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Abstract: Aim: The aim of this study was to differentiate the effects of spinal cord injury (SCI) and
central neuropathic pain (CNP) on effective connectivity during motor imagery of legs, where CNP
is typically experienced. Methods: Multichannel EEG was recorded during motor imagery of the
legs in 3 groups of people: able-bodied (N = 10), SCI with existing CNP (N = 10), and SCI with
no CNP (N = 20). The last group was followed up for 6 months to check for the onset of CNP.
Source reconstruction was performed to obtain cortical activity in 17 areas spanning sensorimotor
regions and pain matrix. Effective connectivity was calculated using the directed transfer function in
4 frequency bands and compared between groups. Results: A total of 50% of the SCI group with no
CNP developed CNP later. Statistically significant differences in effective connectivity were found
between all groups. The differences between groups were not dependent on the frequency band.
Outflows from the supplementary motor area were greater for the able-bodied group while the
outflows from the secondary somatosensory cortex were greater for the SCI groups. The group with
existing CNP showed the least differences from the able-bodied group, appearing to reverse the
effects of SCI. The connectivities involving the pain matrix were different between able-bodied and
SCI groups irrespective of CNP status, indicating their involvement in motor networks generally.
Significance: The study findings might help guide therapeutic interventions targeted at the brain for
CNP alleviation as well as motor recovery post SCI.

Keywords: spinal cord injury; central neuropathic pain; motor imagery; EEG; source reconstruction;
effective connectivity

1. Introduction

Spinal cord injury (SCI) is a devastating neurological condition that results in physical
disability and other secondary consequences such as central neuropathic pain (CNP) [1].
CNP is present in approximately 65% of people with SCI, in which the person experiences
pain, typically described as burning, tingling, stabbing, shooting, or an aching sensation at
or below the level of injury. CNP can happen even in complete injuries where there is no
motor or sensory function preserved below the level of injury [1].

Neurorehabilitation interventions that promote recovery and discourage maladaptive
neuroplasticity, manifesting as CNP or other conditions, include transcranial direct current
stimulation [2], neurofeedback [3], and brain-computer interfaces [4]. To this end, brain
reorganization post SCI can be studied using neuroimaging modalities such as functional
magnetic resonance imaging (fMRI) and electroencephalography (EEG) to guide brain-
targeted interventions. These studies record activity in a resting state or during movement
tasks, analyse the corresponding activation or connectivity and often compare it with
an able-bodied control group. Movement tasks typically include motor imagery (MI) or
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motor attempts. The former involves the person imagining the limb moving without
actually moving it, whereas the latter is relevant for people with paralysis who attempt
the movement but are not able to complete the execution. Most studies either exclusively
study SCI-induced CNP or do not control for the presence of CNP in SCI, as it is inevitably
present in the majority of people with SCI.

There have been many studies demonstrating neuroplasticity through changes in
brain activity post-SCI during the resting state [5–8]. In the subacute phase, people with
SCI show reduced alpha activity compared to able-bodied controls [5]. In the chronic phase
also, people with SCI show reduced alpha activity along with increased theta and beta
activity [6]. Further, in the chronic phase, compared to people with SCI and no CNP, people
with SCI and CNP show a significant slowing of the EEG spectrum [7,8]. Several studies
have shown brain reorganization corresponding to movement and reported changes in
brain activation compared to able-bodied people, both in terms of intensity and areas
involved [9–13]. Particularly, in subacute SCI, posterior shifts in activation during MI or
motor attempts of both affected and unaffected limbs have been found, accompanied by
increased sensorimotor activation [14]. In the chronic phase, the activations may move
back to anterior locations, typically accompanied by motor recovery [14]. In chronic SCI
with CNP, brain circuits involved in pain processing such as the prefrontal cortex, anterior
cingulate cortex, and insula are also activated [13,15,16].

There have also been studies on functional connectivity during a resting state using
fMRI and effective connectivity during MI using EEG [17]. The former is inferred from
correlations among measurements of neuronal activity and is defined as the statistical
dependencies of remote neurophysiological events [18]. The latter refers to the influence
of one neural system over another, is dynamic, and depends on a model of interactions or
coupling [18]. Both increases and decreases in connectivity between sensorimotor areas
have been reported in SCI compared to able-bodied volunteers using resting-state fMRI
in both subacute and chronic phases of injury [19–22]. Studies using EEG and specific MI
paradigms have shed further light on effective connectivity in different frequency bands,
albeit in chronic SCI [23–26]. These highlight differential interaction patterns of supplemen-
tary motor area and cingulate motor area in SCI and able-bodied cohorts [24,26,27].

The findings on activation patterns and connectivity provide insights into various
forms of reorganization post-SCI. However, most of the studies include people with chronic
SCI and chronic CNP, and most do not stratify the participants according to the presence
of CNP. Furthermore, according to a review on neuroplasticity after SCI and CNP, there
still remains limited evidence of structural and functional connectivity changes specific
to CNP [28]. We aim to address this research gap, especially in the subacute phase (up to
10 months post SCI [29]) of SCI where early intervention for CNP may be most effective.
We used EEG-based source reconstruction to derive effective connectivity between various
sensorimotor and pain regions during MI of the legs, an area where CNP is typically present.
We compared connectivity between able-bodied and subacute SCI groups at different stages
of CNP. The first objective is to differentiate the effects of SCI from the effects of CNP. The
second objective is to find predictors of CNP in connectivity patterns. These findings might
be relevant for the design of therapies targeting the brain of a person with SCI.

2. Materials and Method

This section has been summarized in the flowchart shown in Figure 1.
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Figure 1. Flow diagram summarizing the methods used in this paper. (a) Recruitment and follow-up
and (b) EEG signal processing and analysis. CAR: common average reference, ICA: independent
components analysis, FEM: finite element method, eLORETA: exact low-resolution electromagnetic
tomography, DTF: directed transfer function, GLM: generalised linear model, FDR: false discov-
ery rate.

2.1. Participants

The study is a registered clinical trial (clinicaltrials.gov identifier NCT021789917, ac-
cessed on 9 June 2022). People with subacute SCI and satisfying the general inclusion
criteria of age 18–75 years, ability to understand the task, and absence of other major
neurologic disorder or injury (i.e., stroke, brain injury, epilepsy, multiple sclerosis, cerebral
palsy, etc.) were screened for the study. Among the participants screened, the first 11 partic-
ipants with CNP were recruited. The presence of CNP was confirmed following the criteria
by Finnerup et al. [30]. In total, 20 participants with SCI and no CNP were further recruited
based on the published literature showing that half of the patients with SCI eventually
develop pain within the first year of SCI [31,32]. Then, 10 able-bodied volunteers were
recruited for the study with the same general inclusion criteria. Therefore, three groups
were formed initially: 10 able-bodied people, 11 people with sub-acute SCI and CNP, and
20 people with subacute SCI and no CNP.

The group with no CNP was followed up for 6 months post-recording to check for
CNP. Based on the presence of CNP, they were further divided into 2 groups—people who
did not develop pain and people who developed pain. To facilitate the identification of
groups, four acronyms are defined—ABP: Able-bodied participants, PwP: SCI participants
who had CNP at the time of recording, PnP: SCI participants who did not develop CNP,
and PdP: SCI participants who developed CNP.

clinicaltrials.gov
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The emergence of CNP which is a chronic pain was confirmed from patient records
as all patients leaving the hospital are required to have regular appointments at 1, 3, and
6 months after discharge. Our spinal unit (Queen Elizabeth National Spinal injuries unit) is
the only such hospital in the area, covering a population of 5 million, and people with SCI
leaving the hospital remain its lifelong patients, which facilitates follow up. Ideally, any
chronic pain should last for 6 months in order to be confirmed as chronic; neuropathic pain
can be detected much earlier (sometimes just weeks after injury) due to its characteristic
location below the level of injury and characteristic sensory descriptors, such as stinging
and burning and shooting pain, often accompanied with allodynia or hyperalgesia (though
not often in ASIA A patients, due to the lack of sensation) [33].

2.2. EEG Data

The EEG data were recorded using three gUSBAmp amplifiers (g.tec medical engi-
neering GmbH, Graz, Austria) using a subset of 48 electrodes [34] from the 10–10 standard
EEG electrode recording system [35]. An ear-linked reference was used with AFz acting
as ground. The sampling rate was 256 Hz, and the EEG was filtered in real time between
0.5 and 60 Hz with a notch filter at 50 Hz using 5th order IIR Butterworth filters. The
electrode impedances were kept below 5 kΩ.

The recording setup Is shown in Figure 2. Participants were seated approximately
1.5 m in front of a computer screen. A warning cue (cross) was displayed on the screen
from t = −1 s to t = 3 s. At t = 0 s, the initiation cue, in the form of an arrow pointing either
to the left, right, or down appeared on the screen. The left, right, and downwards arrows
represented the left-hand, right-hand, and leg MI, respectively. The initiation cue was
displayed until t = 1.25 s but the participants had been instructed to continue imagining
until the cross disappeared, i.e., for 3 s. The resting period between trials varied between
3 and 5 s to avoid the expectation of a stimulus. There were 6 runs of 30 trials, each lasting
5 min, resulting in a total of 180 trials, 60 for each type of MI.

Figure 2. Setup for EEG recording. The downward arrow is the cue to perform motor imagery of the
legs. The picture was taken with written consent from the participant.
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The EEG signals were preprocessed in EEGLAB [36]. First, the noisy trials with an
amplitude above 100 µV were removed. The signals were then re-referenced to a common
average reference. Independent component analysis [37], implemented using the Infomax
algorithm, was used to remove noisy components representing eye blinks, muscle artifacts,
and channel noise. A default residual variance of 0.8 was used to identify noisy components
for reference, but the spatial power distribution, power spectrum, and component time
series of each independent component for each participant were nevertheless visually
inspected alongsidedipole location, to finally remove a noisy component. On average, 3 out
of 60 trials were removed per MI type.

2.3. Source Time-Series

Time-domain source localisation was performed in the Fieldtrip toolbox to obtain a
time series for leg MI trials [38]. This study used only leg MI trials specifically to study CNP
because all participants with pain experienced pain in their legs, among other locations,
and had sensory-motor functions affected. The forward model was computed using a
finite element volume conduction model [39], based on a standard MRI template [40]. The
template was segmented into grey matter, white matter, scalp, skull, and cerebrospinal
fluid with conductivity values of 0.33, 0.14, 0.43, 0.01, and 1.79 S/m, respectively [41]. The
segmented brain volume was divided into a 3D mesh comprised of 4050 hexahedrons
(voxels), each belonging to one of the 5 tissues with a resolution of 1 cm.

An inverse model was implemented using “exact low-resolution electromagnetic
tomography” (eLORETA) [42]. eLORETA belongs to the family of inverse solutions called
LORETA, which calculate current distribution throughout the brain volume, with spatial
smoothness as a constraint. LORETA suffers from low spatial resolution. eLORETA
attempts to reduce the localisation error of LORETA and gives more importance to the
deeper sources. eLORETA is unbiased in the presence of measurement and structural
biological noise [43]. The regularization parameter lambda was set to 0.05. The source time
series were obtained for 5 s (2 s pre and 3 s post MI cue) in the direction orthogonal to the
cortex for each voxel [24].

The source time series was then averaged over voxels in 17 regions of interest, spanning
sensorimotor and pain areas of the cortex, as shown in Figure 3 [44]. The leg primary motor
cortex (M1) and primary sensory cortex (S1) areas were not considered specifically, rather
the entire M1 and S1 were included. There were several reasons for this choice. Firstly,
the M1 region of legs is located deeper in the central sulcus which limits spatial precision.
Previous studies in the field such as Gustin et al. found activation of the M1 leg area
during a leg motor imagery task [12]. However, those are fMRI studies which have a
high spatial resolution, whereas this is an EEG study with lower spatial resolution. To
get reasonable resolution, a source reconstruction method was used, which can be more
accurate if subject-specific MRI is used to create a forward model. Since a standard MRI
was used, we could not be sure that the same voxel locations would represent leg area in
all participants. Secondly, in a study with chronic SCI participants, we showed that the
presence of CNP affects sensorimotor cortex globally, thus, to increase the sensitivity of
the analysis, the general M1 was considered [13]. Thirdly, movement activation patterns
change post SCI as the brain reorganizes, such as lateral and medial shifts in activation [14].

2.4. Source Connectivity

The source time series were analysed for the period 0.4 s to 1.4 s following the presen-
tation of the MI cue i.e., the motor preparation period. Source connectivity was obtained by
fitting a multivariate autoregressive model (MVAR) to the sources and deriving a directed
transfer function (DTF) from the resultant transfer function in the frequency domain [45].
For a multivariate k sourced process X(t) = (X1(t),X2(t), . . . .,Xk(t)), the model takes the form:

X(t) =
p

∑
j=1

A(j)X(t− j) + E(t) (1)
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where E(t) are vectors of size k and the coefficients A are k × k sized matrices. This equation
can be transformed to describe relations in the frequency domain. After changing the sign
of A and applying Z transform, Equations (2)–(4) can be derived:

E( f ) = A( f )X( f ) (2)

X( f ) = A−1( f )E( f ) = H( f )E( f ) (3)

H( f ) = ∑p
m=0(A(m)exp(−2πim f ∆t))−1 (4)

The model can be considered as a linear filter with white noise E(f) on its input and
the signals X(f) on its output. The matrix of filter coefficients H(f) is the transfer matrix of
the system. It contains information about all relations between source signals in the given
set including the phase relations between signals. Based on the properties of the transfer
matrix in MVAR, DTF is calculated according to Equation (5) [46]. The DTF describes
the causal influence of source j on source i at frequency f. The above equation defines a
normalized version of the DTF, which takes values from 0 to 1 producing a ratio between
the inflow from source j to source i to all the inflows to source i. The DTF shows not only
direct but also cascade flows.

DTF2
j→i( f ) =

∣∣Hi,j( f )
∣∣2

∑k
m=1|Him( f )|2

(5)

For each participant, the order of the MVAR model was evaluated using the Akaike
information criterion [13], implemented in MVGC multivariate Granger causality toolbox
in MATLAB [14]. The model order was set to 15, as this was the most frequently occurring
order over all participants. This was followed by obtaining the DTF spectrum, implemented
in Fieldtrip. The DTF was averaged in theta (4–7 Hz), alpha (8–12 Hz), lower beta (13–20),
and higher beta (21–30 Hz) bands. This resulted in 272 directed connections for each
participant in each frequency band.

Figure 3. The approximate locations of regions of interest used in this study: right and left premotor
cortex (RPMC, LPMC), right and left supplementary motor area (RSMA, LSMA), right and left
primary motor cortex (RM1, LM1), right and left somatosensory association cortex (RSAC, LSAC),
right and left secondary somatosensory cortex (RSSC, LSSC), right and left primary somatosensory
cortex (RS1, LS1), cingulate motor area (CMA), right and left prefrontal cortex (RPFC, LPFC), insular
cortex (IC), and anterior cingulate cortex (ACC). The IC is located deep within the lateral sulcus of
the brain.
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2.5. Statistics

Generalised linear models (GLM) were used to compare connectivity between groups.
These models generalize regression analyses, integral to parametric ANOVA type tests, to
discrete or continuous non-normal data [47]. This is facilitated via the use of a link function
that transforms the response space into a modeling space, where the usual linear regression
can be performed.

The GLMs were implemented in RStudio (R version 4.2.0) using the “stats” package.
For each of the 272 connections, a gamma family GLM with its canonical inverse link
function was fitted with the group, frequency, and “group * frequency” interaction as
fixed-effect predictors. Type III ANOVA-type p-Values were obtained and a correction
for multiple comparisons was performed using the false discovery rate method [48]. The
gamma family GLM was chosen as the connectivity distribution was positively skewed [49].
The model residuals were assessed for normality using the Shapiro–Wilk test (p < 0.05)
and visual assessment of QQ plots. In case of a significant main effect of the group at
a level of p < 0.05, post-hoc tests were conducted with Tukey’s method for correction of
multiple comparisons.

3. Results
3.1. Participant Details

The follow-up session revealed that among the twenty people who did not have CNP at
the time of recording, ten developed CNP. The leg MI data was missing for two participants
in the PdP group and one participant in the PwP group. The relevant demographics
for all other participants are shown in Table 1. According to the American Spinal cord
injury (ASIA) impairment scale, 60% of participants in PnP, 75% in PdP, and 50% in the
PwP group had a complete injury, whereas others had an incomplete injury. Further, all
participants in PnP, 75% in PdP, and 70% in the PwP group were paraplegics, whereas
others were tetraplegics. All participants with pain reported pain larger than four on a
visual numeric scale (range 0–10) and had below-level CNP in addition to at-level in some.
The CNP-related demographics are presented in Appendix A Table A1.

Table 1. Demographics of the three groups of SCI participants. Lev and Com correspond to ASIA
impairment scale level, and completeness of injury respectively [35]. ABP: able-bodied participants;
PnP: SCI participants who had no pain at the time of EEG recording and did not develop pain later;
PdP: SCI participants who had no pain at the time of EEG recording but developed pain later; PwP:
SCI: participants who had pain at the time of EEG recording. Medications PG, GP, and TR refer to
pregabalin, gabapentin, and tramadol respectively. A: complete loss of sensory and motor function;
B: complete loss of motor functions and some sensory function spared, C: and D: incomplete loss of
both sensory and motor function, motor impairment being larger in group C. Data are presented as
mean (M) and standard deviation (SD).

Group No 1 2 3 4 5 6 7 8 9 10 M (SD)

ABP Age 37 32 36 34 32 27 45 34 49 27 35 (7)

PnP

Age 51 22 47 41 59 43 24 38 62 34 42 (13)
Lev T7/T10 L1 T11 T12 T6 T6/T7 L1 L1 T3/T5 T6 -
Com D B D A A B A A A A -

Weeks
with
SCI

12 12 7 4 12 21 7 4 10 10 10 (5)

PdP

Age 70 49 19 69 32 46 49 32 - - 46 (18)
Lev T7/T8 T12 C5/C6 L2 T3 T5 T6 C3 - - -
Com D A A B A A A A - - -

Weeks
with
SCI

9 6 12 6 24 6 4 6 - - 9 (6)

PwP

Age 33 59 27 32 30 59 29 37 49 75 43 (16)
Lev T12 T7/T8 C5/C6 T3 T10 T8 C3 T6 C4 T6 -
Com B A A A A C D B A C -

Weeks
with
SCI

20 12 17 24 12 26 6 28 6 6 16 (9)
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3.2. Results of Statistical Analysis

In total, 121 of the 272 model residuals were normally distributed according to the
Shapiro–Wilks test. For the rest, the QQ plots indicated slight deviations from normality.
The connections showing a significant difference are shown in Appendix A Table A2 along
with p-values for the main effect of the group and mean and confidence intervals for
each group. The results of the post-hoc analyses are presented in Figures 4 and 5 for the
differences between ABP and SCI groups, and differences within SCI groups, respectively.

Figure 4. Significant differences in connectivity between able-bodied participants (ABP) and SCI
groups: (a) PnP, (b) PdP, and (c) PwP. The SCI groups PwP, PnP, and PdP represent SCI participants
with CNP at the time of recording, those who did not have CNP at the time of recording and remained
CNP-free, and those who did not have CNP at the time of recording but developed CNP later. The
solid lines indicate that the second group has greater connectivity than the first group, whereas the
dashed lines indicate the opposite. Source areas are marked in bold whereas sink areas are non-bold.

No interactions between group and frequency were found, implying that the differ-
ences between groups are independent of the frequency band. The DTF spectrum for
the connections showing a significant difference between any two groups is shown in
Appendix A Figures A1–A7 for reference.

3.3. Differences between ABP and SCI

The connections showing a significant difference between ABP and SCI groups are
presented in Figure 4. The ABP showed the most contrast to the PdP group, followed by
PnP and PwP. These differences were governed mostly by connections from the RSSC and
LSMA. Among sensory areas, all SCI groups showed increased outflow from the RSSC
to left sensory areas, pain areas, and motor areas of both sides, except the RM1. The RS1
showed the same trend but only for its connection to LSSC.
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Figure 5. Significant differences in connectivity between SCI groups: (a) PdP vs. PnP, (b) PwP vs.
PdP, and (c) PwP vs. PnP. PwP, PnP, and PdP represent SCI participants with CNP at the time of
recording, those who did not have CNP at the time of recording and remained CNP-free, and those
who did not have CNP at the time of recording but developed CNP later. The solid lines indicate that
the second group has greater connectivity than the first group, whereas the dashed lines indicate the
opposite. Source areas are marked in bold whereas sink areas are non-bold.

Among the motor areas, SCI groups PdP and PnP showed decreased outflow from the
LSMA to the right motor areas and left sensory areas. PwP showed decreased outflow only
from the LSMA to the LSAC. All SCI groups showed increased outflow from the RM1 to
the CMA.

3.4. Differences between SCI Groups

The connections showing a significant difference within SCI groups are presented
in Figure 5. The most differences were found between PdP and PwP, whereas PnP and
PwP showed the fewest differences. The connections from RSSC were different between
PdP and PwP as well as PdP and PnP, whereas PdP showed more outflow to the right
motor, pain (except IC), left motor, and left sensory areas. The connectivity from the LSMA
was significantly different between the three groups such that PwP > PnP > PdP. For the
difference between PdP and PnP, the sinks were the RSMA, CMA, and LSSC. For the
difference between PwP and PnP, the sinks excluded the CMA and additionally included
the RPMC, LPMC, and LS1. For the difference between PwP and PdP, the LSAC was further
involved in addition to the areas mentioned before.

4. Discussion

We analysed how SCI and different phases of CNP affect connectivity during MI of the
legs. The difference between able-bodied and SCI groups was larger than the differences
within SCI groups: PwP (existing CNP), PnP (no CNP at the time of recording as well
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as on follow-up), and PdP (no CNP at the time of recording but developed CNP later).
Therefore, it appears that paralysis affected connectivity more than CNP in the subacute
phase. The differences between groups were independent of the frequency band. Although
this has been demonstrated before when comparing effective connectivity between SCI
and able-bodied people [24], it is possible that the frequency-specific differences were not
large enough in the subacute phase of the injury. Most studies in the past have focused
on chronic SCI whereas this study focused on subacute SCI. The first objective of the
study was to differentiate between the effects of CNP and the effects of SCI. Based on
our findings, subacute SCI seems to be associated with decreases in connectivity from the
motor preparation region supplementary motor area and increases in connectivity to and
from the secondary somatosensory cortex. CNP appears to reverse SCI-induced effective
connectivity changes.

MI recruits premotor regions such as the bilateral supplementary motor area (SMA)
and premotor cortex which are involved in motor preparation [50]. Although we did not
find changes in outflows from the premotor cortex between groups, outflows from the
SMA presented differences across all frequency bands, being greater for ABP compared to
PdP and PnP. In able-bodied volunteers, Alkinoos et al. showed a high output informa-
tion exchange between the SMAs of both hemispheres as well as between the SMA and
primary motor regions and attributed it to a regulative role of SMA during leg movement
planning [51]. In a study by Fallani et al., the chronic SCI participants showed a remarkable
outflow from SMA areas whereas the able-bodied participants showed an outflow from the
foot primary motor cortex area in the beta frequency band during attempted movement of
the right foot [25]. Hou et al. showed that resting-state functional connectivity decreases
between bilateral SMAs and between the right M1 and right SMA are associated with
poor recovery whereas the opposite is associated with good recovery [20]. Therefore, even
though previous studies have identified SMA as an important outflow hub for SCI, our
findings indicate that the strength of this outflow is still greater in able-bodied people.

Contrary to the results at the SMA, all SCI groups showed greater outflow from
the right primary motor cortex to the cingulate motor area compared to the ABP group.
Whereas some studies have reported MI to be predominantly associated with cortical
regions involved in the planning and preparation of movements, others point toward the
participation of the primary motor cortex, albeit in a limited number of participants [52].
Previous studies have reported increases in primary motor cortex connectivity to other
areas in both the subacute and chronic phases of SCI but in the resting state [19,21]. It
might be possible that post-SCI, instead of premotor regions, primary and secondary
sensorimotor areas get involved, as a form of motor adaptation [53]. Among all motor
areas, only the cingulate motor area demonstrated increased inflow; it has been shown
to be an important hub in both able-bodied and SCI motor networks [24,26,27] with the
researchers attributing it to the increased effort required by SCI participants to perform a
motor task of the paralysed limb [54,55].

The strength of outflows from the right secondary somatosensory cortex (SSC) and
primary somatosensory cortex was greater for all SCI groups. We also found that sensory
areas of the left hemisphere acted as sinks for the SMA, where decreased inflows were
found. Even though the parietal cortex has been shown to be active during MI across
many studies [56], the increased connectivity in subacute SCI compared to ABP can also be
explained by posterior shifts in both upper limb and lower limb motor activation observed
immediately post-SCI, which relocate anteriorly as recovery progresses [14]. Sensory areas
project to the corticospinal tract and thus can compensate for the loss of primary motor
cortex axons [57]. Even in chronic complete SCI, a larger involvement of the parietal
cortex around MI onset has been shown [23]. The inflow of information from the cingulate
motor area and SMA to the superior parietal cortex (which contains the somatosensory
association cortex) was found to be a unique interaction present in the MI network for the
chronic SCI cohort [26]. Cramer et al. demonstrated that although both SCI and controls
showed an activation increase in the primary motor cortex during right foot MI, only
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the SCI group showed an activation increase in the primary somatosensory cortex [58].
Despitepeople with complete SCI lacking afferent inputs to the somatosensory cortex, the
posterior shifts are still prevalent and rather permanent, possibly due to a lack of anterior
shifts later, associated with lack of recovery [14,58]. Even though primary and secondary
somatosensory cortices are part of the pain matrix [44], and increased sensory activation
has been suggested owing to CNP [59], it can be ruled out here because the changes were
seen across all SCI groups.

The inflow to all pain areas from the right SSC was increased in SCI groups, irrespective
of the CNP status. On one hand, it is likely that the MI period was not long enough to
evoke CNP in the PwP group unlike previous studies [15,16]. On the other hand, all areas
of the pain matrix [44] have been found to be associated with MI, such as the bilateral
inferior frontal gyri and anterior insula [56], prefrontal cortex [60,61], and anterior cingulate
cortex [54,55]. The anterior cingulate cortex plays a role in the affective or emotional
component of pain, thus we would have expected increased connectivity only in the PwP
group but this was not the case [62]. Moreover, PwP showed the fewest differences from
ABP. Our research group has demonstrated an overactive sensorimotor cortex in chronic SCI
participants with CNP [9,63]. It might be possible that an overactive sensorimotor cortex
is also present in the subacute stage and reversed the effect of SCI on motor areas. This
overactivation might be a cause, or an effect of hyperconnectivity between somatomotor
components demonstrated previously in chronic CNP [16]. Jutzeler et al. showed that
people with chronic SCI and CNP are more similar in activation to able-bodied controls
than those that are CNP free, and demonstrate less cortical reorganization [64]. The authors
interpreted that painful sensory input arising from deafferented areas of the body might
have maintained cortical representation, or inversely, a lack of cortical reorganization may
have caused CNP. Our findings are reflective of a similar trend in the subacute phase.

The second objective of the study was to find predictors of CNP in the connectiv-
ity patterns. The differences between different SCI groups involved the same areas as
those governing differences between ABP and SCI groups, namely, the right SSC and left
SMA. The outflow from the left SMA to right motor areas and left sensory areas were
different between the three groups such that it was highest for PwP, followed by PnP, and
the lowest for PdP. In the context of ABP vs SCI findings, where we hypothesized that
hyperconnectivity owing to CNP may have reversed the effect of SCI, the PwP group
having the largest connectivity among SCI groups for SMA outflows is plausible. With
this logic, we would have expected the largest connectivity of the PwP group even for
the right SSC outflows as it is part of the pain matrix. In fact, Wrigley et. al. showed
that somatosensory reorganization was correlated with ongoing pain intensity in chronic
complete SCI [65]. However, in this study, instead of PwP who had ongoing pain, the PdP
group, who developed CNP later, showed the largest outflows from the right SSC. It has
been proposed that central sensitization in nociceptive pathways and adaptive plasticity
of motor learning share common mechanisms and compete with each other [66]. It could
be that hyperconnectivity from the right SSC might serve an adaptive purpose initially to
support efferent activation, however, in the long run, might contribute to CNP symptoms
(maladaptive plasticity) if not reversed.

The findings of this study might be useful to guide brain-targeted interventions. Areas
such as the SMA [67], premotor cortex [68], and primary motor cortex [69] have been the
target for upregulation in neurofeedback studies, consequently increasing their functional
connectivity to other brain regions. Neurofeedback interventions also target connectivity
between motor regions directly [70]. As decreased SMA connectivity is associated with
poor recovery, the SMA could be the most likely therapeutic target for neurofeedback-
based SCI treatments to enhance motor recovery. Somatosensory stimulation has been
shown to augment functional recovery [71], increase cortical excitability [72], and influence
reorganization positively [73]. The results of this study support somatosensory stimulation
because as the somatosensory areas get more connected to the corticospinal tract via an
increase in afferent (sensory) inputs, the hyperconnectivity of those areas can decrease for
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efferent (motor) output (a compensatory mechanism) and gradually contribute to anterior
shifts (original representation) in activation. Moreover, CNP status should be monitored
through these interventions as changes in sensory connectivity might be related to both
adaptive and maladaptive plasticity.

In a previous work on this dataset, Vuckovic et al. (2018)compared age between
groups using ANOVA and found no statistical differences [34]. However, SCI groups with
pain had several participants quite older than the able-bodied group. Ageing has been
associated with enhanced connectivity in the core motor network (i.e., premotor cortex and
primary motor cortex) [74–77] as well between prefrontal and motor areas corresponding
to upper limb movement [78]. For the lower limb MI, similar connectivity studies are scarce
however activation studies point towards increased activity of premotor, prefrontal, and
somatosensory cortices [79,80]. Among all findings, the increased connectivity from the
somatosensory cortices to prefrontal and premotor areas, for the SCI group, may have been
influenced by age. However, at the same time, there was a decreased connectivity from
the premotor supplementary motor area in all SCI groups compared to the able-bodied
group. Nevertheless, the influence would be to a lower degree as ageing studies typically
have an average age of 60, whereas the average age in this study was less than 50 for the
SCI groups.

There are several limitations of this study. The first is a small sample size, although it
is in line with similar studies on SCI connectivity [24,27,81]. The second limitation is that
the SCI participants are of mixed characteristics—paraplegic and tetraplegic, both complete
and incomplete, therefore potentially confounding the analysis. We tried to minimize this
effect by analysing MI of legs only as it was affected in all SCI participants and the region
where most participants of both CNP groups experienced CNP.

The next limitation of this study is the use of source reconstruction to derive cortical
signals from scalp signals, as it is an ill-defined problem, and several factors affect the
accuracy of derivatives such as the use of standard MRI as opposed to subject-specific
MRI and how well the actual sources comply with the assumption of source model [82].
However, eLORETA seemed suitable for the analysis as deeper sources were included in
the regions of interest and it lowers localisation error for deeper sources [42]. It has also
been shown to be more accurate than its more popular counterpart sLORETA [83]. Finally,
surrogate distributions were not used to threshold the original connectivity distribution,
a recommended method to avoid spurious connectivity due to noise or volume conduc-
tion [84]. However, the connectivity method used is insensitive to volume conduction and
very robust with respect to noise [45].

Overall, the results of this study encourage future connectivity research on SCI and
CNP with large sample sizes to enable analysis considering the various confounders such
as age, level of injury, and completeness of injury into account. Future studies should be
longitudinal andrecord motor recovery along with CNP status to address the interaction
between their effects on cortical connectivity. Further, structural MRIs could be recorded
for each participant to increase the accuracy of derived EEG sources.

5. Conclusions

Effective connectivity during MI of a painful part of the body is influenced more by
SCI than CNP. CNP seems to reduce the effects of motor connectivity changes owing to
SCI. The cortical and subcortical areas typically associated with CNP but also associated
with MI, do not show a differential connectivity pattern for SCI-induced CNP. Changes in
sensory connectivity might reflect adaptive as well as maladaptive plasticity.
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secondary somatosensory cortex; LSSC-left secondary somatosensory cortex; RS1—right primary so-
matosensory cortex; LS1-left primary somatosensory cortex; CMA—cingulate motor area; RPFC—right
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Appendix A

Table A1. Demographics of groups with existing pain (PwP) and future pain (PdP). VNS refers to
a visual numeric scale, where participants were asked to select their pain level on a 10-point scale
where 0 represents no pain and 10 represents the worst pain imaginable.

Group No 1 2 3 4 5 6 7 8 9 10 M (SD)

PdP

Weeks
with
pain
(post-

recording)

6 10 4 4 8 7 2 4 - - 6 (3)

Location Feet
At and
below
level

Hands Left leg
At and
below
level

At and
below
level

At and
below
level

Hands - - -

Pain
VNS 4 2 6 1 4 4 6 2 - - 4 (2)

PwP

Weeks
Before
pain

20 12 15 6 12 26 6 28 6 6 14 (8)

Location
At and
below
level

At and
below
level

Hands
and

Buttock

At and
below
level

Legs
and feet

At level
and feet

Right
hand

Right
leg Hands

At and
below
level

-

Pain
VNS 9 6 5 5 7 5 6 8 7 7 6 (1)

Meds PG GP TR PG - - - PG GP GP -



Sensors 2022, 22, 6337 14 of 21

Table A2. GLM p-Values of the main effect of group in connections showing a significant difference.
The mean (M) and confidence interval (CI) of the connectivity values are stated for those groups.
ABP: able-bodied participants; PnP: SCI participants who had no pain at the time of EEG recording
and did not develop pain later; PdP: SCI participants who had no pain at the time of EEG recording
but developed pain later; PwP: SCI: participants who had pain at the time of EEG recording.

S no. Connection ABP
M [95% CI]

PnP
M [95% CI]

PdP
M [95% CI]

PwP
M [95% CI]

Main
p-Value

FDR
Adjusted

1 RSSC to
RPMC 0.05 [0.04 0.06] 0.09 [0.08 0.11] 0.14 [0.12 0.18] 0.08 [0.07 0.10] 0.0002 0.0072

2 RSSC to
RSMA 0.05 [0.04 0.06] 0.07 [0.06 0.09] 0.14 [0.11 0.18] 0.08 [0.07 0.10] 0.0027 0.0348

3 RSSC to
CMA 0.04 [0.03 0.05] 0.07 [0.06 0.09] 0.14 [0.12 0.19] 0.08 [0.07 0.10] 2.61 × 10−6 0.0003

4 RSSC to
RPFC 0.04 [0.04 0.06] 0.09 [0.07 0.11] 0.14 [0.11 0.18] 0.09 [0.08 0.12] 0.0007 0.0129

5 RSSC to
LPFC 0.06 [0.05 0.07] 0.07 [0.06 0.09] 0.14 [0.11 0.17] 0.08 [0.07 0.10] 0.0015 0.0227

6 RSSC to I 0.05 [0.04 0.07] 0.10 [0.08 0.13] 0.12 [0.10 0.15] 0.09 [0.07 0.11] 0.001 0.0171

7 RSSC to ACC 0.05 [0.04 0.06] 0.09 [0.08 0.11] 0.14 [0.12 0.19] 0.09 [0.08 0.12] 0.0004 0.0109

8 RSSC to
LPMC 0.04 [0.03 0.05] 0.09 [0.08 0.11] 0.12 [0.10 0.16] 0.08 [0.07 0.10] 1.15 × 10−5 0.001

9 RSSC to
LSMA 0.05 [0.04 0.06] 0.07 [0.06 0.09] 0.13 [0.11 0.17] 0.08 [0.07 0.10] 0.0028 0.0351

10 RSSC to LM1 0.04 [0.03 0.05] 0.09 [0.08 0.11] 0.13 [0.11 0.16] 0.09 [0.08 0.11] 4.24 × 10−5 0.0019

11 RSSC to
LSAC 0.04 [0.04 0.06] 0.10 [0.08 0.12] 0.14 [0.12 0.19] 0.09 [0.07 0.12] 0.0013 0.0213

12 RSSC to
LSSC 0.05 [0.04 0.06] 0.09 [0.07 0.11] 0.14 [0.12 0.18] 0.08 [0.07 0.10] 0.0002 0.0061

13 RSSC to LS1 0.04 [0.04 0.06] 0.09 [0.08 0.12] 0.14 [0.11 0.19] 0.08 [0.07 0.11] 0.0021 0.021

14 RS1 to LSSC 0.12 [0.10 0.15] 0.21 [0.18 0.26] 0.29 [0.24 0.37] 0.20 [0.17 0.25] 0.0037 0.0425

15 RM1 to CMA 0.11 [0.09 0.13] 0.21 [0.18 0.26] 0.20 [0.17 0.24] 0.20 [0.17 0.23] 0.0006 0.0129

16 RSMA to
LSSC 0.64 [0.57 0.72] 0.45 [0.41 0.51] 0.40 [0.35 0.45] 0.53 [0.48 0.60] 0.0006 0.0129

17 LSMA to
RPMC 0.43 [0.39 0.48] 0.33 [0.30 0.37] 0.27 [0.25 0.31] 0.41 [0.37 0.45] 0.0003 0.0079

18 LSMA to
RSMA 0.45 [0.41 0.50] 0.34 [0.31 0.38] 0.27 [0.25 0.31] 0.42 [0.38 0.46] 0.0023 0.031

19 LSMA to
CMA 0.46 [0.42 0.51] 0.36 [0.33 0.40] 0.25 [0.22 0.28] 0.40 [0.36 0.44] 1.75 × 10−5 0.0012

20 LSMA to
LPMC 0.47 [0.43 0.52] 0.33 [0.30 0.37] 0.32 [0.29 0.36] 0.43 [0.39 0.47] 0.001 0.0171

21 LSMA to
LSAC 0.49 [0.45 0.55] 0.34 [0.31 0.37] 0.28 [0.25 0.31] 0.40 [0.37 0.44] 6.52 × 10−5 0.0025

22 LSMA to
LSSC 0.48 [0.44 0.53] 0.34 [0.31 0.38] 0.27 [0.24 0.30] 0.42 [0.38 0.46] 3.68 × 10−8 1.00 × 10−5

23 LSMA to LS1 0.48 [0.44 0.54] 0.35 [0.32 0.39] 0.29 [0.26 0.32] 0.43 [0.39 0.48] 2.21 × 10−5 0.0012

24 LS1 to LSSC 0.16 [0.13 0.19] 0.19 [0.16 0.22] 0.29 [0.25 0.36] 0.20 [0.17 0.24] 0.0035 0.0421
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Figure A1. DTF spectrum for the connectivity from the right secondary somatosensory cortex (RSSC)
to motor regions. (a) Right premotor cortex (RPMC), (b) right supplementary motor area (RSMA),
and (c) cingulate motor area (CMA). θ, α, Iβ, and hβ represent theta, alpha, lower beta, and higher
beta bands.

Figure A2. DTF spectrum for the connectivity from right secondary somatosensory cortex (RSSC)
to regions of the pain matrix. (a) Right prefrontal cortex (RPFC), (b) left prefrontal cortex (LPFC),
(c) insular cortex (IC), and (d) anterior cingulate cortex (ACC). θ, α, Iβ, and hβ represent theta, alpha,
lower beta, and higher beta bands.
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Figure A3. DTF spectrum for the connectivity from right secondary somatosensory cortex (RSSC)
to motor regions. (a) Left premotor cortex (LPMC), (b) left supplementary motor area (LSMA), and
(c) left primary motor cortex (LM1). θ, α, Iβ, and hβ represent theta, alpha, lower beta, and higher
beta bands.

Figure A4. DTF spectrum for the connectivity from right secondary somatosensory cortex (RSSC) to
sensory regions. (a) Left somatosensory association cortex (LSAC), (b) left secondary somatosensory
cortex (LSSC), and (c) left primary somatosensory cortex (LS1). θ, α, Iβ, and hβ represent theta, alpha,
lower beta, and higher beta bands.
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Figure A5. DTF spectrum for the connectivity from (a) right primary somatosensory cortex (RS1) to
left secondary somatosensory cortex (LSSC), (b) right primary motor cortex (RM1) to cingulate motor
area (CMA), (c) right supplementary motor area (RSMA) to LSSC, and (d) left primary somatosensory
cortex (LS1) to LSSC. θ, α, Iβ, and hβ represent theta, alpha, lower beta, and higher beta bands.

Figure A6. DTF spectrum for the connectivity from left supplementary motor area (LSMA) to motor
regions. (a) Right premotor cortex (RPMC), (b) right supplementary motor area (RSMA), (c) cingulate
motor area (CMA), and (d) left premotor cortex (LPMC). θ, α, Iβ, and hβ represent theta, alpha, lower
beta, and higher beta bands.
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Figure A7. DTF spectrum for the connectivity from left supplementary motor area (LSMA) to sensory
regions. (a) Left somatosensory association cortex (LSAC), (b) left secondary somatosensory cortex
(LSSC), and (c) left primary somatosensory cortex (LS1). θ, α, Iβ, and hβ represent theta, alpha, lower
beta, and higher beta bands.
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