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Abstract

During the past century, the fundamental niche, the complete set of

environments that allow an individual, population, or species to persist, has

shaped ecological thinking. It is a crucial concept connecting population

dynamics, spatial ecology, and evolutionary theory, and a prerequisite for

predictive ecological models at a time of rapid environmental change. Yet, its

properties have eluded quantification, particularly for mobile, cognitively

complex organisms. These difficulties are mainly a result of the separation

between niche theory and field data, and the dichotomy between environ-

mental and geographical spaces. Here, I combine recent mathematical and

statistical results linking habitats to population growth, to achieve a quanti-

tative and intuitive understanding of the fundamental niches of animals.

I trace the development of niche ideas from the early steps of ecology to their

use in modern statistical and conservation practice. I examine how animal

mobility and behavior may blur the division between geographical and envi-

ronmental space. I discuss how the central models of population and spatial

ecology lead to a concise mathematical equation for the fundamental niche

of animals and demonstrate how fitness parameters can be understood and

directly estimated by fitting this model simultaneously to data on population

growth and spatial distributions. I first illustrate these concepts theoretically

for territorial species. I then fit the fundamental niche model to a data set of

house sparrow colonies to quantify how a species of selective animals can

increase their fitness in heterogeneous environments. This work confirms

ideas that had been anticipated in the historical niche literature. Specifically,

within traditionally defined environmental spaces, habitat heterogeneity

and behavioral plasticity make the fundamental niche more complex and

malleable than was historically envisaged. However, once examined in

higher-dimensional environmental spaces, accounting for spatial heterogene-

ity, the niche is more predictable than recently suspected. This re-evaluation

quantifies how organisms might buffer themselves from change by bending

the boundaries of viable environmental space and offers a framework for
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designing optimal habitat interventions to protect biodiversity or obstruct

invasive species. It therefore promotes the fundamental niche as a key con-

cept for understanding animal responses to changing environments and a

central tool for environmental management.

KEYWORD S
accessibility, E-space, fitness, habitat, population ecology, realized niche, spatial ecology,
species distribution models, zero-niche paradox

INTRODUCTION

The broader idea of the niche, the correspondence
between an organism and its biotic or abiotic environ-
ment, is a cornerstone of ecology (McInerny & Etienne,
2012a; Parentoni Martins, 2017; Sales et al., 2021) and
holds wider prominence, in areas as diverse as evolution-
ary theory (Carscadden et al., 2020), cell biology (Pocheville,
2015), anthropology (D’Errico et al., 2017), law (Pedruski
et al., 2016), and economics (Tisdell & Seidl, 2004). Its scien-
tific significance lies in its potential to unify the subfields
of spatial ecology, population dynamics, and evolution
(Slack, 2011). Yet, despite its promise and prevalence in the
literature (Parentoni Martins, 2017; Pedruski et al., 2016),
the niche remains one of the most ambiguous terms in
ecology (Hurlbert, 1981; Parentoni Martins, 2017; Sales
et al., 2021). Perhaps, to achieve a robust definition of the
niche, we must first aim for a convergence between the
three ecological sub-fields that it adjoins.

The formative work by Hutchinson (Hutchinson, 1957,
1978) had set a course in this direction, by focusing on the
fundamental niche, the part of environmental space that
gives individuals of a species positive fitness and allows
populations of the species to grow (Chase & Leibold, 2003;
Peterson et al., 2011). This definition implicitly connects
the environmental attributes of space to the viability of
populations and the fitness of their members (Colwell &
Fuentes, 1975), hence weaving together the necessary
threads of spatial, population, and evolutionary ecology.

Akin to a Platonic ideal (Parentoni Martins, 2017),
the fundamental niche is never observed directly, despite
its compact definition. Instead, its various indirect mani-
festations, the realized niches, are observed in the distri-
butions of species across landscapes (Colwell & Fuentes,
1975; Pulliam, 2000; Zurell et al., 2012). Realized niches
differ from the fundamental niche because the correspon-
dence between habitat suitability and species distribu-
tions is never exact (Cassini, 2011; Colwell & Rangel,
2009; Diez et al., 2014; Godsoe, 2012; Matthiopoulos,
Fieberg, & Aarts, 2020; Pulliam, 2000). For example, spe-
cies are often absent from suitable habitat due to dispersal
limitations or historical artifacts (Hargreaves et al., 2014).

Conversely, species can be encountered in unsuitable habi-
tat due to spillover of individuals from source habitats into
neighboring sink habitats. Furthermore, the fundamental
niche may include habitats that are not currently present
anywhere in geographical space, so it is not possible to
know by direct observation that such habitats would be
suitable.

This conspicuous mismatch between the fundamental
niche and observed species distributions has led to recur-
rent debate about its utility and, even, calls for its aban-
donment (Angilletta et al., 2019; Araújo & Guisan, 2006;
Chase & Leibold, 2003; Chesson, 1991; Hubbell, 2004;
McInerny & Etienne, 2012a, 2012b, 2012c). Suggestions
for a more pragmatic approach (McInerny & Etienne,
2012c) argue that the niche concept is purely a conversa-
tional device and that an unambiguous understanding of
the term is not a prerequisite for modeling the associa-
tions between species and habitats. However, this may be
setting a low bar for the science of ecology (Parentoni
Martins, 2017) because, although the fundamental niche
is not essential for building descriptive models of where
species are today, it is indispensable for predicting where
they could occur (Yates et al., 2018; Zurell et al., 2012).
At a time of rapid environmental change, describing the
status quo with species distribution models is not enough,
and the scarcity of predictive, transferable models is
becoming an urgent problem for conservation and pest
management (Mouquet et al., 2015). Perhaps that is why
anticipatory studies on species’ global ranges, invasion
potential, critical habitat, and fine-scale habitat suitability,
are often discussed in terms of individual fitness and popu-
lation viability, the defining notions of the fundamental
niche (Warren, 2012). A more formal understanding of the
fundamental niche would crystallize these concepts and
help us develop predictive models that can yield robust
forecasts and biological insights about species distribu-
tions, range expansions, and extinctions (Kearney &
Porter, 2004; Pulliam, 2000; Sober�on, 2014; Sober�on &
Peterson, 2020; Yates et al., 2018). Our undisputed need to
understand the viability of species in changing landscapes
(Araújo & Guisan, 2006; Godsoe et al., 2017) means that
“the niche is here to stay” (Sober�on, 2014).

2 of 28 MATTHIOPOULOS

 15577015, 2022, 4, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecm

.1545 by U
niversity O

f G
lasgow

, W
iley O

nline L
ibrary on [02/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



A considerable body of conceptual work has detailed
the distinctions between habitat suitability and observed
species distributions (Chase & Leibold, 2003; Godsoe,
2010; Holt, 2009; Peterson et al., 2011; Sober�on, 2007;
Sober�on & Nakamura, 2009; Sober�on & Peterson, 2005).
For example, the BAM diagram (Sober�on, 2007; Sober�on
& Nakamura, 2009; Sober�on & Peterson, 2005) has
become an essential way to organize our thinking on the
relationship between species niches and geographic dis-
tributions. This increasing clarity must now be converted
into more utilitarian definitions of the fundamental
niche that can be estimated from data and used for real
applications (Araújo & Guisan, 2006; Jimenez & Sober�on,
2021). To achieve this utility, we need to address three
knowledge gaps.

First, we require a general mathematical framework
linking the fundamental to the realized niche. That is not
to say that we have a shortage of “niche models” in the
literature. Unfortunately, the indiscriminate use of the
term “niche modeling,” often in lieu of species distribu-
tion modeling (SDM) has been counter-productive
(McInerny & Etienne, 2013; Sober�on, 2014; Warren,
2012). SDMs are models fitted to abundance/occurrence
data and hence best-suited to mapping the density of
populations at pseudo-equilibrium (i.e., to model the
realized niche; see section 2 in Guisan & Zimmermann,
2000). They can only ever quantify the intrinsic growth
rates of populations (i.e., the fundamental niche; Pagel &
Schurr, 2011) under unrealistically strict conditions
(Matthiopoulos, Fieberg, Aarts, et al. 2020). As long as the
realized and fundamental niches are casually confused in
this way, concepts that depend on them will also remain
confused (Elith & Graham, 2009; Parentoni Martins,
2017; Sober�on & Nakamura, 2009; Whittaker
et al., 1973), endangering accurate ecological inference
and prediction.

Second, we have few statistical frameworks for
estimating the fundamental niche empirically (Blonder,
2018; Godsoe et al., 2017; Jiménez et al., 2019; McInerny
& Etienne, 2012a; Pulliam, 2000), and none that specifi-
cally refer to vagile and selective animals. The batch
of statistical methods typically named “niche models”
(e.g., Broennimann et al., 2012; Drake et al., 2006;
Hirzel & Arlettaz, 2003; Rotenberry et al., 2006; Thuiller
et al., 2004) use presence-only data as a proxy for popula-
tion viability. Their premise is that, if a species is found
at a particular habitat, then the habitat must belong to its
fundamental niche. This assumption will be untrue
for sink populations. Furthermore, the interpretation of
vacant habitats makes all the difference for our infer-
ences about the niche. Is a habitat ostensibly unoccupied
because the species has not yet colonized it, because it
does not physically exist so as to be colonized, or because

our surveys have not actively looked for the species in
that habitat? We need to know, not only what habitats
the animals are found in, but also what options were
accessible to them, and how well they are doing there.
Presence-only methods are statistically weak, estimating
niche-related objects that are found “at some unspecified
point along a continuum between the fundamental and the
realized niche” (Colwell & Rangel, 2009; Jiménez-Valverde
et al., 2008; Peterson et al., 2011; Sober�on & Peterson,
2005). Niche models that examine abundance or occupancy
without corresponding measures of survey effort, habitat
availability and population growth (Aldridge & Boyce,
2008; DeCesare et al., 2014), are of limited utility in an
explanatory or predictive capacity (Pagel & Schurr, 2011;
Schurr et al., 2012).

Third, the above two gaps have limited our intuition
about the shape and boundaries of the fundamental niche.
Since its inception, it has been imagined as a bounded (i.e.,
limited) and convex hypervolume in n-dimensional
environmental space (Blonder, 2018; Blonder et al., 2014;
Holt, 1987; Hutchinson, 1957; Malanson, 1997; Whittaker
et al., 1973). This image stems from the original descrip-
tions of the fundamental niche in terms of morphological
or physiological tolerances (e.g., temperature envelopes;
Kearney & Porter, 2004) that define simple ranges along
each niche dimension. However, it is becoming apparent
that the structure of fundamental niches may be more com-
plex (Blonder, 2016; Sober�on & Peterson, 2020).
In particular, it has recently been postulated that environ-
mental heterogeneity and phenotypic plasticity make the
boundary of the fundamental niche “fuzzy” (Angilletta
et al., 2019). This apparent stochasticity may stem from the
fact that Hutchinsonian spaces, using mean environmental
variables as their dimensions, are not complex enough to
map fundamental niches, particularly for organisms that
can sense heterogeneity and move selectively between dif-
ferent habitats.

Here, I address all three of these challenges. I syn-
thesize recent theoretical results into a general, concise
expression for the boundary of the niche that is both
mathematically tractable and statistically estimable
from field data. My approach relies on developing
explicit expressions for population growth across spatial
scales, that realistically accommodate spatial processes.
I illustrate this statistical approach using both hypothet-
ical scenarios and wildlife data. Using these motivating
examples, I review our current intuition about the fun-
damental niche. By doing so, I suggest how to estimate
the extent of endurance of plastic organisms, living in
heterogeneous environments, in apparently inviable
regions of niche space. Finally, I discuss how this frame-
work can be extended and how this knowledge might
help us resolve challenging human–wildlife conflicts.

ECOLOGICAL MONOGRAPHS 3 of 28

 15577015, 2022, 4, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecm

.1545 by U
niversity O

f G
lasgow

, W
iley O

nline L
ibrary on [02/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



FROM G -SPACES TO E -SPACES AND
BACK AGAIN

The separation of physical from environmental space,
known as Hutchinson’s duality (Colwell & Rangel, 2009),
was a source of considerable clarity in the golden age of
niche theory (Pocheville, 2015; Sales et al., 2021), but has
increasingly become a source of confusion as niche concepts
have moved from the hypothetical realm, closer to field data
and statistical methodology (McInerny & Etienne, 2012a;
Parentoni Martins, 2017; Sales et al., 2021). A solid founda-
tion for niche theory requires us to clearly define these spaces
and recognize the relationship between them.

Geographical space (G-space) comprises the three
physical dimensions of latitude, longitude, and alti-
tude. A location s¼ Lat, Lon, Altð Þ in G-space may have
n characteristics, such as scene-setting conditions (e.g.,
aspects of geomorphology, climate, and soil composition),
resources (e.g., amount of food, number of breeding
sites), or risks (e.g., exposure to predators or pollution).
These n variables form the dimensions of environmental
space (E-space). Since Hutchinson (Hutchinson, 1957),
this is also known as “niche space,” because he envisaged
the fundamental and realized niches as subsets of
E-space. Arguably, the extension of the niche to include
resources (such as prey) and risks (such as predators or
competitors) is a step away from Hutchinson’s predomi-
nantly scenopoetic environmental variables but is a nec-
essary consideration if we ultimately wish to move the
fundamental niche to include dynamical interactions
between species (see Future developments: Mechanistic
content of models leading to the niche).

A point x¼ x1,…, xnð Þ in E-space uniquely defines a
local environment, or habitat (Aarts et al., 2008; Hall
et al., 1997; Matthiopoulos et al., 2011). Habitat availabil-
ity refers to the composition of the environment that is
accessible to an individual or group. Quantifying the
availability f x of a particular habitat x depends on how
finely habitats are classified and how accessible they are
from the position of the study organisms (Martin
et al., 2008; Matthiopoulos, 2003; Matthiopoulos, Fieberg,
Aarts, Barraquand, et al., 2020). We can initially think of
availability f x as the proportion of area of the accessible
range of the individual or group, occupied by habitat x.
This requires us to think of habitats as finite volumes
(rather than infinitesimal points) in E-space, so that it
makes sense to measure the area they occupy in G-space
(if habitats were classified with infinite precision, then
the area occupied by each would be zero). It also
assumes, that any point in G-space is either fully or
not at all accessible to the organism. However, neither
of these assumptions are necessary if we think of
availability as a probability density. Relaxing these

assumptions leads naturally to infinitesimal definitions of
habitat where availability decays smoothly with decreasing
accessibility (Matthiopoulos, Fieberg, Aarts, Barraquand,
et al., 2020). Therefore, the availability scalar field f is a
probability density function such that

Ð
E f xdx¼ 1.

Several of the published approaches to spatial
heterogeneity have used convolutions of spatial kernels
(e.g., Snyder and Chesson (2004); Chesson and Lee
(2005); Jongejans et al. (2008)), or reaction–diffusion for-
mulations (e.g., Nisbet and Gurney (2004); Skellam
(1951)). These are all formulations in G-space that cap-
ture proximity in an explicitly spatial way. Spatial auto-
correlation in covariates and limitations in mobility
mean that geographical proximity and environmental
proximity are connected (similar habitats are accessible
from the current habitat x sð Þ at position x). However, the
complexity of objects in geographical space is commonly
much higher than the complexity in environmental space
(see figure 1 in Matthiopoulos, Fieberg, Aarts,
Barraquand, et al., 2020). Exploiting this property, the
formulations of accessibility used here (developed in
Matthiopoulos, Fieberg, Aarts, Barraquand, et al., 2020)
aim to simplify the treatment of proximity by examining
neighborhoods in E-space. So, it is worth stressing that
the integrals and definitions of usage and availability in
the ensuing sections are over E-space, not G-space.

Figure 1 visualizes the correspondence between G-
and E-spaces and prompts three important points. First,
several very different landscapes can be constructed by
rearranging the same ingredients (e.g., total amounts of
resources) in G-space (e.g., compare Figure 1a,b). Second,
the shape of habitat availability clouds in E-space can be
very complex (Sober�on & Nakamura, 2009), even including
discontinuities and holes (Blonder, 2016). This makes it
difficult to approximate realistic availability clouds with
multivariate, but unimodal, Gaussian functions in E-space
(such as those in Austin, 1985, Malanson, 1997, Jiménez
et al., 2019, Jimenez & Sober�on, 2021). Third, availability
clouds in Hutchinson’s E-space hold no information about
the spatial contiguity of habitats and are therefore unable to
communicate the geographical context in which an organ-
ism finds itself. Hence, although only one E-cloud can be
constructed from a given G-landscape, infinite landscapes
can be constructed from an availability cloud in E-space
(Colwell & Rangel, 2009; Matthiopoulos, Fieberg, Aarts,
Barraquand, et al., 2020; i.e., the transition from G to E is
irreversible). Despite this limitation, E-spaces are more suit-
able as the domain of concise mathematical models for
habitat availability, habitat preference and the fundamental
niche, because each habitat occurs exactly once as a point
in E-space, whereas it can occur at multiple locations of
G-space (see figure 1 in Matthiopoulos, Fieberg, Aarts,
Barraquand, et al., 2020).
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Traditionally (Blonder, 2018; Blonder et al., 2014;
Holt, 1987; Hutchinson, 1957; Malanson, 1997; Whittaker
et al., 1973), niches have been imagined as compact
subsets of E-space, objects not dissimilar to the
three-dimensional cloud in Figure 1c. Indeed, if an ani-
mal inhabiting Figure 1a divided its time equally between
all points of that landscape, its realized niche would coin-
cide with Figure 1c. However, there has always been con-
fusion about whether to think of the fundamental niche
as a subset of E-space or as a place, in G-space
(Whittaker et al., 1973). This lingering confusion stems
from the tenable notion that a point in E-space should
not be considered in isolation from its geographical

context (Angilletta et al., 2019). For instance, a situation
not currently modeled by the niche literature is that ani-
mals are routinely able to survive in niche spaces where
no “single” point is sufficient for their survival and repro-
duction (Holt, 2009). I will tentatively call this the
“zero-niche paradox.” Often, vital resources are mutually
exclusive in space (e.g., at a fine spatial scale, water holes
and grazing land cannot coincide), and vagile animals
have to perform short commutes or longer-range
migrations to satisfy all their life-history requirements
(Dennis, 2010). By moving across heterogeneous land-
scapes, animals can experience different types of habitats,
and by actively selecting to use some over others,

F I GURE 1 Illustration of geographical (G-space, top row) and environmental (E-space, bottom row) spaces. A G-space is a landscape,

here mapped in the two dimensions of Easting and Northing. Two such landscapes (panels (a) and (b)) were created by mixing similar total

amounts of three environmental variables. Each environmental variable is represented by a primary color: red, green, or blue. As different

intensities of the three primary colors overlap locally in (a) and (b), they create a wide variety of mixture colors, each symbolizing a different

habitat. The three axes of E-space (panels (c) and (d)) represent these three environmental variables (primary colors) and each mixed color

in G-space (a unique habitat type) is a point in the three-dimensional E-space. Recording a dot at a particular point in E-space implies that

the corresponding habitat can be found within the landscape in G-space. The intensity of purple color in E-spaces (c) and (d) represents the

availability of each habitat type, the frequency with which this exact combination of environmental values occurs in each of the two

landscapes above. The more spherical shape of the availability cloud in panel (c), as compared to panel (d), is entirely the result of chance in

the generation of the original landscapes. More symmetric clouds than (c), and more irregular clouds than (d), are possible, from mixing the

same overall amounts of the three primary colors.

ECOLOGICAL MONOGRAPHS 5 of 28
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they demonstrate high levels of behavioral plasticity
(Holt, 2009). If we imagine that the two landscapes in
Figure 1a,b happen to be the home ranges of two animals
from the same species, then habitat suitability and the
resulting viability of these two individuals may differ,
even though they have access to the same average
amounts of resources. So, we must consider the animals’
fitness in the light of their “entire” environmental profile
(i.e., the whole clouds in Figure 1c,d), not merely any
single point in E-space.

It may be argued that this is a problem of scale
(Jackson & Fahrig, 2015; Levin, 1992; McGill, 2010) and
that summarizing (for instance, averaging) the environmen-
tal variables at spatial resolutions comparable to the home
range of individuals (Cassini, 2011) may restore the concept
of the fundamental niche to its classic form (i.e., mapping
viability to single points in E-space). However, home ranges
with the same average habitat composition can be very dif-
ferent indeed and heterogeneity around the average compo-
sition offers opportunities that can turn negative fitness into
positive. Spatial and temporal heterogeneity will generally
affect the viability of an organism (Holt, 2009; McLoughlin
et al., 2006; Morales et al., 2010) so habitat homogeneity,
artificially created by averaging environmental variables at
coarse spatial scales, prevents us from correctly representing
species responses to habitat.

It is important therefore to ask whether the existence
of such heterogeneities, and the complex responses of
animals to them, require us to modify our intuitive
understanding of the fundamental niche. Does the ubiq-
uitous fact that animals can move and choose between
habitats to meet their needs matter for the size, shape
and predictability of their fundamental niche? Below
(Example 2: House sparrows in suburbia and Necessary
adjustments to our notion of the fundamental niche of
animals), I conclude that the answer is yes, even in
E-spaces with three or fewer environmental variables, char-
acterized by the most rudimentary forms of environmental
heterogeneity.

POPULATION DYNAMICS
IN E -SPACE

The fundamental niche has, at its heart, the concept of
population viability, a core subject in population dynam-
ics. So, it is useful to consider the niche from the view-
point of population dynamics, defined within niche space
(that is, a model that captures spatial heterogeneity not
explicitly, as a landscape in G-space, but implicitly
through the availability of different habitats to a species
in E-space). At the same time, not all aspects of popula-
tion dynamics will be relevant to the definition of the

niche, so it is useful to simplify the full population
dynamics approach to a minimal set of necessary fea-
tures. The full model presented in this section serves as
an illustration of the assumptions made to arrive at the
niche, rather than a key objective of the analysis
presented later.

To begin with, consider a population of total size Nt

living in an expansive and heterogeneous landscape of
area A, much larger than the range of any single popula-
tion member. Within each unit of habitat (x), population
size (Nx,t) can grow at a rate (rx Nx,tð Þ) characteristic of
that habitat, and the habitats around it. The local growth
rate will also be dependent on population density in that
habitat. The change in numbers within a habitat unit will
also be affected by long-range immigration and emigra-
tion between habitats. A model in discrete time, defined
in the corresponding E-space of that landscape might
take the following form:

Ntþ1 ¼

A
ð
E

Nx,tf xrx Nx,tð Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Growth

þ f x

ð
E
gy!xNy,t f ydy|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Immigration

�Nx,tf x

ð
E
gx!yf ydy|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Emigration

8>>><
>>>:

9>>>=
>>>;dx

ð1Þ

where gy!x defines the per capita flux from a unit of hab-
itat y to one unit of habitat x. This flux term describes
the connectivity between different habitat types and must
therefore be determined from the statistical properties of
the environment (i.e., spatial auto- and cross-correlation
of habitat characteristics) as well as the mobility of the
species.

Although the functions rx and gy!x are not yet
defined, we can make the following simplifying assump-
tions about this model that ultimately will form part of
the definition of the niche. So, for the purposes of
defining the niche:

1. The spatial scale over which the niche is described
should not be the arbitrary spatial scale enclosing a pop-
ulation because different population members may
experience very different conditions. It should instead be
comparable to the range of the individual member of
the species. This implies a simpler model of the form

Nx,tþ1 ¼Nx,trx Nx,tð Þþ
ð
E
gy!xNy,t f ydy�Nx,t

ð
E
gx!yf ydy:

ð2Þ

2. We are interested in the ability of a species to estab-
lish in a particular habitat. Therefore, although the
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local growth rate rx will eventually be influenced by
crowding, the niche must be considered for very
small population sizes, such that the local growth
rate of the population corresponds to its intrinsic
growth rate rx

Nx,tþ1 ¼Nx,trx þ
ð
E
gy!xNy,t f ydy�Nx,t

ð
E
gx!yf ydy ð3Þ

3. Similarly, the net growth of populations in crowded
habitats may not reflect the habitats’ intrinsic quality
when large numbers of individuals emigrate, so emi-
gration rates need to be excluded from the niche
definition.

4. Although long-range immigration can sustain animals
in habitats that would not be viable in isolation, the
fundamental niche should not include such sink habi-
tats. Conversely, although there will generally be
regions in space that have not been accessed by a spe-
cies, even if they are suitable, we must assume that all
habitats that can support a species have received
colonization attempts.

These assumptions imply a much simpler model, where
the interest is in the definition of the intrinsic growth rate
of a species at or in the neighborhood of any given
habitat,

Nx,tþ1 ¼Nx,trx: ð4Þ

AN INITIAL DEFINITION OF THE
FUNDAMENTAL NICHE

For the purposes of species- or population-level models,
the concept of absolute individual fitness (as a character-
istic of a genotype or phenotype) is often generalized to
populations, by linking the average fitness F across indi-
viduals to population growth, using general models of
the form (e.g., equation 3.9 in Turchin, 2003)

Ntþ1

Nt
¼ exp F f ,Ntð Þð Þ ð5Þ

in which the population’s fitness is determined by the com-
position of the environment (f ) and density-dependent
influences ðNt ¼ Nt,Nt�1,…f gÞ. Equation (5) is merely a
deterministic model for the mean of a distribution of
individual fitnesses within a population. This ecological
use of average fitness has been extensively discussed in
the literature (Murray, 1985; Nur, 1984, 1987;
Ollason, 1991; Stenseth, 1983) and Equation (5) has a
long history of use in evolutionary models (Fisher, 1930;
Lande, 1982; Roff, 2008). It also specifies a mathematical

link between the environment of a species and its ability
to grow, hence allowing us to formalize the concept of
the niche at a species level, rather than the level of the
individual.

Hutchinson envisaged the fundamental niche of a
species as the set of points x in E-space yielding nonnega-
tive intrinsic population growth (Chase & Leibold, 2003;
Godsoe et al., 2017; Peterson et al., 2011; Sober�on, 2007),
allowing species members to invade and occupy these
habitats (Peterson et al., 2011), in the absence of interspe-
cific or intraspecific competition. Hence, each point in
E-space was assumed to map to a single value of fitness for
a founder (i.e., density-independent) population. We can
obtain an expression that adheres to this definition of the
fundamental niche by simplifying Equation (5) in two
ways. First, we must specify it to near-zero population
densities (Nt ≈ 0). A species at high densities may have
zero or negative growth due to crowding effects, which is
why population growth rates in high-density scenarios are
not a good indicator of viability (McLoughlin et al., 2010).
Arguably, density dependence may also affect the species at
low densities, if it is subject to Allee effects (Courchamp
et al., 1999) and further work will be required to extend
Hutchinson’s definition to allow for these (Holt, 2009; Holt
et al., 2004). The second simplification of Equation (5) is to
specify it to the fitness generated by a single habitat (i.e., to
map fitness to a single point x in E-space). Under the
above two simplifications, growth rate will be (compare
with Equation 4):

Ntþ1

Nt
¼ exp F xð Þð Þ: ð6Þ

Then, Hutchinson’s “fundamental niche” is a subset
of E-space defined as

EI ¼ x :F xð Þ≥ 0f g ð7Þ

and the niche boundary is obtained by setting F xð Þ¼ 0.
The utility of this mathematical definition for practi-

cal applications (such as animal conservation) is limited.
First, the fitness of most mobile animals will be deter-
mined by not one, but several different habitats within
accessible G-space. The above expression is written in
E-space, which, as mentioned earlier cannot easily store
the geographical proximity between habitats (Angilletta
et al., 2019). Second, fitness and the availability of acces-
sible habitats need to be written as mathematical func-
tions so that their parameters can be estimated in
real-world situations. For these reasons, the above defini-
tion is far removed from the spatial data (e.g., telemetry,
transect survey, remote sensing) that quantify habitat
availability and habitat use in real systems.

ECOLOGICAL MONOGRAPHS 7 of 28
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INDIVIDUAL VERSUS POPULATION
NICHES

The fundamental niche is a concept usually associated
with entire species, but its definition and subsequent esti-
mation depend on how individuals experience and
respond to their environment (Carscadden et al., 2020).
Scaling up from the individual to the population niche
requires us to think of four aspects of biology:

1. Individual variation: Phenotypic variation between
individuals results in differences in their tolerances of
environmental extremes. In effect, the niche of a species
is the convolution between individual tolerances
and between-individual variation (Roughgarden, 1974).
The concept of fitness at the population level can be
thought of as the average of individual fitnesses and the
variation around this average. It is the material on which
natural selection operates. Although, in this paper, I refer
to a singlemeasure of (average) fitness for the population,
a genuine consideration of niche evolution would require
the mathematical framework to be extended to include
individual variation (Carlson et al., 2021).

2. Movement ecology: Although populations may be dis-
tributed across a landscape, not all population mem-
bers will be able to experience the full distribution of
environmental variables. Given that a population is
made up of individuals, possibly residing at different
parts of space, movement constraints deserve to be
taken into consideration in scaling up from individ-
uals to populations.

3. Spatial ecology: Environmental variables have
nonuniform distributions, and different variables are
characterized by unique levels of autocorrelation and
cross-correlation. Therefore, each part of the land-
scape (within an individual’s mobility constraints) will
present a unique habitat composition. The fitness of a
population will be the result of these unique experi-
ences by its individual population members.

4. Behavioral ecology: Within the constraints of their
genetic makeup, mobility, and position in the landscape,
individuals will have unique behavioral responses to
how they exploit their environment. Habitat selection is
an important driver of individual fitness, and the emer-
gent population fitness will be shaped by it.

ANIMAL MOBILITY AND THE
NICHE

The main challenge in formalizing the niche concept for
animals is that they are predominantly mobile organisms
and that even primitive animals have perception and

cognitive control of their movements, such that they can
actively select which habitats to use. Therefore, viability
may not only depend on a single habitat x (see zero-niche
paradox, above). Spatial heterogeneity may offer animals
different options within their accessible space. To associ-
ate fitness with a given habitat x, we need to view it in
the context of its surrounding habitats. For that purpose,
we may interpret x as the central vantage point from
which an animal perceives this heterogeneous landscape.
For example, x may be the habitat characterizing the cur-
rent location of a nomad in the landscape, or the habitat at
the centroid of the home range of a central-place forager.
Alternatively, it may be a statistical summary of an animal’s
surroundings, such as the average habitat within its home
range. Ultimately however, x is a reference habitat in
E-space, around which we want to evaluate viability, in
order to determine whether x belongs to the fundamental
niche, or not. Note that although this reasoning adds con-
siderable realism to our existing models of habitat selec-
tion, in the future it would need to be further expanded
to include migratory animals whose interannual viability
relies on habitats separated by very large distances
(Carscadden et al., 2020).

To quantify what habitats an animal experiences, we
must therefore consider just how mobile it is and what
habitats are likely to be available to it from its position.
From the perspective of E-space, mobility determines the
capacity of an organism to reach and use different habi-
tats z given that it is currently occupying a particular
habitat x, but this effect can only be captured by consid-
ering the proximity between habitats in G-space, for a
particular landscape. If, at a geographical location s, an
animal encounters the habitat x, we may be able to antic-
ipate what types of habitat are likely to be available to it
within its accessible neighborhood, given the size of that
neighborhood and the characteristic spatial autocorrela-
tion of habitats (Barve et al., 2011; Martin et al., 2008;
Matthiopoulos, 2003; Matthiopoulos, Fieberg, Aarts,
Barraquand, et al., 2020). Therefore, an important aspect of
the fitness F xð Þ attained by an organism when it is located
at a particular habitat x, at a set of spatial coordinates s,
is that it depends on context (Angilletta et al., 2019),
i.e., the habitat composition in the neighborhood of those
coordinates. Because of this, it is necessary to distinguish
between the context-specific version of fitness F xð Þ and
the context-independent fitness contribution of a single
habitat, denoted here by Fx, and defined as the long-tern
fitness characterizing a completely sessile individual
constrained within habitat x. For example, during the
sessile stages of some animals (e.g., porifera and
anthozoa), we can assume that F xð Þ¼Fx. Similarly,
when the mobility of an animal is small
(e.g., echinoderms) compared to the heterogeneity of
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their environment, we can assume F xð Þ≈Fx, because
animals may not be able to move fast enough to exit a
particular habitat. Context-specific usage, denoted by uzjx
is defined as the expected proportion of usage of a partic-
ular habitat z, from a reference habitat x.
Context-specific usage is a function of both habitat avail-
ability and preference (as will be seen below) and can
help express a relationship between context-specific and
context-independent fitness:

F xð Þ¼
ð
E
Fzuzjxdz: ð8Þ

The integral gives overall fitness F xð Þ at x as the
usage-weighted average of habitat-specific fitness contri-
butions Fz, of all habitats across E-space. I consider
context-independent fitness and context-specific usage
(the two components of the integrand), in turn.

Context-independent fitness can be adequately
represented by quadratic polynomials of habitat variables
(Austin, 2007; Matthiopoulos et al., 2015)

Fx ¼
Xn
k¼1

X2
v¼0

βv,kx
v
k ð9Þ

where the first sum is over n habitat variables and the
second sum generates the quadratic polynomials with
terms of order v.

Here, the values of the beta coefficients will depend
on the ecological nature of the kth environmental
variable. In particular, linear (hence, monotonic) terms
may be used to describe responses to environmental
resources (β1,k >0, β2,k ¼ 0) and risks (β1,k <0, β2,k ¼ 0)
while downward-pointing parabolas can describe peaks
in the responses to conditions (β1,k >0, β2,k <0). Two dis-
tinct components of fitness have been considered
(Matthiopoulos et al., 2015), with and without the effect
of density dependence. Although the density-dependent
component must be included when fitting these models
to population data, in defining the fundamental niche,
we are interested in the population’s intrinsic growth rate
(see Population dynamics in E-space and An initial definition
of the fundamental niche), which can be obtained from the
density-independent part of the model (assuming no Allee
effects are in operation at small population sizes).

The context-specific habitat usage component uzjx in
Equation (8) may be expressed as a function of habitat
preference and habitat availability. This approach is
taken by a broad class of methods under the collective
name of Habitat Selection Functions (HSFs), a term pre-
viously introduced (Aarts et al., 2013; Matthiopoulos
et al., 2015; Paton & Matthiopoulos, 2018) with reference
to the most popular inferential approaches such as

Maximum Entropy (MaxEnt; Elith et al., 2011, Merow
et al., 2013) and Resource Selection Functions (RSFs;
Boyce & McDonald, 1999, Manly et al., 2002). Habitat
selection originates from the idea of disproportionate use,
compared to the availability of a habitat (Johnson, 1980).
Therefore, a habitat-selection function is defined in terms
of usage per unit of habitat available

wzjx /
uzjx
f zjx

: ð10Þ

This expression is most often encountered in its
unconditional form wz / uz

f z
(Boyce & McDonald, 1999).

However, the biological interpretation of an uncondi-
tional formulation is unrealistic, because it either implies
that the animal has uniform access to the entire landscape,
no matter how large that is (Manly et al., 2002), or that the
range of a single individual contains a completely represen-
tative sample of the broader landscape. Equation (10)
implies a definition for context-specific habitat usage
(Lele & Keim, 2006)

uzjx ¼
wzjx f zjx

Ix
ð11Þ

where the denominator is a normalizing integral
Ix ¼

Ð
Ewzjx f zjxdz ensuring that usage across E-space

sums to 1. Animal mobility and behavior can complicate
our formulations of both determinants of usage in
Equation (11), so the notions of habitat availability and
habitat preference are developed in the next two sections,
with attention to biological realism.

MOBILITY AND HABITAT
AVAILABILITY

Given a reference habitat x, the availability (f zjx) of other
habitats z in the surrounding landscape will depend
on spatial structuring and the mobility of the organism
(Matthiopoulos, Fieberg, Aarts, Barraquand, &
Kendall, 2020). From this palette of available habitats,
animals choose to use some more than others.

The simplicity of the definition of habitat availability
f x as the amount (e.g., total area) of a habitat that is
accessible to a population is deceptive, because it does
not easily yield to quantification for a given species in a
given landscape. As shown by a number of earlier studies
(Aarts et al., 2013; Barve et al., 2011; Beyer et al., 2010;
Martin et al., 2008; Paton & Matthiopoulos, 2018), the
quantitative representation of what is available to ani-
mals can alter the parameter estimates and predictions of
such models, often converting underlying preference to
apparent avoidance of particular habitats, and vice versa.

ECOLOGICAL MONOGRAPHS 9 of 28
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This makes the definition of habitat availability one of
the most challenging and influential steps of SDM devel-
opment. Two aspects of movement, in particular, require
attention. The first refers to accessibility of any point in
E-space from another, and the second relates to comple-
mentary use of habitats by means of commuting.

Dealing with accessibility between habitats z and x,
requires us to port geographical measures such as mobil-
ity and spatial autocorrelation into E-space. However, to
manipulate habitat availability mathematically, we first
need to represent it parametrically, as a function of
statistical summaries of environmental composition.
Habitat availability across an arbitrarily large geographi-
cal domain, may be approximated in n environmental
dimensions by a Gaussian mixture of L components
(Matthiopoulos et al., 2015). Each Gaussian component
represents a kernel of high availability (a hot spot) cen-
tered at a particular location in E-space, and the different
components are combined (mixed) according to different
weights, to generate complex clouds of availability

f x ¼
XL
l¼1

ψl f l,x

¼ 1

2πð Þn2Qn
k¼1σk

XL
l¼1

ψl exp
1
2

Xn
k¼1

xk�μl,k
σk

� �2
 ! ð12Þ

where f l,x is the lth mixture component (a unimodal
probability density function in n dimensions), ψl is the
weight associated with the lth component (such thatPL

l¼1ψl ¼ 1), μl,k is the mean (i.e., the location in E-space)
of the lth mixture component along the kth environmental
dimension, and σk is the characteristic standard deviation
along the kth environmental dimension. This form of
context-independent availability, defined in E-space,
gives us the probability density of any given habitat x
across the whole of G-space. This Gaussian mixture
approximation is not the only way to formalize
n-dimensional hypervolumes, but all other available
approaches are similar in spirit (Blonder et al., 2014).
In general, these are approximation methods that create
smoothed clouds of availability based on environmental
data. Smoothing in E-space produces increments of avail-
ability in habitats that may not be physically present in the
area of data collection. Like all smoothing methods, there
is a trade-off between the flexibility of the smoother (e.g.,
number of parameters) and the degree of detail from the
data that can be emulated. In the Gaussian mixture
approach above, the higher the number of components
used for fitting to the data, the better the approximation of
the actual availability cloud and the lower the degree of
smoothing (but smoothing may not necessarily be undesir-
able, as I discuss at the end of this section).

We can extend these ideas to define context-specific
availability f zjx, which describes the frequency with
which different habitats z would be accessible close to a
reference habitat x and depends on organism mobility
and environmental autocorrelation. Recently, an expression
was derived (Matthiopoulos, Fieberg, Aarts, Barraquand,
et al., 2020) for context-specific habitat availability for
orthogonal environmental variables (i.e., either raw environ-
mental variables presenting no cross-correlation, or rotated
covariates via a method such as principal components analy-
sis), as perceived from the vantage point of an organism
found at habitat x. This expression describes the habitats
likely to be encountered by an organism conditional on
the habitat x where the organism is centering its usage.
Intuitively, this is a localized model of availability, writ-
ten in terms of the global Gaussian mixture components

f zjx ¼
Yn
k¼1

f zk jxk

¼
Yn
k¼1

1
f xk

XL
l¼1

XL
m¼1

Ψk,l,mf l,xk f m,zk

ð13Þ

where, as in Equation (12), f l,xk , f m,zk are respectively the
lth and mth Gaussian components for the kth environ-
mental dimension at the values x, z. The Gaussian mix-
ture f xk at the value x of the kth variable is calculated
using the new weights Ψk,l,m that are derived as a func-
tion of the mobility of the study organism combined with
empirical curves of the spatial autocorrelation of the envi-
ronmental covariates (see Appendices in Matthiopoulos,
Fieberg, Aarts, Barraquand, et al., 2020).

The formulations of f zjx can describe much more
complex availability clouds in E-space, than those shown
in Figure 1c,d, but can also represent the contiguity and
structure of habitats in G-space (Matthiopoulos, Fieberg,
Aarts, Barraquand, et al., 2020). In addition, f zjx contains
information about the mobility of the organism, enabling
it to capture the scale at which a typical individual expe-
riences the ambient heterogeneity in its environment.
Implicit information on these two quintessentially geo-
graphical properties (habitat contiguity and animal
mobility) allows the integral over E-space in Equation (8)
to capture the habitat context around x.

Although originally proposed to account for spatial
structuring, this model can readily be extended to repre-
sent temporal structuring (e.g., trend, stochastic, or sea-
sonal components). This can extend the notion of
viability to temporal change (Sober�on & Peterson, 2020),
accounting for aspects of plasticity displayed by sessile,
but temporally varying organisms, such as plants.

A feature of this framework not yet fully explored is
complementarity in habitat use, which leads to the
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“zero-niche paradox” mentioned in From G-spaces to
E-spaces and back again. If an organism can commute
between multiple habitats, it can use their properties in a
complementary way. For example, a habitat that provides
water and one that provides food may be insufficient for
survival, on their own, but entirely adequate to support
an organism when used in combination. By commuting,
an animal effectively experiences a third, sufficient habitat
(containing both water and food). This can be thought of as
the capacity of mobile organisms to alter habitat availabil-
ity, depending on spatial context, i.e., the total set of habi-
tats that physically exist and are within reach of an
organism (Angilletta et al., 2019). The above approach,
constructing Gaussian approximations of observed availabil-
ities, has the potential to capture complementarity by
smoothing these observed frequencies into approximate
probability densities. Through this local averaging opera-
tion, habitats that may not physically exist, but are similar
to combinations of several extant habitats, receive a
non-zero availability, hence allowing the framework to
emulate complementary use by animals. Although more
research is needed to determine how this smoothing opera-
tion could faithfully capture complementarity between hab-
itats, it is important to stress the expandability of the
approach presented here. By redefining habitat availability
in this way, we would not need to alter any other aspects of
the statistical frameworks reviewed in the following section.

MOBILITY AND HABITAT
PREFERENCE

Habitat preference (wzjx) can capture variations in usage
due to animal behavior (Matthiopoulos et al., 2011).
Following the requisites of HSF frameworks, such as
Maximum Entropy (MaxEnt; Elith et al., 2011; Merow
et al., 2013) and Resource Selection Functions (RSFs;
Boyce & McDonald, 1999; Manly et al., 2002), habitat
preference is broadly expressed as an exponential trans-
formation of a predictor function g xð Þ

wzjx ¼ exp g xð Þð Þ: ð14Þ

Echoing the formulation for context-independent
fitness in Equation (9), the predictor function g xð Þ can be
formulated as a second-order polynomial in the dimen-
sions of the vector x, for some coefficients γ. The coeffi-
cients γv,k of habitat preference are not the same as the
fitness coefficients βv,k in Equation (9) because apparent
habitat suitability can be context-specific (Arthur
et al., 1996; Gillies et al., 2006; Mysterud & Ims, 1998),
whereas the coefficients of fitness should be fixed for any
given animal

wzjx ¼ exp
Xn
k¼1

X2
v¼0

γv,kx
v
k

 !
: ð15Þ

There is an extensive literature describing how the
use of a particular habitat can be affected nonlinearly by
the availability of surrounding habitats, a phenomenon
called a functional response in habitat selection
(Holbrook et al., 2019; Mysterud & Ims, 1998). To resolve
this, it was suggested (Boyce et al., 1999) that functional
responses could be flexibly captured by expressing the γ
coefficients of Equation (15) as functions of the entire
habitat availability field γ fð Þ. Such varying coefficient
models have existed in spatial statistics for some time
(Hastie & Tibshirani, 1993), and their application in ecol-
ogy is becoming more widespread (Barnett et al., 2021;
Osborne et al., 2007), but for functional responses, the
local dependence is with reference to the habitat compo-
sition of a particular region of a landscape. In its simplest
form, a varying coefficient may be written as a linear
combination of the availabilities of all habitats across
E-space, for a particular landscape

γv,k ¼
ð
E
η yð Þf ydy ð16Þ

for some function η that describes how the coefficient γ
responds to the availability of any given habitat y.
Specifically, η is the change in the slope of the vth order
term of the kth environmental variable as a result of a
unit-increase in the availability of habitat y. The v, k,
slope is the varying coefficient in relation to the vth-order
polynomial term of the kth environmental variable.
This varying-coefficient approach was named a
Generalized Functional Response (GFR) (Matthiopoulos
et al., 2011) and a particular version of GFRs was formu-
lated, by expressing the η’s as polynomial functions of
environmental variables. This is the simplest formulation
of GFRs and leads to an expression for the coefficients of
habitat preference, in terms of the moments (i.e., the
jth-order expectations) of the marginal distributions of
habitat availability along each environmental dimension

γv,k ¼ δv,k,0þ
Xn
i¼1

X∞
j¼1

δv,k,i,jE Xj
i

h i
: ð17Þ

In practical applications, due to limitations in data
availability, only the lower moments are used (i.e., the
average value of each environmental variable in the
neighborhood of the point of interest)

γv,k ¼ δv,k,0þ
Xn
i¼1

δv,k,iXi: ð18Þ
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The exploration of efficient (i.e., economical with
degrees of freedom) and effective (i.e., accurate and pre-
cise) GFR models is still at its early stages and improve-
ments of implementing the general idea of Equation (16)
will be possible (Aldossari et al., 2021). However, cur-
rently the state of the art with GFRs is Equation (17), and
this has repeatedly been able to improve the predictive
abilities of HSF models (Aarts et al., 2013; Matthiopoulos
et al., 2011, 2015, 2019; Muhly et al., 2019; Paton &
Matthiopoulos, 2018).

PARAMETRIC DEFINITION
OF THE FUNDAMENTAL NICHE

We now have all the necessary ingredients to construct a
mathematical definition of the fundamental niche of ani-
mals that can be estimated from field data. The condition
in Equation (7) can now be expanded with the aid of
Equations (8) and (11)

1
Ix

ð
E
Fzwzjx f zjxdz≥ 0:

Given that the normalizing constant Ix is consistently
nonnegative, we can simplify the above expression into
an equation for the boundary of the fundamental nicheð

E
Fzwzjx f zjxdz¼ 0: ð19Þ

The integral is proportional to the fitness F xð Þ around
a reference habitat x. It aggregates all nearby
habitat-specific contributions Fz, weighted by the avail-
ability (f zjx) of each habitat and by preferential usage
(wzjx) of habitats by members of the species.

The three quantities participating in the integral are
estimable from field data. The habitat-specific fitness Fz

has been formulated mathematically (Matthiopoulos
et al., 2015) and fitted to combined space use and popula-
tion growth field data (Matthiopoulos et al., 2019). This
framework hybridizes spatial and demographic model
fitting and is a specific example of the much broader class
proposed conceptually by Schurr et al. (2012). The habitat
preference model wzjx, once recast as a GFR model
(Matthiopoulos et al., 2011), can be estimated from usage
data (Matthiopoulos et al., 2011, 2019). Finally, the
context-specific availability can be derived from a flexible
approximator, such as the Gaussian mixture model
(Matthiopoulos et al. 2015; Matthiopoulos, Fieberg,
Aarts, Barraquand, et al., 2020), as was described in
Mobility and habitat availability.

Equation (19) relies on different categories of parame-
ters. The function Fz contains the vector of “fitness

parameters” β, the function wzjx contains the vector of
“habitat-use parameters” γ, and the function f zjx contains
the “habitat availability” parameters, which in the case of
Gaussian mixtures would principally be (μ, σ), the
weights, locations, and variances of the Gaussian mixture
components. Equation (19) is not limited to the particu-
lar formulations mentioned above. Other types of func-
tions may be devised to broaden the applicability of this
very general framework to a wealth of life histories for
different animals. As will be seen in the examples below
(Example 1: Territorial or colonial species and Example
2: House sparrows in suburbia), for the cases of territo-
rial, home ranging, or colonial species, it is possible to
specify these functions and proceed with particular
mathematical formulations of the niche.

The solutions of Equation (8) are not merely points in
E-space, but fully parametric descriptions of entire land-
scapes that can offer the species neutral (i.e., zero) fitness.
The equation has infinite solutions in its extended
parameter space, which may have many more dimen-
sions than E-space. These extra dimensions arise from
the need to describe complex habitat availability distribu-
tions in E-space (using parameters to capture higher
moments of resource distributions, such as variance,
skewness, and outliers, but also multimodality). For
example, for an E-space of n orthogonal environmental
variables, allowing a trimodal marginal distribution of
availability in each environmental dimension, results in a
fundamental niche space of at least 4n dimensions (char-
acterizing the positions of the three modes and an identi-
cal variance around each mode). Even in the case of
unimodal availability (corresponding to n-dimensional
ellipses in E-space), describing a heterogeneous environ-
ment requires twice as many dimensions as Hutchinson’s
niche space. Only completely homogeneous environ-
ments can be sufficiently described by n environmental
dimensions. This is not to say that the classical defini-
tion of E-space will not capture some points of the fun-
damental niche. It just means that this set of points will
be contained within a larger set defined in a higher
dimensional definition of E-space that allows us to
describe environmental heterogeneity. Although impos-
sible to visualize, solutions to this equation are entirely
possible to retrieve. As will be seen in the house sparrow
example below (see Equations 27 and 28), for some nat-
ural histories, it may even be possible to describe the
fundamental niche using simple integral-free algebraic
expressions.

However, for other biological scenarios, exhaustively
describing the set of solutions by means of an algebraic
expression may not be possible. In these cases, the pre-
sent framework can always be used to calculate whether
a particular landscape is inside or outside the niche
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boundary (Godsoe, 2010). Such a “what-if” question
would require us to numerically calculate the integral
in Equation (8) and thus check whether it gives posi-
tive or negative values. Similar calculations could be
used to quantify fitness and compare fitness values
between two candidate landscapes. Such comparisons
form the basis for all generic optimization, or Monte
Carlo Markov Chain methods and are therefore the core
for targeted ecosystem management (see Future develop-
ments: Optimizing ecosystem management).

EXAMPLE 1: TERRITORIAL OR
COLONIAL SPECIES

By focusing on colonial or territorial species and assum-
ing, for simplicity, equal accessibility of all points within
the territory or home range, it is possible to describe avail-
ability of habitats to the animals via the simpler Gaussian
mixture in Equation (12), instead of the conditional
approximation of Equation (13), which deals with grada-
tions in accessibility. Then, the integral of Equation (19)
becomes

ð
E

Xn
k¼1

X2
v¼0

βv,kx
v
k exp

Xn
k¼1

X2
v¼0

γv,kx
v
k

 !

�
XL
l¼1

ψl exp
1
2

Xn
k¼1

xk�μl,k
σk

� �2
 !

dx¼ 0:

ð20Þ

This expression has a closed form (see Appendix A in
Matthiopoulos et al., 2015)

XL
l¼1

ψlΘl

Xn
k¼1

X2
v¼0

βv,kZv,k ¼ 0 ð21Þ

where

Θl ¼
Yn
k¼1

2πσ2k
1�2γ2,kσ2k

� �1
2

exp γ0,k�
μ2l,k
2σ2k

þ γ1,kσ2kþμl,k
� �2
2σ2k 1�2γ2,kσ2k
� � !

ð22Þ

and

Z0,k ¼ 1,Z1,k ¼
γ1,kσ2kþμl,k
1�2γ2,kσ2k

,

Z2,k ¼ σ2k
1�2γ2,kσ2k

1þ γ1,kσ2kþμl,k
� �2
σ2k 1�2γ2,kσ2k
� � !

: ð23Þ

Note that this expression is independent of x. It
depends purely on the parameters of fitness (β), habitat

availability (ψ, μ, σ), and habitat preference (γ). The fit-
ness parameters are fixed (independent of habitat avail-
ability) and the habitat preference parameters depend on
habitat availability (via a GFR, see Equation 18). Therefore,
the fundamental niche boundary in this example depends
solely on the habitat composition of the home range or ter-
ritory. Ultimately, therefore, we can decide if a particular
landscape composition within the territory (as determined
by ψ, μ, σ) allows a typical animal from the species to
have positive fitness.

To gain some intuition around these expressions, con-
sider a hypothetical scenario (Figure 2) in which a terri-
torial organism is affected by only one environmental
variable x, so that n¼ 1. Fitness of the organism is
highest at intermediate values of the variable and
extreme values of the variable are inviable (i.e., confer
negative fitness, see Figure 2a). We assume that the
organism has complete access to all points within its ter-
ritory and the distribution of values of the environmental
variable has a simple unimodal shape, so that the sole
Gaussian component (L¼ 1,ψ1 ¼ 1) is described by μ, σð Þ
(two examples of such availability profiles, named low-x
and medium-x scenarios, are shown in Figure 2b). The
habitat preferences (Figure 2c) are affected by a func-
tional response, so that in the low-x scenario (red dashed
curve in Figure 2b) the animal appears to show stronger
preference for higher values of x (red dashed curve in
Figure 2c). Following the GFR approach (Equation 18),
the parameters of habitat preference for the linear and
quadratic response to the single environmental variable
can be written as linear functions of availability so
that γ1 ¼ δ1,0þδ1,1μ, γ2 ¼ δ2,0þδ2,1μ.

Consequently, the animal can shift its usage
(Figure 2d) of the environmental variable closer to the
intermediate values of x. In G-space, in the low-x sce-
nario, the animal would concentrate its usage to parts of
the territory with intermediate values of x, but these parts
would appear to be preferred more than the medium-x
scenario. We can investigate the implications of this sim-
ple form of behavioral plasticity for the size of the niche,
but first we need to decide on the dimensionality of the
relevant niche space. For this example, the availability
profile of the single variable is determined by two quanti-
ties, the mean and variance of the availability distribu-
tions in Figure 2b. These two values form the dimensions
of the niche space. So, even though the Hutchinsonian
E-space is one-dimensional, spatial variability in x values
across the territory means that the niche space is
two-dimensional. Figure 2e shows the shape of the fun-
damental niche in this two-dimensional space and the
colors indicate the fitness of the animals living in these
conditions. By specifying Equations (21)–(23) to the cir-
cumstances of this simple example, the boundaries of the
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niche are given by solutions of the following equation
in μ, σ:

2πσ2

1�2γ2σ2

� �1
2

exp γ0�
μ2

2σ2
þ γ1σ2þμð Þ2
2σ2 1�2γ2σ2ð Þ

 !

� β0þβ1
γ1σ2þμ
1�2γ2σ2

þβ2
σ2

1�2γ2σ2
1þ γ1σ2þμð Þ2

σ2 1�2γ2σ2ð Þ

 ! !
¼ 0:

ð24Þ

Removing the functional response from the model
(by setting δ1,1 ¼ 0, δ2,1 ¼ 0), such that the animals have
exactly the same habitat preference, regardless of habitat
availability, gives rise to a different (smaller) niche
(Figure 2f). Comparison of Figure 2e with 2f illustrates

the intuitive notion that in heterogeneous environments
animals can improve their fitness by selectively using the
better parts of their home range. As heterogeneity
increases, it becomes more likely that animals can find
and focus on extremely suitable places, extracting
ever-higher fitness.

EXAMPLE 2: HOUSE SPARROWS
IN SUBURBIA

I now apply these ideas to a real example based on the
analysis of Matthiopoulos et al. (2019), which looked at
fine-scale suburban garden composition within the home
ranges of different sparrow colonies around Glasgow,

F I GURE 2 A simple example of how fitness, habitat availability, habitat preferences, and habitat use interact to shape the fundamental

niche. (a) Fitness of the species for different values of the environmental variable. (b) Two profiles of habitat availability. The low-x scenario

(dashed curve) represents a territory that has on average lower x values in comparison to the medium-x scenario (solid curve). (c) The

corresponding habitat preference curves as might be inferred by fitting a habitat selection model to (d) the usage of points with different

x values within the territory. (e) The two-dimensional niche space examines all possible combinations of mean and variance for the

environmental profile of availability (hence each point in the space is a curve such as those shown in (b). The blue and red dots correspond

to the colored curves in the previous plots. The red color gradient indicates negative fitness and blue are positive. The white zones surround

the boundary of the niche. (f) The consequences of removing behavioral plasticity from the animals so that their habitat preferences are

invariant under habitat availability changes.
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Scotland. The complete data set and analysis are included
in the supplements to Matthiopoulos et al. (2019) (all
niche-related figures below are produced as part of the
Markdown pipeline based on these previous results and
interested readers can experiment with the modeling
decisions from the very start of the full analysis).

Home range composition was described in terms of
six land cover variables. Sparrows were not particularly
selective within their home ranges (the habitat prefer-
ence model explained only 33% of observed patterns of
usage), but the population models based on habitat avail-
ability and usage captured 81% of the variability in colony
growth rates, under cross-validation, and were found to
exceed the performance of models carrying no informa-
tion on habitat heterogeneity. This high predictive ability
was achievable with detailed information on the distribu-
tion of three of the six variables (grass, bush, and roof
structures). Superabundance of any of these variables
was detrimental to population growth. Sparrow colonies
were least tolerant of high percentages of lawn and
performed better in the presence of bushes and roof
structures. Hence, although a full characterization of the
fundamental niche of sparrows would require a more
biologically sophisticated set of habitat variables,
the suburban sparrow system is a good exemplar
because it achieves high predictive power for a low
number of niche dimensions and the simplicity of this
example incurs no loss of generality for the mathemati-
cal framework. Indeed, the changes in the niche
hypervolumes described below are likely to be more pro-
nounced if more covariates were used.

An integral-free expression can be derived for subur-
ban house sparrows, describing their fundamental
niche’s boundary in terms of garden composition (and
heterogeneity therein), fitness parameters and habitat
selection parameters. The habitat selection model fitted
to the sparrow data in (Matthiopoulos et al., 2019)
contained no quadratic terms in any of the habitat vari-
ables, which implies that γ2,k ¼ 0 and β2,k ¼ 0 for all k.
This greatly simplifies Equations (22) and (23) to

Θl ¼
Yn
k¼1

ffiffiffiffiffi
2π

p
σk exp γ0,kþ

1
2
γ21,kσ

2
kþγ1,kμl,k

� �
ð25Þ

Z0,k ¼ 1,Z1,k ¼ γ1,kσ
2
kþμl,k: ð26Þ

The expression for Z2,k has been omitted since
β2,k ¼ 0. Although this model was fitted to real scenarios
from the field, and hence its parameters are data driven
(Matthiopoulos et al., 2019), it can be used to quantify
the niche in much simpler versions of environmental

space (e.g., unimodal availability clouds), revealing some
highly informative features of the niche, under minimally
realistic conditions.

To begin, let us assume for this illustration only,
that sparrows occupy home ranges whose habitat
composition can be described by a single (i.e., L¼ 1
and ψ1 ¼ 1) Gaussian component of n orthogonal vari-
ables (e.g., Jiménez et al. 2019). This means that habitat
variables have unimodal, symmetric distributions within
the home range and there are no correlations between
them. To further reduce parameters, we will assume that
the three environmental variables have the same disper-
sion. Hence, habitat availability f x ¼N n x, σInð Þ has
spherical contours around a centroid x¼ x1,…, xk,…, xnð Þ
positioned at the average values of the three environmen-
tal variables (i.e., xk ¼ μk). Here, σ is the standard
deviation shared between the three environmental vari-
ables and In is the n�n identity matrix. The parameter σ
will be used here as a convenient shorthand for environ-
mental heterogeneity. In particular, as σ! 0, the entire
home range comprises identical cells, each with composi-
tion x. These simplifications of availability and E-space
give a very tractable version of the niche boundary for
sparrows

Yn
k¼1

ffiffiffiffiffi
2π

p
σexp γ0,kþ

1
2
γ21,kσ

2þγ1,kxk
� �

�
Xn
k¼1

β0,kþβ1,kγ1,kσ
2þβ1,kxk

� �¼ 0:

Given that the first component of this product can
never be zero, the expression further reduces to

Xn
k¼1

β0,kþβ1,kγ1,kσ
2þβ1,kxk

� �¼ 0: ð27Þ

Under the GFR framework, the habitat selection coef-
ficients can be written as functions of moments from the
marginal distributions of the environmental variables
(see Equation 17). In Matthiopoulos et al. (2019) these
were sufficiently modeled as linear functions of the
averages of all covariates, so that γ1,k ¼ δ1,k,0þ

Pn
i¼1δ1,k,ixi.

This affords an expression for the niche in terms of
purely β, σ, x

Xn
k¼1

β0,kþβ1,kσ
2 δ1,k,0þ

Xn
i¼1

δ1,k,ixi

 !
þβ1,kxk

 !
¼ 0:

Defining β0 ¼
Pn
k¼1

β0,k
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β0þ
Xn
k¼1

β1,kσ
2 δ1,k,0þ

Xn
i¼1

δ1,k,ixi

 !
þβ1,kxk

 !
¼ 0: ð28Þ

For this example, it can be shown that the left-hand
side of this equation is also equal to fitness, further facili-
tating interpretation. This expression was used to explore
the fundamental niche of this population, within the
much simplified, unimodal version of habitat availabili-
ties in E-space. Below, I will refer to the average habitat
composition x¼ xR, xG, xBð Þ for roof, grass, and bush, as
the “reference habitat,” a point in Hutchinsonian
E-space. The only feasible reference habitats satisfy
xRþxGþxB ≤ 100%. Note that the three land cover vari-
ables were not exhaustive, because the habitat was char-
acterized by other covariates for land cover. So, their sum
could be any number between 0 and 1. I examined two
scenarios of habitat composition. For the homogeneous
scenario, I set σ¼ 0. For the heterogeneous scenario,
the variability of habitats around the reference habitat
x¼ xR, xG, xBð Þ was explored by varying the value of σ
from zero, up to its biologically feasible maximum.
This was calculated in terms of the reference habitat x
via the following practical steps:

• In a heterogeneous home-range, different habitats
z¼ zR, zG, zBð Þ will be represented as points in E-space
that are at some distance from the mean (i.e., the refer-
ence habitat x).

• Each of these points must satisfy positivity constraints and
the 100% summation constraint (zRþ zGþ zB ≤ 100%).

• Gaussian densities f x are, of course, unbounded so
although they are mathematically convenient, some
proportion of their density will “leak” outside feasible
bounds, creating impossible habitats (i.e., negative pro-
portions or total habitat proportions exceeding 100%).

• The feasibility requirements will be more severely vio-
lated when σ increases to such an extent that a high
proportion of probability density f x is outside the 100%
summation boundary.

• To make sure that the results are not greatly affected
by such violations and remain consistent across differ-
ent reference habitats x, I stipulated that home range
heterogeneity (σ) would always retain >95% of the
Gaussian density within the feasible region.

• I defined the radius r of a sphere in E-space around
the reference habitat, as the 95th percentile of the
Gaussian density f x. For a variate with a multivariate
standard normal N 3 0, I3ð Þ distribution, the square of
the Mahalanobis distance is chi-square distributed,
with critical value at 95% of χ23 1�0:95ð Þ¼ 7:815. So,
the critical distance is r¼ σ

ffiffiffiffiffiffiffiffiffiffiffi
7:815

p
.

• The maximum value that this could take is rmax ¼
min xR, xG, xB, dð Þ, where d¼ 1�xR� xG� xBð Þ= ffiffiffi

3
p

is
the distance of the reference habitat x from the inclined
plane of 100% land cover.

• This implies that the maximum value σmax of the het-
erogeneity parameter σ is σmax xð Þ¼ rmax=

ffiffiffiffiffiffiffiffiffiffiffi
7:815

p
.

Within the feasible interval σ� 0, σmax xð Þ½ �, I defined
viability as the occurrence of a positive value on the
left-hand side of Equation (28). I also recorded these
values as the measure of fitness at each reference habitat
x. For the homogeneous scenario, only one value of via-
bility and fitness corresponded to each reference habitat.
For the heterogeneous scenario, I recorded the maximum
achievable fitness and the corresponding value of habitat
heterogeneity σ that produced it.

I generated the following statistics to examine the
impact of heterogeneity and habitat selectivity on the
niche. First, the percentage of feasible environmental
space that contained viable reference habitats for the
homogeneous case. Second, the percentage of reference
habitats whose fitness was improved with the addition of
heterogeneity and selectivity. Third, the percentage of
inviable reference habitats that were made viable with
the addition of heterogeneity and selectivity. Fourth, the
percentage of increase in fitness resulting from the addi-
tion of heterogeneity and selectivity.

Under the assumption of home range homogeneity
(i.e., under the Hutchinsonian n-hypervolume definition
of the fundamental niche), I found that the niche occu-
pied 15% of feasible E-space (Figure 3a). Introducing hab-
itat heterogeneity and sparrow selectivity allowed an
increase of the complete set of habitats that could be
included in viable home ranges to 25% of feasible space
(Figure 3b). Improvements in the maximum fitness of
animals encountered in different habitats, occurred pri-
marily in the center of viable space (Figure 3c) because
this form of spherical heterogeneity could not be high
close to the borders of the feasible niche space, where
σmax ! 0. The fitness characterizing entire home ranges
was also improved compared to the homogeneous sce-
nario (Figure 3d), because sparrows could select to use
the better-than-average parts of their heterogeneous
home ranges. In 9% of previously viable homogeneous
home ranges, fitness was improved when habitat hetero-
geneity and selectivity were introduced and an additional
0.15% of previously inviable ranges became viable (essen-
tially, this represents the scenario where the mean values
of habitat variables imply extinction, but the species can
survive by using small refuge parts in their home range
selectively). The average improvement in fitness was
13.28% (95% CI: 0.03%, 80.99%). It is notable that these
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levels of niche and viability inflation are observed in a
model with only three environmental covariates, under
the most rudimentary form of heterogeneity (i.e., a
shared variance parameter for all environmental vari-
ables, with no multimodality or asymmetries) and in a
study species that demonstrated limited selectivity for
habitats within the individual colony range. This is there-
fore a stringent demonstration, using field data, of the
original hypothesis that heterogeneity and behavioral
plasticity alter the shape of Hutchinson’s fundamental
niche in a real species.

NECESSARY ADJUSTMENTS
TO OUR NOTION OF THE
FUNDAMENTAL NICHE OF
ANIMALS

The fundamental niche began life a century ago
(Grinnell, 1917), as an aid to scientific intuition
(Parentoni Martins, 2017). However, as our broader eco-
logical understanding has developed, we have unveiled
many of the limitations of our textbook schematics of the
niche (Angilletta et al., 2019; Araújo & Guisan, 2006).

F I GURE 3 Visualizing the fundamental niche of house sparrows in homogeneous and heterogeneous home ranges. The transparent

plane represents a feasibility boundary, preventing the sum of the three land cover variables from exceeding 100%. The three axes are plotted

from 0% to 80%, to better focus on the viable region. Relative fitness values (or their differences) are colored on a gradient from high (red) to

low (blue). The homogeneous scenario (a) assumes that all parts of a home range have the same composition as the average of the home

range: the reference habitat. Hence, (a) is a data-derived representation of Hutchinson’s E-space hypervolume for the sparrows in this study.

The heterogeneous scenario (b) encloses all habitats that occur in viable home ranges when the heterogeneity in a home range maximizes

fitness. The difference (c) between the predictions of the two scenarios highlights which regions of the homogeneous fundamental niche

benefit from the existence of habitat heterogeneity and sparrow selectivity. The core difference (d) compares the change in relative fitness for

homogeneous and heterogeneous home ranges with the same average habitat composition.
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At the same time, the proliferation of niche-related
models in the management of vital ecosystems, means
that our intuition about the niche is more important and
relevant than ever (Holt, 2009; Hurlbert, 1981). By formu-
lating models of the fundamental niche appropriate for
vagile and selective animals in heterogeneous environ-
ments, the above synthesis has brought the following
conceptual adjustments into sharper focus.

It has more dimensions than Hutchinson’s
niche space

The environments experienced by animals cannot be
characterized sufficiently as single points in E-space, as
Hutchinson had envisaged. Habitat availability clouds in
environmental spaces may have multiple loci, they are not
necessarily convex and may often have discontinuities or
holes (Blonder, 2016, 2018; Jimenez & Sober�on, 2021;
Sober�on & Peterson, 2020). Animals respond selectively to
these complex availability clouds and their fitness is deter-
mined by the entirety of these interactions. The two exam-
ples in this monograph, as well as the extensive theoretical
spatial literature (Tilman&Kareiva, 1997), have shown that
spatial heterogeneity matters for fitness. Therefore, the
didactic “severing” (Colwell & Rangel, 2009) between
E- and G-spaces that served Hutchinson so well, now needs
to be reconsidered. Spatial heterogeneity leads to variance,
autocorrelation, and multimodality in availability clouds.
Representing these important statistical properties in niche
spaces requires the introduction of additional degrees of
freedom,more niche dimensions (Hurlbert, 1981).

For instance, in the sparrow example above, only three
environmental variables were considered, but to fit the
model to real data, a total of 57 dimensions were used to
describe the heterogeneity in garden compositions. Such
high dimensions are evidently required by the data because
they persist through various filters of model parsimony
(e.g., model selection, regularization, cross-validation).
To illustrate the predictions of such high-dimensional
models in three-dimensional Hutchinsonian E-space
(Figure 3), I specified the fully fitted model to the simplest
scenario of habitat heterogeneity, using unimodal Gaussian
spheres in E-space. This meant that the niche model was
explored in four-dimensional space (i.e., the three mean
values for the land cover variables with the addition of a
common variance dimension describing habitat heteroge-
neity within a home range). The extent and consequences
of this rudimentary form of heterogeneity in the sparrows’
home ranges could then be examined by increasing a single
variability parameter σ from zero (i.e., homogeneous
home range), to its largest feasible value. The visualiza-
tions in Figure 3, therefore, represent the minimum

deviation from Hutchinson’s niche space because they
use only one more dimension (the variance) than the
three environmental variables in the system. The
resulting inflation in the fundamental niche indicates
that these increases in dimensionality are not just theo-
retically but also quantitatively influential. Importantly,
such high-dimensional niches have been explicitly antici-
pated, as a reconciling route between the predictions of
niche and neutral theories (Clark et al., 2007).

Using more degrees of freedom to describe more com-
plex environmental objects is an obvious (Hurlbert, 1981),
but somewhat daunting (MacNab, 2018), solution to deal-
ing with the diversity of habitats experienced by individ-
ual animals. However, the “curse of dimensionality”
(Bellman, 1957) is not a mathematical problem, it is pri-
marily a statistical one. As the number of dimensions
increases, optimization or Monte Carlo Markov Chain algo-
rithms needmore iterations to estimate relevant parameters,
and the volumes of parameter space that can be informed by
available data become sparse. The theoretical framework
presented here and elsewhere (Matthiopoulos et al., 2015),
demonstrates that high-dimensional calculations with the
fundamental niche can be approached analytically, reducing
the model-fitting component to the form of generalized lin-
ear models (see application in Matthiopoulos et al., 2019), a
type of inferential tool that can deal efficiently with
many hundreds of dimensions. Further, as I argue below
(The multiplicity of realized niches is a blessing, not a curse
and Future developments: Data requirements and statistical
inference), the issues of data sufficiency can be identified and
addressed via data integration of multiple instances and
types of data.

It is not necessarily a bounded subset
of E-space

Hutchinsonian niches focus on environmental conditions
(e.g., temperature, humidity, etc., often called “scenopoetic”
variables; Colwell & Rangel, 2009; Hutchinson, 1978;
Sober�on & Nakamura, 2009), characteristics that set limits
to viability (Godsoe et al., 2017). As a result, fundamental
niches are often defined as hypervolumes with a
well-defined core, suspended in E-space (Blonder et al., 2014;
Sober�on & Peterson, 2020). Applied work has adhered to this
image, by often focusing on niches of finite volume
and breadth (e.g., Broennimann et al., 2012, Carscadden
et al., 2020 and, also, the sparrow example above).

However, Hutchinson recognized that resources also
have a role to play in defining niche spaces (Colwell &
Rangel, 2009; Hurlbert, 1981; Kearney et al., 2010). Unlike
fitness responses to conditions (which usually correspond to
maximum and minimum tolerances), fitness responses to
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resources are unbounded (i.e., organisms are not likely to die
if they are surrounded by too much food, unless this is at the
expense of other valuable resources). Other authors have
noted the importance of (real, or perceived) risk in shaping
species distributions (DeCesare et al., 2014). Responses to
risks are only bounded below by zero (i.e., everything else
being equal, the lower the risk, the better).

The inclusion of resources and risks (collectively
known as “bionomic” variables; Colwell & Rangel, 2009;
Hutchinson, 1978; Sober�on & Nakamura, 2009) into the
definition of E-space was considered challenging because
they tend to interact dynamically with the species of
interest (see considerations of multispecies interactions
in Future developments: Mechanistic content of models
leading to the niche). However, from a biological perspec-
tive, resources and risks are prominent in determining the
ability of a species to survive and hence our intuitive
image needs to be adjusted to admit niches that are
unbounded above (along resource axes) or are in contact
with zero (along risk axes).

It is more malleable, but also more
predictable

A corollary of the high dimensionality of animal niches is
that niche boundaries in E-space may appear less predict-
able (“fuzzy”; Angilletta et al., 2019) than they are.
Certainly, process stochasticity, individual variation and
observation errors will make the niche boundaries nondeter-
ministic, but some of their apparent uncertainty may be due
to our misrepresenting them as lower-dimensional objects.
This implies that the fundamental niches of animals
are more malleable than has thus far been imagined.
Heterogeneous environments can be more favorable to a
mobile and selective species than homogeneous ones (even
ones that are “on average”marginally better). Even environ-
ments that are hostile on average can offer localized refugia
and therefore encourage species viability (Pettersson &
Nilsson Jacobi, 2021). The framework presented here can
quantify exactly how buffered real animals are from hostile
environments.

It is worth asking, whether the flexibility of the niche
in these extra dimensions is enough to have an impact on
population ranges and extinction probabilities. The spar-
row example above indicates that it is, by demonstrating
measurable impacts on the volume of the niche, under
even the slightest deviations from Hutchinson’s defini-
tion of dimensionality. Given that the framework
presented here for the estimation of fundamental niches
is very new, it is not yet clear what proportion of the
apparent uncertainty characterizing these estimates in
real systems will be due to dimensionality versus sources
of noise. However, it is possible that if we model the

niche in its full complexity, it may prove to be more
deterministic (hence, predictable) than we might con-
clude by working purely with its low-dimensional projec-
tions, a situation echoed in other areas of dynamical
systems science (Farmer et al., 1983).

The multiplicity of realized niches is a
blessing, not a curse

It is true that the fundamental niche of a species cannot
be estimated from a single snapshot of its population dis-
tribution, i.e., from a single realized niche (Angilletta
et al., 2019; McInerny & Etienne, 2012a). It is also true
that the uncritical pooling of spatial data will lead to biased
representations of the niche (Colwell & Rangel, 2009;
Godsoe, 2010; Jiménez-Valverde et al., 2008; Peterson
et al., 2011; Pulliam, 2000; Sober�on & Peterson, 2005).
However, multiple realized niches, when treated as sam-
pling instances in formal statistical estimation, allow the
partly obscured picture of the fundamental niche to be
assembled from different viewpoints. This process of
reconstructing a latent object from its partial reflections is
no different to any other estimation problem in the sciences
(see discussion in Godsoe, 2010).

The above synthesis shows how to formulate the fun-
damental niche mathematically in a way that allows its
empirical estimation from distributional and population
growth data collected in multiple realized niches. The
key to achieving this is to treat the multiplicity of realized
niches as an inferential strength, rather than a nuisance.
In this way, the niche object, estimated from case studies
such as the sparrow example, is an approximation of the
species’ fundamental niche that will asymptotically
improve as more (contemporary and historical) data from
the worldwide range of a species are included in the
modeling. The rate at which this approximation con-
verges with diverse data, for different taxa, is an impor-
tant future research question. It might be argued that
presence-only models of the niche (e.g., Broennimann
et al., 2012; Drake et al., 2006; Hirzel & Arlettaz, 2003;
Rotenberry et al., 2006; Thuiller et al., 2004) share such
an asymptotic convergence to the fundamental niche
because as ever-more presence-only data are pooled into
these analyses, we map out more of the niche space.
However, there are some critical statistical requirements
that are not satisfied by presence-only models. The above
synthesis of the extensive niche literature hints at four
such key requirements, that should be met in any future
statistical model of the fundamental niche:

1. Combination of spatial distribution and population
growth or demographic data, ideally as part of simul-
taneous model fitting;
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2. Integration of data from multiple instances, across a
wide range of habitat availability and population den-
sity scenarios, that acknowledge the availability com-
position of each scenario and the possible imbalances
in sample size between scenarios;

3. Accounting for density-dependent effects (on both pop-
ulation growth and distribution) at the model fitting
stage, even if the subsequent calculation of the niche is
done by setting population densities close to zero;

4. Separation of the habitat fitness and habitat selection
coefficients (i.e., the distinction between the betas in
Equation 9 and the ga in Equation 15). This current
confounding between fitness and selection in our
niche-related models is a source of much confusion
and prediction bias.

These principles are also direct consequences of the domi-
nant formalization of niche theory, the BAM diagram of
Sober�on and Peterson (2005) and Sober�on (2007). They refer
mostly to how we capitalize on our existing species distribu-
tion data and models, that have served as the bedrock for the
ideas in this paper and most niche-related empirical models.
However, the approach is not incompatible with other
sources of information about the fundamental niche. It has
previously been argued (e.g., Jiménez et al., 2019) that esti-
mation of fundamental niches can only be approached by
models of biophysical first principles (e.g., Kearney &
Porter, 2004) or via experimental methods (e.g., Colwell &
Fuentes, 1975). The multiplicity of realized niches offers
us a third route to statistical estimation of the fundamental
niche, that is entirely complementary to the information
contained in first principles and experimental data. For
example, experimental data on species distributions may
be equivalent to sampling instances whose habitat avail-
abilities are controlled or simplified (e.g., by creating
homogeneity in habitats along one or more dimensions of
niche space). Such experimental data could be analyzed
together with field data, offering important anchor points
for the model to tie onto. Mechanistic principles are an
even more fruitful source of biological realism, so I will
discuss them below as an important extension to the pre-
sent framework (see Future developments: Mechanistic con-
tent of models leading to the niche).

The only thing constant is change, but not
all change should affect the fundamental
niche

One of the key assumptions of models for the fundamental
niche is that it is a stationary characteristic of a species
(Holt, 2009; Nogués-Bravo, 2009; Pearman et al., 2008).
We often imagine that the same fundamental, unchanging

rules, merely express themselves differently in different
environments, presenting us with different realized niches.
This stationarity assumption is convenient, because it
allows us to extend the predictive reach of our models into
new environments, but it is rarely true (Cassini, 2011). It is
therefore important to identify the different sources of
change in ecosystems and to consider how they might
relate to the validity of the stationary niche ideal.

First, there is environmental change, resulting either
from temporal trends, or from looking at a species at dif-
ferent places, with different habitat availability profiles.
The statistical approach discussed throughout this mono-
graph, and the distilled principles of niche-related infer-
ence discussed in The multiplicity of realized niches is a
blessing, not a curse, are designed to ensure that the esti-
mated parameters of fitness (and the subsequent esti-
mates of the niche) are unaffected by such changes.

Second, there are intrinsic sources of change, due to
population dynamics. It makes biological sense that
the fitness of individuals and their use of habitats will
be affected by population density (Boyce et al., 2016;
Cassini, 2011; Fretwell & Lucas, 1969; McLoughlin
et al., 2010; Rosenzweig, 1991). Indeed, taking population
dynamics into consideration has been shown to improve the
predictions of species distribution models (Matthiopoulos
et al., 2015; Pagel & Schurr, 2011), and, once again, the fitness
parameters in the framework developed here are designed to
be invariant under population change.

Ostensibly, a rather difficult situation occurs when
both density and the environment are changing. This sce-
nario coincides with one of the preeminent areas of appli-
cation of SDMs, in invasive species and, more generally,
in range dynamics (Allouche et al., 2008; Gallien
et al., 2010; Hargreaves et al., 2014; Pagel & Schurr, 2011;
Schurr et al., 2012), when zones in the range of a species
are experiencing new habitat compositions at the same
time as undergoing transient population dynamics. Once
again, a niche model that accounts for multiple environ-
ments and gradations in density can deal with both these
problems simultaneously. Related to range dynamics is
the broader problem of dispersal effects on niche models.
An unsuitable region (sink) may keep getting colonized
by nearby thriving populations (sources) and, counterin-
tuitively, under certain scenarios of connectivity, sinks
may appear to be more densely populated than sources
(Hanski & Gilpin, 1997). Conversely, a suitable region
may be as-yet uncolonized because there are no nearby
sources. These consequences of dynamic dispersal pro-
cesses can confuse our models of fundamental niche
(Pulliam, 2000), but rather than allowing them to affect
the estimates of the niche, we must allow our models to
incorporate the spatial context of transient dispersal
processes (Schurr et al., 2012).
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The third source of change comes from dynamic inter-
actions with resources or other species in the ecosystem.
Depletion and multispecies dynamics are rarely considered
in fundamental niche models, despite the recognition
of their importance (Godsoe & Harmon, 2012) and the
fact that the alternative concepts of Eltonian and
Grinellian niches place the emphasis firmly on com-
munity interactions (Sober�on, 2007). This unification
of the niche concepts is currently at the frontier of eco-
logical research (see Future developments: Mechanistic
content of models leading to the niche).

The fourth source of change is evolution (Godsoe
et al., 2022). Over sufficiently long time periods, populations
will change, causing their fundamental niche to drift
(Pearman et al., 2008). The volatility in the evolutionary
dynamics of the fundamental niche may not be matched by
the dynamics in realized niches (Colwell & Rangel, 2009).
Measures of genetic dissimilarity between subpopulations,
as well as measures of within-population individual varia-
tion will become particularly valuable when trying to
apportion changing distributions to environmental versus
evolutionary change. Longer-term, there might be scope
for modeling the feedback loops between the habitats that
organisms are exposed to today and the habitats that they
will intrinsically find suitable tomorrow, as a result of
adaptation (see Future developments: Mechanistic content
of models leading to the niche).

Explaining all the variation we see between realized
niches as the result of changes in the fundamental niche
is clearly undesirable. For the sake of transferability
(Yates et al., 2018), the key practical contribution of the
fundamental niche will be to quantify the invariant core
of a species, at least, at some point of its evolution. In this
section, I have argued that, under the present framework,
at least two sources of change (environmental and popu-
lation dynamics) will leave the estimates of the niche
unaffected. The other two sources (community and evo-
lutionary dynamics) still need to be controlled for, by
extending the framework. These, and other future exten-
sions are considered next.

FUTURE DEVELOPMENTS

The semantics of niche theory challenge our ecological
intuition (Warren, 2013) and we still have some way to go
in incorporating key biological features, such as dispersal
limitation, evolutionary insights, and transferable, quanti-
tative predictions for the composition of real communities
(Chase, 2016). However, the foundations reviewed and syn-
thesized in this monograph are solid, and developments
need to happen in the three crucial areas of mechanistic
modeling, statistical inference and ecological application.

Mechanistic content of models leading
to the niche

Mismatches between our estimates of the fundamental
niche and empirical species distributions are likely to
be caused by the omission of biological mechanisms
relating to physiology, behavior, density dependence, dis-
persal, individual variation, and multispecies interactions
(Hargreaves et al., 2014; Pulliam, 2000).

Physiological constants, metabolic conversion efficien-
cies, allometric scalars and conservation of mass/energy
principles can all be used to constrain the parameters and
functional form of niche models (Kearney et al., 2008,
2010; Kearney & Porter, 2004). Furthermore, interactions
between resources in how they impact the fitness of a spe-
cies can benefit from the extensive literature on comple-
mentarity and substitutability (Tilman, 1980).

Behavioral patterns in selectivity and movement are
captured, to an extent, by the incorporation of mobility
and habitat selection in the framework presented here.
However, long-range regular migrations or complex
accessibility constraints such as those caused by sea cur-
rents/wind fields (Weimerskirch et al., 2012) or landscape
resistance mechanisms (Beyer et al., 2016) could still bias
the niche parameter estimates.

Density dependence originating from crowding is cap-
tured by the present framework (Matthiopoulos et al., 2015)
by incorporating attrition onto fitness as a result of
conspecific density. However, Allee effects (Courchamp
et al., 1999) at low densities are not, and these remain an
important future addition (Holt, 2009; Holt et al., 2004).

Dispersal processes are relevant because of two
key assumptions about the niche (used in Population
dynamics in E-space). First, the fundamental niche must
contain environments of nonnegative population growth,
irrespective of whether these environments are accessible
via dispersal from the species’ current range (e.g., as identi-
fied in the BAM diagram of Sober�on and Peterson, 2005;
Sober�on, 2010). Second, the niche must exclude instances
of apparently positive population growth achieved via
supplements from source habitats (Pulliam, 2000).
Real populations from which our data are likely to origi-
nate are affected by these transient or permanent compli-
cations relating to dispersal. Therefore, proximity to
donor populations, at distances larger than the typical
home-ranging movement of individuals needs to inform
the existence and growth rate of focal populations.
In addition, particular species will have different patterns
of mobility and these may vary during different
life-stages or seasons. For example, some colonial species
such as seabirds, might behave as nomads, during their
juvenile years, as central-place foragers during their pro-
visioning stages and as long-range migrants, outside of
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their breeding season. Extending the present framework
to include such complexities, into a more holistic defini-
tion of fitness, is a key priority for future work.

A further important extension of the present frame-
work would be the inclusion of individual variation
(Angilletta et al., 2019). Much of the material presented
here was developed for populations or species but has con-
tinuously referred to the mobility and behavior of “typical”
individuals (Holt, 2009). Therefore, any predictions from
these models do not capture potential phenotypic variation
that could, in principle, characterize each individual by its
own, fundamental niche. This hierarchy of fundamental
niches (Holt, 2009), from individuals (Carlson et al., 2021),
to populations, to entire species has important implica-
tions for our understanding of evolutionary processes
(Carscadden et al., 2020) in dynamic landscapes. Versions
of the framework presented here, extended to include indi-
vidual variation, are entirely feasible, given the computa-
tional efficiency of the calculations involved and a good
understanding of evolutionary processes at the level of
species–habitat associations can only benefit from knowl-
edge of the shape and properties of the fundamental niche
(Sober�on & Peterson, 2020).

Increasing the mechanistic content of the models
presented here could also deal with a closely related lim-
itation of Hutchinson’s fundamental niche (McInerny
& Etienne, 2012b), its apparent inability to capture
interspecific interactions such as predation, mutualism
or competition. Perhaps the boldest simplification of
Hutchinson’s theory of fundamental niches was to ignore
multispecies interactions (occasionally distinguishing
between pre-interaction and post-interaction niches;
Colwell & Rangel, 2009). Certainly, examining species in
isolation is a valid starting point for developing theory
(Roughgarden, 1974), but the fall from grace of niche
concepts from the 1980s onward (Colwell & Rangel, 2009;
Sales et al., 2021) was associated with the realization of
the importance of species interactions (Rosenzweig, 1991;
Rosenzweig & Abramsky, 1985) in shaping population
sizes and distributions (Colwell & Rangel, 2009).

These considerations require us to think of the niche in
more dynamic terms (Chase & Leibold, 2003; Parentoni
Martins, 2017; Schurr et al., 2012; Sober�on, 2014), driven by
bionomic, and not just scenopoetic, variables. Potentially,
we may arrive at a mathematical formulation that hybrid-
izes the Grinellian & Eltonian ideas of the niche as a role in
the ecological community with the Hutchinsonian idea of
the niche as a volume in E-space (Chase & Leibold, 2003;
McInerny & Etienne, 2012b; Peterson et al., 2011).

Such a formulation would capture dynamical interac-
tions by including other species (prey, predators, compet-
itors) as additional dimensions of E-space (Godsoe
et al., 2017; Pulliam, 2000; Whittaker et al., 1973), an idea

that may not have universal appeal because it integrates
the niche with its community context. However, as
shown here, it is both possible and necessary to formulate
the fundamental niche in a context-dependent way, as
long as the space of possibilities is sufficiently high
dimensional to capture all possible contexts. Indeed, the
idea of simultaneous modeling of the niches and distribu-
tions of multiple interacting species is already two
decades old (Guisan & Zimmermann, 2000) and rapidly
gaining momentum (Godsoe et al., 2017; Kissling
et al., 2012; Ovaskainen & Abrego, 2020). These emerging
and exciting multivariate frameworks already have at
their core a working definition of the niche, which has
yet to satisfy the stationarity properties of the fundamen-
tal niche (see Necessary adjustments…: The only thing con-
stant is change…). The work presented here can move
that definition more towards the assumption of
stationarity.

Data requirements and statistical
inference

The synthesis presented here attempts to bridge the gap
between fitness models and distribution data. This con-
vergence between mechanism and inference requires us
to ask how feasible the data requirements are, how
achievable the model fitting is, and how it can attain pre-
cision and minimize bias. I consider these questions
in turn.

On the question of data requirements, the proposed
approach (and, in particular, the separation of fitness
parameters from distribution parameters, the increase in
the dimensionality of the niche space, and the acknowl-
edgment of functional responses in habitat selection)
causes a necessary increase in the number of parameters
required by the fundamental niche model compared to a
typical SDM. The general rules for data adequacy are to
obtain (1) species distribution data from multiple, diverse
environmental scenarios where (2) the environmental
variables are known at a resolution relevant to the behav-
ioral process of selection by the study animals and where
(3) for some of these sampling instances there are accom-
panying data on population growth. These are not diffi-
cult requirements for a great many species. For instance,
for the sparrow example in Example 2: House sparrows in
suburbia, a postgraduate student collected in situ obser-
vations of sparrow usage, during a summer project, from
1280 distinct spatial locations within suburban gardens
and matched those to garden composition using Google
Earth imagery. A total of 32 sparrow colonies were
included in the study. For 12 focal sparrow colonies,
baseline population surveys were available from a citizen
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science program, the Glasgow House Sparrow Project,
part of a partnership between the Royal Society for the
Protection of Birds (RSPB) and the University of
Glasgow. The explanatory and predictive power of the
model fitted to these data were characteristically high
(Matthiopoulos et al., 2019) despite the modest data
collection effort.

On the question of fitting methods for incrementally
mechanistic models. Current mechanistic approaches
propose to build fundamental niches from the ground up,
using only biological first principles. The advantage of
mechanistic models is in their ability to define the
qualitative, quantitative, and interactional relationship
between fitness and the environmental variables (Kearney
et al., 2010). Mechanistic principles transcend the range
of observed environments and realized niches, so they
promise to increase the transferability of niche models
(Bolker, 2008; Mouquet et al., 2015; Yates et al., 2018). On
the other hand, the emphasis on mechanism faces
the challenges of reductionism (Holt, 2009; McInerny &
Etienne, 2012a; Peterson et al., 2015; Schurr et al.,
2012) and currently seems restricted to capturing
well-understood and univariate physiological tolerances
(e.g., thermal envelopes).

Nevertheless, statistical analyses of the niche cannot
go far without biological mechanism (McInerny &
Etienne, 2012a). For example, above, I have argued that
spatial data cannot estimate the niche without informa-
tion on population growth, density dependence, and
demography (Aldridge & Boyce, 2008; DeCesare et al.,
2014; Matthiopoulos et al., 2015; Pagel & Schurr, 2011;
Schurr et al., 2012). Equally, it seems foolhardy to
attempt predictions of species realized niches, based
purely on mechanistic models, without fitting them to
distribution data (Peterson et al., 2015). Therefore, a
reconciliation between mechanistic and correlational
models is necessary.

Although, the distinction between these two types of
models is made quite often in the modern niche literature
(Gallien et al., 2010; Kearney et al., 2010; Kearney &
Porter, 2009; Peterson et al., 2015; Yates et al., 2018) the
separation is not unequivocal. In reality, no model is
purely mechanistic and almost every model (apart from
the simplest forms of statistical regression) will be a
hybrid of some sort. I outline here four routes to increas-
ing the mechanistic content of niche models while
retaining their link to SDMs.

First, many mechanistic principles can be satisfied
using very rudimentary mathematical forms that are reg-
ularly used by most correlational models. Within a linear
predictor (e.g., Equation 9 above), monotonic forms can
describe risks and resources, quadratic forms can describe
conditions, and interactions can describe substitutable,

antagonistic, and complementary environmental variables
(chapter 2, in Matthiopoulos, Fieberg, Aarts, 2020). It may
therefore be that even the existing correlational models
described in this paper offer us considerable mechanistic
control.

Second, extending correlational models to afford
more user control regarding parameters (e.g., by using
informative priors in a Bayesian setting, or constrained
regression in a likelihood setting) would allow the incor-
poration of known biological first principles and quanti-
tative knowledge on fitness–covariate relations and
interactive effects (Jiménez et al., 2019).

Third, when more complicated relationships are
involved so that environmental covariates have cumula-
tive, delayed, or saturating effects on species fitness and
distribution (Kearney et al., 2010), the use of mechanistic
models may inform us about appropriate nonlinear
empirical functions that can be used to approximate the
behavior of mechanisms.

Fourth, when existing or approximate mathematical
models cannot be used, it is increasingly possible to fit
mechanistic models directly to data (Mouquet et al., 2015).

Such flexible modeling approaches also bear relevance
to the question of precision. As we move towards the use
of integrated modeling in ecology (Kindsvater et al., 2018;
Yen et al., 2019), it becomes possible and valuable to draw
joint inferences from spatial and population data.
Simultaneous model fitting to these different data types
permits information to flow in both directions (i.e., from
the species distribution model to the population model
and vice versa) and it also allows the correct propagation
of errors through the different stages of analysis. Hence,
acknowledging the correlations between parameters in the
model can avoid the unnecessary compounding of errors
at the cost of estimation and prediction precision.

On the question of bias. Although the definition of
the fundamental niche considers small and isolated
populations of identical individuals that are unaffected
by interactions with other species, the data on which
these models are fitted are almost certain to be affected
by these processes. When this happens, the parameters of
the niche model will suffer from bias. So, the recognition
and gradual incorporation of the mechanisms described
in Mechanistic content of models leading to the niche is a
necessary route to progress.

Optimizing ecosystem management

Niches that exist in tens or hundreds of dimensions are hard
to visualize, but having a compact and numerically efficient
expression that describes the boundary of the niche is argu-
ably more useful than visualizing it, because it allows us to
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identify viable environments (Godsoe, 2010) and to manage
land cover so as to optimize population viability. By subtly
modulating the availability and heterogeneity of environ-
mental variables, this framework allows us to engineer viabil-
ity for a species where there previously may have been none
(Fig 4. in Matthiopoulos et al., 2019). As Figure 1 illustrates,
we can do this without necessarily changing the overall pro-
portions of habitats in a landscape, by merely rearranging
them spatially. The vast body of literature on
metapopulations and habitat fragmentation (Hanski &
Gilpin, 1997) bears witness to this principle. Given the reality
of conflicts between conservation, resource/pest manage-
ment, wealth creation, food security, and complex ecosystem
dynamics, where the overall amounts of land cover for each
activity are often fixed (Phalan et al., 2011), achieving such
accurate mitigation via landscape management (Sayer
et al., 2013) will prove invaluable in the future. We are in a
good position to achieve this, because ecological thinking
and computer algorithms on spatial prioritization have
been advancing for decades (Moilanen et al., 2008).
Niche theory now needs to provide that research com-
munity with objective functions for fitness, habitat suit-
ability and critical habitats.

CONCLUSION

As ecology is moving towards transferable models of
population viability and distribution (Araújo & Guisan,
2006; Leibold, 2008; Yates et al., 2018), the fundamental
niche is an indispensable concept (Sober�on, 2014;
Warren, 2012). The niche must be pattern and data
driven (Schurr et al., 2012; Warren, 2012), but it must
be rooted in ecological principles and applied impera-
tives (McInerny & Etienne, 2012c). I have argued for
the use of hybrid (McInerny & Etienne, 2012b)
correlational-mechanistic approaches (Kearney &
Porter, 2004; Schurr et al., 2012), that bring to the fore
issues of population growth, transient dynamics,
resource depletion and interspecific interactions.
Taking environmental heterogeneity and phenotypic
plasticity (Angilletta et al., 2019) into account has led to
a reevaluation of the complexity of the fundamental
niche, a route towards its evolution as a concept, rather
than its abandonment. My early results on the mallea-
bility of Hutchinson’s fundamental niche carry optimis-
tic messages about the resilience of animal species to
anthropogenic change and the available room for
maneuver in mitigating human–wildlife conflicts.
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