than two options after

applying the above criteria, we use the American put with the delta closest to

0. Our filtering criteria for equity, CDS, and options are consistent with Carr

& Wu (2011).

Our final sample is made up of 120,588 pairs of CIV and OIV. We further

remove any observations with extreme equity or debt values (bottom and top

1%), and the final sample covers 335 firms across 666 weeks. The descriptive

statistics of the key variables for 5-year CDS are shown in Table 1. On average,

each firm has 360 weeks of CIV and OIV pairs, and the observations range from

52 to 666 weeks. The maturity of put options spans 360 to 969 days with an

average of 546 days, indicating that most of the options have a maturity of be-

tween 1 and 2 years. The mean value of OIV is higher than the one of CIV for

about 8.5% of the pairs with similar standard deviations. The average correla-

tion between CIV and OIV is very high (79.98%), and the correlation between

CDS spreads (s) and CIV is 77.87% on average. The standard deviations of the

correlations are lower than 20%. The high and stable correlation between CIV

and OIV indicates that they may be complementary.

[Insert Table 1 about here]

Carr & Wu (2011) suggest that the link between CDS and American puts would

be stronger for deep OTM options. Therefore, we examine how option money-

ness and CDS maturity affect CDS and OIV in Table 1, Panel B. For all of

10



the CDS maturities, the CIV of CDS with low moneyness (0%-50%) is higher

than the ones with high moneyness (50%-100%), and are closer to OIV, indi-

cating that the CDS-put option link is stronger when moneyness is low. Across

different CDS terms, the CIV estimation is generally higher for short (1 year,

i.e., CIV-1) and long (7 and 10 years, i.e., CIV-7 and CIV-10, respectively) ma-

turities, and relatively lower for medium-term CDS (3 or 5 years). The mean

correlation between CIV and OIV is highest for CIV-1 (0.899) and declines with

CDS maturity.2 This is consistent with the low level of maturity mismatch be-

tween 1-year CDS and American put options. The closest difference between

CIV and OIV (0.584 and 0.600) is found in 1-year CDS with low moneyness.

The very small difference also supports the argument of Carr & Wu (2011) that

CDS can be valued using the deepest OTM American put options. Figure 1

provides the scatter between URCs replicated by American put and CDS.

[Insert fig. 1 about here]

[Insert figs. 2 to 4 about here]

We estimate the CIV measure from Kelly et al. (2019) in Panel C. This measure

has a much lower mean correlation with OIV and CDS spread (31.14% and

47.19%, respectively) than our measure, and the standard deviations of the

correlations are very high compared to the mean. In addition, the measure of

CIV from Guo (2016) has even lower correlations with OIV and CDS spread

and even higher correlation volatility (See Table 1 in Guo (2016)).

We further plot the time series of the average OIV and the three different

measures of CIV in Figure 2 (our measure), Figure 3 (Kelly et al., 2019), and

Figure 4 (Guo, 2016), respectively. Figure 2 shows that mean CIV are always

lower than OIV. The CIV reflects the downside volatility. Thus, CIVs are

2The estimation method for the mean correlation is different in Panel B than in Panels
A and C. In Panels A and C, we only have one CIV and OIV pair for each firm. We then
calculate the correlation between each firm and take the average. In Panel B, we have many
CIV-OIV pairs for one firm, so we calculate the average correlation of all of the CIV-OIV
pairs.
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intuitively lower than OIV. However, CIV from structural models (Guo, 2016;

Kelly et al., 2019) do not have this property. Our measure demonstrates a

very similar pattern to OIV, whereas the other measures, which are based on

structural models, are less volatile than OIV. Compared with these two CIV

measures, our measure shows a significantly high and stable correlation between

OIV and CDS spread, and is perhaps a better measure of the link between CDS

and options markets.

[Insert Figure 5 about here]

Figure 5 plots the scatter of weekly CIV versus moneyness for different ma-

turities. In general, the volatility derived from CDS illustrates a clear smirk

pattern for the option moneyness. The CIVs with different maturities tend

to decrease with the moneyness monotonically. However, the curve is slightly

upward-sloping at the ending point, because of the large volume of outliers in

high moneyness variable. It is worth emphasizing that the 1-year CIV smirk is

steepest, which is similar to the pattern of OIV. As the CIV maturity increases,

the scatter plot shows a flat trend, and the data distribution becomes more

centralized.

4. Empirical results

4.1. Relationship between CIV and OIV

To further examine the strong correlation between CIV and OIV, we run a

series of regressions. First, we examine whether CIV can explain OIV:

OIVi,t = αi + βiCIVi,t + βCVi ControlVariables i,t + εi,t (8)

where the control variables include the delta of the option, OI, and maturity.

We strictly follow the literature (i.e., Guo (2016)) to make our choice of control

variables. The results are shown in Table 2. The three panels are for categories

of firms: investment-grade firms, junk-grade firms, and the full sample of firms.
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[Insert Table 2 about here]

The coefficient estimators for CIV are 1.443 (investment-grade), 1.161 (junk-

grade), and 1.231 (full sample), which are all greater than one. Thus, CIV can

explain the variation in OIV, which is positive and statistically significant at the

1% level. The Adjusted R2 is 66.38% when the full sample is used. With respect

to predicting the performance of OIV, CIV contains a little more information on

investment-level firms than on junk-level firms, with an Adjusted R2 of 66.72%

versus 66.26%. The constant term αi significantly explains OIV at the 1%

level as well, which hints that some of the information contained in OIV is not

captured by CIV.

[Insert Table 3 about here]

We redo the same exercise in Table 3 but change the dependent variable to CIV,

CIVi,t = αi + βiOIVi,t + βCVi ControlVariables i,t + εi,t (9)

The results of regressing CIV on OIV shows that the estimated coefficients

for OIV are 0.6026, 0.6989 and 0.6750 respectively, for the same samples as

in Table 2. These are far from one, indicating that OIV and CIV are not

substitutes for each other, given the results in Table 2 and 3. We strictly follow

the literature (i.e., Guo (2016)) to make our choice of control variables. This

finding is robust to controlling for the option delta, time to maturity, and OI.

4.2. Trading strategy based on cross-market information

The mean-reversion investment strategy is based on the assumption that,

regardless of the stock’s temporary high and low prices, the stock’s price tends

to achieve average price over a relatively long period. Therefore, investors can

buy assets at relatively low prices or sell assets at a higher price to create

arbitrage opportunities. We calculate the trading strategy performance based

on continuous compounding and a risk-free rate of 2%.
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The correlation between 5-year CIV and OIV is 79.98%. As they follow a

mean-reversion process and are possibly co-integrated, we construct the follow-

ing cross-market trading strategy:

CIVi,t = βiOIVi,t + εi,t (10)

To check stationarity, Table 4 reports the results of the standard ADF test for

six different variables, i.e., the 5-year CIV-OIV spread, the 5-year CIV-historical

realized volatility spread, the OIV-historical realized volatility spread, the 5-year

CIV, the OIV, and the historical realized volatility. The results show that the

stationarity conditions for different volatilities or spread time series vary widely.

The spread of OIV-historical realized volatilities rank the second and third

positions. OIV has a strong correlation with OTM CIV, and the historical

realized volatility has a strong correlation with ATM IV. Following Balvers

et al. (2000), we standardize the Z-score by
εi,t−ui(Ei,t)
σi(εi,t)

. Using previous data on

each observation time t, we calculate ui (εi,t) and σi (εi,t), which are the mean

and standard deviation of the error term (εi,t) at different time t, respectively.

Then we sort all of the calculated Z-scores into five quintiles (i.e., 0-20%, 20%-

40%, 40%-60%, 60%-80%, 80-100%) at time 0. To be more specific, quintile 1

contains CDS with the lowest Z-scores and thus the most under-valued firms.

Quintile 5 contain the CDS with highest Z-scores. We consturct a long-short

trading strategy by longing Quintile 1 and shorting Quintile 5 (L1-S5), as well

as long positive Z-scores and short negative Z-scores (LP-SN) portfolios.

The fixed 5-year maturity guarantees a trading strategy without a time decay

effect relative to the American put option. The Z-score is computed beginning at

the 10th observation of the CIV/OIV time series. To determine the CDS return,

we use the lognormal return from St−1 to St and eliminate any observations

without a CDS quote at time t-1. The CDS return calculation does not account

for transaction costs.

[Insert Table 5 about here]
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The trend in the annualized return is gradually decreases from quintile 1 to 5.

The L1-S5 trading strategy earns an annualized exponential return of 0.583,

beating the 0.412 generated by the LP-SN portfolios, the 0.242 generated by

quintile 1 and the 0.118 generated by the trading long negative Z-score strategy

(N).

Furthermore, the trading strategies of L1-S5 and LP-SN have much smaller

maximum drawdowns (The maximum drawdown is an important risk indicator,

which is used to describe the worst possible situation after buying a product. A

better trading performance refers to a high Sharpe ratio with a lower maximum

drawdown) at 0.099 and 0.084, respectively, and a standard deviation of 0.189

and 0.143, respectively. These two trading strategies also have a great Sharpe

Ratio at 2.973 and 2.745, respectively.

[Insert Figure 6 about here]

The performance of the trading strategies of L1-S5 and LP-SN are much bet-

ter and more stable than those of other strategies and quintiles, even during

financial crises. In addition, the cumulative return of quintile 1 is better than

those of the other quintiles. The trading strategies of L1-S5 and LP-SN earn a

cumulative exponential return of 7.3083 and 5.1575, respectively. From the per-

spective of drawdown, the trading strategies of long positive (LP), long negative

(LN) and quintile 1-5 suffered a large drawdown in the 2009 to 2011 period.

[Insert Figure 7 about here]

The trading strategies of LN-SP and L1-S5 generate higher and more stable

cumulative returns than other strategies. It is worth mentioning that in CIV-

1, the performance of all of these strategies is stable. At the same time, the

cumulative return rate of L1-S5 is as high as 23.7966, far exceeding that of

other strategies. The performances of CIV-3, 7 and 10 gradually increase in

steadiness.

[Insert Table 6 about here]
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Based on different Z-scores constructed using CIV with different maturities.

We find that the trend in the annualized return in the quintiles for CIV-1,

CIV-3, CIV-7, and CIV-10 is gradually decreasing, which is consistent with the

result of CIV-5. The increases in CIV are due to the small Z-score, as CIV is

mean-reverting with OIV. As a result, quintile 1 has the smallest Z-score, and

the highest annualized return compared to the other groups.

Due to the strongest correlation between CIV-1 and OIV, quintile 1 has not

only the highest annualized return of all the portfolios, but also the highest

Sharpe ratio. When the CIV is underestimated across different quintiles, the

corresponding OIV should be overestimated due to their cointegration. For both

trading simple deep OTM puts and taking deep OTM puts delta-Hedging, the

weekly returns of the options trading strategies increase from quintile 1 to 5.

[Insert Table 7 about here]

As we are investigating the expected return of OTM American put options

based on their volatility characteristics, we hope to reduce the impact of the

movements of the underlying assets as much as possible. We find that the

yields of both the deep OTM put and deep OTM delta-hedging strategies have

a significant trend from low to high. Even when we extend the straddle and

call delta-hedging trading strategy to ATM options, the result reveals that the

cointegration of CIV and OIV does not mean that the ATM options have been

mispriced. Nonetheless, the deep OTM put option leads to mispricing. Changes

in the volatility of OTM do not represent volatility changes in ATM. However,

there is no significant difference in the yields of the ATM straddle and ATM call

delta-hedging strategies, which shows that CIV only has a strong cointegration

relationship with OTM-OIV.

4.3. Discussion

This sub-section discusses the possible reasons for our CIV performance.

First of all, CIV and OIV are complementary. CIV better explains OIV

than the other way around. The mean values (standard deviations) of CIV and
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OIV are 32.18% (18.42%) and 41.67% (17.40%), respectively. Figure 3 shows

the time series of the averaged CIV and OIV. Intuitively, we expect that CIV

and OIV to share similar upside and downside patterns.

The two main characteristics of the measure developed by Kelly et al. (2019)

are corporate leverage and CDS contract maturity. They define Leverage =

BookDebt
Marketequity+BookDebt , where BookDebt is the sum of short-term and long-term

debts. They extract 530 firms over 156 months from the 2002 to 2014 period. We

speculate that the structural model in the measure developed by Kelly et al.

(2019) focuses on the capital structure, which results in a lower correlation

coefficient between CIV and OIV.

The vega risk volatility (volatility innovation) is contracted by ATM strad-

dles (see Appendix B). When using separate factors to regress the long-short

CDS returns, skewness and vega risk volatility can significantly explain the CDS

returns at the 1% level. When regressing all of the risk factors on CDS returns,

the skewness becomes insignificant but the vol remains statistically significant3.

[Insert Table 8 about here]

In Cremers et al. (2015), the volatility is positively correlated with the re-

turns of the trading strategy, and skewness and the returns of the trading strat-

egy are negatively correlated. Additionally, the correlation coefficient between

3Nonparametric risk-neutral skewness factor
We define OTM options as OTM call options with 0.25 delta and OTM put options with

-0.25 delta, which are σimp
i,call(0.25) and σimp

i, call (−0.25) separately (Bali & Zhou, 2016). Hence,

the nonparametric risk-neutral skewness is defined as the difference between the implied
volatility from OTM call option and that of the OTM put option.

Skew = σimp
i,call(0.25) − σimp

i,put(−0.25) (11)

Nonparametric jump risk proxy
Yan (2011) connects the jump risk to the slope of the implied volatility smile. He proves

that Si is approximately proportional to the product of jump intensity and the average stock
jump size.

Si ≡ σimp
i,put(−0.5) − σimp

i,call(0.5) ≈ LiλiuJi (12)

λi is the jump intensity and uJi is the average stock jump size. σimp
i,put(−0.5) is the implied

volatility obtained from the volatility surface with a delta equaling -0.5. σimp
i,call(0.5) is the

implied volatility obtained from the volatility surface with an delta equaling 0.5. See Appendix
C for more details.
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the risk factor and the two trading strategies is very low. Nevertheless, the

correlation coefficient between the trading strategies of L1-S5 and LN-SP is

0.77.

Moreover, the price revealing processes for CDS, stock, and options markets

might also predict OIV using CIV. According to Cao et al. (2010) and Carr

& Wu (2011), both the options market and the credit market are inextricably

linked to the stock market. Therefore, the information from these two markets

will help to predict the stock market trend.

The cointegration relationship between CIV and OIV is the result of the

robust link between URCCDS and URCAmerican-put. Whether the URC is con-

structed with CDS or American put options, there is a stable relationship be-

tween them (Carr & Wu, 2011). Once they deviate from this stable relationship,

there is an arbitrage opportunity. The URC is a financial product that can be

constructed using either CDS or American put options. If URCCDS is under-

valued, then investors will buy CDS and sell American put options, resulting in

a decrease of URCAmerican-put and an increase of URCCDS.

In addition, we use the deep OTM implied volatility rather than the ATM

implied volatility to further examine the relationship between CIV and OIV,

which is illustrated in the cointegration relationship in Table 4. Goyal & Saretto

(2009) use the average of the ATM call and put implied volatilities to calculate

IV. The historical realized volatility (HRV) and ATM implied volatility have a

mean-reversion relationship.

Our calibration method for CIV has a higher correlation with OIV, than

the other CIV measures in the literature. Guo (2016) equates the conditional

default probability in the CDS valuation with the 5-year default probability

of the Merton model, which is problematic as he reveres the equity of CIV

by this method and adds leverage to the calibration. Apart from this, our

method is generally consistent with Guo (2016). Our calibration method for

CIV is different, and we conduct more factor analysis for the returns of a trading

strategy. The advantage of our CIV measure is that the correlation coefficient

between CIV and OIV is as high as 79.98%, whereas Guo (2016) and Kelly et al.
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(2019) only achieve 11.63% and 31.14%, respectively.4 Therefore, our method

is a more accurate measure of equity CIV.

Furthermore, We have appropriately relaxed the screening conditions, espe-

cially the strike price. Because we need to verify the result in the transaction,

we minimize delta rather than taking extreme values and limit the strike price.

Carr & Wu (2011) prove theoretically that either the American put option or

CDS spread can be used to construct a URC. They also show that the American

put option and CDS are highly correlated, indicating that the relationship is

robust. However, they also set less than 5 dollars as a screening criteria for the

strike price of the American put option. Thus, their sample is very deep out of

money, resulting in fewer screening results (i.e., only about 100 companies). We

treat the findings from the weekly ATM trading strategy with caution, as high-

frequency trading adds much noise to the market, which may lead to inaccurate

results.

Finally, we recheck our trading strategy performance using a different portfo-

lio sorting method. We regress CIV on OIV to obtain the standardized residual

and sort the portfolios based on the new Z-scores. The results show a similar

but reversed pattern to our main results.

OIVi,t = βiCIVi,t + εi,t (13)

[Insert tables 9 to 11 about here]

Overall, Carr & Wu (2011) method is the most robust for calibrating CIV,

and we further improve the method. We get a higher correlation coefficient

between CIV and OIV. Both the measures from Kelly et al. (2019) and Guo

(2016) have problems because their methods are all based on the Merton model,

which is an European-style option pricing method. However, under the same

conditions, the implied volatility of an American put option is lower than that of

4Guo (2016) provides a similar analysis in his paper. We re-estimate Tables 2, 3 and 5
using the CIV measure proposed in Kelly et al. (2019). See Appendix D for details.
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an European put option. Similarly, due to the difference in moneyness and the

lower exercise probability of the deep OTM American put option, the implied

volatility of the American put option is lower than that of the European put

option. Intuitively, an American put option is more likely to explain CDS default

events than the European put option. As there is a stronger cointegration

relationship between CIV and OIV (i.e, a higher correlation coefficient between

them), the returns from our trading strategy is higher than that in Guo (2016).

5. Concluding remarks

There is a robust link between CDS spread and deep OTM American put

options. We equal the URC made by CDS spread to the URC of deep OTM

American put options for the same company, and hence back out CIV via the

binomial tree from deep OTM American put options through a dynamically

consistent URC framework.

We evaluate our measure of CIV against the ones in Guo (2016) and Kelly

et al. (2019) using the data of weekly U.S. corporate CDS, and OTM put options

from our 2002-2014 sample period. We find that our CIV measure is more

strongly correlated with the CDS spread. Our CIV measure is much more

correlated (with a correlation coefficient of 0.8) with the OIV, and this correction

decreases with the maturity difference between the options and CDS of the same

company. The value of our CIV measure decreases with the moneyness of the

tradable put options, whereas the counterparts in Guo (2016) and Kelly et al.

(2019) depend on the moneyness (leverage) of options. Our CIV measure can

better explain OIV, and can be better explained by OIV in both the full sample

and the subsamples.

We identify a co-integration relationship between our CIV measure and OIV

and construct CDS and option trading strategies based on the standardized

difference between CIV and OIV. Without taking transaction costs into account,

the long-short CDS trading strategy achieves an annualized return of 58.29% and

a Sharpe ratio of 2.97 for our 5-year CIV measure, which can not be explained
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by non-parametric skewness and volatility risk. In terms of options trading

strategy, we identify the profitability of the deep OTM put options and deep

OTM delta-hedging trading strategies, but not for the ATM straddle, and ATM

call delta-hedging trading strategies, which suggests that CIV only has a strong

cointegration relationship with the OTM-OIV but not the ATM-OIV. For our

CIV measure at all maturity lengthens, we identify a smirk when we plot CIV

against the moneyness of tradable put options.

We find that the 1-year CDS is more accurate in estimating the OIV than

CDS with other maturities, probably because of less maturity mismatching.

CIV-1 is closest to the OIV estimate when the moneyness is less than 0.5, and

the highest profitability of the CDS trading strategy based on the Z-score comes

from CIV-1.

Our results show that our CIV measure can better capture the dynamics in

the credit derivatives markets than other measures and yields strong trading

implications. Further research is needed to better understand the information

content embedded in CIV, specifically whether CIV can complement the volatil-

ity surface and risk-neutral moments implied by options.

One possible caveat of our research is that, we follow the literature (i.e.,

Carr & Wu (2011)) and explicitly assume the existence of a default corridor [A,

B] to facilitate our analysis. This may be a strong assumption and it may be

fruitful future direction to check whether there are new insights by relaxing this

assumption.
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Table 1: Descriptive statistics (Carr & Wu, 2011 mehod)

Panel A: Summary Statistics

Variable Mean S.D. Min 0.25 Median 0.75 Max

# of Observations 359.964 198.877 52.000 176.500 360.000 563.500 666.000
Maturity (Day) 545.804 112.194 360.000 451.000 542.000 633.000 969.000
E (Millions) 35018.656 53564.043 119.018 7728.384 16828.140 36388.760 525785.638
D (Millions) 18260.876 73284.227 0.213 1979.322 4338.000 9861.000 916322.000
r (%) 2.715 1.345 0.560 1.580 2.570 3.910 5.230
s 1.400 2.201 0.025 0.355 0.665 1.534 50.467
URC(put) 0.053 0.057 0.001 0.023 0.038 0.061 0.95
URC(CDS) 0.038 0.061 0.001 0.009 0.018 0.042 0.99
CIV (%) 32.179 18.418 8.317 20.237 26.243 37.706 248.799
OIV (%) 41.668 17.405 6.324 30.152 37.406 47.843 228.849
cor (s,CIV) 77.868 19.836 -42.637 70.374 84.136 91.083 98.296
cor (CIV,OIV) 79.984 16.088 -25.405 75.772 84.121 90.495 98.890
moneyness (K/S) 0.589 0.124 0.013 0.520 0.606 0.679 0.984
recovery 0.396 0.026 0.120 0.397 0.400 0.400 0.850

Panel B: CIV Maturity and OIV Moneyness (mean)

Moneyness (K/S) 1 Year CIV 3 Year CIV 5 Year CIV 7 Year CIV 10 Year CIV OIV

0%-100% 0.331 0.300 0.322 0.342 0.367 0.417
0%-50% 0.584 0.508 0.518 0.529 0.548 0.600
50%-100% 0.265 0.246 0.271 0.293 0.320 0.369
cor(CIV, oiv) 0.899 0.889 0.858 0.832 0.806 1.000

Panel C: Kelly et al. (2019) CIV Statistics

Variable Mean S.D. Min 0.25 Median 0.75 Max

CIV (%) 44.040 14.595 5.167 35.427 42.909 50.760 295.903
cor(s,CIV) 47.188 38.216 -54.492 21.066 54.693 78.962 99.759
cor(CIV,OIV) 31.144 38.549 -92.722 6.157 37.048 60.151 93.972

Note. This table reports the summary statistics of data from our 2002-2014 sample period. For Panel A, “# of firms” is the total
number of firms in the sample, “# of weeks” is the total number of weeks, “# of observations” is the number of observations for
each firm, we have 335 firms and 666 weeks in total. Maturity is the put option maturity, E is the market equity value, D is the
debt value, r is the risk-free rate, s is the CDS spread, CIV is the 5-year CDS inferred volatility, OIV is the option implied volatility,
cor(s, CIV) is the sample correlation between CDS spreads and CIV, and cor(CIV, OIV) is the sample correlation between CIV
and OIV for each firm. Moneyness (K/S) is the ratio, strike price divided by spot equity price. Recovery is declared in credit
default claim. For Panel B, the first row reports the mean value of implied volatility from 0% moneyness to 100% moneyness.
The second and third rows describe the mean value of implied volatility of low moneyness (0% - 50%) and high moneyness (50%
- 100%) separately. The fourth row describes the mean correlation of all CIV and OIV pairs. For Panel C, CIV is the implied
volatility of 5-year CDS, calculated from Kelly’s method. Cor (CIV, OIV) is the coefficient between Kelly et al. (2019) measure
and option implied volatility for each firm.
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Table 2: Explain OIV using CIV

Estimate t-stat Estimate t-stat N

Panel A: Investment-grade
Constant 0.081 *** 9.608 0.046 *** 2.638 83
CIV 1.142 *** 28.060 1.443 *** 23.618
Delta -0.708 *** -11.750
OI -0.000 -0.419
Maturity -0.000 *** -16.423
Adj R2 0.667 0.791
Panel B: Junk-grade
Constant 0.094 *** 15.458 0.090 *** 7.330 252
CIV 1.001 *** 46.422 1.161 *** 32.753
Delta -0.510 *** -12.673
OI 0.000 * -1.876
Maturity 0.000 *** -16.997
Adj R2 0.663 0.763
Panel C: Full Sample
Constant 0.091 *** 18.042 0.079 *** 7.724 335
CIV 1.036 *** 53.528 1.231 *** 39.283
Delta -0.567 *** -16.408
OI 0.000 * -1.918
Maturity 0.000 *** -21.730
Adj R2 0.664 0.770

Note. This table reports the regression results of regressing CIV on OIV, controlling
for other variables such as delta of the option, open interest, and maturity from our
2002-2014 sample period. The adjusted R2 is shown for each regression. Panels A, B,
and C show the results for the investment-grade firms, the junk-grade firms, and the
full sample, respectively. N is the total number of firms. ***, **, and * denote the
significance levels of 1%, 5%, and 10%, respectively.
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Table 3: Explain CIV using OIV

Estimate t-stat Estimate t-stat N

Panel A: Investment-grade
Constant 0.032 *** 4.101 0.041 *** 4.713 83
OIV 0.603 *** 28.575 0.537 *** 30.212
Delta 0.545 *** 22.728
OI 0.000 -0.562
Maturity 0.000 *** 17.821
Adj R2 0.667 0.851
Panel B: Junk-grade
Constant 0.051 *** 7.539 0.049 *** 4.944 252
OIV 0.699 *** 42.995 0.656 *** 39.937
Delta 0.535 *** 19.201
OI 0.000 0.189
Maturity 0.000 *** 17.561
Adj R2 0.663 0.796
Panel C: Full Sample
Constant 0.047 *** 8.479 0.047 *** 6.063 335
OIV 0.675 *** 50.091 0.626 *** 46.765
Delta 0.537 *** 24.689
OI 0.000 -0.116
Maturity 0.000 *** 21.842
Adj R2 0.664 0.810

Note. This table reports the regression results of regressing OIV on CIV, controlling
for other variables such as the delta of the option, open interest, and maturity from
our 2002-2014 sample period. The adjusted R2 is shown for each regression. Panels
A, B, and C show the results for the investment-grade firms, the junk-grade firms,
and the full sample, respectively. N is the number of firms. ***, **, and * denote
the significance levels of 1%, 5%, and 10%, respectively.
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Table 4: Stationary time series

Variable Percentage Number of Companies Total

Spread of CIV OIV 0.850 285 335
Spread of CIV Hisvol 0.690 232
Spread of OIV Hisvol 0.460 154
CIV 0.160 52
OIV 0.100 32
HIV 0.020 7

Note. As indicated in the table, 85% of the companies are in the 5-year
CIV-OIV spread showing that there is a strong cointegration relationship
from our 2002-2014 sample period. The last three rows, 5-year CIV, OIV,
and historical realized volatility account for 16%, 10% and 2% respectively
suggesting that there is a serious unit root problem.
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Table 5: CDS trading strategy performance using CIV-5 (CIV-OIV)

Quintile portfolios

1 2 3 4 5 P N 1-5 N-P

Annualized 0.242 0.071 -0.113 -0.188 -0.341 -0.294 0.118 0.583 0.412
Cumulative 3.038 0.888 -1.412 -2.362 -4.271 -3.683 1.477 7.308 5.158
Sharpe Ratio 0.655 0.156 -0.419 -0.664 -1.078 -0.971 0.306 2.973 2.745
S.D. 0.339 0.326 0.316 0.314 0.335 0.324 0.320 0.189 0.143
Max. Draw-
down

0.580 0.708 0.849 0.953 0.988 0.979 0.647 0.100 0.084

Note. This table reports the trading performance for each quintile from our 2002-2014 sample period.
Two long-short strategies are compared between quintiles. Trading is from April 2002 to December
2014, without accounting for transaction costs.
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Table 6: CDS trading strategy using CIV-1, CIV-3, CIV-7, and CIV-10 (CIV-OIV)

Quintile portfolios

1 2 3 4 5 P N 1-5 N-P

Panel A: CIV-1

Annualized 0.826 0.013 -0.371 -0.455 -1.072 -0.837 0.220 1.898 1.054
Cumulative 10.361 0.162 -4.651 -5.706 -13.436 -10.459 2.763 23.797 13.175
Sharpe Ratio 1.394 -0.013 -0.775 -0.971 -2.007 -1.733 0.399 3.996 3.631
S.D. 0.579 0.532 0.505 0.489 0.544 0.494 0.502 0.470 0.285
Max. Drawdown 0.592 0.937 0.993 0.998 1.000 1.000 0.755 0.155 0.097

Panel B: CIV-3

Annualized 0.275 0.033 -0.169 -0.255 -0.539 -0.423 0.070 0.814 0.493
Cumulative 3.447 0.412 -2.114 -3.194 -6.755 -5.294 0.882 10.201 6.165
Sharpe Ratio 0.645 0.035 -0.517 -0.744 -1.411 -1.199 0.137 3.298 2.831
S.D. 0.395 0.372 0.365 0.369 0.396 0.369 0.368 0.241 0.167
Max. Drawdown 0.604 0.814 0.917 0.979 0.999 0.996 0.756 0.290 0.100

Panel C: CIV-7

Annualized 0.246 0.107 -0.045 -0.151 -0.357 -0.283 0.169 0.604 0.451
Cumulative 3.090 1.343 -0.566 -1.898 -4.478 -3.539 2.118 7.568 5.633
Sharpe Ratio 0.704 0.296 -0.221 -0.597 -1.196 -1.008 0.508 2.929 2.935
S.D. 0.322 0.294 0.294 0.287 0.315 0.300 0.293 0.199 0.147
Max. Drawdown 0.560 0.565 0.736 0.882 0.990 0.975 0.582 0.248 0.101

Panel D: CIV-10

Annualized 0.408 0.128 -0.008 -0.204 -0.450 -0.301 0.213 0.858 0.512
Cumulative 5.112 1.606 -0.101 -2.549 -5.640 -3.774 2.664 10.752 6.401
Sharpe Ratio 1.313 0.377 -0.091 -0.805 -1.489 -1.047 0.707 3.312 2.587
S.D. 0.295 0.287 0.307 0.278 0.315 0.307 0.273 0.253 0.190
Max. Drawdown 0.491 0.587 0.679 0.935 0.997 0.980 0.576 0.122 0.228

Note. This table reports the trading performance for each quintile from our 2002-2014 sample period. Two
long-short strategies are compared between quintiles. Trading is from April 2002 to December 2014, without
accounting for transaction costs.
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Table 7: Options trading strategy performance(CIV-OIV)

Quintile portfolios

1 2 3 4 5 P N 5-1 P-N

Panel A: Deep OTM put

Annualized -1.605 -1.359 -1.086 -0.927 -0.234 -0.648 -1.453 1.371 0.806
Cumulative -20.159 -17.070 -13.621 -11.643 -2.937 -8.127 -18.244 17.222 10.105
Sharpe Ratio -1.967 -1.683 -1.326 -1.130 -0.293 -0.788 -1.826 3.435 2.837
S.D. 0.826 0.819 0.834 0.838 0.866 0.848 0.807 0.393 0.277
Max. Drawdown 1.000 1.000 1.000 1.000 0.996 1.000 1.000 0.547 0.350

Panel B: Deep OTM put delta-hedging

Annualized -0.165 -0.088 -0.029 -0.005 0.179 0.083 -0.123 0.343 0.205
Cumulative -2.071 -1.105 -0.363 -0.064 2.242 1.036 -1.540 4.313 2.576
Sharpe Ratio -1.689 -1.025 -0.450 -0.230 1.189 0.508 -1.387 3.801 3.074
S.D. 0.109 0.105 0.109 0.109 0.133 0.123 0.103 0.085 0.060
Max. Drawdown 0.906 0.766 0.549 0.459 0.261 0.391 0.840 0.082 0.051

Panel C: ATM straddle

Annualized -2.525 -2.627 -2.589 -2.615 -2.694 -2.643 -2.566 -0.185 -0.087
Cumulative -31.707 -32.789 -32.362 -32.839 -33.774 -33.094 -32.225 -2.316 -1.094
Sharpe Ratio -4.334 -4.564 -4.233 -4.339 -4.547 -4.786 -4.709 -0.503 -0.367
S.D. 0.587 0.580 0.616 0.607 0.597 0.557 0.549 0.407 0.293
Max. Drawdown 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.948 0.846

Panel D: ATM call delta-hedging

Annualized 0.035 0.047 0.030 0.061 0.047 0.037 0.046 0.013 -0.008
Cumulative 0.445 0.593 0.376 0.769 0.591 0.467 0.581 0.163 -0.097
Sharpe Ratio 0.169 0.340 0.122 0.548 0.335 0.230 0.350 -0.096 -0.528
S.D. 0.092 0.081 0.082 0.075 0.081 0.075 0.075 0.072 0.053
Max. Drawdown 0.260 0.144 0.210 0.180 0.199 0.185 0.164 0.151 0.178

Note. from our 2002-2014 sample period, the returns on options are constructed using, as a reference beginning price, the
average of the closing bid and ask quotes and, as the closing price. The hedge ratio for the delta-hedged puts is calculated
using the current IV estimate. The options weekly returns are equal-weighted (for quintiles) (for P and N portfolios)
across all the stocks in the portfolio. The sample includes 335 stocks and is composed of 108,449 weekly deep OTM put
contracts and 136,928 weekly ATM pairs of call and put contracts. The sample period is 2002 to 2014.
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Table 8: Explain risk-adjusted long-short CDS returns

Panel A: Explain risk-adjusted long-short CDS returns

Skewness Yan jump Cremer’s jump Cremer’s volatility Skewness+ volatility
(1) (2) (3) (4) (5)

Constant 0.004 0.011 *** 0.013 *** 0.013 *** 0.008 ***
-1.304 -8.230 -7.956 -8.184 -2.854
-1.304 -8.230 -7.956 -8.184 -2.854

Skewness -0.140 ** -0.086
(-2.391) (-1.390)

Jump 0.020 -0.014
-1.291 (-0.366)

Vol 0.146 *** 0.135 ***
-4.216 -3.441

Adj R2 0.023 0.005 -0.001 0.028 0.035

Panel B: Pearson correlation coefficients matrix

L1. S5 Ln. Sp skewness Cremers’jump Cremers’vol Yan.jump

L1. S5 1.000 0.770 -0.120 -0.030 0.170 0.060
Ln. Sp 1.000 -0.090 -0.060 0.110 0.030
skewness 1.000 0.020 -0.130 -0.360
Cremers’jump 1.000 0.290 -0.010
Cremers’vol 1.000 -0.010
Yan.jump 1.000

Note. This table reports the regression results we obtain when we attempt to explain risk-adjusted long-short CDS returns from our 2002-2014
sample period. Skewness is a nonparametric risk-neutral risk factor constructed using OTM implied volatilities (Bali & Zhou, 2016). Yan’s
Jump is a nonparametric risk-neutral jump risk factor constructed by ATM implied volatilities (Yan, 2011). Cremers’ Jump and Volatility
are tradable aggregate volatility and jump risk proxies constructed by ATM straddles (Cremers et al., 2015). We report t statistics in square
parentheses, and ***, **, and * denote the significance levels of 1%, 5%, and 10%, respectively. L1. S5 represents the time series of the weekly
return of the trading strategy by long first quintile and short fifth quintile, while Ln. Sp represents that by long negative portfolio and short
positive portfolio.
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Table 9: CDS trading strategy performance using CIV-5 (OIV-CIV)

Quintile portfolios

1 2 3 4 5 P N 5-1 P-N

Annualized -0.339 -0.200 -0.103 0.066 0.246 0.124 -0.296 0.585 0.420
Cumulative -4.249 -2.505 -1.293 0.823 3.081 1.556 -3.701 7.330 5.256
Sharpe Ratio -1.074 -0.699 -0.397 0.137 0.663 0.325 -0.976 2.953 2.783
S.D. 0.334 0.315 0.310 0.332 0.340 0.320 0.323 0.191 0.144
Max. Drawdown 0.988 0.951 0.849 0.718 0.588 0.627 0.979 0.097 0.085

Note. This table reports the trading performance for each quintile from our 2002-2014 sample period.
Two long-short strategies are compared between quintiles. Trading is from April 2002 to December
2014, without accounting for transaction costs.
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Table 10: CDS trading strategy using CIV-1, CIV-3, CIV-7, and CIV-10 (OIV-CIV)

Quintile portfolios

1 2 3 4 5 P N 5-1 P-N

Panel A: CIV-1

Annualized -1.051 -0.464 -0.393 0.046 0.831 0.219 -0.838 1.882 1.053
Cumulative -13.176 -5.815 -4.920 0.576 10.426 2.741 -10.470 23.602 13.164
Sharpe Ratio -2.103 -0.991 -0.819 0.048 1.399 0.395 -1.736 4.290 3.627
S.D. 0.509 0.488 0.504 0.537 0.580 0.503 0.494 0.434 0.285
Max. Draw-
down

1.000 0.998 0.995 0.931 0.595 0.739 1.000 0.246 0.097

Panel B: CIV-3

Annualized -0.551 -0.242 -0.167 0.025 0.272 0.078 -0.434 0.823 0.512
Cumulative -6.907 -3.038 -2.097 0.318 3.417 0.979 -5.436 10.323 6.404
Sharpe Ratio -1.476 -0.711 -0.516 0.014 0.631 0.158 -1.233 3.553 2.961
S.D. 0.387 0.369 0.363 0.380 0.400 0.368 0.368 0.226 0.166
Max. Draw-
down

0.999 0.976 0.919 0.809 0.618 0.741 0.996 0.191 0.094

Panel C: CIV-7

Annualized -0.365 -0.133 -0.052 0.079 0.271 0.163 -0.282 0.636 0.444
Cumulative -4.575 -1.670 -0.649 0.993 3.397 2.046 -3.528 7.972 5.550
Sharpe Ratio -1.223 -0.534 -0.244 0.190 0.793 0.490 -1.005 3.144 2.872
S.D. 0.315 0.287 0.295 0.312 0.316 0.293 0.300 0.196 0.148
Max. Draw-
down

0.991 0.881 0.755 0.568 0.558 0.583 0.975 0.115 0.101

Panel D: CIV-10

Annualized -0.450 -0.162 -0.040 0.136 0.403 0.213 -0.293 0.853 0.503
Cumulative -5.640 -2.028 -0.498 1.703 5.054 2.662 -3.665 10.694 6.290
Sharpe Ratio -1.532 -0.613 -0.208 0.403 1.295 0.705 -1.020 3.443 2.531
S.D. 0.307 0.297 0.287 0.287 0.296 0.273 0.307 0.242 0.191
Max. Draw-
down

0.997 0.924 0.710 0.566 0.504 0.578 0.977 0.117 0.228

Note. This table reports the trading performance for each quintile from our 2002-2014 sample period. Two
long-short strategies are compared between the quintiles, without accounting for transaction costs.
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Table 11: Options trading strategy performance (OIV-CIV)

Quintile portfolios

1 2 3 4 5 P N 1-5 N-P

Panel A: Deep OTM put

Annualized -0.216 -0.930 -1.122 -1.351 -1.608 -1.472 -0.637 1.392 0.836
Cumulative -2.712 -11.679 -14.073 -16.970 -20.187 -18.480 -7.988 17.475 10.481
Sharpe Ratio -0.273 -1.136 -1.370 -1.673 -1.964 -1.848 -0.775 3.458 2.916
S.D. 0.865 0.836 0.834 0.820 0.829 0.807 0.847 0.397 0.280
Max. Draw-
down

0.995 1.000 1.000 1.000 1.000 1.000 1.000 0.538 0.350

Panel B: Deep OTM put delta-hedging

Annualized 0.177 0.005 -0.036 -0.089 -0.166 -0.128 0.087 0.344 0.216
Cumulative 2.225 0.065 -0.449 -1.121 -2.090 -1.613 1.092 4.315 2.705
Sharpe Ratio 1.181 -0.136 -0.517 -1.040 -1.692 -1.435 0.545 3.793 3.197
S.D. 0.133 0.109 0.108 0.105 0.110 0.103 0.123 0.085 0.061
Max. Draw-
down

0.264 0.441 0.554 0.759 0.908 0.851 0.381 0.087 0.051

Panel C: ATM straddle

Annualized -2.701 -2.622 -2.566 -2.632 -2.542 -2.573 -2.640 -0.174 -0.077
Cumulative -33.867 -32.878 -31.976 -33.004 -31.872 -32.311 -33.055 -2.182 -0.969
Sharpe Ratio -4.557 -4.409 -4.198 -4.538 -4.359 -4.710 -4.791 -0.473 -0.335
S.D. 0.597 0.599 0.616 0.585 0.588 0.551 0.555 0.411 0.290
Max. Draw-
down

1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.957 0.833

Panel D: ATM call delta-hedging

Annualized 0.052 0.048 0.038 0.048 0.038 0.045 0.039 0.015 -0.005
Cumulative 0.653 0.605 0.475 0.607 0.477 0.569 0.487 0.186 -0.065
Sharpe Ratio 0.403 0.356 0.225 0.363 0.194 0.336 0.253 -0.072 -0.480
S.D. 0.080 0.079 0.080 0.078 0.093 0.075 0.075 0.072 0.053
Max. Draw-
down

0.199 0.199 0.180 0.147 0.264 0.166 0.176 0.151 0.172

Note. The returns on options are constructed using, as a reference beginning price, the average of the closing bid
and ask quotes and, as the closing price from our 2002-2014 sample period. The hedge ratio for the delta-hedged
puts is calculated using the current IV estimate. The options weekly returns are equal-weighted (for quintiles) (for
P and N portfolios) across all of the stocks in the portfolio. The sample includes 335 stocks and is composed of
108449 weekly deep OTM put contracts and 136928 weekly ATM pairs of call and put contracts.
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Figure 1: Scatter of URC (CDS) Vs URC (Put)

Note. This figure shows the scatter plot of the URC (CDS) and URC (Put option) from our

2002-2014 sample period.
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Figure 2: Mean values of our CIV measure and OIV

Note. This figure shows the time series of the averaged CIV (our measure) and OIV from

our 2002-2014 sample period.
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Figure 3: Mean values of the CIV and OIV (Kelly et al., 2019)

Note. This figure shows the time series of the averaged CIV (Kelly et al., 2019) and OIV

from our 2002-2014 sample period.
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Figure 4: Mean values of CIV and OIV (Guo, 2016)

Note. This figure shows the time series of the averaged CIV from Guo (2016) and OIV from

our 2002-2014 sample period.
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Figure 5: Credit implied volatility smirk (heterogeneity-adjusted)

(a) 1-Year CIV (b) 3-Year CIV (c) 5-Year CIV

(d) 7-Year CIV (e) 10-Year CIV (f) OIV

(g) Implied Volatility

Note. Pooled scatter plots of weekly CIV versus moneyness (K/S) from our 2002-2014 sample

period. The blue line is a fitted non-parametric curve. The lower left panel overlays the fitted

CIV/OIV curve at all moneyness values to trace out the CIV/OIV surface.
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Figure 6: Cumulative returns of the trading strategies

Note. This figure demonstrates the cumulative returns of the trading strategies for the

5-year CIV from our 2002-2014 sample period.
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Figure 7: Cumulative returns of trading strategies from top to bottom: CIV-1, CIV-3, CIV-7,
and CIV-10

(a) 1-Year CIV

(b) 3-Year CIV

(c) 7-Year CIV

(d) 10-Year CIV

Notes. This figure shows the robust cumulative returns of the trading strategies from our

2002-2014 sample period.
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Appendix

A. Relationship between CDS and Deep OTM put

Assume two independent random variables are defined on the probability

space (Ω,G,Q), a standard Brownian motion {Wt, t ≥ 0} generating a filtration

F = {Ft, t ≥ 0}, and an exponential random variable with unit parameter

ξ ∼ Exp(1). Following Carr & Linetsky (2006) and Carr & Wu (2011), the

stock can either diffuse or jump to default, a predictable part and a totally

inaccessible part. In the first case, default occurs at T0 ∈ (0,∞), the first

hitting time of the stock St to Be
∫ t
0
rudu where B < S0. Upon default, the stock

price is sent to a residue recovery state ∆ governed by an adapted process Rt

bounded above by A < B over the time interval [0, T ]. The state space of the

stock price process is therefore (B,∞) ∪ {∆}.

The time of jump to default η̃ is modeled by the first hitting time of the

hazard process Λ to the exponential random variable ξ:

η̃ = inf{t ≥ 0 : Λt ≥ e} (A.1)

where Λ is defined as:

Λt =


∫ t
0
λudu, t < T0

∞, t ≥ T0
(A.2)

and λt denotes the time-varying jump intensity process. The time of default η

is:

η = η̃ ∧ T0 (A.3)

Following Elliott et al. (2000), we denote the default process {Nt, t ≥ 0}, Nt =

1η≤t, generating a filtration H = {Ht, t ≥ 0}. Together with F generated by

the Brownian motion Wt, an enlarged filtration can be defined as Gt = Ft ∨Ht.

Putting everything together, the stock price process can be modeled as fol-

lows:

St = (1− Jt)Rt + e
∫ t
0
ruduJt (B + (S0 −B)Gt) (A.4)
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where Gt = eσtWt−σ2
t t/2 and Jt = 1Nt=0e

∫ t
0
λudu are F- and H- adapted mar-

tingales, respectively. Carr & Wu (2011) show that the risk-neutral pre-default

stock price process is governed by the stochastic process:

dSt =
(

(rt + λt) (St −Rt) + rtRte
∫ t
0
λudu

)
dt

+
(
St −Rt − e

∫ t
0
λudu

(
Be

∫ t
0
rudu −Rt

))
σtdWt

(A.5)

Without explicitly assuming the processes for Rt, rt, λt and σt, we only note

that they are time-varying.

The price of an American put option P dt (K) with strike K > Be−
∫ T
0
rudu

can be derived from the risk-neutral dynamic of St such that:

Pt(K) =EQ
t

[
max

(
e−

∫ η
t
rudu(K −Rη)+, sup

ϕ∈φ(η)
E
[
e−

∫ ϕ
t
rudu(K − Sϕ)+

])
1η≤T

]
+ sup
ψ∈φ(T )

EQ
t

[
e−

∫ ψ
t
rudu(K − Sψ)+1η>T

]
(A.6)

where φ(τ) denotes the set of stopping times ϕ ∈ [t, τ ] and expectations are

conditional with respect to the σ-algebra Gt. We can rewrite this equation to a

more familiar form:

Pt(K) = sup
ψ∈φ(T )

EQ
t

[
e−

∫ ψ
t
rudu(K − Sψ)+1η>T

]
+ EQ

t

[
e−

∫ η
t
rudu(K −Rη)+1η≤T

]
+ EQ

t

( sup
ϕ∈φ(η)

EQ
t

[
e−

∫ ϕ
t
rudu(K − Sϕ)+

]
− e−

∫ η
t
rudu(K −Rη)+

)+

1η≤T


(A.7)

The first term can be rewritten as the conditional expectation with respect to
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the stock price:

sup
ψ∈φ(T )

EQ
t

[
e−

∫ ψ
t
rudu(K − Sψ)+1η>T

∣∣∣ Gt]
= sup
ψ∈φ(T )

EQ
t

[
e−

∫ ψ
t
[λu+ru]du(K − Sψ)+1{mSt,T≥Be

∫ t
0 rudu}

∣∣∣∣ St = S

]
=P ot (K)

(A.8)

and

mS
t,T = inf

s∈[t,T ]
Sse
−

∫ s−t
0

rudu. (A.9)

This term represents an American down-and-out barrier put option, the por-

tion of the put option price corresponding to the market risk above the barrier

Be
∫ s
0
rudu at any time s ∈ [t, T ]. Note that if K is below B, this term reduces

to zero.

The second term can also be expressed in terms of a risk-neutral expecta-

tion conditional on St, separating the diffuse to default and the jump-induced

default:

EQ
t

[
e−

∫ η
t
rudu(K −Rη)+1η≤T

∣∣∣ Gt]
= 1η>t

∫ T

t

e−
∫ v
t
ruduEQ

t

[
e−

∫ v
t
λuduλv(K −Rv)+1{mSt,v≥Be

∫ t
0 rudu}

∣∣∣∣ St] dv
+ 1η>tEQ

t

[
e−

∫ T0
t [λu+ru]du(K −RT0)+1t<T0<T

∣∣∣ St]
=P dt (K)

(A.10)

This term represents the default sensitive portion of the option price, which

only takes a positive value if K > Rη at the time of default. Assuming that Rt

is constant and equals to the lower bound of the default corridor A, this term

can be related to URC as follows:

P dt (K) = (K −A)URC(t, T ) (A.11)

The third term can be expressed as conditional expectations in the same
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fashion as in Term One and Two. It represents the decision to exercise early

the option before default. Note that if the strike price K falls within the default

barrier [B,A], it is never optimal to exercise early. If K is well above Be
∫ T
0
rudu,

the option buyer may exercise early while walking away from the default-related

option premium.

Denoting the third term as P et (K), the put option can be simply decomposed

as follows:

Pt(K) = P ot (K) + P dt (K) + P et (K) (A.12)

This decomposition is parallel to the pricing formula for European options ob-

tained in Carr & Linetsky (2006). Indeed, on top of the default risk, a put

option struck outside of the default corridor also depends on the price dynamic

of the underlying stock. Assume that two put options are available one with

strike K1 above Be
∫ T
0
rudu, the other with strike K2 ∈ [B,A]. The URC can be

expressed in terms of these two option prices as follows:

URCp =
P dt (K1)− Pt(K2)

K1 −K2
=

Pt(K1)− Pt(K2)− (P ot (K) + P et (K))

K1 −K2

(A.13)

Assuming that K2 and Pt(K2) are small enough to be negligible, and equating

the URC implied by the put option to the one implied by the CDS spread, our

definition of the CDS-equivalent put option price has the following functional

form:

PCDS
t (K) = URCCDS

t K = Pt(K)− (P ot (K) + P et (K)) (A.14)

when K is well above the default barrier. As argued earlier, the problem of a

deep out-of-the money put struck outside of the default corridor is likely to be

an issue for a well-established firm with large market capitalization where the

put option contains not only the credit-related claims, but also market-price-

related claims between K1 and B; PCDS
t (K) inferred from CDS spread is the

credit-risk component of the OTM put option premium without any information

about market risk. We therefore anticipate that the OIV will be explained by
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the CDS implied volatility, but not the other way around.
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B. Heston model and a tradable proxy for volatility risk

Cremers et al. (2015) propose that instantaneous excess straddle returns are

proportional to innovations in volatility in the Heston (1993) stochastic volatility

model. Assume that the asset price St at time t and its variance Vt follow the

diffusion processes

dSt = (µ− δ)Stdt+ St
√
VtdZ1t, (B.1)

dVt = k (θ − Vt) dt+ σ
√
VtdZ2t, (B.2)

where Z1t and Z2t are P-Brownian motions with correlation ρ, and δ is the

dividend yield.

Equation (B.2) shows that the value of any derivative U (St, Vt, t) must sat-

isfy the partial differential equation (PDE) below:

1

2
VtS

2
t

∂2U

∂S2
+ρσVtSt

∂2U

∂S∂V
+

1

2
σ2Vt

∂2U

∂V 2
+(r−δ)St

∂U

∂S
+[k (θ − Vt)− λ (St, Vt, t)]

∂U

∂V
+
∂U

∂t
= rU

(B.3)

where λ (St, Vt, t) is the market price of volatility risk.

According to Ito’s Lemma,

dU =

[
1

2
VtS

2
t

∂2U

∂S2
+ ρσVtSt

∂2U

∂S∂V
+

1

2
σ2Vt

∂2U

∂V 2
+
∂U

∂t

]
dt+

∂U

∂V
dVt +

∂U

∂S
dSt.

(B.4)

Substituting the drift term with the PDE, we get

dU = rUdt− (r − δ)St
∂U

∂S
dt− [k (θ − Vt)− λ (St, Vt, t)]

∂U

∂V
dt+

∂U

∂V
dVt +

∂U

∂S
dSt

= rUdt+
∂U

∂S
[dSt − (r − δ)Stdt] +

∂U

∂V
{dVt − [k (θ − Vt)− λ (St, Vt, t)] dt}

.

(B.5)

Therefore, instantaneous option returns satisfy the following

dU

U
= rdt+

∂U

∂S

St
U

[
dSt
St
− (r − δ)dt

]
+
∂U

∂V

1

U
{dVt − [k (θ − Vt)− λ (St, Vt, t)] dt

(B.6)
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Let STR denote the price of a delta-neutral straddle, then the instantaneous

straddle returns satisfy the following

dSTR

STR
= rdt+

∂STR

∂V

1

STR
dVt −

∂STR

∂V

1

STR
[k (θ − Vt)− λ (St, Vt, t)] dt,

(B.7)

or
dSTR

STR
= rdt+

∂STR

∂V

1

STR

[
dVt − EQ

t (dVt)
]
, (B.8)

where Q is the equivalent martingale measure, which implies that (excess) strad-

dle returns are locally proportional to innovations in volatility.
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C. Bates model and a tradable proxy for jump risk

Under P-measure

dSt = µStdt+ σtdW
1
t (C.1)

or with jump

dSt = µStdt+ σtdW
1
t + (J − 1)Stdqt (C.2)

dVt = k
(
V − Vt

)
dt+ σV

√
(Vt)dW

2
t

log(J) ∼ N
(
µ∗, σ

2
∗
)

dW 1
t dW

2
t = ρdt

(C.3)

Under Q-measure

dV Qt =
[
k
(
V − Vt

)
− λ
]
dt+ σV

√
(Vt)dW

2,Q
t (C.4)

Then, we form the portfolio π = U −∆S where U is the derivatives.

Merton (1976) argues that the jump risk is irrelevant to the market, as the

jump risk can be diversified, i.e., E(dπ) = rπdt.

∵ dπ = dU −∆dS

=
∂U

∂t
dt+

∂U

∂S
dS +

∂U

∂Vt
dV Qt +

1

2

[
∂2U

∂S2
(dS)2 + 2

∂2U

∂S∂Vt
dSdV Qt +

∂2U

∂V 2
t

dV 2
t −

∂U

∂S
dS

]
+

{[U(JS, t)−∆JS]− [U(S, t)−∆S]}dq

=

[
∂U

∂t
+

1

2

∂2U

∂S2
σ2S2 + σV SVt

∂2U

∂S∂Vt
+

1

2
σ2
vVt

∂2U

∂V 2
t

]
dt+

∂U

∂Vt
dV Qt +

{[U(JS, t)−∆JS]− [U(S, t)−∆S]}dq
(C.5)
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∴ E(dπ) =

[
∂U

∂t
+

1

2

∂2U

∂S2
σ2S2 + σV SVt

∂2U

∂S∂Vt
+

1

2
σ2
vVt

∂2U

∂V 2
t

]
dt+

∂U

∂Vt

[
k
(
V − Vt

)
− λ
]
dt+

E{[U(JS, t)−∆JS]− [U(S, t)−∆S]}λdt

=r

(
U − ∂U

∂S
S

)
dt

(C.6)

The PDE function is:

∴ rU =
∂U

∂t
+

1

2

∂2U

∂S2
σ2S2 + σV SVt

∂2U

∂S∂Vt
+

1

2
σ2
vVt

∂2U

∂V 2
t

+ rS
∂U

∂S
+
[
k
(
V − Vt

)
− λ

] ∂U
∂Vt
−

λE{[U(JS, t)−∆JS]− [U(S, t)−∆S]}
(C.7)

Calculate dU by PDE

∵ dU =
∂U

∂t
dt+

∂U

∂S
dS +

∂U

∂Vt
dVt +

1

2

(
∂2U

∂S2
σ2S2dt+ 2σV SVt

∂2U

∂S∂Vt
dt+ σ2

V Vt
∂2U

∂V 2
t

dt

)
+

[U(JS, t)− U(S, t)]dq

=[
∂U

∂t
+

1

2

∂2U

∂S2
σ2S2 + σV SVt

∂2U

∂S∂Vt
+

1

2
σ2
V Vt

∂2U

∂V 2
t

]dt+
∂U

∂S
dS +

∂U

∂Vt
dVt+

[U(JS, t)− U(S, t)]dq

=

{
rU − rS ∂U

∂S
−
[
k
(
V − Vt

)
− λ
] ∂U
∂Vt
− λE[U(JS, t)− U(S, t)] + λSE(J − 1)

∂U

∂S

}
dt+

∂U

∂S
dS +

∂U

∂Vt
dVt + [U(JS, t)− U(S, t)]dq

(C.8)

∴ dU =rUdt+
∂U

∂S
[dS − rSdt+ λSE(J − 1)] +

∂U

∂Vt

[
dVt − EQ (dVt)

]
+ [U(JS, t)− U(S, t)]dq−

E[U(JS, t)− U(S, t)]λdt

(C.9)
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∴
dU

U
=rdt+

S

U

∂U

∂S

[
dS

S
− rdt+ λE(J − 1)

]
+

1

U

∂U

∂Vt

[
dVt − EQ (dVt)

]
+

1

U
{[U(JS, t)− U(S, t)]dq − E[U(JS, t)− U(S, t)]λdt}

(C.10)

Then, we construct the vega-neutral and delta-neutral straddle below:

dSTR

STR
= rdt+

1

STR
{[STR(JS, t)−STR(S, t)]dq−E[STR(JS, t)−STR(S, t)]λdt}

(C.11)

If x = [STR(JS, t)− STR(S, t)]dq

dSTR

STR
= rdt+

1

STR
[x− E(x)] (C.12)

where x-E(x) is innovation in x.
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D. Kelly et al. (2019) CIV measure

Table D.1: Explain OIV using Kelly et al. (2019) CIV

Estimate t-stat Estimate t-stat N

Panel A: Investment-grade
Constant 0.113 *** 2.894 0.197 *** 5.572 83
CIV 0.613 *** 6.637 0.598 *** 6.898
Delta 0.441 *** 9.708
OI 0.000 -0.203
Maturity 0.000 *** -4.798
Adj R2 0.154 0.316
Panel B: Junk-grade
Constant 0.122 *** 4.681 0.204 *** 7.399 252
CIV 0.826 *** 11.588 0.831 *** 12.462
Delta 0.580 *** 11.449
OI 0.000 ** -2.199
Maturity 0.000 *** -5.022
Adj R2 0.270 0.423
Panel C: Full Sample
Constant 0.120 *** 5.486 0.202 *** 8.982 335
CIV 0.773 *** 13.230 0.774 *** 14.108
Delta 0.546 *** 13.675
OI 0.000 ** -2.191
Maturity 0.000 *** -6.356
Adj R2 0.241 0.397

Note. This table reports the regression results of CIV on OIV, controlling for other variables
such as the delta of the option, open interest, and maturity from our 2002-2014 sample pe-
riod. Adjusted R2 is shown for each regression. Panels A, B, and C show the results for the
investment-grade firms, only the junk-grade firms, and the full sample firms are used, respec-
tively. N is the total number of firms. ***, **, and * denote the significance levels of 1%, 5%,
and 10%, respectively.
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Table D.2: Explain Kelly et al. (2019) CIV using OIV

Estimate t-stat Estimate t-stat N

Panel A: Investment-grade
Constant 0.409 *** 22.172 0.382 *** 20.306 83
OIV 0.152 *** 6.082 0.172 *** 6.500
Delta -0.139 *** -4.557
OI 0.000 -0.924
Maturity 0.000 ** 2.086
Adj R2 0.154 0.245
Panel B: Junk-grade
Constant 0.366 *** 33.393 0.345 *** 26.200 252
OIV 0.160 *** 9.399 0.169 *** 9.869
Delta -0.128 *** -4.932
OI 0.000 ** 2.060
Maturity 0.000 ** 2.084
Adj R2 0.270 0.377
Panel C: Full Sample
Constant 0.377 *** 39.783 0.354 *** 32.290 335
OIV 0.158 *** 11.123 0.170 *** 11.757
Delta -0.131 *** -6.252
OI 0.000 0.892
Maturity 0.000 *** 2.683
Adj R2 0.241 0.344

Note. This table reports the regression results of OIV on CIV, controlling for other variables such as
the delta of the option, open interest, and maturity from our 2002-2014 sample period. Adjusted R2

is shown for each regression. Panels A, B, and C show the results for the investment-grade firms, only
the junk-grade firms, and the full sample firms are used, respectively. N is the number of firms. ***,
**, and * denote the significance levels of 1%, 5%, and 10%, respectively.
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Table D.3: CDS trading Strategy Performance of Kelly et al. (2019) CIV-5

Quintile portfolios

1 2 3 4 5 P N 1-5 N-P

Annualized 0.185 0.068 -0.084 -0.142 -0.356 -0.308 0.084 0.541 0.396
Cumulative 2.315 0.855 -1.051 -1.782 -4.467 -3.856 1.052 6.782 4.953
Sharpe Ratio 0.492 0.141 -0.320 -0.500 -1.218 -0.996 0.198 2.784 1.847
S.D. 0.334 0.342 0.324 0.324 0.309 0.330 0.323 0.187 0.204
Max. Draw-
down

0.674 0.730 0.813 0.912 0.990 0.980 0.700 0.131 0.176

Note. This table reports the trading performance for each quintile from our 2002-2014 sample pe-
riod. Two long-short strategies are compared with other quintiles. Trading starts from April 2002 to
December 2014, without accounting for transaction costs.
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