
There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it.

https://eprints.gla.ac.uk/274708/

Deposited on: 11 July 2022
Pragmatic diagnostic and therapeutic algorithms to optimize new potassium binder use in cardiorenal disease

Rossignol P¹, Silva-Cardoso J², Kosiborod MN³⁴, Brandenburg V⁵, Cleland JG⁶, Hadimeri H⁷, Hullin R⁸, Makela S⁹, Mörtl D¹⁰, Paoletti E¹¹, Pollock C¹², Vogt L¹³, Jadoul M¹⁴, Butler J¹⁵

1. Université de Lorraine, INSERM CIC Plurithématique 1433, Nancy CHRU, Inserm U1116, FCRIN INI-CRCT, Nancy, France
2. Heart Failure and Transplant Clinic, Cardiology Service, São João University Hospital Centre, Faculty of Medicine, University of Porto, CINTESIS – Centre for Health Technology and Services Research, Porto, Portugal
3. Saint Luke’s Mid America Heart Institute and University of Missouri-Kansas City, Kansas City, Missouri
4. The George Institute for Global Health, and University of New South Wales, Sydney, New South Wales, Australia
5. Department of Cardiology and Nephrology, Rhein-Maas Klinikum, Würselen, Germany
6. Robertson Centre for Biostatistics & Clinical Trials, University of Glasgow & National Heart & Lung Institute, Imperial College, London, United Kingdom
7. Department of Nephrology, Skaraborgs sjukhus, Skövde, Sweden
8. Service de Cardiologie, Département Coeur-Vaisseaux, Centre Hospitalier Universitaire Vaudois, Université de Lausanne, Lausanne, Suisse
9. Department of Internal Medicine, Kidney Unit, Tampere University Hospital, Tampere, Finland
10. Department of Internal Medicine 3, University Hospital St. Pölten, St. Pölten, Austria
11. Nephrology, Dialysis, and Transplantation, Policlinico San Martino, Genova, Italy
12. Renal Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
13. Department of Internal Medicine, section Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
14. Division of Nephrology, Cliniques universitaires Saint-Luc, Brussels, Belgium; Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
*Corresponding author:

Patrick Rossignol

CIC Plurithématique, Institut Lorrain du cœur et des vaisseaux

4 rue du Morvan, 54500 Vandœuvre-lès-Nancy, France

Tel: +33 3 83 15 73 20, Fax: +33 3 83 15 73 24

Email: p.rossignol@chru-nancy.fr
Abstract

Background: Pivotal randomized trials demonstrating efficacy, safety and good tolerance, of two new potassium binders (patiromer and sodium zirconium cyclosilicate) led to their recent approval. A major hurdle to the implementation of these potassium-binders is understanding how to integrate them safely and effectively into the long-term management of cardiovascular and kidney disease patients using renin angiotensin aldosterone system inhibitors (RAASi), the latter being prone to induce hyperkalaemia.

Methods: a multidisciplinary academic panel including nephrologists and cardiologists was convened to develop consensus therapeutic algorithm(s) aimed at optimizing the use of the two novel potassium binders (patiromer and sodium zirconium cyclosilicate) in stable adults who require treatment with RAASi and experience(d) hyperkalaemia in a non-emergent setting.

Results: Two dedicated pragmatic algorithms are proposed. The lowest intervention threshold (i.e. 5.1 mmol/L or greater) was the one used in the patiromer and sodium zirconium cyclosilicate pivotal trials, both drugs being indicated to treat hyperkalaemia in a non-emergent setting. Acknowledging the heterogeneity across specialty guidelines in hyperkalaemia definition and thresholds to intervene when facing hyperkalaemia, we have been mindful to use soft language i.e. “it is to consider”, not necessarily “to do”.

Conclusions: Providing the clinical community with pragmatic algorithms may help optimize the management of high-risk patients by avoiding the risks of both hyper and hypokalaemia and of suboptimal RAASi therapy

Keywords: potassium binder- patiromer – sodium zirconium cyclosilicate- algorithm- hyperkalaemia
A U-shape relationship has been consistently observed between serum potassium concentration, both hypokalaemia and hyperkalaemia being associated with all-cause mortality, cardiovascular death, and kidney failure in patients with cardiac and/or renal diseases. Hyperkalaemia is common in patients with a low glomerular filtration rate (GFR), whether this is primarily due to renal disease or associated with diabetes, hypertension, heart failure or ageing.

In addition to patient demographics and clinical features, treatment is a key additional determinant of both hypo- and hyperkalaemia. This is an especially vexing issue with agents blocking the renin angiotensin aldosterone system (RAAS), that inherently increase the risk of hyperkalaemia due to their pharmacodynamic potassium-sparing properties, but have substantial benefits on morbidity and mortality. Both cardiology and nephrology guidelines specify target doses that many patients and physicians struggle to achieve and failing to achieve target doses is associated with poorer outcomes. Guidelines from the European Society of Cardiology (ESC) recommend that patients with heart failure and a reduced left ventricular ejection fraction (HFrEF) should generally receive four classes of disease-modifying treatment including angiotensin converting enzyme inhibitors (ACEI)/angiotensin receptor blockers (ARB)/angiotensin receptor neprilysin inhibitors (ARNi), mineralocorticoid receptor antagonists (MRAs), beta-blockers and SGLT2 inhibitors; all but the latter are associated with an increased risk of hyperkalaemia. For patients with heart failure and preserved ejection fraction (HFpEF), the most recent ESC guidelines point out that despite the lack of evidence for specific disease-modifying therapies, many patients with HFpEF will require similar treatment to patients with HFrEF because they have hypertension, diabetes and/or coronary artery disease. Also, MRAs are recommended for HFpEF in the US and for resistant hypertension in patients with an estimated GFR (eGFR) >45 ml/min/1.73m² and serum potassium <4.5 mmol/L. Of note, in patients with proteinuric diabetic kidney disease, the non-steroidal MRA finerenone decreased the progression to end-stage renal disease as well as the primary composite outcome of death from cardiovascular causes, non-fatal myocardial infarction, non-fatal stroke, or hospitalization for heart failure.
While ACEI/ARB are recognized as cardiorenoprotective drugs in chronic kidney and cardiovascular diseases, hyperkalaemia is an inherent risk and a major hurdle that limits optimisation of RAASi use, and is a major trigger for their down-titration or discontinuation, which are associated with poor outcomes in cardiorenal patients.

Conversely, diuretics that increase urinary potassium excretion may cause hypokalaemia. Thiazide (-like) diuretics are one of the cornerstones of treatment for hypertension. Loop diuretics are essential for the management of symptoms and signs of congestion in patients with heart failure and for the management of end-stage kidney disease.

For ethical reasons related to the established pro-arrhythmogenic risks associated with hypo- and hyperkalaemia, strategies of potassium normalization vs. permissive hypo or hyperkalaemia cannot be studied in a randomized fashion. Several observational studies, however, strongly suggest that potassium level normalization is associated with better outcomes in various initially hypokalaemic or hyperkalaemic patient populations. A patient-level simulation model designed to characterise the natural history of CKD supports the notion that maintaining normokalaemia enables optimal RAASi therapy and improves long-term health and economic outcomes in CKD patients. Guidelines universally emphasize the importance of close monitoring of kidney function and electrolytes and adjusting doses of RAASi accordingly but such monitoring remains suboptimal in patients receiving RAASi.

The recent availability of safe and well tolerated agents that bind potassium in the gastro-intestinal tract is a major advance in the chronic management of hyperkalaemia, thereby potentially enabling RAASi optimization, as already demonstrated in randomized clinical trials for patiromer. Both drugs displayed a sustainable effect ascertained by uncontrolled 52-week open label studies led in initially hyperkalemic patients. Importantly, a consistent rebound in serum potassium was observed following the study.
drug discontinuation. This underlines the need of a chronic administration in such patients, prone to recurrent hyperkalemia.

Patiromer and sodium zirconium cyclosilicate (SZC), both act to remove potassium by exchanging other cations (calcium for patiromer, sodium and hydrogen for SZC) for potassium in the gastrointestinal tract, thus increasing its faecal excretion and lowering serum potassium concentrations. Preventing or managing hyperkalaemia in this way, reduces the need for down-titration or cessation of RAASi as acknowledged by the latest guidelines 5-7. Furthermore, the KDIGO guidelines endorse new potassium binders for the treatment of hyperkalaemia in patients with CKD5, 6. The latest ESC HF guidelines state that "administration of the K lowering agents, patiromer or sodium zirconium cyclosilicate, may allow renin-angiotensin-aldosterone system (RAAS) inhibitor initiation or uptitration in a larger proportion of patients".7 It is noteworthy that, while RAASi maintenance is associated with better cardiovascular outcomes in observational studies, evidence of a cardiovascular and renal protection due to a RAASi enablement through K lowering agents is awaited from large, long-term randomized trials.

A major hurdle to implementation of potassium-binders is understanding how to integrate them safely and effectively into long-term management protocols for cardiovascular and renal disease. Until now, treatment for hyperkalaemia has focussed on the management of acute episodes and typically involved down-titration or discontinuation of RAASi therapy. Moreover, existing recommendations included in package inserts from manufacturers need to be considered, which often give detailed information about how to handle RAASi-therapy in case of a current, imminent or past hyperkalaemia.

To address these challenges, a multidisciplinary academic panel including nephrologists and cardiologists was convened to develop a consensus therapeutic algorithm aimed at optimizing the use of two novel potassium binders (Patiromer and SZC) in stable adults who require treatment with RAASi and experience(d) hyperkalaemia. (Tables 1-2)

Importantly, the lowest intervention threshold we selected (i.e. 5.1 mmol/L or greater) was the one used in the patiromer (ClinicalTrials.gov number, NCT01810939) 29 and SZC
clinicaltrials.gov Identifier: NCT02088073) pivotal trials, which led to their approval, with both of them being indicated to treat hyperkalaemia in a non-emergent setting. Acknowledging the heterogeneity across specialty guidelines in hyperkalaemia definition and related to thresholds to intervene in front of hyperkalaemia, we have been mindful to use soft language i.e. “it is to consider”, not necessarily “to do”. Furthermore, the anticipated patient adherence to a suitable biological monitoring needs to be taken into account. For instance, the decision on whether to decrease RAASi or add a potassium binder at a specific potassium concentration threshold is obviously left to the medical judgement, and may depend on how far away the patient lives or whether he/she has easy access to a healthcare provider.

We also acknowledge that “old generation” potassium binders (i.e. sodium or calcium polystyrene sulfonate) are still widely used worldwide to treat hyperkalaemia, with however substantial heterogeneity across countries. We did not consider to develop therapeutic algorithms for these “old generation” potassium binders approved decades ago, at a time when adequately-designed randomized controlled trials were not required to ascertain efficacy and safety. So far, no randomized data may indeed support their chronic use to manage hyperkalaemia nor a RAASi enabling effect, while in the short term, these compounds have poor tolerability, unstable onset of action, and unpredictable magnitude of potassium lowering. Importantly, real-world observational data provided conflicting results, some suggesting that sodium polystyrene sulfonate may induce colonic necrosis, while others did not. It may further induce fluid overload, owing to the sodium-potassium exchange.

Providing the clinical community with pragmatic algorithms may help optimize the management of high-risk patients by avoiding the risks of both hypo- and hyperkalaemia and suboptimal RAASi therapy.
Table 1: Diagnostic and therapeutic algorithm with patiromer

Table 2: Diagnostic and therapeutic algorithm with sodium zirconium cyclosilicate

Funding source: this work is an extension of the advisory board funded by Vifor (all authors but M. Kosiborod participated), but a publication was subsequently written by the first author, with input from all coauthors and was not influenced by any sponsor.

The authors thank Nancy Hamilton (FCRIN INI-CRCT) for the english editing.

PR reports consulting for Bayer, CinCor, G3P, Idorsia, and KBP; honoraria from Ablative Solutions, AstraZeneca, Bayer, Boehringer-Ingelheim, Corvidia, CVRx, Fresenius, Grunenthal, Novartis, Novo Nordisk, Relyspa Inc., a Vifor Pharma Group Company, Sanofi, Sequana Medical, Servier, Stealth Peptides, and Vifor Fresenius Medical Care Renal Pharma; Cofounder: CardioRenal.

JSC has received speaker and consultant fees, or advisory board participation fees, or investigational grants from Abbott, AstraZeneca Pharmaceuticals, Bial, Boehringer Ingelheim, Menarini, Merck Serono, Merck Sharp & Dohme, Novartis, Orion, Pfizer, Sanofi, Servier, and Vifor Pharma outside of this work.

MK: Research grants: AstraZeneca, Boehringer Ingelheim. Consultant: AstraZeneca, Amgen, Bayer, Boehringer Ingelheim, Eli Lilly, Janssen, Merck (Diabetes and Cardiovascular), Novo Nordisk, Sanofi, Vifor.

VB reports speaker fees for AstraZeneca and Speaker/consultancy-fees from Vifor Pharma.

JGC: reports receiving funding from research and personal honoraria for advisory boards and lectures from Vifor Pharma.
HH reports consulting and participation in advisory board for AstraZeneca, Vifor Pharma Nordiska AB, Otsuka.

RH reports consultancy/speaker fees from Astra-Zeneca, Bayer, Boehringer-Ingelheim, Vifor Fresenius Medical, Novartis, cti vascular, and a collaborative clinical reserch grant with Astra Zeneca

SM: speaker fees or advisory board participation fees from Astellas, AstraZeneca, Bayer, Boehringer Ingelheim, and Vifor Pharma.

DM is a consultant for or received speakers fees from Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Boston Scientific, Novartis, Vifor.

MK: Research grants: AstraZeneca, Boehringer Ingelheim. Consultant: AstraZeneca, Amgen, Bayer, Boehringer Ingelheim, Eli Lilly, Janssen, Merck (Diabetes and Cardiovascular), Novo Nordisk, Sanofi, Vifor.

EP received fees from, and acts as consultant for: AstraZeneca, Bayer, Vifor, Novartis, Fresenius, Astellas

CP is a consultant for or received speaker fees from Astra Zeneca, Boehringer Ingelheim, Vifor, Chinook and Otsuka

LV: consultant for Astrazeneca, Bayer, Sanofi Genzyme and Vifor Pharma Group
MJ has received unrestricted research grants from Amgen and Astra-Zeneca and consultancy/speaker fees from Astellas, Astra-Zeneca, Bayer, Boehringer-Ingelheim, Mundipharma, Vifor Fresenius Medical Care Renal Pharma and Fresenius Medical Care Asia Pacific.

JB is a consultant for Abbott, Amgen, Array, AstraZeneca, Bayer, Boehringer Ingelheim, CVRx, Eli Lilly, G3 Pharmaceutical, Impulse Dynamics, Innolife, Janssen, Luitpold, Medtronic, Merck, Novartis, Novo Nordisk, Relypsa, Sequana, StealthPeptide, Vifor.
References

Table 1

<table>
<thead>
<tr>
<th>Table 1: Stable adults with chronic hyperkalaemia ± requirement for RAASi.</th>
<th>[Individualised recommended actions according to the clinical situation]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum K+ (mmol/L) (confirmed by two consecutive vals sampled)</td>
<td>Action</td>
</tr>
<tr>
<td>Severe hyperkalaemia</td>
<td>≥6.0</td>
</tr>
<tr>
<td>Moderate hyperkalaemia</td>
<td>5.6–5.3</td>
</tr>
<tr>
<td>Mild hyperkalaemia</td>
<td>5.1–5.3</td>
</tr>
<tr>
<td>Hypernormokalaemia</td>
<td>4.1–5.0</td>
</tr>
<tr>
<td>Hyperkalaemia</td>
<td>3.5–4.0</td>
</tr>
<tr>
<td>Hypokalaemia</td>
<td><3.5</td>
</tr>
</tbody>
</table>

*Prior to initiating patiromer, consider: 1. Eliminating K+ supplements, non-steroidal anti-inflammatory drugs and decreasing K+ rich foods (where possible). 2. Evaluating lab parameters (eg eGFR), adherence to therapy (especially in cases of polypharmacy); ability to understand treatment, main disease diagnosis and comorbidities, age, life expectancy/futility, history of previous hyperkalaemia, concomitant medication use and dose (or intention to start), other possible reasons for hyperkalaemia (eg metabolic acidosis).

*Manage serum K+ as per standard clinical practice and applicable guideline recommendations for the immediate management of acute hyperkalaemia or hypokalaemia.

* Prior to patiromer dose adjustment, check if dose change has altered as serum K+ levels could be affected.

*Refer to applicable guideline recommendations for RAASi use (the term RAASi includes: angiotensin-converting enzyme inhibitors, angiotensin-receptor blockers, angiotensin receptor neprilysin inhibitors, mineralocorticoid receptor antagonists). Assess volume status and consider adding/dropping diuretics dose.

*When discontinuing patiromer, serum K+ levels may rise, especially if RAASi treatment is continued. Patients should be instructed not to discontinue patiromer without consulting their physician. Serum K+ may increase as early as 2 days after the last patiromer dose.

*Note: Hypokalaemia was reported in 6.5% of patients treated with patiromer in the clinical trial programme; all reports were mild–moderate, with no patient developing a serum Mg level < 0.4 mmol/L.

*Refer to the patient Summary of product characteristics (SPCP) Product information for full prescriber information. eGFR, estimated glomerular filtration rate; K+, potassium; Mg, magnesium; RAASi, renin-angiotensin aldosterone system inhibitor;
Stable adults with chronic hyperkalaemia: 1 requirement for RAASi

S2C should not replace emergency treatment for acute life-threatening hyperkalaemia

<table>
<thead>
<tr>
<th>Serum K+ (mmol/L)</th>
<th>Action*</th>
<th>Additional actions, if clinically required*</th>
<th>Monitoring 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe hyperkalaemia</td>
<td>≤6.0</td>
<td>Initiate S2C at 10g thrice daily for 24, 48 or 72 h (i.e. until normokalaemia), then proceed to the maintenance phase starting with 5 g/day, max 10 (EU SIMPC-YU) -16 (US PhRMA) g/day or up to S2C, if started, by 5 g once daily, up to a maximum dose of 10 (EU SIMPC-YU) -15 (US PhRMA) g/day, until serum K+ ≤5.1 mmol/L or down-titrating to 5 g every other day, depending on potassium levels.</td>
<td></td>
</tr>
<tr>
<td>Moderate hyperkalaemia</td>
<td>5.5-6.5</td>
<td>Consider initiation of S2C at 15 g thrice daily for 24, 48 or 72 h (i.e. until normokalaemia), then proceed to the maintenance phase starting with 5 g/day, then up-titration, to max 10 (EU SIMPC-YU) -16 (US PhRMA) g/day, or down-titrating by 5 g every other day, depending on potassium levels.</td>
<td></td>
</tr>
<tr>
<td>Mild hyperkalaemia</td>
<td>5.1-6.5</td>
<td>Maintain / up-titrate S2C, if started, to a maximum dose of 10 g/day, until serum K+ ≤5.1 mmol/L.</td>
<td></td>
</tr>
<tr>
<td>Normokalaemia</td>
<td>4.1-6.0</td>
<td>If started on S2C, maintain dose.</td>
<td></td>
</tr>
<tr>
<td>Anti hyperkalaemia</td>
<td>3.5-4.0</td>
<td>Stop S2C* (if on lowest dose).</td>
<td></td>
</tr>
<tr>
<td>Hyperkalaemia</td>
<td><2.5</td>
<td>Stop temporarily until K+ is above 3.5 (or 4.0 if you want to be conservative) then restart at lower dose.</td>
<td></td>
</tr>
</tbody>
</table>

1. Prior to S2C dose adjustment, check if diuretic dose has changed as serum K+ levels could be affected.
2. Evaluate lab parameters (e.g. aGFR), adherence to therapy (especially in cases of polypharmacy) / ability to understand treatment, renal disease diagnosis and comorbidities, age, frailty, history of previous hyperkalaemia, concurrent medication use and dose (or intention to start), other possible reasons for hyperkalaemia (e.g. metabolic acidosis).
3. Typically, normokalaemia is achieved within 24 to 48 hours. If patients are still hyperkalaemia after 48 hours of treatment, the same regimen can be continued for an additional 24 hours. If normokalaemia is not achieved after 72 hours of treatment, other treatment approaches should be considered.

Note The clinical development program, the most commonly reported adverse reactions were hypokalaemia (4.1%) and oedema related events (5.7%). Each 5 g dose of S2C contains approximately 400 mg of sodium. Oedema was only noted with doses above 10 g per day.

1. Prior to initiating S2C, consider:
 - Eliminating K+ supplements, non-essential anti-inflammatory drugs and decreasing K+ rich foods (where possible).
 - Evaluating lab parameters (e.g. aGFR), adherence to therapy (especially in cases of polypharmacy) / ability to understand treatment, renal disease diagnosis and comorbidities, age, frailty, history of previous hyperkalaemia, concurrent medication use and dose (or intention to start), other possible reasons for hyperkalaemia (e.g. metabolic acidosis).
 - Typically, normokalaemia is achieved within 24 to 48 hours. If patients are still hyperkalaemia after 48 hours of treatment, the same regimen can be continued for an additional 24 hours. If normokalaemia is not achieved after 72 hours of treatment, other treatment approaches should be considered.

Monitor

1. After initiating or changing S2C dose, measure serum K+ and creatinine within 3-7 days and repeat after 1 week. If target K+ value is achieved, measure serum K+ at 1 month, then every 3 months.
2. May take a change in electrolyte or volume status is suspected, e.g. due to gastrointestinal problems, re-measure serum K+ and creatinine and repeat the above monitoring sequence as per standard clinical practice and applicable guideline recommendations.
3. As S2C mechanism of action involves potassium exchange for sodium (or hydroxide) in the GI tract, monitor edema during S2C therapy particularly in patients presenting a S2C dose higher than 10 g/day.

Monitoring frequency should be individualised based on the clinical situation. Some clinical scenarios may require a change in the frequency of monitoring, refer to applicable guidelines for requirement.