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ABSTRACT Safety is paramount in AV deployment. Traditionally, AV safety is incorporated during
development by identifying the failure of vehicular components using risk and scenarios-based validation
approaches with risk indicators. Themain challenge of having a comprehensive risk assessment for AV safety
is to include all potential complex environments that could occur in real-time, which is more critical for
higher AV automation levels. Real-world real-time risk assessment research addresses this shortcoming by
providing an advanced warning to the AV during deployment either at the vehicle level or at the infrastructure
level. This paper proposes a risk tagging methodology to quantitatively risk tag the severity rating of
the real-world environment for real-time risk assessment of AV using the existing roadside infrastructure.
The proposed methodology - Spatial-Temporal Risk Estimation Ensemble Technique (STREET), provides
advanced risk indicators in the form of pedestrian risk tag figure and time to collision value to the AV.
This paper includes the evaluation of STREET, tested on four events over a pre-defined uncontrolled traffic
scene from the infrastructure and validated using ground truth and heatmap of pedestrian occurrence. This
methodology includes three different algorithms developed to emphasize different events depending on the
AV risk and safetymanagement strategy. The STREET reduces the bandwidth needed compared to traditional
approaches of streaming video images for lightweight integration of AV risk assessment. The outcome of the
pedestrian risk tag from STREET can be used as a severity rating for the existing real-time risk assessment
of AV via cooperative mode.

INDEX TERMS Cooperative mode, edge computing, risk algorithm, risk analysis.

I. INTRODUCTION
As Autonomous Vehicles (AV) technology matures and
moves gradually from research into industrial deployment,
the focus on safety and risk management becomes a pivotal
domain. The proven successful adoption of the Advanced
Driver Assisted System (ADAS) into the automotive market
demonstrates the importance of introducing safety and risk
awareness to the drivers at low AV automation levels to pre-
vent accidents in a proactive mode. The increasing demand
for higher automation levels of AV [1] due to expanding
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upcoming market segments (such as mobility as a service)
calls for increasing demand for AV safety and risk man-
agement. This has resulted in an exponential tightening of
safety requirements for AVs’ commercialization. The safety
requirements include sensing hazards or risks in advance to
allow AV sufficient time to react. This time to react requires
an extension of the AV sensors to look beyond its operating
range limits to prevent collision and provide a higher comfort
level to the passengers. Thus, remote support of environment
sensing with the help of Road Side Infrastructure (RSI) sens-
ing is needed. Such support with RSI working in cooperative
mode, with environment data sent to the AV (Infrastructure
to Vehicle) should be lightweight, less resource-demanding,
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and low latency to be feasible for real-world deployment. The
data content should also provide information for advanced
risk assessment for the operating AV.

Risk assessment for AV started with the adoption of tradi-
tional ISO 26262 [2] for vehicles, which focuses on the Auto-
motive Safety Integrity Level (ASIL) rating [1] during the
development lifecycle. ASIL rating depends on parameters
such as exposure, severity and controllability. This rating is
mainly affected by electronic components within the vehicle
and is less dependent on environmental conditions. There-
fore, when vehicles are driven in real-world settings (differ-
ent from simulated R&D environment), the driver will need
to mitigate unidentified risks in areas such as uncontrolled
junctions and dynamic changes in environmental and road
conditions. However, with the high level of vehicle automa-
tion where ADS is responsible for the AV performance, the
control is no longer in the hands of the driver, thus portraying
a challenge in using ASIL rating for AV. Taking this into
consideration, an additional standard ISO/PAS 21448 [3],
also known as Safety of the Intended Functionality (SOTIF),
was released to identify risks resulting from functional insuf-
ficiencies corresponding to both software and hardware per-
formance limitations. This led to the exponential increase in
scenario-based validation [4]–[6] extracted from real-world
scenarios during development to form solutions for the iden-
tified risks. However, even with the combined scenario-based
and traditional validation approach, gaps exist between the
real-world and development considerations. As a result, real-
time risk assessment frameworks are proposed to AV with
advanced warnings beyond the vehicle sensors’ limitation
[7]–[11] to address and complement these shortcomings.

This paper aims to provide the AVwith advanced warnings
using RSI in cooperative mode to enhance the real-time risk
assessment frameworks. The advanced warning is achieved
by providing a severity rating in the form of risk tagging (RT)
figures and time to collision with the detected pedestrian.
The RT is computed by the RSI utilizing edge computing
to convert high bandwidth video images into low bandwidth
time-series data. This will greatly reduce the AV’s need to be
resource-intensive, thus making the overall risk assessment
frameworkmore lightweight. RT figures can be used to repre-
sent severity ratings for real-time risk assessment frameworks
(modified real-time ASIL [9]), while the time to collision
proposed in this paper would serve as an advanced warning
to the AV in preventing collision with the pedestrian.

This research focuses on uncontrolled traffic areas where
pedestrian RT is critical (higher risk) than controlled traffic
junctions with clearly defined rules for the AV. The uncon-
trolled traffic areas typically consist of complex scenarios
between pedestrians and AV during real-time occurrence,
which may not have been considered during development
time.

The contributions of this work are as follows
• Firstly, Spatial-Temporal Risk Estimation Ensemble
Technique (STREET) is proposed to provide quantita-
tive RT of the real-world environment as a severity rating

for real-time risk assessment of AV. Within STREET,
novel environmental risk zoning methods are developed
with RT algorithms leveraging the state of the art object
recognition approach. Three RT algorithms are devel-
oped to emphasize different events depending on the AV
risk and safety management strategy. In addition, a time
to collision is determined as an advanced warning to
prevent pedestrian collision.

• The second domain includes the deployment of
STREET in a real-world scene, i.e., tested with a large
dataset and demonstrated the detection of pedestrian
crossing and occlusion events within the scene. The
results include a comparative analysis of the three RT
algorithms and time to collision (TTC) figures.

This paper is organized as follows. Section II reviews and
compares different AV and cooperative mode risk assessment
methodologies, especially between AVs to AVs. Since AV
fleets are challenging to deploy in real-world settings, hav-
ing V2V risk assessment concepts is even more challenging
to realize. Therefore, this leads to the interest in having a
risk tagging methodology (between AV to pedestrian(s)) in
a cooperative mode using I2V remotely and supported by
time to collision. This proposed methodology is described in
Section III, which illustrates the use of STREET for different
scenes with further detailed steps of the process explained.
STREET is used within an edge installed in the infrastructure
intended for cooperative modewith the AVs. Section IV illus-
trates the implementation of STREET on a particular scene
with four different events and validates the methodology
using ground truth and heatmaps. Thereafter, we conclude
the paper in Section V with a summary of findings and future
work.

II. RELATED WORK
Risk assessment is extensively used in automotive develop-
ment as part of ISO 26262 [12]. With the development of
higher SAE automation levels in vehicles, a new standard
such as ISO/PAS 21448 [3], also known as the Safety Of
The Intended Functions (SOTIF) [13], has been introduced
to identify risks from improper vehicle functions and their
operational limits. These standards are defined as regulations
to develop risk assessments for AV validation during the
development lifecycle [13], [14]. Ensuring the operational
AV’s safety levels requires the consideration of all potential
hazardous (or risk-related) events and devising a correspond-
ing safety goal that allows the AV to be validated during the
development lifecycle [15], [16]. This existing process-based
risk assessment method uses a qualitative approach based on
experts’ opinions, and a database of lessons learnt [4], [7],
[17]–[19]. However, there is a need for more quantitative risk
identification, as explained in [20], [21].

Quantitative approaches include using AV trial operations
to scan and gain operational data to learn and improve
risk-related issues [21] or using critical real-world scenar-
ios [5], [6], [22]–[24]. Concurrently, a growing interest in
using an independent real-time risk assessment [7]–[11] or
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monitoring device [25] is pursued to indicate real-time risk
at the AV level. These risk assessments use a quantita-
tive approach to assess an environmental scene for haz-
ardous events. Existing methods of risk assessments include
AV focusing on risk-related figures and attributions. These
methods consist of process-driven [4], [17]–[19], probability
[26]–[29], model-based techniques [30]–[32], artificial intel-
ligence methodologies [33]–[35] and lastly cooperative mode
based approaches [36]–[44].

The cooperative mode approaches comprises two distinct
communication pathways: 1) dedicated short-range com-
munication (DSRC) or 2) Cellular V2X (C-V2X) method-
ologies. Both communication methods include safety and
non-safety vehicle applications in intelligent transportation
systems (ITS) and Radio Access Technologies [45]. DSRC is
used in the existing real-world context, but with the growing
interest in mobile-based connectivity, the mass deployment
of DSRC becomes a challenge. Moreover, the increasing
interest in 5G deployment fuelled the progress for C-V2X as
an ITS communication, which became prevalent compared
to DSRC. In the recent development of C-V2X roadmap,
real-time ITS environmental perception and control is also
included [46]. This recent development adds to the interest of
this paper to propose RSI-based, cooperativemode pedestrian
RT for the enhancement of real-time risk assessment for AV
known as STREET.

Existing risk identification/assessment methods in cooper-
ative mode can be seen in [36]–[43]. At a micro level, [37]
proposed a model and probability based approach that imple-
ments a human-centric risk assessment algorithm which
mimics human driving behaviour in the AV operation (based
on radar results and V2V cooperative mode in a DSRC set-
ting). This approach depends on radar results and operational
AV fleets, which differs from the proposed approach in this
paper. In the case of [38], contextual risk-based decisions are
given based on the vehicle perspective in terms of environ-
mental conditions in a vehicular ad-hoc network (VANET).
The approach in [41] applied a similar method to [38] and
introduced a fuzzy risk-decision model limited to simulation-
based analysis. The drawback of these approaches [38], [41]
assumes a contextual collection of the environmental events
between vehicles, and risk mitigation decisions will be trig-
gered when the risk level exceeds a certain threshold. These
approaches are dependent on the available connectivity and
data exchanges between AV fleets on the road and with
the context limited to lane, road, traffic, weather, speed and
time. The concept of [42] uses approaches such as the threat
field model to quantify uncertainty with nearby vehicles via
V2V communication for a potential collision. In this study,
only Monte Carlo sampling was conducted for the vehicle to
vehicle communication.

Moving from micro to macro approaches, [36] proposes
a model-based approach focusing on fusing all the sensors
and radars information from surrounding AVs. This approach
depends on V2V cooperative mode to make predictions for
latitudinal and longitudinal aspects forming time to collision

risk assessment. Similarly to [36], [39] first formulates risk
values based on the augmented collision risk between each
AV using V2V and then creates a global collision risk at
the Infrastructure level. The key focuses of [36] and [39]
remain on V2V data and the efficiency of AV cooperative
perception.

In summary, the following approaches [36]–[39] [41], [42]
perform different risk estimations without including pedestri-
ans and other road users. Moreover, these methods are only
applicable on the assumption that all vehicles are AVs.

In [40], Principal Component Analysis (PCA) method is
used to describe the feature in the traffic data set and recom-
bined into a set of linearly independent features. Thereafter a
Back-Propagation Neural Network is employed to train the
predictive model. Its main focus is to predict driving risk
based on past traffic accidents. This approach is limited to the
quantitative results of the past traffic accident without consid-
ering near-misses conditions and/or identifying the potential
hazardous events.

Both [43] and [44] demonstrated cooperative perception
between the infrastructure and the AV. In the joint percep-
tion process, minimally LiDAR is required within the RSI,
and in some cases, cameras as well. These methods require
low latency and high bandwidth processing to allow joint
perception at the AV level. Although the deployment of such
techniques will gain more accuracy in terms of precise per-
ception, it is achieved at the expense of LiDAR integration
cost. In addition, the use of LiDAR on all RSI might be costly
for mass deployment.

This approach focuses on the potential collision of AVwith
pedestrian(s) using risk taggingmethodology in a cooperative
I2V environment. This differs from studies investigating and
solving the interaction between pedestrians and AV in closer
proximities, such as pedestrian behaviour [47] as well as a
prediction for pedestrian crosswalk behaviour [48]. These
scopes are beyond the intention of this paper. Similarly, the
concept of using mobile applications to warn pedestrians
using vehicle to the pedestrian is also investigated in [49] with
time to collision to the AV as a basis for warning. However,
using a mobile device might be a distraction for road users as
part of the qualitative findings.

Therefore, this paper aims to identify potential collisions
with pedestrian(s) by providing quantitative risking tagging
and time to collision in cooperative mode (I2V) with a
camera device and edge system within the RSI. The direct
outcome of this work can be used as severity rating within
the real-time ASIL determination [9] or as RT within the
formulated Predictive Risk Number for AV real-time risk
assessment [10]. The proposed approach can be used with
existing dedicated short-range communication (DSRC) or
V2X methodologies. In DSRC, the information from the
RSI can be supported as ‘‘Cooperative sensing’’ as depicted
in [50] or in the case of ‘‘Safety application’’ deployment of
DSRC in Singapore [51]. In terms of deployment under the
C-V2X setup, low latency is achieved under the third stage
of C-V2X [46]. Thus RT and time to collision proposed in
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this paper can be incorporated under the 5GCAR use case of
UCC3: ‘‘Cooperative safety’’.

III. PROPOSED METHODOLOGY – STREET
The proposed methodology, STREET, provides a quanti-
tative RT of the real-world environment. The outcome is
used as a severity representation of the scene intended
for the AV to assess the risk at that location. STREET
is a probability-model based approach that operates on
top of deep learning-based detection techniques such as
YOLOv5 [52]. This methodology processes the video images
captured by the infrastructure and then computes the RT in
real-time. These RT data are then sent to the vehicles as
lightweight time-series data, thus allowing the vehicles to use
the RT to perform real-time risk assessment.

STREET (illustrated in Figure 1) can be deployed in infras-
tructure or RSI. It uses the infrastructure’s camera Field
Of View (FOV) to select the Area Of Interest (AOI) and
divides them into different risk zonal areas. These risk zonal
areas are then assigned an array of risk probability values
(known as risk detection matrix) relative to a reference AV’s
position ‘‘X’’ in the AOI. The assumed AV that provides
this relative position is known as the ego vehicle or ‘‘X’’ in
this paper. Thereafter, by using deep learning techniques [53]
(e.g., YOLOv3 [54], or YOLOV5 [52]), STREET is able to
detect and track objects and then map them onto the risk
zonal areas in the form of a matrix. Subsequently, a final risk
tag figure and time to collision value are derived. We have
defined three risk detection models to estimate RT figures of
a scene for AV usage in a real-world operation.

This research only focuses on pedestrian(s) crossing in
uncontrolled traffic scenarios, which poses a significant risk
to the AV. The proposed methodology, STREET, which con-
sists of a five-step processis illustrated in Figure 1. STREET
is embedded within the edge system of the RSI. The outcome
of STREET stored in the local database, will be sent to
the AV for risk assessment evaluation via cooperative I2V
connections such as 5G.

FIGURE 1. Flow of street methodology within the RSI.

A. RISK ZONING OF THE ENVIRONMENT
The risk zoning of the environment is considered the first step
of STREET. This can be achieved in a fixed scene from the
camera of the RSI.

Three selected scenes A, B and C, are used to demonstrate
the process of risk zoning. These scenes are uncontrolled road
areas with pre-identified locations. Therefore, the road scenes
with fixed camera positions are considered static to the RSI
with edge computing capability. Although Figures 2, 3, and 4
illustrate a left-hand driven scenario, the same approach can
be applied to a right-hand driven scenario since the measure-
ment of risk considers both directions of traffic. More will be
explained in the risk zoning steps.

1) SCENE A (CORNER BEND)
Figure 2 illustrates the scenario when a vehicle or AV at
location C is not able to sense the upcoming pedestrian(s)
crossing the road before the turn as they are occluded by the
building. In addition, the sensors onboard the vehicle or AV
do not have sufficient range to sense the pedestrians after the
bend. Therefore, the intention is to utilize the RSI to send
the RT as a form of severity rating to the AV for its own risk
assessment management.

FIGURE 2. Use of roadside infrastructure in corner bend.

2) SCENE B (UNCONTROLLED T-JUNCTION)
Figure 3 illustrates the use of RSI to provide RT as an
advanced warning when a pedestrian crosses either path 1
(A to C) or path 2 (B to C) and vice versa. Suppose the AV
(at location D) intends to turn right, and the pedestrian crosses
path 1 simultaneously, the AV may need to stop in the middle
of the road, which incurs risk to the vehicles moving in the
opposite direction. Thus, the advance RT warning will be
helpful for the AV to detect pedestrian presence on path 1.
In another situation, if the AV (at location E) intends to make
a right turn, any pedestrian that dashes across the road at
path 2 will cause the AV to apply sudden braking. Thus,
advanced RT warnings from RSI can trigger the AV to make
an informed decision, e.g. the AVwill gradually reduce speed
before turning.
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FIGURE 3. Use of roadside infrastructure in uncontrolled T-junction.

3) SCENE C (UNCONTROLLED DOUBLE T-JUNCTIONS)
As shown in Figure 4, which is similar to scene B but with an
added inverted T- junction on the right. The AV at location
F has the intention to make a right turn. Therefore, there is a
need to provide an advance RT warning for path 2 (assuming
that detection of path 3 is not an issue for the AV). In addition,
the AV at location E has an intention to make a right turn
and be exposed to both path 2 and path 3 in worst-case
scenarios. Similarly, the advanced RT warning can be helpful
in advanced navigation planning of the AVs’ movements.

FIGURE 4. Use of roadside infrastructure in uncontrolled double
T-junctions.

Based on the identified scenes and the location of the RSI
camera, the risk zonal areas can be determined based on the
following:
1. Select road section(s) that are exposed to high volume of

pedestrian crossing using the Field of View (FOV) of the
roadside infrastructure camera.

2. Define selected Area of Interest (AOI) based on the FOV.
3. From the direction of travel, indicate the ego vehicle loca-

tion as ‘‘X’’ using the corresponding GPS location.

4. Measure or determine the total distance (Dtotal) of the AOI
section either from physical measurements or indications
from the source of the available map.

5. Determine the number of rows (rowsint ) within the AOI
based on (1) (rounded down to the nearest integer).
tresp is based on a driver’s response time in the real-world
traffic [55]. Vmax is based on the defined speed limit on
the selected AOI. Vf is a safety factor that considers if an
elevated speed limit is required for the selected AOI.

rowsint =
Dtotal(

tresp · Vmax · Vf
) (1)

6. Determine different risk zonal areas based on the scene
of the AOI (Figure 5, 6 and 7 illustrates the resulting
risk zonal areas of scenes A, B and C, respectively).
In STREET, roads are classified as RED zone, while
YELLOW zone denotes pavements and GREEN zone is
off-road regions. Risk zonal areas can be reduced if they
do not exist. For example, if off-road regions do not exist,
the GREEN risk zone can be removed. Likewise, if there
is no pavement within the AOI, the YELLOW risk zone
can be removed. Thus, symmetry is not necessary when
defining the risk zonal areas on both sides other than the
road, e.g., as shown in Figure 5, where the Green zone
only exists on the right side of the road. The direction of
travel will determine the starting row, referenced to the ego
vehicle marked ‘‘X’’.
In each scene, there are two-way lanes on the road rep-
resented by the RED zone of the risk zonal areas (it
covers both left-hand or right-hand driving lane). This is
established by using the same AOI for different directions
of travel, as indicated by the ‘‘white arrow’’ from the ego
vehicle. For example, in Figure 5, scene A, AOI direction
A can represent either a left-hand or a right-hand driving
configuration so long as the vehicle is moving from top to
bottom. At the same time, direction B indicates vehicles
driving from the bottom to the top of the same scene A.
Therefore, the risk zonal areas can cover both configura-
tions in terms of left or right-hand drive. The intention of
this approach is to measure the risk of pedestrians moving
in the presence of the ego vehicle at reference ‘‘X’’.

7. Create a 2Dmatrix (ωrz) with a symbolic representation of
the risk zonal areas. Each symbolic representation of the
sub-regions has assigned weights to the different regions
according to risk zones. The weights will form a basic
2-D matrix (ωrz) as shown in Figure 8 as an example for
scene A. The range of weights depends on the selected
scene definition in Table 1. Other than the weights, the
distance Dx and interval time tx are distributed uniformly
according to (2) and (3).

Dtotal =
∑rows

x=1
Dx (2)

ttotal =
Dtotal
Vmax

=

∑rows

x=1
tx (3)
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FIGURE 5. Illustration of zoning concept from roadside infrastructure –
scene A.

FIGURE 6. Illustration of zoning concept from roadside infrastructure –
scene B.

In real-world settings, the selected distance (Dtotal) from
each scene ranges from 50-200 meters, depending on the
elevation of the camera from the roadside infrastructure.

FIGURE 7. Illustration of zoning concept from roadside infrastructure –
scene C.

FIGURE 8. Converting AOI sub regions into a 2D matrix (ωrz) with
weights – scene A.

B. RISK DETECTION MATRIX
Once the risk zoning of the environment is completed, the
probability of collision in each sub-region of the risk zonal
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TABLE 1. Weights rating for different sub regions.

areas is computed and represented as a Risk Detection (RD)
matrix. This RD matrix is part of the STREET, which uses
probability-based modelling consisting of two novel aspects:
Zonal Probability Distribution (ZPD) and Inter-zonal Prob-
ability Distribution (IPD). ZPD represents the time-stamped
layers in Table 2 (e.g. R1, R2 . . .Rn, which are time-stamped
to t1, t2. . . tn, where n is the number of rows), while IPD
represents the inter-risk zonal areas in Table 2 (e.g. GL2,
YL2, R2, YR2 and GR2 across row 2). All probability figures
range from 0 to 1.0, where 1.0 represents a definite collision
between the pedestrian and the ego vehicle. We propose
three different probability-based models for ZPD: 1) Linear
Intervals Distribution (LID), 2) Conservative Exponential
Distribution (CED), and 3) Aggressive Exponential Distri-
bution (AED) to react to different events depending on the
AV’s risk and safety management strategy. The three models
provide different focuses on the ZPD layering. LID provides
a stepwise incremental RT to determine the movement of
the detected pedestrian across the different layers within the
ZPD. CED focuses on detecting hazardous events happening
on the front and middle layers, while AED focuses mainly on
the front layer of the ZPD (closest to ‘‘X’’).

1) LINEAR INTERVALS DISTRIBUTION MODEL (LID)
The probability of collision between a pedestrian (C) and the
ego vehicle ‘‘X’’ can be determined as P(C|X). This repre-
sents the likelihood of a collision at R1 (as shown in Figure 8)
and thus assigned a probability of 1.0 (4). The probability
interval within the defined risk zone (e.g., RED risk zone)
can be linearly divided into single layer interval Z1 using (6)
and eventually finding (5) for each ZPD layer. Rnmax (e.g. R10)
can be the minimum probability figure set at the furthest ZPD
layer. Themaximum number of rows needed for the scene can
be obtained using (1) from the AOI. Using the known rowsint,
the interval (Z1) for each layer can be calculated using (6),
and the corresponding risk probability for each derived ZPD
layer can be obtained using (5). This approach applies to all
other risk zonal areas as well. Therefore, the risk probability
is linearly distributed for all layers of the ZPD and effectively

used for AV where the stepwise RT can be used to track
objects moving across different layers of the ZPD.

R1 = P (C|X) (4)

Rrow = R1 − (row− 1)Z1, row ≥ 1 (5)

Z1 =
R1 − Rnmax
rowsint − 1

(6)

Using scene A as an example, the total distance of the AOI,
Dtotal = 100m, Vmax = 40km/hr and tresponse = 0.85 are used
to determine rowsint = 10 using (1). As defined in (4), the
probability of collision at R1 is 1.0 and hence for the further
ZPD layer, Rnmax the probability of collision is 0.1 and Z1
is 0.1. The final RD matrix for Scene A is shown in Table 2.

TABLE 2. LID RD matrix for scene A.

2) CONSERVATIVE EXPONENTIAL DISTRIBUTION MODEL
(CED)
In order to provide different RT figures for different events
depending on the AV risk and safety management strat-
egy, another model known as CED is proposed. This model
represents an almost consistent high-risk probability for a
period of time (window) focusing on the front and middle
layers. This is necessary to gain more response time for the
AV to focus on RT in the front and middle layers. This
response time can be modelled by an exponential decay of
the risk probability as shown in (7). Thus, the risk proba-
bility should remain relatively high until a time window has
passed. Themaximum layer for a particular risk zone rowint is
used in (7).

The CED reduces the risk drastically when the ZPD layers
reach the furthest, thus reflecting the focus on the front and
middle layers of the ZPD. This model is suitable for scenarios
where the middle and front layers of the AOI have a more
extensive road coverage (e.g. in the case of scene C, AOI-A).
This high probability distribution risk level will capture the
AV’s attention with higher-RT compared to LID, thus trig-
gering the AV navigation and operations in a conservative
manner. Similarly, (4) is used for determining R1. Therefore,
the variable row is assumed to be greater or equal to 2 in (7).

Rrow = R1 − e(row−rowint ), (row ≥ 2) (7)
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The CED RD matrix is shown in Table 3 using scene A as
an example where rowsint = 10 and R1 = 1.0, the values of
Rrow can be determined accordingly.

TABLE 3. CED RD matrix for scene A.

3) AGGRESSIVE EXPONENTIAL DISTRIBUTION MODEL (AED)
The last model representing the probability of collision with
the ego vehicle is shown in (8). This approach is orthogonal to
CED, where the decay of collision probability becomes much
faster than LID and CED. One example of this usage is shown
in scene B, AOI-B where the AV focuses on pedestrians
crossing the front rows. With pedestrians crossing detected
in the front rows, it will affect the decision of the AV to delay
its intention to turn right. This model also assumes that the AV
is only sensitive to front rows. Therefore, the AV is expected
to respond fast to the given RT since the RT only appears for
an extremely short duration with only front row detections.
In this AED model, the variable λ in (8) determines the
aggressiveness level of the decay. For illustration purposes,
the default value of λ is 6 indicating the sensitivity on the
first three rows for RT.

Rrow = e

(
−λ(row−1)
rowint

)
, row ≥ 1 (8)

TABLE 4. AED RD matrix for scene A.

The AED RD matrix is shown in Table 4 using scene A.
Using rowsint = 10 and R1 = 1.0, the values of Rrow
can be determined accordingly. The remaining regions are
determined using the same method as described in LID.

4) INTERZONAL PROBABILITY DISTRIBUTION (IPD)
IPD represents the decay in collision probability as the
pedestrian moves from one risk zone to another (e.g. RED
to YELLOW risk zone). The pedestrian is assumed to be
walking at a constant speed. The linear distribution of the
risk probability is thus applied across the different risk zonal
areas. The amount of linear drop across different regions can
be formulated for each region with (9) to (12). One example
is to use a similar model like LID, where layer interval Z1
can be represented as ZD for the calculation of the rest of
the YELLOW and GREEN regions shown in (9) to (12).
In addition, α can be used to control larger step size to
differentiate the probability distribution crossing from one
region to another.

With the settings of IPD, the probability distribution across
the regions (row-wise) will not have the same values.

YLn = Rn − aZD (9)

YRn = Rn − αZD (10)

GLn = YLn − αZD (11)

GRn = YLn − αZD (12)

C. OBJECT DETECTION (OD) MATRIX
The OD matrix represents the detected objects within the
infrastructure’s camera AOI. The boundary boxes represent
the detected objects using YOLO based deep learning tech-
niques from the camera’s real-time video. If the edges of the
boundary boxes (bottom edge) overlap with a particular risk
zonal area, that risk zonal area will have a weighted repre-
sentation. This method can account for occluded pedestrians
with low overlaps by taking the bottom edge as a reference.
However, similar to all 2D computer-vision techniques, accu-
racy decreases if the overlap of two objects is high.

Multiple objects can be detected in the existing capability
of object detections and reside in different or the same risk
zonal area(s). Therefore, the OD matrix can have more than
one non-zero value. Multiple boundary boxes can be mapped
to one zonal risk area, but a single boundary box is limited to
only one risk zonal area in a directional many-to-onemapping
relationship.

Table 5 illustrates two examples of the OD matrix for
scene A (one pedestrian is detected in R2 and R3 within
example 1, and three pedestrians are detected in Yr9 and
two pedestrians in R6 within example 2). The OD matrix
will indicate the corresponding detected pedestrian(s) within
each sub-region. If no pedestrian detected, the sub-region
will be ‘‘0’’.

D. FINAL RT (RT) MATRIX AND FIGURE
The final RT matrix and figure can be computed based on
the defined ωrz, RDrz and ODrz matrices. Starting with an
element-wise multiplication (also known as Hadamard prod-
uct) of ωrz and ODrz matrices to obtain OODrz in (13). Sec-
ondly, perform another element-wise multiplication of RDrz
and OODrz and lastly, have a summation of all the elements
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TABLE 5. OD matrix for scene A.

with the RT matrix to determine the final RT (14).

OODrz = (ω ◦ OD)rz (13)

RT final =
∑

zn
(RD ◦ OOD)rz (14)

E. PEDESTRIAN OCCURRENCE HEATMAP MATRIX
The pedestrian occurrence is a post-processing activity used
to validate the overall RT over time with the RT results. The
pedestrian occurrence can be represented as a heatmap to fur-
ther analyze its suitability towards LID, CED orAEDmodels.
Heatmap refers to the accumulative pedestrian occurrence
in each of the sub-regions using OD matrix (ODrz). Frame
intervals (tintervals) can be set for n number of samples to
measure heatmap after each pre-defined duration. The pedes-
trian occurrence heatmap (Heatmaprz) is defined as (15).
With the pedestrian occurrence data and the total pedestrian
detected, the probability of pedestrian P(occ) occurring in
each sub-region can be calculated as (16). Since LID, CED
and AED focus on the front, middle and rear layers dif-
ferently, the heatmap can be separated into the front P(Fr),
middle P(Mid) and rear P(Re) probability with separation of
the defined rows into front, middle and rear rows. The accu-
mulated P(Fr), P(Mid) and P(Re) will assist in comparison
with the RT results over time for a particular scene and decide
which risk matrix (LID, CED or AED) is more suitable.

Heatmaprz =
∑tinterval

N=1
ODrzN (15)

P(Occ)rz = Heatmaprz

/∑rows

r=1

∑zone

z=1
Heatmaprz (16)

P(Fr) =
∑front

r=1

∑zone

z=1
P(Occ)rz, (17)

P(Mid) =
∑middle

r=1

∑zone

z=1
P(Occ)rz (18)

P(Re) =
∑rear

r=1

∑zone

z=1
P(Occ)rz (19)

F. TIME TO COLLISION (TTC) MATRIX
In addition to RT computed as part of STREET, it is important
to provide a TTCmatrix and value based on the minimal time
to collision with respect to ‘‘X’’ in the scene. The TTC can
then be sent to all AV regardless of their position on the roads.
The following steps can determine TTC matrix and value.

1. Obtain a normalized OD matrix known as ODbinary
(turning the values into binary values only) shown as
Table 6 (using Table 5 Scene A example 2 as reference).

TABLE 6. Determine ODbinary.

2. Obtain the timerz matrix, by using tresponse and multiply
with each row number with the results shown in Table 7.

TABLE 7. Determine timerz.

For example in scene A, rowint = 10, therefore the
tresponse = 0.9 s. The TTC should only be considered for
the road and pavement (RED and YELLOW region).

3. Calculate TTCrz by performing a Hadamard product with
the ODbinary and timerz matrix shown in (20) and then
determine the lowest non-zero value as TTCvalue where
TTCvalue ∈ TTCrz and 6= 0 in (21). The TTCvalue in this
case for scene A can be 5.4 s from ‘‘X’’ based on the given
example.

TTCrz = (ODbinary ◦ timerz) (20)

TTCvalue = min (TTCrz) (21)

TTCvalue will provide the estimated time to collision from
the ego vehicle with GPS position. This value is sent to the AV
in addition to the RT figure. Therefore, other than providing a
severity rating for the AV risk assessment, the AV can use the
TTCvalue to calculate an overall time to collision based on its
current location through its navigation components as shown
in (22) and (23). D(AV−RT) is the distance from the current
AV position to ‘‘X’’, while VAV is the current speed of the
AV. Therefore, the estimated time to collision for the AV can
be calculated using (23) as TTCoverall.

tRT =
D(AV−RT )

VAV
(22)

TTCoverall = tRT + TTCvalue (23)
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IV. IMPLEMENTATION AND RESULTS
The STREETwas implemented and tested using sceneA. The
RSI was set up with the FOV as shown in Figure 9. The RSI is
positioned at the corner bend of scene A with a GPS location
of 1.300133◦, 103.781527◦. Figure 9 illustrates the camera’s
FOV looking at pedestrians crossing after the bend.

FIGURE 9. Real-world scene A, camera’s field of view.

A. ROADSIDE INFRASTRUCTURE SYSTEM
The RSI consists of a camera pointing at the FOV. The camera
footage is then given to the edge computer (workstation) to
perform RT computation. The workstation has a specification
of Intel I7 and a GPU of Nvidia 1080 graphics card. The
object detection rate occurs between 18-22 milliseconds per
frame with YOLOv5. Ensuring that the video frame rate
interval is longer than the time needed for object detection,
25 frames per second (fps) or 40 milliseconds per frame
is selected for performing RT. The camera is elevated at a
height close to 5.5 meters. The connectivity of the RSI can be
connected via fibre or cellular connectivity. 5G connections
are recommended to lower the latency incurred across the
transmission.

B. DATABASE SYSTEM WITH LARGE ENSEMBLE DATA
The overall RT data format includes the date, time, location,
RT figure, persons detected, normalized RT, time to collision
(TTCvalue), a total distance of AOI and speed limit for the
AOI. A slice of this ensemble time-series data is shown in
Table 8. This data can reside firstly within the RSI and be
transmitted to the AV. This information ensemble can be
backed up to the cloud for future frequentist statistics [56]
(with extensive data over time) using RT figures occurrence
as a quantitative measure. A local database can store critical
data for fast processing or reduce latency together with 5G
connectivity. The overall cloud database or server will store
and consolidate all the infrastructure information at a regional
or country level and broadcast the information to each AV.
Normalized RT will be further discussed in section IV-C.

C. STREET IMPLEMENTATION RESULTS
This section explains the five-step process in implementing
the STREET onto real-world scene A.

TABLE 8. Illustration of an overall ensemble of RT (LID) format. (∗ Based
on ANSI date/time data types.)

1) ZONING OF ENVIRONMENT
The AOI with rows and risk zonal areas shown in
Figure 10 are based on the FOV of Figure 9. Table 9 shows
the parameters determine from the environment and using (1)
to determine rowint and using Table 1 to determine ωrz. The
road is classified as a ‘‘RED’’ zone, while the pavement on
the right is classified as a ‘‘YELLOW’’ zone, and lastly, the
additional roadside parking is partially classified as a ‘‘YEL-
LOW’’ zone with the remainder as off-road with ‘‘GREEN’’
zone.

TABLE 9. Parameters determined for scene A.

FIGURE 10. Real-world scene A, Area of Interest.

2) RISK DETECTION (RD) MATRIX
The default RD matrix for scene A is LID (Table 2 ) model,
and for comparative analysis, parallel computation of CED
(Table 3 ) and AED (Table 4 ) models are determined as well.
The IPD is set to linear distribution similar to LID model.
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3) OBJECT DETECTION (OD) MATRIX
In this methodology, YOLOv5s model was used and tested
for scene A. Direct inferencing was performed on scene A
with pre-trained models using Cocodatasets. The inferenc-
ing was done using 97k samples with 40 ms interval. This
was compared with annotated 97k samples as ground truth.
Table 10 shows the YOLOv5s accuracy in pedestrian detec-
tion in scene A.

TABLE 10. Accuracy of YOLOv5s inferencing with scene A.

Since the purpose is for RT, false positives are also included
to ensure that the operating AV is cautious in its operation,
thus increasing the accuracy to 85.23%. The RT is performed
at every 40 milliseconds per video image frame.

4) FINAL RT MATRIX AND VALUE
A total of 97k sampleswere risk tagged in sequence. STREET
converted the video image information from the AOI into
time-series RT figures. For comparative analysis, the RT
overview for LID, CED and AED is presented in Figure 11.
CED can be seen with the highest RT figure (0 - 60) since
the emphasis is a high-risk probability distribution in the
front and middle layers, which provides an almost consistent
high RT. LID with RT figure can be seen next, ranging from
(0 – 40). Generically the purpose of LID is to provide a
linear increase or decrease in step when the pedestrian crosses
between different sub-regions. Therefore, LID will have a
lower overall RT and will have more granular figures for the
last row than CED. On the other hand, AED has the lowest
RT range (0 – 20). This is true since AED is modelled to
detect pedestrians in the first three rows (with λ is set to 6).
Therefore, AED gives a sudden surge in RT when front rows
detect pedestrian crossings in scene A.

The diverse RT range for LID, CED, and AED makes it
difficult to use it as a severity rating for risk assessment.
Therefore, a better measurement would be to obtain a nor-
malized RT by dividing the original RT figure by the overall
detected pedestrian for each frame. The normalized RT fig-
ures are shown in Figure 12, ranging from (0 -10) illustrated
as AVG_LID, AVG_CED and AVG_AED.

From the tested 97k samples, the average values of
LID, CED, and AED (represented as A_LID, A_CED and
A_AED) prove the intended operation of the STREET pro-
vides a different representation of scene A. The CED is
expected to have the highest average of 4.16 followed by an
average LID of 1.86 and finally an average AED of 0.38.
The overall variance of the samples is determined with CED
13.224, LID 4.043 and AED 1.532. These readings indicate
that scene A has a higher pedestrian occurrence in the middle
layers than the front layers (especially with the large variance
observed in CED), while the occurrence of the front layer

FIGURE 11. Comparison of LID, CED and AED RT figures.

FIGURE 12. Normalized RT figures for LID, CED and AED.

happens to be the least (with the lowest mean and variance).
This can be further validated by the heatmap of the overall
pedestrian occurrence of scene A shown in Figure 13. This
heatmap is obtained from the occurrence of the pedestrian
in each sub-region over the tested samples. The probability is
then obtained from the occurrence in each sub-region divided
by the total occurrence.
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The total pedestrian occurrence is 99.4k and with region
YL7 being the most populated. The correspondingHeatmaprz
and P(Occ)rz is obtained with the P(Fr), P(Mid) and P(Re) in
Figure 14. Since the rowsint is 10, the rows 1-3 are front, rows
4-7 are middle and rows 8-10 are rear.

FIGURE 13. Heatmap of overall pedestrian occurrence.

FIGURE 14. Probability of pedestrian within scene A in terms of front,
middle and rear rows.

This information shows that middle rows have the most
pedestrian occurrence, followed by rear and front rows, which
corroborates with the results obtained from the RT in terms of
average figures. The AED values are generally low through-
out the datasets with low front pedestrian occurrences. While
CED is sensitive towards middle and front layers, it is appar-
ent that the middle layers drive the CED with high RT fig-
ures. The overall LID RT figures remain lower than CED
figures, implying that the rear layers pedestrian occurrences
are present, but the impact is not as high as the middle layers.

5) TIME TO COLLISION MATRIX
Besides RT, TTCvalue is given to the AV to estimate time
to collision towards the identified pedestrians. The TTCvalue
is determined at intervals of 40 milliseconds per frame

using (20) and (21). Therefore, the overall TTCvalue for the
97k dataset can be seen in Figure 15. This data aims to illus-
trate the importance of the proximity of pedestrians towards
the ego vehicle in addition to the RT figures.

FIGURE 15. Overview of LID RT, normalized RT and TTC value.

The TTCvalue provides an indication in seconds based on
the speed limit of the road and the distance between the
reference ego vehicle to the identified pedestrian present in
the sub-region. The TTCvalue is taken as the minimum value
from the TTCrz matrix, which relates to the pedestrian with
the nearest impact to the ego vehicle. The results of the real-
time TTCvalue is inversely related to the RT figures. As the RT
figures increases, the TTCvalue decreases. Due to the AOI’s
finite distance per sub-region, the TTCvalue is determined in
sub-second blocks. Examples of detailed TTCvalue will be
discussed in section D.

Further explanation tRT (22) relates to the time the AV
would arrive from its current location to ‘‘X’’ of the AOI.
This time tRT is determined by obtaining the distance from
the AV’s current location to the ego vehicle, divided by the
speed of the AV. The overall TTCoverall (23) is based on
the calculated tRT from the AV and TTCvalue. TTCvalue are
sent together with the rest of the data as part of a dataset
shown previously in Table 8. AV will access the database for
advanced navigation and routing decisions to perform real-
time risk assessments.

D. STREET IMPLEMENTATION EVENTS
Besides validating the overall RT figures, the RT represen-
tation of a scene or AOI can also help to identify events
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that occurred. LID, CED, and AED are also compared for
RT efficiency in these situations. LID will generally be the
best default algorithm for these event detections. Pedestrian
detections with boxes shown outside the AOI are meant for
illustration purposes. The RT does not include those detected
pedestrians as part of the RT evaluation. These events can be
classified into the following scenarios:

1) PEDESTRIAN MOVEMENT FROM BOTH SIDES AT MIDDLE
ROWS
Pedestrian crossing on both sides of the road (images shown
in Figure 16) can be detected with the proportional rising
and falling, with RT figures varying across zonal risk regions
(shown in Figure 17).

FIGURE 16. Images of pedestrians crossing from both sides.

Here, the highest RT occurs when all pedestrians are on
the road region. The challenge in this event is the highly
occluded pedestrian with high overlap with another pedes-
trian, resulting in the difference between the actual RT and
the ground truth. However, the variation of RT figures is in
the same trend as the ground truth, which accounts for this
event’s presence. The spikes are due to the detection of the
occluded pedestrian, which attempts to bring it close to the
ground truth RT. In comparing LID, CED and AED, it is clear
that AED is not efficient for this event since the event took

place in the middle rows. As for CED, the high RT figures for
CED aim to amplify the occlusion and present similar trend
characteristics as LID.

FIGURE 17. Comparative analysis of RT for pedestrian crossing at both
ends.

The last image in Figure 17 shows the LID RT and nor-
malized LID RT (secondary axis) compared to TTCvalue (sec-
ondary axis). Since multiple pedestrians cross at both ends
of the AOI almost simultaneously, the normalized RT have a
different trend line with the LID RT. Normalized RT shows
high values when most pedestrians are in the road region, and
the values drop when most pedestrians leave the road region.
Separately for the time to collision, the TTCvalue remains
between 4.5-5.4 seconds since the crossing mainly occurs
at the middle rows. The flat TTCvalues also indicate mainly
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lateral movement, and not much longitudinal movement is
detected.

2) PEDESTRIAN DIAGONAL MOVEMENT FROM MIDDLE TO
FRONT
This event highlights the different algorithm’s sensitivity
toward pedestrian movement from middle to front rows. This
event represents a scene where the pedestrian crosses diago-
nally from the middle to the front of the AOI. The objective is
to evaluate the sensitivity of AED and CED, in particular to
pedestrians moving from middle to front rows. The scene is
first demonstrated through the images shown in Figure 18.
For comparative analysis, LID, CED and AED figures are
shown together with LID ground truth in Figure 19.

FIGURE 18. Images of pedestrian diagonal crossing.

From Figure 19, LID RT is almost similar to the ground
truth with the exception that another pedestrian is seen tog-
gling at the rear boundary of the AOI, thus causing some fluc-
tuations of the RT. A single frame false-negative pedestrian
detection causes the dip in LID detection. Other than those,
the gradual increase of RT represents the movement of the
pedestrian towards the front row. The increase in LID can be
seen in a linear form. As for the comparison of LID, CED and
AED, it is evident that in this scene, CED is neither efficient
nor able to detect the sequence of movement since the risk
matrix figures are similar for CED for front and middle rows.
Thus only LID and AED are efficient in this event. Moreover,
AED performs better if there are pedestrians in the front rows.

The last image in Figure 19 shows the LID RT and nor-
malized LID RT (secondary axis) compared to TTCvalue (sec-
ondary axis). Since the LID RT is similar to the normalized
LID RT, the scene only has one pedestrian most of the
time. TTCvalue behaves inversely to the RT figures, which

FIGURE 19. Comparative analysis of RT for diagonal crossing.

corroborates that there are pedestrian movements from the
middle to the front of the AOI.

3) MULTI-PEDESTRIAN MOVEMENT FROM REAR TO FRONT
STREET is also validated for scenes that consist of multi-
pedestrian movements from rear to front rows. From the
design of the three algorithms, it is evident that LID and CED
will be the most suitable for such events. The images of the
multi-pedestrians movement are illustrated in Figure 20.
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FIGURE 20. Images of multi-pedestrians movement from rear to front.

Figure 21 shows the LID RT ground truth, LID RT and the
normalized RT (with secondary Y-axis). These data show that
the LID RT trend moves in tandem with the LID RT ground
truth with minor spikes due to occlusion among the pedes-
trians, and some pedestrians are walking near the boundary
of the AOI. The normalized RT can be used to observe the
movement trend related to the pedestrian’s movement. In this
event, the multi-pedestrian disperses to other sub-regions
as it walks towards the front rows. The rising of normal-
ized RT also reflects the movement of pedestrians from rear
to front.

Comparing LID, CED and AED in this event, AED would
not be an efficient algorithm to track the movement of the
pedestrian, leaving only LID and CED. Following the model
design, the startling difference of RT from 0 – 9000 ms
demonstrates the linearity of LID RT increment as the pedes-
trian moves towards the front; in contrast, an exponential
increase can be observed in CED RT with higher elevated
values. These results verify the intended performance of the
three algorithms.

With the last image in Figure 21, the stepwise decreasing
TTCvalue can be observed in tandem to the rising RT. This
shows the feasibility of the TTCvalue and highlights the time
to collision as the pedestrians move closer to the front (ego
vehicle).

4) MOVING VEHICLE THAT OCCLUDED PEDESTRIAN
The STREET can identify occlusion as shown in Figure 22.
The pedestrian on the left second row (Yr2) is occluded by the
driven truck. When the occlusion disappears, the pedestrian
has reached (Yr3).

FIGURE 21. Comparative analysis of RT for multi-pedestrian movement
from rear to front.

The images in Figure 22 illustrate pedestrians are occluded
from moving vehicles based on the sudden drop in LID
RT figures for a duration of 56 frames = 2.24 seconds
(128640 – 130880 ms) as shown in Figure 23. The LID RT
drops instantaneously from 8.4 to 2.0, and returns to 7.6 only
after 56 frames (not 8.4, due to the movement of the pedes-
trian). This event can be detected by inserting an occlusion
filter in the STREET. In terms of the LID RT figures, they
are close to the LID ground truth. The spikes seen is due to a
false positive detection error caused by YOLOv5.

The last image in Figure 23 shows that the TTCvalue
increases sharply once the second-row pedestrian is occluded
due to the remaining pedestrian residing at rowR8 of the AOI.
In a normal case, if only one pedestrian is occluded in the
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FIGURE 22. Images of moving vehicle that occluded pedestrian and RT
results.

scene, the TTCvalue will drop to zero, which is not a good
indicator for occlusion.

Thus, in this event, LID or CED is still a better indicator for
occlusion with sharp decrease and increase for an extended
period in terms of seconds. Since the pedestrian is moving
away from the front row, AED is not obvious for detecting
this event.

E. COMPARISON OF LID, CED, AED AND TIME TO
COLLISION FINDINGS
With the proposed STREET, risk zoning of scene A was
implemented, and the characteristic of the three algorithms
LID, CED and AED was verified and validated with the
events shown within the scene using ground truth data and
TCCvalue to illustrate its impact. Table 11 summarises the
sensitivity for each event, comparing each algorithm based
on the dataset of 97k samples. Based on the values, it is
evident that if the RT figures are high and TTCvalue is low, this
represents a high-risk scene. If the RT is high and the TTCvalue
is high, this infers that multiple pedestrians are present at
middle-rear rows of the AOI. The normalized RT can be used
to check for this truth. Lastly, if the RT figures are low with
a high TTCvalue, this represents a low-risk scene.

The utilization of LID, CED, and AED supports the AV
real-time risk assessment intentions. The normalized RT
ranges from 0 to 10, which acts as a suitable severity rating
for the real-time ASIL [9] and an automatic fitting for the
real-time recursive risk assessment PRN [10] in terms of
automatic risk quantification for the collision of AV with
pedestrian(s).

FIGURE 23. Comparative analysis of RT for moving vehicle that occluded
pedestrian.

TABLE 11. Comparison table for all three street algorithms and TCCvalue
based on scene A findings.

V. CONCLUSION
In this paper, a novel methodology (STREET) is pro-
posed to quantitatively risk tag the severity rating of the
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real-world environment for real-time risk assessment via
cooperative mode. STREET focuses on pedestrians in uncon-
trolled traffic areas. Working in cooperative mode using RSI
(i.e., infrastructure-based) to overcome AV sensors’ limita-
tions, it provides advanced warnings if high-risk scenes are
detected in the vicinity of the environment. This method
provides a novel risk zoning of the scene and includes three
different algorithms, LID, CED and AED of risk detection
matrix. The different risk detection matrix focus on different
layers of the scene to enhanceAV risk and safetymanagement
with advancedwarning. Furthermore, STREET provides time
to collision figures as a form of advanced warning, refer-
encing the ego vehicle to the detected pedestrian. In this
paper, STREET is implemented and tested on an uncontrolled
traffic scene, comparing normalized RT results based on LID,
CED and AED. With the 97k samples of quantitative RT
figures, average and variance are determined in identifying
the occurrence of pedestrians according to the zone layers.
Post-processing validations were conducted using pedestrian
occurrence heatmaps and ground truth to validate the find-
ings. In addition, further analyses of LID, CED and AED
were conducted with four specific events, which identified
their effectiveness in different events using TTC as validation.
Thus, based on event(s) selection preference, a specific risk
detection matrix can be chosen. As such the normalized RT
(ranging from 0 to 10) from STREET can be used as a
quantitative severity rating figure for existing real-time risk
assessment frameworks, thus resulting in lightweight integra-
tion for the AV for risk assessment management. Therefore,
in conclusion, STREET provides an enhancement to risk
and safety management of AV. It is also recognized that the
accuracy of object detection using deep learning methods
can be further improved. This will be addressed in future
research with increased focus on using this methodology for
larger-scale deployment that incorporates multiple coopera-
tive mode exchanges and validation of real-time risk assess-
ment at the AV.
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