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Abstract 

 The "chicken-and-egg" link between charging infrastructure and electric vehicle adoption 

complicates charging station investment, yet existing research lacks significant understanding 

of this relationship, particularly in complex network settings. To this end, our research 

designs a novel agent-based evolutionary game model that incorporates consumers' 

microscopic behavior into the dynamics of charging station diffusion. Based on a case study, 

the diffusion of charging stations and electric vehicles under current market conditions is 

simulated and the impact of the network topology is investigated. Results show that: (1) 

combined with existing policies, the carbon tax policy could increase the charging station 

proportion by 17.06%; (2) there is an inverted U-shaped effect between electricity prices and 

the proliferation of charging stations and electric vehicles; (3) the negative impact of electric 

vehicle social networks can be transferred to charging station proliferation; (4) there are two 

priorities for the proliferation of the two industries: prioritizing increasing the clustering 

coefficient, followed by decreasing the average path length, and increasing the clustering 

coefficient is better than increasing the individual degree; (5) relevant factors (e.g., 

construction subsidies, carbon taxes, early high electricity prices, high clustering factor 

networks) contribute to the conversion of plug-in electric vehicles to battery electric vehicles. 

 

Keywords: consumer adoption behavior, charging station diffusion, government intervention, 

agent-based evolutionary game model, complex networks, China 
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Nomenclature  k

iC  the closeness of individual i about product k 

  ( )BEVc Q  
the unit production cost when the BEV scale 
reaches Q   

Sets and 
indices 

 ,cs gsC C  initial investment cost per charging station or 
gas station 

( ),G V E  the charging station diffusion 
network csc , gscRV RV   annual residual value of charging station or gas 

station 
V   all nodes in the charging station 

diffusion network 
,cs gsRV RV   residual value at the end of life of the charging 

station or gas station 
E   all edges in the charging station 

diffusion network 
,cs gsL L  the service life of a charging station and gas 

station 
Parameters  ,cso gsoC C  the cost of operating a charging station and gas 

station 
ce  the cost effectiveness of BEV ,ec ocp p  energy purchasing cost of charging stations 

and gas stations 

BEVpre  the BEV price premium css  the government subsidy for installing a 
charging station annually 

BEVsav  the lifetime operational cost 
savings of BEV N  the number of energy stations 

y BEVer  the assigned lifespan of BEV ,CS GSn n  number of charging stations in a station 
neighborhood vs. number of gas stations 

,BEV CVp p  sales price of BEVs and CVs ω  average number of vehicles around an energy 
station 

,oil ep p  the unit oil price and the unit 
electricity price ,CS GS

i iU U  expected payoffs being invested in charging 
stations and gas stations 

,BEV CVm m  the energy consumption per unit 
kilometer of CVs and BEVs gsT  the government taxation for installing a gas 

station 

VKT  average annual vehicle kilometers 
traveled 

,i jA A  the strategy choice of the node i and j 

kw   consumer preference weights ( )i jA Aτ ←  probability of node j imitating node i strategy 

EM  expert assessment matrix k  the noise intensity of the external environment 

kS  customer preference matrix Variables  

α  social network strength , ,BEV PHEV CVyy y  market share of BEVs, PHEVs, and CVs 

β  a parameter that reacts to the 
technology's learning ability. ,CS GSz z  market share of charging stations and gas 

stations 

kL  neighbor number of consumer k Acronyms  

,csc gscC C   annual cost of investing in a 
charging station and a gas station 

BEV(s) battery electric vehicle(s) 

, gcs sϕ ϕ  the installing profits for a charging 
station and gas station 

CV(s) conventional vehicle(s) 

,v mpg  energy consumption per kilometer 
for EVs and CVs  

F-TOPSIS fuzzy technique for order preference by 
similarity to an ideal solution 

kθ  social network influence BYD Qin a vehicle model from a Chinese electric 
vehicle manufacturer (BYD) 

0 ,k k
ij ijx x  

normalization vectors of 
consumer choices not influenced 
by social networks and those 
influenced by social networks 

RMB national legal tender unit of the People's 
Republic of China 

l
ijx  the normalization vector of 

neighbors for consumer choice 
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1. Introduction 

 The availability of charging infrastructure is critical for the adoption of electric vehicles 

(EVs), as users need to be able to use public charging stations for longer periods of time [1, 2]. 

As a key aggregator of charging infrastructure, charging stations provide up new options for 

producing long-term benefits. First, charging stations will have a significant impact on future 

social transportation networks and have the potential to generate significant market economic 

benefits. For example, EVs accounted for only 1.37% of total charging volume in China in 

2019, but cumulative charging volume was 6.963 billion units [3]. Second, charging stations 

may be an effective way to ease EV users' charging stress and attract more potential purchasers 

to acquire EVs [4-6]. Despite the importance of charging stations, China's public charging 

stations continue to lag behind the EV sector, with a vehicle-to-pile ratio of 3.3:1 until 2020 [1, 

3, 7]. This vehicle-to-pile ratio is far lower than the international requirement of 1.5:1 and 

China's targeted ratio of 1.2:1, resulting in a charging dilemma [8]. This phenomenon has been 

observed in countries all across the world, not only in China. According to the European 

Commission, by the end of 2016, there were only 1,052 fast chargers in Norway, 1,403 in 

Germany, and 523 in Sweden [9]. In this context, boosting charging stations becomes critical, 

especially for potential buyers who routinely request public charging outlets before purchasing 

an EV [7, 9, 10]. 

  Academics and practitioners are now focused on charging station investment and market 

diffusion, since the adequacy of charging stations is important to the spread of green vehicle 

technologies (e.g.,Gnann et al. [9]; Fang et al. [11]; Li et al. [8] and Huang et al. [1]). Existing 

research, however, has mostly concentrated on the empirical investigation of investment 

determinants for charging stations (e.g.,Neaimeh et al. [4]; Hardman et al. [12]; Globisch et al. 

[13]). Despite the fact that these studies give a good foundation of knowledge, they rarely 

address the dynamics of charging station diffusion. It should be noted that evolutionary game 

theory is a method for gaining dynamical insights into charging station diffusion [1, 14, 15]. 

With the advent of network science in recent years, the combined approach of complex 

networks and evolutionary games has gained popularity among scholars. For example, Li et al. 



5 
 

[16] designed a complicated network evolutionary game model to study the impact of various 

government policies on EV uptake. Fang et al. [11] designed a complex network evolutionary 

game model to boost charging infrastructure that integrates policy incentives and consumer 

preferences. Shi et al. [14] developed a network-based evolutionary game model to investigate 

the dynamics of low-carbon technology diffusion across enterprises. Their research includes 

two types of networks that establish various group network linkages for enterprises and 

consumers. Zhao et al. [17] presented a three-stage evolutionary game model to explore how 

to promote new energy vehicle diffusion in the complex network context. Their study analyzed 

impact of four kinds of network topologies, including nearest-neighbor coupled network, WS 

small-world network, BA scale-free network and ER random network. It should be noted that 

the four networks mentioned above are the most commonly used network topologies in 

complex network science, with the nearest-neighboring coupled network being a regular 

network with the highest clustering coefficient and the shortest average path length, followed 

by the WS small world network, the BA scale-free network, and the ER random network. Li et 

al. [18] built a complex network-based evolutionary game model to analyze the potential 

impact of punitive measures on the clean transition behavior of enterprises. Punitive measures 

are decomposed into multiple policy combinations in their study, including punishment 

intensity variation, punishment coverage variation, and punishment accuracy variation, with 

the goal of improving the actual performance of punitive policies based on three key attributes: 

coverage, intensity, and accuracy. 

 The network-based evolutionary game models provide an effective means to gain 

knowledge on promoting public charging stations. However, there are two shortcomings for 

this research stream. First, the dynamics of charging station diffusion on the demand side is 

unexplored in the literature. A complete market necessarily consists of two side markets, 

namely the supply side and demand side, and consumer adoption behavior on the demand side 

could critically influence firms’ operation decisions in evolutionary games [14]. Thus, 

describing the dynamic feature of consumer purchase decision is of equal significance when 

designing a complete dynamics of charging station investment, specifically using the network-
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based evolutionary game models. Actually, for existing literature that ignore the diffusion 

dynamics on the demand side by using an evolutionary game model, such a dynamics is 

implicitly considered in a hypothesis, that is, consumers purchase behaviors happen every time 

unit [14, 15]. However, such an assumption is just applicable for fast-consuming goods. In our 

study, consumer adoption behavior refers to when a new automobile is used or acquired, which 

is not a short-term or rapid behavior, therefore a relatively lengthy behavioral lifespan is 

required and more realistic.  

 Second, most studies have largely ignored the effect of network topology on the findings 

when using complex network game models, and have used only a general network [11, 16, 19], 

such as WS small-world network or BA scale-free network. This phenomenon also exists in 

the field of charging infrastructure diffusion. Varied network topologies have different priority 

levels in complex network science, which influences target market spread [17]. The charging 

station diffusion in our study is a typical systematic topological structure connected by several 

node firms and has typical complicated network features. However, we do not know the real 

network structure of the industry and how to improve the network structure to help the industry 

grow. Thus, it is necessary to use more network topologies to reflect the real network 

connection, thereby gaining the knowledge on the real impact of related factors on charging 

station diffusion to the greatest extent.  

 To this end, our study aims to fill the above research gap by developing a novel agent-

based evolutionary game model for promoting charging stations. Our analytical framework 

mainly consists of two-part dynamics of supply and demand sides, and integrate the impact of 

social network, given in Figure 1. The supply-demand relationship of charging stations and EV 

users belongs to the “chicken-egg” relationship that are influenced by each other. It should be 

noted that our study uses the WS small-world network to construct two-level network among 

energy stations and vehicle users in diffusion benchmark scenario, as this network provides a 

stronger power for network connection in the real world [20]. In the extensions, we compare 

the impact of other three network topologies, including BA scale-free network, nearest-

neighbor coupled network and ER random network. Specifically, on the demand side, 
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consumers periodically repeatedly purchase their desired vehicles based on the assigned 

vehicle lifespan, i.e., an EV or a CV. When they need to make purchasing decisions, such 

decisions are influenced not only by their own preferences, but also by their neighbors, such as 

parents, friends and other important persons for them, and physical environment, such as 

charging station supply. While on the supply side, energy stations play evolutionary games 

between their neighbors to decide whether to invest in charging stations. Unlike the latest 

studies that uses network-based evolutionary game models [11, 14, 17], our study redesigns 

consumer decision logic on the demand side using an agent-based model and a complex 

network, and integrates it into the dynamics of charging station investment. These dynamic 

features allow us to not only investigate the impact of carbon taxes, construction subsidies, and 

demand preferences on public charging station investment, but also to gain a better 

understanding of the microscopic mechanisms that govern how energy stations respond to 

demand and policies. 

 Our study is interested in following questions. (1) What impact does the integration of 

charging station demand-side dynamics have on its market proliferation? (2) How network 

topology affects charging station and EV diffusion and which network performs best: depth of 

diffusion versus speed? (3) How to facilitate the transformation of the EV market from PHEVs 

to BEVs? Besides, our study contributes to the existing literature from three aspects. (1) 

Designing a novel agent-based evolutionary game model that integrates simultaneously the 

charging station investment on the supply side and EV diffusion on the demand side. Such a 

novel analytical framework makes the proposed model different from the models that include 

only one side in the existing literature, thus filling the research gap. (2) Bridging the gap 

between the microscopic adoption behavior of consumers and charging station investment 

emerging on the system level. (3) Exploring the impact of complex network topologies on 

charging station and EV diffusion. We run the simulation experiments in different network 

topology structures and found the network structure exhibiting the best performance in 

charging station diffusion. 
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 The rest of study is organized as follows. Section 2 reviews related research. Section 3 

proposes an agent-based evolutionary game analytical framework and constructs a complete 

dynamics of charging station diffusion on supply and demand sides. By using the proposed 

model, Section 4 simulates the charging station diffusion considering different influencing 

factors in different network topologies. Finally, the discussion is presented in Section 5. And 

policy recommendations and limitation are given in Section 6. 

  
2. Literature review 

The question of how to promote the diffusion of charging infrastructure has become a hot 

topic, as the disparity in charging facility supply and demand is a significant psychological 

barrier to EV adoption. The literature relevant to our study can be divided into three categories. 

2.1 Policies on charging infrastructure diffusion 

Green technology evolution will be impossible without government intervention, such as 

solar panels, EVs, and charging infrastructure [7, 10, 11, 21, 22]. Subsidies and carbon taxes 

are two types of government interventions. Government interventions play a similar role in the 

charging station sector, but a new concern has been raised: how government interventions can 

adapt to the charging station market's development [23]. Regarding this query, Fetene et al. [24] 

indicated that subsidies can help alleviate the investment pressure on public charging 

infrastructure while also increasing their willingness to collaborate. Zhang et al. [25] believed 

that the public-private partnership cooperation (PPP) model formed through government 

subsidies will not only help ease the government's financial pressures, but will also lower the 

price of charging services and promote the business model's success. Yang et al. [26] and 

Marion and Muehlegger [27] argued that taxation policy is an effective market-regulatory tool 

in the charging infrastructure industry. Fang et al. [11] investigated the role of balanced subsidy 

and tax policies in charging station rollout and discovered that this balanced strategy has 

benefits for charging station rollout. However, unlike previous studies, which are based on a 

unilateral dynamics model, charging station diffusion happens in the context of a complex 

reality of multi-agent interaction, and this discrepancy leads to a gap between the influence of 

key parameters and reality. To that aim, our study adds to the body of knowledge by broadening 

the research framework into the complex network context and demonstrating the real influence 

of government regulations on charging station diffusion. The findings give a new viewpoint on 

the influence of policies on the diffusion of charging stations. 
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2.2 Consumer preferences 

Significant customer preferences drive consumer choice behavior. Numerous empirical 

and experimental research studies on clean technology diffusion have been published in order 

to discover relevant variables., e.g., Hardman et al. [12], Globisch et al. [28] and Huang et al. 

[10]. Charging station diffusion are no exception. Globisch et al. [13] , for example, found that 

most automobile drivers are unwilling to pay the minimal service price for utilizing public 

charging stations. Tan and Lin [6] argued that customers' environmental opinions have a major 

impact on their willingness to pay for public charging stations. As for consumer preferences 

regarding EV adoption, Huang et al. [10] and Herberz et al. [29] indicated that product features 

(price, acceleration, charging time, etc.) and knowledge and attitude traits (environmental 

awareness, technological interestingness, etc.) of EVs are indications of customer preferences. 

What’s more, waste battery recycling policies also significantly affect consumers' willingness 

to adopt EVs, as consumers fear that in the absence of a comprehensive waste battery recycling 

system, their adoption behavior will lead to greater environmental and social pollution [30]. 

When customers are willing to use EVs, their demand for charging stations grows [11]. 

Although this body of work provides a sound theoretical foundation, few of them examine how 

consumer preferences for EV adoption impact charging station diffusion, such as diffusion 

speed vs. diffusion depth. In this regard, our research incorporates consumer choice logics 

based on their preferences into the dynamics of charging station diffusion and examines the 

influence of these preferences on charging station diffusion in a complex network setting.  

 

2.3 The research method of charging station diffusion 

As a form of technology/innovation diffusion, charging station diffusion is a dynamic 

process in nature, but most related studies lack of attention to its dynamics. Zhang et al. [25], 

for example, used the system dynamics technique to illustrate how charging price might help 

with charging infrastructure. Li et al. [8] created a multi-sectorial stochastic evolutionary game 

model to assist charging infrastructure in overcoming the construction dilemma. Based on an 

evolutionary game model, Huang et al. [1] created novel evolutionary dynamics for promoting 

charging infrastructure. Their dynamics are based on the PPP concept, but the model 

mechanism is also reproduced using differential equations. Clearly, one limitation of these 

studies is that their model dynamics belong to the macro level, which is an up-bottom system 

and cannot capture the interaction between agents and environment, particularly in complex 
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networks. This is not unexpected given that traditional approaches, such as differential 

equations and system dynamics, lack the ability to combine the microscopic behavior of 

individuals with the macroscopic behavior of a system [14]. Because charging station diffusion 

is a complex adaptive system that occurs through self-organization interaction among agents 

and between agents and the environment, the combination of these two features is critical. 

Agent-based modeling is a strong tool for bridging the micro-macro gap. 

Agent-based modeling (ABM) is a bottom-up technique that microscopically creates the 

operation logic of every system component while integrating the macro-level system 

performance, allowing macro-level patterns to emerge spontaneously [31]. The ABM approach 

has been widely used to assess, explain, and forecast the dissemination of new products and 

technologies (e.g., Huang et al. [7], Shi et al. [14], Pagani et al. [31], Ning et al. [32], Sun et al. 

[33], Silvia and Krause [34], Eppstein et al. [35]). An key evolutionary element of the ABM 

method in recent years has been the emphasis on the design of comprehensive dynamics, 

particularly demand-side dynamics [14]. Pagani et al. [31] introduced an agent-based 

evaluation model that takes into account EV user behavior as well as spatial distributions of 

EVs in order to predict and adjust future development of EV charging infrastructure. Shi et al. 

[14] used an evolutionary game model on a two-level heterogeneous social network to 

investigate low-carbon spread across companies. Their model incorporates demand-side 

dynamics with a complex network feature in the form of game payoffs. However, such studies 

with entire market dynamics are rare, and the majority of research only address just one-side 

dynamics, either supply or demand side dynamics.  

To the best of our knowledge, our work is the first to use a sophisticated agent-based 

evolutionary game model to design the whole market dynamics for encouraging charging 

station diffusion. In our approach, the evolutionary game model gives the rule of investing in 

charging stations to energy station firms, whilst the ABM describes consumer choice logic on 

the demand side and simulates the interaction mechanism of a system's adaptive components. 

Our model is similar to those of Fang et al. [11] and Huang et al. [7], who construct charging 

station investment decisions and customer purchase decisions for EVs, respectively. Their 

models, however, are both one-sided dynamics models that ignore the interplay between 

charging stations and EV adoption in complex networks. In this regard, our study aims to bridge 

a knowledge gap by creating new comprehensive dynamics for charging station diffusion. 
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3. Methods 

To facilitate comprehension of the research, this section discusses the research topics and 

mathematical formulations. 

3.1 Model description 

 Figure 1 depicts an analytical framework for the diffusion of charging stations. We 

examine two categories of agents in our analytical framework: customers (or vehicle users) and 

energy station enterprises. On the demand side, consumers have their own decision logic, which 

is impacted not only by their personal preferences, but also by macroeconomic issues such as 

oil prices, power prices, and the charging environment. Consumers will choose between battery 

electric vehicles (BEVs), plug-in hybrid electric vehicles (PHEVs), and conventional vehicles 

(CVs) based on this selection method. On the supply side, energy station firms attempt to 

satisfy the vehicle market's energy demands by making appropriate investment decisions. Of 

course, energy station businesses are profit-driven, especially in the competitive environment 

of regional energy networks. Any strategy chosen by energy station enterprises is influenced 

by customer behavior, neighbor strategy selection, and policy limits. The government functions 

as the primary market regulator by imposing subsidies or carbon taxes. 

 It is important to remember that our model is dynamic. Following the initialization of 

charging stations and various forms of vehicle occupancy, energy station enterprises and 

consumers will make appropriate strategy choices over time. These decisions alter the system 

environment, which in turn influences the strategy choices of relevant agents. Their interactions 

continue until the simulation ends. Our model is obviously a typical nonlinear dynamic 

complex system, and to simulate it, we developed a unique agent-based evolutionary game 

model to simulate charging station diffusion in complex networks.  
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Figure 1. Analytic framework for charging station diffusion. 

 

3.2 Agent-based evolutionary game model 

3.2.1 Consumer adoption behavior  

In our model, consumers are heterogeneous and bounded rational, and they aim to choose 

their desired vehicle among BEVs, PHEVs and CVs. Following the literatures, i.e., Kim et al. 

[36], Silvia and Krause [34] and Huang et al. [7], our study redesigns a consumer decision logic 

to describe their heterogeneous preferences. Assume that every consumer has one vehicle at 

least, and will replace their car when it dies. Consumer purchasing decision obeys the following 

rules: 1) they will buy the BEV if it is more cost-effective than the CV and there are charging 

stations nearby, or if they are environmentalists or technophiles; 2) they will make choice 

between the BEV and PHEV to maximize utility if the BEV is more cost-effective and there 

are no charging stations around; 3) they will make choice between PHEV and CV options if 

the CV is more cost-effective, or their environmental attitude and technology preference are 

general. Such decision logic implies the importance of charging facilities and is consistent with 

the decision logic of real consumers.  
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Five important aspects are developed to quantify the customer decision based on the 

aforementioned guidelines. Individuals often make purchase decisions by carefully considering 

various significant elements of a product; however, there is no defined sequence in which the 

corresponding assessment items are equally relevant [7]. The basis of obtaining or replacing a 

car is question A. When it comes time for consumers to make adoption decisions, a BEV may 

not be the best solution because their choices are based on the remaining four questions. 

Question B is about the BEV's cost effectiveness, and it's calculated using Eq (1), where ce  

is the cost effectiveness of the BEV, BEVpre  refers to the BEV price premium, BEVsav  is the 

lifetime operational cost savings of BEV, and y BEVer  is the assigned lifespan of a BEV. The 

price premium of BEV is shown in Eq. (2), where ,BEV CVp p are sales price of BEVs and CVs, 

respectively. The lifetime operational cost savings is shown in Eq. (3), where ,oil ep p  are the 

unit oil price and the unit electricity price, ,BEV CVm m  are the energy consumption per unit 

kilometer of CVs and BEVs, and VKT is annual vehicle kilometers traveled.  

 yBEV BEV BEVce pre sav er= − ⋅  (1) 

 BEV BEV CVpre p p= −  (2) 

 ( )BEV oil CV e BEVsav p m p m VKT= ⋅ − ⋅  (3) 

It's worth noting that all users are considered "potential BEV adopters." Because charging 

infrastructure is becoming more important, customers are more likely to buy or replace their 

car with a BEV if and only if their charging demands are met. This demand is contingent on 

the availability of charging stations. If the BEV is more cost-effective but there is no charging 

infrastructure accessible, they will choose between BEVs and PHEVs using the fuzzy 

technique for order preference by similarity to an ideal solution (F-TOPSIS). Consumers are 

driven to embrace BEVs regardless of whether they are cost effective, according to questions 

D and E. Assume that 2.5% prospective consumers are innovators and 16% are 



14 
 

environmentalists, respectively [34, 37]. Consumers will choose between PHEVs and CVs 

based on the same assessment process if the aforesaid requirements are not satisfied. 

Question F specifies the customer multi-vehicle choice assessment approach by using F-

TOPSIS. In order to configure F-TOPSIS, we must first gather consumer preference weights 

( )1 2, , , T
k k k nkw w w w=  and an expert assessment matrix EM  for three vehicle qualities. Using 

the two matrices, we could create a customer preference matrix kS , where k kS EM w= ⋅ . In 

this regard, the specific decision steps are as follows: 

Step 1: Constructing multi-product attribute evaluation matrix EM  from expert group, 

and use ije to represent the j attribute value of the i  product. 

 
11 12 1

21 22 2

1 2

n

n

m m mn

e e e
e e e

EM

e e e

 
 
 =
 
 
 





   



 (4) 

Step 2: Constructing consumer matrix kS based on the consumer product attribute matrix

( )1 2, , , T
k k k nkw w w w=  , where k kS E w= ⋅ . 

In reality, consumers often make purchase decisions based on their ambiguous perceptions. 

In this study, 7-point Likert scale is used to measure consumers' fuzzy perception and two types 

of language variable sets are used for evaluation: namely performance variable set and social 

network impact sensitivity variable set, as shown in Table 1. Noted that these variable sets were 

also used in the perceptual evaluation of the expert group in step 1.  

 
Table 1 linguistic variable set and triangular fuzzy number mapping. 

Variable Linguistic term 

Performance 
Very Poor 

(VP) 
Poor (P) 

Mid-Poor 

(MP) 
Fair (F) 

Mid-Fair 

(MF) 

Good 

(G) 

Very Good 

(VG) 

Social influence 
Very 

Weak 
Weak Mid-Weak Fair Mid-High High Very High 
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Triangular fuzzy 

number 
(0, 0,.1) (0, .1, .3) (.1, .3, .5) (.3, .5, .7) (.5, .7, .9) (.7,.9,1) (.9, 1, 1) 

 

Among them, the membership function ( ) : [0,1]a x Rµ → of triangular fuzzy numbers is in 

(5), where the number of rows ( )a xµ   indicates the degree to which element x belongs to fuzzy 

set a and 1 m na a a≤ ≤ . The cascade average comprehensive representation is used to transform 

the fuzzy number into the exact value ( )P a  , as shown in (6) and (7), where 

( ) ( )1 1, , , , ,m n m na a a a b b b b= = . 

 

( )

1
1

1

0

m
m

n
a m n

m n

x a a x a
a a
x ax a x a

a a
other

µ

− ≤ ≤ −
−

= ≤ ≤ −






，

，

，

 

(5) 

 ( ) ( )1 4 6m nP a a a a= + +  (6) 

 ( ) ( ) ( )1 14 6 4 6m n m nP a b a a a b b b⊗ = + + × + +      


 
(7) 

Based on the above rules, the independent consumer k  establishes a weight matrix

( )k k
ij m n

s x
×

=  for the weight ( )1 2, , , T
k k k nkw w w w=   of n  attributes 1 2, , , nA A A  of the product 

automobile agent. Thus, the consumer weight is denoted in (8), where 

( ) ( ) ( )1 2 3 1 2 31 14 4
6 6

k
ij ij jk ij ij ij jk jk jkx P e w e e e w w w= ⊗ = + + × + + , ( )1 2 3, ,ij ij ij ije e e e=  refers to the expert 

evaluation information for the j attribute of product i; ( )1 2 3, ,jk jk jk jkw w w w=   refers to the 

preference of consumer k on product attribute j. 
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Step 3: Standardizing the consumer perception weight matrix, getting the normalization 

vector 0
k

ijx , and the normalized matrix is calculated in (9), where 1,2, ,i m=   and 1,2, ,j n=  . 

 

( )
0 2

1

k
ijk

ij
m k

iji

x
x

x
=

=

∑
 (9) 

Noted that the normalization matrix of the small-world network model was used to 

establish the influence of the social network on consumer adoption decisions, as shown in (10), 

where kα indicates the consumer's sensitivity to the social network influence; kL indicates the 

number of directly connected neighbors of the consumer k ; and l
ijx is the normalized vector of 

the neighbor. 

 
( ) 01

k

l
ijk k

ij k ij k
l L k

x
x x

L
αθ αθ

∈

= − + ∑  (10) 

Step 4: Determining each consumer's ideal solution kp +  and anti-ideal solution kp −  by 

using equation (11) and (12), where 1J is the profitability index set, representing the optimal 

value on the i  index; 2J is the wastage index set, representing the worst value of the i  index. 

 { } ( ) ( ){ }1 2 1 2, , , max , min , 1,2, ,k k k k k k
n ij ijp x x x x j J x j J i m+ + + + + += = ∈ ∈ = 

 
(11) 

 { } ( ) ( ){ }1 2 1 2, , , max , min , 1,2, ,k k k k k k
n ij ijp x x x x j J x j J i m− − − − − −= = ∈ ∈ = 

 
(12) 

Step 5: Calculating the distance scale through the n  dimensional Euclidean distance 

formula. The distance from the target to the ideal solution kp + is k
id + , and the distance to the 

anti-ideal solution kp − is k
id − , where 1,2, ,i m=  . 
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 ( )2

1

nk k k
i ij jj

d x x+ +
=

= −∑  
(13) 

 ( )2

1

nk k k
i ij jj

d x x− −
=

= −∑  
(14) 

Step 6: Calculating the closeness of the ideal solution, as shown in equation (15), where 

0 1k
iC≤ ≤ . Noted that the goal is the worst if 0k

iC = and k
ip p −= , and the goal is the best if

1k
iC = and k

ip p += . 

 
,  1, 2, ,

k
k i
i k k

i i

dC i m
d d

−

+ −= =
+


 

(15) 

Step 7: Sorting the closeness of the ideal solution k
iC . The larger the value of closeness *C

is, the better the goal is. And the one with the largest value of k
iC  is the optimal decision-

making goal. 

 It should be noted that question B focuses on the sales and manufacturing costs of BEVs. 

In reality, as EV technology advances, the cost of creating BEVs will fall [7]. To model this 

process, we use the technical learning curve to show the cost-cutting tendency of BEVs. The 

technical learning curve is represented by (16). 

 ( ) 0
BEV BEVc Q c Q β−=  (16) 

where ( )BEVc Q   is the unit production cost when the BEV scale reaches Q  , 0
BEVc   is the 

beginning BEV production cost, and β  is a parameter that reacts to the technology's learning 

ability. As a result, the learning rate is 1 2 β−− , which is the proportion of production expenses 

that will be reduced when the production size is doubled. In terms of product pricing, we 

employ the cost-plus pricing approach, which allows us to designate the sale price of BEVs in 

(6), where 0µ >  is the mark-up on the product. 

 (1 )BEV BEVp cµ= +  (17) 

3.2.2 Energy station decision behavior 

 The network-based evolutionary game model is used to describe the decision behavior of 

energy station enterprises, which are profit-seeking. Several assumptions are stated below in 

this respect. 
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(1) N  stations are established in this game model, and each station has two options: invest in 

charging stations or invest in gas stations. 

(2) The information can be exchanged between neighbors; that is, the station has access to their 

neighbors' payoffs. A station's neighbors include CSn  charging stations and GSn  gas stations. 

(3) In the market, there are three categories of vehicles: BEVs, PHEVs, and CVs. The cars are 

scattered evenly around each station, with the average number given as ω . Furthermore, the 

PHEV is equivalent to 0.17 unit BEV and 0.83 unit CV1. 

(4) The cost and profit are calculated across the life cycle. 

 In our model, energy station profit is made up of two components: operational profit and 

policy profit. The operational profit is the difference between the revenue from energy sales 

and the cost of building the energy station. Subsidies or taxes on energy stations are examples 

of policy profit. In (18) and (19), the yearly expenses of investing in a charging station and a 

gas station are determined. (20) and (21) illustrate their yearly residual values, respectively. 

(1 )
(1 ) 1

cs

cs

L

csc cs L
r rC C

r
+

= ∗
+ −

 
(18) 

(1 )
(1 ) 1

gs

gs

L

gsc gs L
r rC C

r
+

= ∗
+ −

 
(19) 

csc
(1 )

(1 ) 1

cs

cs

L

cs L
r rRV RV

r
+

= ∗
+ −

 
(20) 

(1 )
(1 ) 1

gs

gs

L

gsc gs L
r rRV RV

r
+

= ∗
+ −

 
(21) 

 Despite the fact that energy station investment decisions follow the utility maximization 

theory, an energy station's strategy is impacted by the proportion of BEV consumers and the 

strategies of its neighbors in complex networks. If there are numerous charging stations in the 

same region, for example, the charging demand will be distributed equally among them. Instead, 

when there is only one charging station in the region and all others are gas stations, all charging 

demand will be diverted to this one charging station. We get 12 approach options based on 

neighbor and customer preferences, as shown in Table 2. The payoff matrixes for the majority 

of strategy combinations are simple to grasp, but we need to offer extra information for cases 

(1,0,1), (1,1,2), and (1,0,2). In case (1,0,1), if the station i  is a charging station and all of its 

neighbors are gas stations, yet all consumers in the local network around the station are EV 

 
1 According to the BYD Qin family that the most popular EV in China in 2021, the PHEV has a electric capacity of 9.03kWh, 
and the BEV’s is 53.1kWh. This means that the PHEV is is equal to 0.17 unit BEV or 0.83 unit CV.  
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users, the station will get all earnings, including those from its neighbors. Thus, operational 

profit of station i  is ( ) ( )1e ec BEV GSp p m VKT nω− ⋅ + . In case (1,1,2), if station i  is a charging 

station and all of its neighbors are charging stations, and all customers are PHEV users, the 

station will share the operational profit with their neighbors equitably, thus the profit is 

( ) 0.17e ec BEVp p m VKTω− ⋅  . In case (1,0,2), If station i   is a charging station and all of its 

neighbors are gas stations, and all of its customers are PHEV users, the station will get all 

operational earnings ( ) ( )1 0.17e ec BEV GSp p m VKT nω− ⋅ + ⋅  , including PHEV profits from its 

neighbors.  

 

Table 2. Payoff matrix, where 1 represents investing in a charging station or becoming a BEV user, and 2 
represents being a PHEV user. 

Strategies 
Payoff matrix of station  Station 

i  
Neighbors Consumer 

1 1 1 ( ) csc cs1 e ec BEV cs o cscase p p m VKT s C C RVω= − + − − +  
1 1 0 csc cs2 cs o cscase s C C RV= − − +  
1 1 2 ( ) csc cs3 0.17e ec BEV cs o cscase p p m VKT s C C RVω= − ⋅ + − − +  
1 0 1 ( ) ( ) csc cs4 1e ec BEV GS cs o cscase p p m VKT n s C C RVω= − ⋅ + + − − +  
1 0 0 csc cs5 cs o cscase s C C RV= − − +  
1 0 2 ( ) ( ) csc cs6 1 0.17e ec BEV GS cs o cscase p p m VKT n s C C RVω= − ⋅ + ⋅ + − − +  
0 1 1 7 gs gsc gso gscase t C C RV= − − − +  
0 1 0 ( ) ( )8 1oil oc CV CS gs gsc gso gscase p p m VKT n t C C RVω= − ⋅ + − − − +  
0 1 2 ( ) ( )9 1 0.83oil oc CV CS gs gsc gso gscase p p m VKT n t C C RVω= − ⋅ + ⋅ − − − +  
0 0 1 10 gs gsc gso gscase t C C RV= − − − +  
0 0 0 ( )11 oil oc CV gs gsc gso gscase p p m VKT t C C RVω= − − − − +   
0 0 2 ( )12 0.83oil oc CV gs gsc gso gscase p p m VKT t C C RVω= − ⋅ − − − +  

 

 According to section 3.2.1, we could calculate the market share of BEVs, PHEVs, and 

CVs and label them as BEVy , PHEVy  and CVy . Based on Table 3, we could obtain the expected 

payoffs of station i  being invested in charging stations, marked as CS
iU , and GS

iU  for gas 

stations. 

1 2 3
4 5 6

BEV
CS CS GS
i PHEV

CS GS CS GS
CV

y
case case casen nU y
case case casen n n n

y

 
   =    + +     

 

 

(22) 
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7 8 9
10 11 12

BEV
GS CS GS
i PHEV

CS GS CS GS
CV

y
case case casen nU y
case case casen n n n

y

 
   =    + +     

 

 

(23) 

   

3.2.3 Rulemaking of network evolution dynamics 

 The population of energy station enterprises evolves in a network with a certain topology. 

After receiving the payoffs, each station may alter its strategy by comparing profit with a 

neighbor chosen at random in complex networks. If its payoff is smaller than the payoff of a 

selected neighbor, it will replicate the neighbor's strategy with a probability given by (24) [38, 

39]. This update rule is often employed in the literature of complex network evolutionary 

games, for example, by Fang et al. [11], Li et al. [16] and Hu et al. [19]. 

1( )
1 ( ) /i j

i j

A A
exp U U k

τ ← =
 + − 

 (24) 

where the player j  will take the strategy of the player i  who receives a bigger payoff with 

the probability τ , and k  is the degree of noise effects that describes the uncertainties in the 

decision-making process such as fluctuations and mistakes. In our study, k  is set to 0.1, as it 

is in the work [40].  

 In this study, we employ the WS small-world network to link agents, which is applicable 

to both energy station enterprises and consumers. The primary rationale for this configuration 

is that the vast majority of real-world network connections can be described by the WS small-

world network topology [20]. The network structure is specifically characterized as ( ),G V E , 

where 1 2, ,..., nV v v v=  signifies n  energy station enterprises and 1 2, ,..., mE E E E=  denotes 

m  edges linking the nodes. The small world network has two distinguishing characteristics: 

neighbor set and randomized reconnection. A neighborhood set is a group of proxy-connected 

nodes, the number of which is referred to as a network degree. With a given probability, the 

agent gets reconnected to its neighbors at random. Furthermore, because we do not know the 

difference between theory network topologies and real-world energy station connections, we 

employ additional network topologies, such as BA scale-free network, EA random network, 

and NN coupled network, to investigate the impact of their network topology on charging 

station diffusion. Section 4.4 contains network descriptions, and extension experiments give 

more insights into the real-world energy station network. 

 

3.3 Simulation environment 
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 Our research is being conducted in a virtual metropolitan environment with 100 energy 

stations and a volume of approximately 20000 vehicles, which is based on Chongqing, China. 

Chongqing is a significant car production center in China, with 14 vehicle manufacturers, 8 

major auto brands, and 1,000 auto parts and accessories manufacturers [7]. Furthermore, 

Chongqing is among the first pilot cities to promote EVs (published in 2013), thus the general 

public has a solid understanding of EVs when compared to other cities in China. As a result, 

Chongqing is a fantastic starting point for developing the virtual simulation environment. Our 

simulation setting is equivalent to a virtual metropolis of 1.2 million people, based on the 0.168 

automobiles per capital in Chongqing. Because the model is sized at 1:10, 20,000 cars represent 

the entire 200,000. It is worth noting that the number of energy stations is significantly higher 

since charging stations have a lower service capacity than gas stations, but our setting is 

appropriate on the premise that a charging station services roughly 200 EVs on average. Figure 

2 depicts the simulated environment, in which green buildings and dots represent charging 

stations and EVs (comprised of BEVs and PHEVs), respectively, and gray houses and dots 

represent gas stations and CVs. 

 
Figure 2. Example simulation environment. 

 

4. Case study 

 Our research is based on a real-world scenario. The model's data is mostly obtained from 

BYD's official website, China's annual charging infrastructure development report, regulatory 
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announcements, and related research. The potential rule of charging station diffusion in 

complex networks is revealed by simulation findings. 

 

4.1 Parameter initialization 

The parameterization of our model is divided into two parts. The first is for energy station 

enterprises. A charging station's cost is divided into two parts: the cost of basic equipment and 

the cost of operation. A city charging station typically serves at least 100 vehicles per day and 

requires 10 chargers [11]. According to the data of Annual Development Report of China 

Charging Infrastructure[3], the price of 10 chargers is around RMB 1.61 million (USD 0.25 

million) and the cost of power distribution equipment including the transformer, power 

distribution cabinet, cable, and active filter package is around RMB 1.94 million (USD 0.3 

million). Thus, the basic investment cost of the charging station is 3.55 million (USD 0.55 

million). The total operating costs, including maintenance and labor, are around RMB 0.26. 

(USD 0.04 million). Gas stations in China are similar in size to charging stations. The cost of 

gas station equipment, which includes a tanker truck, a tank, and a level gauge, is around RMB 

2.26 million (USD 0.35 million), while the cost of operation is approximately RMB 0.19 

million (USD 0.03 million). In most provinces in China, subsidies for the building of charging 

stations account for 20% of overall investment [23], hence 𝑠𝑠𝑐𝑐𝑐𝑐 is RMB 0.71 million (USD 

0.11 million). Because carbon taxes on gas stations appear to be a topic of debate, we set the 

initial value of carbon taxes to 0. In general, the service life of a gas station or a charging station 

(slow charging, rapid charging, or super charging facility) is at least 10 years. In terms of 

electricity pricing, the sales tariff and purchased cost of electricity for charging facilities are 

1.5 RMB/kWh and 0.54 RMB/kWh, respectively, while the sales price and purchased cost of 

gasoline for gas stations are 7.5 RMB/liter and 5.13 RMB/liter, respectively [3]. The facility 

depreciation rate is 5%, according to the guideline "State-owned Assets Law of the People's 

Republic of China." 

To initialize the vehicle users, we choose the BYD Qin Pro EV as a representative model 

of the Chinese EV market since it was not only the highest rated car in the top 10 sales in 2020, 

but it also features three vehicle types, including BEVs, PHEVs, and CVs [7, 17]. The BEV 

version costs around RMB 0.1499 million (USD 23753), whereas the CV version costs around 

RMB 0.0798 million (USD 12645). The electricity consumption per unit kilometer is set at 

0.1324, which corresponds to an EV with a range of 400 kilometers and a battery capacity of 

53.1 kWh. CVs have an oil consumption of 0.062 liters per kilometer. According to [41], the 

average vehicle kilometers traveled per capita in China is 17,213 km. EVs will have a 
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cumulative market share of 2.6% by 2021, with BEVs accounting for 2.17% and PHEVs 

accounting for 0.53%. The market share of charging stations is 0.79% in 2021, based on the 

vehicle-pile rate of 3.3:1. We use a technical learning rate of 0.18 to explain the declining trend 

in BEV manufacturing costs, and use the same configuration for consumer decision parameters, 

as in work of [7]. Tables 3 indicate the expert group's product evaluation. Regarding consumer 

attribute weights (see Table 4) and consumer social sensitivity (see Table 5), we collected 685 

valid (all data 750, effective rate 91.33%), whose questionnaire constructs and demographic 

characteristics are shown in Appendix Table B1 - Table B2. 

 
Table 3. Vehicle attribute evaluation from the expert group. 

Mod

el 

Attributes 

Purchase 

price 

Maintenance 

cost 

Securi

ty 

Technology 

integration 

High 

power 

Low 

noise 

Carbon dioxide 

emission 

BEV F F F G MF G G 

PHE

V 
F MF MF MP G MF F 

CV G MF MF MP F F MP 

Notes: P, Poor; MP, Mid-Poor; F, Fair; MF, Mid-Fair; G, Good. 
 

Table 4. Consumers’ weights on seven attributes. 

Weight 

Attributes 

Purchase 

price 

Maintenance 

cost 

Securi

ty 

Technology 

integration 

High 

power 

Low 

noise 

Carbon dioxide 

emission 

Very 

Poor 
.0029 .0015 0 .0088 .0073 .0058 .0204 

Poor .0044 .0102 0 .0380 .0438 .0277 .0496 

Mid-

Poor 
.0146 .0569 .0015 .0715 .1139 .0628 .1036 

Fair .0599 .1197 .0190 .1401 .1825 .1314 .1606 

Mid-

Fair 
.2628 .3460 .1051 .3051 .3212 .2788 .2613 

Good .3547 .3533 .2526 .3241 .2642 .3635 .2248 

Very 

Good 
.3007 .1124 .6219 .1124 .0672 .1299 .1796 

 

Table 5. Consumer’s sensitivity levels of social influence. 
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Sensitivity level Very High High Mid-High Fair Mid-Weak Weak Very Weak 

Relative frequency .0788 .2934 .4307 .1241 .0511 .0131 .0088 

 

4.2 Results of charging station and electric vehicle diffusion 

 After getting all model parameters, we run simulation experiments in ANYLOGIC 8.5.2 

Professional, including baseline simulation experiments and sensitivity analyses of related 

factors. To eliminate error interference, these experiments were run 300 times on average. The 

baseline scenario is utilized specifically to highlight the diffusion outcomes of charging stations 

and EVs, which are backed by the experiment driven by base parameters, as shown in Figure 

3. For both charging station and EV diffusion, the entire evolutionary process is an S-shaped 

growth curve, which is compatible with the diffusion curve of new product diffusion theory by 

[37]. Under present policy conditions, the energy market consists of 62% charging stations and 

38% gas stations when it reaches equilibrium. In terms of EV diffusion, CVs will eventually 

be replaced by BEVs (75% market share) and PHEVs (25% market share), with PHEVs being 

the only models with fuel attributes, but BEVs not completely replacing PHEVs, as shown in 

Figure 3. This finding is compatible with China's present EV industry growth strategy since 

there is a possible pattern between CVs, BEVs, and PHEVs: PHEVs will replace CVs, followed 

by BEVs replacing PHEVs, until the whole market belongs to BEVs. If CV is removed from 

the market, consumers who favor fuel attributes between BEV and PHEV are more likely to 

pick PHEV, increasing PHEV's market share and supporting the establishment of gas stations. 

These findings also suggest that BEVs will continue to be favored over PHEVs until market 

conditions alter.  
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Figure 3. Proportion of charging stations and EVs in baseline scenario. 
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4.3 Sensitivity analysis 

4.3.1 Impact of construction subsidy and carbon tax policy 

 Policies like as carbon taxes and construction subsidies are still major incentives for the 

growth of charging stations [1, 8]. Currently, construction subsidies account for around 20% of 

overall investment costs; however, China lacks a comprehensive carbon tax policy framework 

for gas stations. Under present policy settings, Figure 4 depicts the impact of various 

construction subsidy schemes on charging station, PHEV and BEV diffusion. The findings 

show that when construction subsidies grow, the share of charging stations and BEVs is 

growing and that of PHEVs is declining. This finding is consistent with existing knowledge, 

and an interesting phenomenon is that subsidies for charging station construction contribute to 

the conversion of PHEVs to BEVs. When the market reaches equilibrium under the 20% 

construction subsidy incentive, the market share of charging stations is 62%, while the market 

share of BEVs is 64.98% and that of PHEVs is 35.02%.  
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Figure 4. Impact of construction subsidy policy on charging station, PHEVs and BEV 

diffusion. 

 

 Figure 5 depicts the effect of various carbon tax policies on charging station, PHEV and 

BEV adoption under current policy settings. Similar impact might be found in construction 

subsidy schemes. When the same setting is applied to construction subsidies, the policy 

intervention becomes balanced. When the equalization policy is implemented, the market share 

of charging stations is 77.6%, while the market share of BEVs is 79.06% and that of PHEVs is 

20.94%. By comparing Figure 4 and Figure 5, we can see that the market share of charging 

stations can increase by 17.06% when the equalization policy is implemented, while the market 

share of PHEVs to BEVs transforms by 14.08%. This is an important finding, and our research 
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demonstrates the importance of carbon tax policies, both for the diffusion of charging stations 

with BEVs and the conversion of PHEVs to BEVs. 
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Figure 5. Impact of carbon tax policy on charging station, PHEV and BEV diffusion 

 

4.3.2 Impact of electricity price 

 The role of electricity prices in encouraging charging stations and BEVs appears to be 

obvious: high electricity prices boost charging station construction while inhibiting BEV 

uptake. Adjusting electricity pricing is still an effective instrument for governments to use to 

manage the market. Figure 6 depicts the effect of electricity pricing on charging station, PHEV 

and BEV diffusion. Existing studies show that it is difficult for the charging station industry to 

diffuse when electricity prices are low, and that high electricity prices significantly increase the 

rate and level of charging station diffusion [11]. However, unlike the above perceptions, our 

research shows that there is an inverted U-shaped effect between electricity prices and charging 

station proliferation rather than a pure growth effect: appropriately high electricity prices can 

fuel charging station development, but too high electricity prices can inhibit charging station 

diffusion. This is also easy to explain, because early on the price of electricity is high, charging 

stations can get more revenue from the limited charging demand, the industry can develop, but 

the price of electricity is too high, charging demand will significantly decline and thus affect 

the charging station. 

 An interesting conclusion for the EV industry is that early high electricity prices benefit 

the EV industry and do not hinder its industrial development, contrary to common perceptions. 

This may be because higher electricity prices benefit the development of charging stations and 

promote their market proportion, which offsets the negative impact brought to BEV during the 

early diffusion. Of course, if the electricity price is too high, e.g., $1.7-2/kWh, the BEV industry 

proliferation will be difficult. If this is the case, charging stations are currently stifled and their 
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popularity is much lower than when electricity prices are cheap, as shown in Figure 6. This is 

a very fascinating finding, as it is the first time this phenomenon has been found in a model, 

and it provides evidence for independent pricing of charging stations, which also demonstrates 

the sophistication and validity of our simulation model. Finally, we find that higher electricity 

prices can only be bad for the PHEV market. This may be because when electricity prices were 

higher early in the market, more charging stations led to more BEV market growth and also 

contributed to the conversion of PHEVs to BEVs; however, when electricity prices were higher, 

CVs were more favorable compared to PHEVs, which also led to a shrinking PHEV market. 
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Figure 6. Impact of electricity price on charging station, PHEV and BEV diffusion 

 

4.3.3 Impact of consumer social network strength and technical learning rate  

 Consumers do not exist in a vacuum, and their decisions are frequently impacted by social 

networks [7]. Scholars in the field of consumer research argue that social networks significantly 

influence consumer adoption behavior, such as friend recommendations and product "word of 

mouth" [32]. Figure 7 depicts the influence of social network strength on charging station, 

PHEV and BEV diffusion under current customer knowledge. An interesting finding is that the 

higher the strength of the social network, the lower the level of diffusion for charging stations 

and BEVs, but the higher the level of diffusion for PHEVs. In other words, consumer social 

networks are not conducive to the diffusion of charging stations and BEVs and favor the 

diffusion of PHEVs. This is also in line with current market conditions in China, as the general 

public is less willing to accept BEVs and prefers PHEVs when purchasing a vehicle between 

PHEVs and BEVs [7]. This may be due to the immaturity of EV technology and the 

imperfection of supporting industries (such as insufficient charging facilities), resulting in 

negative consumer perceptions of the EV industry and the charging station industry. 
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Figure 7. Impact of consumer social network on charging station and BEV diffusion. 

 

 The influence of technical learning rate on charging station, PHEV and BEV diffusion is 

seen in Figure 8. Technology learning curve attempts to reduce the manufacturing cost of BEVs 

and is positively correlated with the proliferation of charging stations, PHEVs and BEVs, and 

to a lesser extent can facilitate the conversion of PHEVs to BEVs. First, it is worth noting that 

when β = 0.15 the learning rate of the technology is too low resulting in a higher purchase price 

of BEVs and thus consumers prefer to buy CVs, making it difficult for both charging stations 

and the EV industry to proliferate. Second, in comparison to charging station diffusion, 

technical learning rate has a greater impact on PHEV and BEV diffusion, particularly in the 

early stages. This is because a faster rate of technical learning results in BEVs being a more 

cost-effective product earlier, causing more prospective customers to purchase PHEVs and 

BEVs. However, despite a minor rise in charging station market share, a comparable impact to 

charging station diffusion appears to be ineffective. This may be because the charging station 

industry has reached a relatively high market level supported by subsidy policies and the EV 

market (as in Figure 8, when Times=10). The higher proportion of charging stations can 

accommodate more demand for EVs due to lower costs as a result of technological learning, 

offsetting the potential impact of technological learning. As a result, the charging station 

industry is less dependent on technological learning from EVs than the EV industry. This 

finding also provides new knowledge to understand the relationship between charging stations 

and the EV industry. 
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Figure 8. Impact of technical learning rate on charging station, PHEV and BEV diffusion. 

 
4.4 Extensions 

 To standardize the research, we use the regular network and random network as extensions 

to evaluate the influence of different network topologies on charging station and BEV diffusion. 

Our research employs four popular topologies: nearest-neighbor coupled network, WS small-

world network, BA scale-free network, and ER random network.  

Complex networks have evolved through three stages: regular networks, random networks, 

and complex networks, where regular networks are nearest-neighbor coupled networks and 

complex networks are WS small-world networks and BA scale-free networks. The nearest-

neighbor coupled network is best understood as a sensor network, in which each sensor only 

communicates with the sensors within its detecting range, and the charging station only 

interacts with the energy stations within its range. Of course, if charging station communication 

is not limited by range and may collaborate and compete with any energy station at any time, 

it is a random network. It is a complicated network if it is not any of the aforementioned. 

Complex networks feature three primary properties: small-world, scale-free, and high 

clustering, and are usually referred to as WS small-world networks and BA scale-free networks. 

The WS small world network can simulate most networks in the actual world, with the global 

village having the greatest image understanding and reflecting the features of tiny world and 

high clustering. If a charging station industry alliance or information platform is developed, 

this network may be thought of as a small world network. BA scale-free networks highlight the 

scale-free property, which means that a small number of nodes in the network have a higher 

degree, such as super-spreaders in an epidemic or leading technology corporations. If the 

charging station market is dominated by a few oligopolies, this network may be thought of as 

a BA scale-free network. The nearest-neighbor coupled network, complex networks (WS small 

world network and BA scale-free network), and random networks, in general, follow the law 
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that the agglomeration coefficient is from big to small and the average particle length is from 

small to large. Real-world networks are neither regular nor random, but rather a complex 

network structure weighted by both. 

 The nearest-neighbor coupled network is a regular network with N  nodes organized in 

a ring topology, and each node is linked to its closest 2d  neighbor nodes ( 2d = ) [42]. BA 

scale-free network begins with a linked network of 0m  nodes and adds a new node to connect 

to ( )0m m m≤  old nodes at each time step [17]. The connection probability is proportional to 

its degree, namely ( )
1

1

N

i i j
j

k k k
−

=

Π = ∑  , where ik   is the degree of old node i  . ER random 

network contains a total N  nodes, and all possible ( )1 2N N −  connections are connected 

with a certain random probability ( )
2

1
np

N N
=

−
 , where n   is the given edge number 

( ( )1 2n N N< − ) [43]. We use the same parameter settings as the baseline scenario in our 

analysis to examine the influence of different network topologies on charging station and BEV 

diffusion. 

 Figure 9 shows that charging stations and BEVs have similar diffusion trends, with the 

nearest-neighbor coupled network having the fastest diffusion, followed by WS small-world 

networks, BA scale-free networks, and ER random networks, while the PHEV market diffusion 

is just the opposite. According to the network topology theory, the nearest-neighbor coupled 

network has the largest clustering coefficient minimum mean path length, and the ER random 

network has the smallest clustering coefficient maximum mean path length, thus the nearest-

neighbor coupled network has a significantly higher information exchange rate than the ER 

random network [17]. Figure 9 shows that the effect of network topology on the proliferation 

of charging stations and BEVs can be divided into two priorities: prioritizing increasing the 

clustering factor followed by decreasing the average path length. This means that in reality, the 

government and enterprises should prioritize to enhance the strength of the network connection 

of charging stations (or BEVs), such as establishing industrial alliances or information 

platforms, and secondly expanding the industry scale. In addition, Moreover, we can find that 

this impact is just the opposite for PHEVs, which means that the network science theory can 

effectively guide the transformation of the EV industry from PHEVs to BEVs. 

 As for the WS small-world network and BA scale-free network, the diffusion speed and 

evolution level of these two network topologies are intermediate between that of the nearest-
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neighbor coupled network and that of the ER random network. This is because their average 

path length is shorter than that of the ER random network and their clustering coefficient is 

lower than that of the nearest-neighbor coupled network, their information propagation path is 

shorter than that of the ER random network and their node connection is looser than that of the 

nearest-neighbor coupled network [17]. Furthermore, we discover that the WS small-world 

network outperforms the BA scale-free network. In other words, increasing the clustering 

coefficient is better than increasing the individual degree for both industry diffusion. Based on 

the topological features of the two networks, this means that the government and enterprises 

should prioritize supporting charging station alliances or information platforms for the charging 

station industry, followed by assisting the leading charging station technology firms. 
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Figure 9. Impact of different network topologies on charging station and BEV diffusion. 

 

5. Discussion 

5.1 Theoretical contributions 

 Our research adds to the body of knowledge by developing a novel agent-based 

evolutionary game model that incorporates both charging station investment on the supply side 

and EV diffusion on the demand side. It highlights the importance of demand adoption behavior 

for the proliferation of charging stations. A full dynamics simulation model of this type can 

capture the influence of customers' microscopic adoption behavior on charging station 

diffusion arising at the system level. Based on this model, we found many interesting findings, 

such as an inverted U-shaped effect between electricity prices and the proliferation of charging 

stations and BEVs, where relevant factors (e.g., construction subsidies, carbon taxes, early high 

electricity prices, high clustering factor networks) contribute to the conversion of PHEVs to 

BEVs. To the best of our knowledge, no similar discoveries exist in the current literature, 

demonstrating the sophistication of our simulation model. In addition, our study is the first to 
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consider the complete dynamics of charging stations and EV diffusion, extending the research 

boundary into the field of complex systems. Our study examines the influence of different 

network topologies on charging station diffusion, which is overlooked by most research when 

examining the diffusion of clean technology. The results of the study show that the impact of 

complex networks can be divided into two priorities: prioritizing increasing the clustering 

coefficient, followed by decreasing the average path length. Moreover, for the diffusion of both 

industries, increasing the clustering coefficient is better than increasing the individual degree. 

These new findings add to the understanding of two-industry diffusion and provide new 

knowledge on industrial diffusion. 

 

5.2 Management implications 

 Our findings have implications for the diffusion of charging stations that incorporate 

customer behavior dynamics and are operated in complex networks. To summarize, BEVs 

remain the mainstream model, while PHEVs serve as a transitional replacement vehicle for 

CVs. We address five particular management implications based on such a demand, notably 

government policies, electricity prices, social networks, technical learning rates, and network 

topologies.  

 Government initiatives like as construction subsidies and carbon tax policies are effective 

instruments for promoting charging station diffusion. The most significant financial strain on 

the Chinese government is on the promotion of green technology [11]. Our study indicates that 

establishing a balanced approach may boost the market share of charging stations by 17.06% 

and BEVs by 14.08%. Currently, China does not have a carbon tax policy for gas stations, and 

our findings demonstrate the importance of implementing a balanced policy, especially when 

the government is under greater fiscal pressure. In addition, adjusting electricity prices can also 

aid in the proliferation of charging stations [25]. According to our research, high electricity 

prices do not necessarily impede the growth of BEVs, but rather stimulate the development of 

charging stations and EVs. Consider the "chicken-and-egg" link between EVs and charging 

stations, enabling high electricity prices early in the EV sector and gradually lowering them to 

avoid negative repercussions. This means charging stations should be given greater automated 

pricing authority, particularly early on.  

 In terms of social network influence, we find that it has a negative impact on BEV 

dissemination, which is consistent with the literature [7]. However, we also found that this 

negative impact can be passed on to the charging station industry and affect its proliferation. 
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Therefore, charging station enterprises should not overlook this influence, and they should 

actively participate in green customer nurturing operations to raise public awareness and 

enhance consumers' understanding of electric vehicles. In addition, we also discover that the 

impression of BEV technical learning rate has a minor influence on the proliferation of 

charging stations. This means that charging station development is important for electricity 

Therefore, instead of waiting for the development of BEV market, companies should plan 

ahead for investment in charging stations. 

 Finally, we look at how network topologies affect charging station and BEV diffusion. 

According to our findings, the influence of network topologies may be split into two priority 

levels: firstly clustering coefficient and secondly average path length. This means that in reality, 

the government and enterprises should prioritize to enhance the strength of the network 

connection of charging stations (or BEVs), such as establishing industrial alliances or 

information platforms, and secondly expanding the industry scale. In addition, Moreover, we 

can find that this impact is just the opposite for PHEVs, which means that the network science 

theory can effectively guide the transformation of the EV industry from PHEVs to BEVs. 

Furthermore, we discover that the WS small-world network outperforms the BA scale-free 

network. This means that the government and enterprises should prioritize supporting charging 

station alliances or information platforms for the charging station industry, followed by 

assisting the leading charging station technology firms. 

 

6. Conclusions and policy implications 

Our study presents an agent-based evolutionary game model to rethink the dynamics of 

charging station diffusion in a complex network to drive charging station diffusion. Unlike 

most previous research, this study incorporates the mechanism of customer adoption behavior 

into the dynamics of charging station diffusion, and the influence of network topologies is 

investigated. Meanwhile, the evolutionary game theory is proposed to simulate the boundedly 

rational decision-making process of energy station enterprises. A successful model should 

reproduce the fundamental features of target systems while also uncovering novel patterns that 

have not been recorded in earlier research [14]. Our work not only shows conclusions that are 

consistent with existing literature, such as the equilibriums coming from evolutionary games, 

but it also captures the influence of customers' microscopic adoption behavior on charging 

station diffusion emerging at the system level. We also utilize a case study to give more insights 

into management practices and to demonstrate the effectiveness of the proposed analytical 

framework. 
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 Our research yielded the following results and implications. First, the carbon tax policy is 

a forward-looking policy that, when combined with existing policies, has the potential to 

increase the market share of charging stations by 17.06% and the conversion of PHEVs to 

BEVs by 14.08%. Second, there is an inverted U-shaped effect between electricity prices and 

the proliferation of charging stations and BEVs, and high electricity prices do not always hinder 

the development of BEVs or the construction of charging stations. We should give charging 

station enterprises greater automated pricing power, particularly in the early stages. Third, the 

detrimental impact of social networks on BEVs can be passed to charging station proliferation. 

Charging station enterprises should educate the public about the benefits of adopting a low-

carbon lifestyle. Fourth, the rate of BEV technical learning has a minor influence on the 

expansion of charging stations. Rather than waiting for the BEV market to grow, enterprise 

investment in charging stations should be planned ahead of time. Firth, the impact of complex 

networks can be divided into two priorities: prioritizing increasing the clustering coefficient, 

followed by decreasing the average path length. Moreover, for the diffusion of both industries, 

increasing the clustering coefficient is better than increasing the individual degree. Therefore, 

the government and enterprises should give priority to establishing information platforms or 

industrial alliances, followed by supporting the development of leading technology enterprises 

and expanding the scale of the industry. Finally, relevant factors (e.g., construction subsidies, 

carbon taxes, early high electricity prices, high clustering factor networks) contribute to the 

conversion of PHEVs to BEVs. 
Because of the complexities of practical problems, several limitations remain. First, the 

policies under consideration in the study are static policies, but dynamic policies may improve 

the flexibility of government control. Future study may attempt to assess their impact. Second, 

the study's consumer assessment knowledge is a short-term information that impacts customer 

car decisions and is largely stable throughout the cycle. Future study might look at the evolution 

of consumer knowledge in diverse technology environments to increase the efficacy of long-

term decision-making. 
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Appendix: Questionnaire constructs and demographic characteristics 

Table A1. Questionnaire constructs 
Factors Measurement items 

purchase price I think the price of a vehicle is very important to the decision I make to 
purchase the vehicle. 

Maintenance cost I think the maintenance cost is very important to the decision I make to 
purchase the vehicle. 

Security I think technology security is very important to the decision I make to 
purchase the vehicle. 

Technology integration I think technology integration (i.e. imbedding more vehicle technologies) is 
very important to the decision I make to purchase the vehicle. 

High power I think high power is very important to the decision I make to purchase the 
vehicle. 

Low noise I think low noise is very important to the decision I make to purchase the 
vehicle. 

Carbon dioxide emission I think low carbon dioxide emission is very important to the decision I make 
to purchase the vehicle. 

Social network influence I think the influence of the circle of friends (e.g., a friend's recommendation 
or a friend's decision to buy a car) is important to my car purchase decision. 

 

Table A2. Demographic characteristics 

Characteristics Number Ratio(%) Characteristics Number Ratio(%) 

Gender     10001-15000 122 17.81 

Male 304 44.38 >15000 43 6.28 

Female 381 55.62 Occupation     

Age (In years)     Student 128 18.69 

18-24 108 15.77 Business 131 19.12 

25-34 349 50.95 Public servant 101 14.74 

35-44 174 25.40 Manufacturing and engineering 197 28.76 

45-65 54 7.88 Other 128 18.69 

Education level     Marriage     

High school or below 35 5.11 Unmarried 253 36.93 

Bachelor 499 72.85 Married 432 63.07 

Master 116 16.93 Family size     

Ph.D 35 5.11 1-2 memebers 97 14.16 

Monthly income (RMB)     3 members 268 39.12 

3001-5000 245 35.77 4 members 128 18.69 

5001-10000 275 40.15 5 memebers and more than 192 28.03 
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