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Abstract

We present a standard binary Darboux transformation for the Gerdjikov-Ivanov equation and then construct
its quasigrammian solutions. Further, the multi- soliton, breather and rogue wave solutions of the Gerdjikov-
Ivanov equation are given as particular examples.
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1. Introduction

The nonlinear Schrödinger (NLS) equation [49] is a physically significant model and has many physical
applications, such as deep water waves [4, 47], plasma physics [48], nonlinear optical fibers [20, 21], magneto-
static spin waves [55] and so on. The high-order nonlinear forms of the NLS equation have been studied
by various scholars. Among them, there are three well known equations with derivative–type nonlinearities
which are called the Kaup-Newell equation (DNLSI) [27], the Chen–Lee–Liu equation (DNLSII) [5] and the
Gerdjikov–Ivanov equation (DNLSIII) [15]

iqt + qxx +
1

2
q|q|4 + iq2q∗x = 0, (1)

where the asterisk ∗ denotes complex conjugation and the dependent variable q(x, t) represents a complex-
valued wave profile with x and t being the independent spatial and temporal variables respectively. The
classical nonlinear Schrödinger equation [49] with the derivative-type NLS (DNLS) equations [5, 15, 27] are
completely integrable and play an important role in the study of mathematical physics [3, 7, 23, 26, 28, 40].

Recently, the explicit solutions of the Gerdjikov-Ivanov (GI) equation are studied in [9, 17, 42] via
Darboux-type transformations. These solutions are often expressed in terms of determinants with a com-
plicated structure. On the other hand, in [46], the exact solutions of the GI equation are constructed in
terms of quasideterminants in compact forms by a standard Darboux transformation (DT). Quasidetermi-
nant was introduced first by Gelfand and Retakh [10] in 1991 as a replacement for the determinant over
non-commutative rings R. They play crucial roles in constructing explicit solutions of integrable systems
[12, 13, 19, 22, 24, 38, 29].

In this paper, we present for the first time a standard binary Darboux transformation (BDT) for the GI
equation (1) and then construct its quasigrammian solutions. The DT is known as one of the most powerful
methods for finding the explicit solutions of the integrable systems. For the sake of clarity we emphasize that
the method we employ in the present article is based on Darboux’s [8] and Matveev’s original ideas [35, 36].
In addition to this, our solutions are expressed in terms of quasigrammians [11] rather than determinants.
Therefore, our approach should be considered on its own merits.
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The structure of this paper is as follows. In Section 2, we construct a 2×2 eigenfunction and corresponding
constant 2× 2 square matrix for the eigenvalue problem of the GI equation (1) using two symmetries of the
Lax pair of the GI equation. In Section 3, we state a standart BDT [8, 35, 36] for the GI equation in
(2 + 1) dimensions. Then, by a separation of variables technique, we present the reduced BDT, which can
be considered as a dimensional reduction from (2 + 1) to (1 + 1) dimensions. The reader is referred to
the article [37] for a more detailed treatment. In Section 4, via the reduced BDT, we construct the exact
quasigrammian solutions of the GI equation. We then show that these explicit solutions can be written in
terms of quasideterminants. In Section 5, as applications of the BDT, we present the explicit solutions of
the Gerdjikov-Ivanov equation from zero and non-zero seed solutions. These particular solutions include
the multi-soliton, breather and rogue-wave solutions. A brief summary and discussion are given in the last
Section 6.

2. Gerdjikov-Ivanov equation

Let us start with the coupled Gerdjikov-Ivanov equations:

iqt + qxx + iq2rx +
1

2
q3r2 = 0,

irt − rxx + ir2qx −
1

2
q2r3 = 0,

(2)

which are reduced to the GI equation (1) when r = q∗. The Lax pair [15] for the system (2) is given by

L = ∂x + Jλ2 −Rλ+
1

2
qrJ, (3)

M = ∂t + 2Jλ4 − 2Rλ3 + qrJλ2 + Uλ+W, (4)

where J , R, U and W are 2× 2 matrices

J =

(
i 0
0 −i

)
, R =

(
0 q
r 0

)
, U =

(
0 −iqx
irx 0

)
(5)

and

W =

(
− 1

2 (rqx − qrx)− 1
4 iq

2r2 0
0 1

2 (rqx − qrx) + 1
4 iq

2r2

)
. (6)

Here the spectral parameter λ is an arbitrary complex number. We can easily see that the potential matrix
R in (5) has two symmetry properties. The first one is that it is Hermitian: R† = R. The second one is that
SRS−1 = −R, where

S = S−1 =

(
1 0
0 −1

)
. (7)

Let φ = (ϕ,ψ)T be a vector eigenfunction for the Lax operators (3)-(4) corresponding an eigenvalue λ. By
using the second symmetry, we can see that Sφ = (ϕ,−ψ)T is another eigenfunction for eigenvalue −λ. By
using these vector eigenfunctions we can construct a square 2×2 matrix eigenfunction θ with 2×2 eigenvalue
Λ

θ =

(
ϕ ϕ
ψ −ψ

)
, Λ =

(
λ 0
0 −λ

)
, (8)

satisfying

θx + JθΛ2 −RθΛ +
1

2
qrJθ = 0, (9)

θt + 2JθΛ4 − 2RθΛ3 + qrJθΛ2 + UθΛ +Wθ = 0. (10)
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3. Darboux transformations and Dimensional reductions

3.1. Darboux transformation

Let us begin by considering the following linear operators:

L = ∂x +

N∑
i=0

ui∂
i
y, M = ∂t +

N∑
i=0

vi∂
i
y, (11)

where ui, vi are m×m are matrices. Let L(φ) = M(φ) = 0, where φ is any eigenfunction of L and M . Let
us introduce a gauge operator Gθ = θ∂yθ

−1, where θ is a non-singular matrix solution of the same linear

system L(φ) = M(φ) = 0. Then the Darboux transformation φ → φ̃ = Gθ(φ) keeps the linear system
L(φ) = M(φ) = 0 invariant:

L̃(φ̃) = M̃(φ̃) = 0, (12)

where φ̃ = Gθ(φ) is an eigenfunction of L̃ and M̃ in which the linear operators L̃ = GθLG
−1
θ and M̃ =

GθMG−1
θ have the same form as L and M in (11) but with different coefficients:

L̃ = ∂x +

N∑
i=0

ũi∂
i
y, M̃ = ∂t +

N∑
i=0

ṽi∂
i
y. (13)

3.2. Binary Darboux transformation

Suppose Gθ and Gθ̂ be two standard Darboux transformations map two linear operators L and L̂ onto a

common linear operator L̃ such that

L̃ = GθLG
−1
θ = Gθ̂L̂G

−1

θ̂
. (14)

Then one may define a binary Darboux transformation Bθ,θ̂ = G−1

θ̂
Gθ such that L̂ = Bθ,θ̂LB

−1

θ,θ̂
. In order

to define Gθ̂ one needs an eigenfunction of L̂. This problem can be got around by using the formal adjoint

operator L† constructed according to the rule
(
a∂iy
)†

= (−∂y)
i
a†, where † denotes the Hermitian conjugate.

If θ and ρ be two m × k matrix solutions of the linear system L(φ) = M(φ) = 0 and its adjoint system

L†(ψ) = M†(ψ) = 0 respectively, we then derive the eigenfunction θ̂ as

θ̂ = θΩ(θ, ρ)−1, (15)

where the eigenfunction potential Ω is defined as Ω(θ, ρ)y = ρ†θ. We may now construct the binary Darboux
transformation explicitly as

Bθ,ρ = I − θΩ(θ, ρ)−1∂−1
y ρ† (16)

with its adjoint

B−†θ,ρ = I − ρΩ(θ, ρ)−†∂−1
y θ†. (17)

Let φ[1] = φ and ψ[1] = ψ be two general eigenfunctions for the operators L[1] = L, M[1] = M and the

adjoint Lax operators L†[1] = L†, M†[1] = M† respectively, where L and M are given by (11). We then define

the binary Darboux transformations of the eigenfunctions φ and ψ as

φ[2] = Bθ,ρ
(
φ[1]

)
= φ[1] − θ[1]Ω

(
θ[1], ρ[1]

)−1
Ω
(
φ[1], ρ[1]

)
,

ψ[2] = B−†θ,ρ
(
ψ[1]

)
= ψ[1] − ρ[1]Ω

(
θ[1], ρ[1]

)−†
Ω
(
θ[1], ψ[1]

)†
,

3



with

θ[2] = φ[2]|φ→θ2 , ρ[2] = ψ[2]|ψ→ρ2 .

After N > 1 iterations, the N-fold BDTs are given below as

φ[N+1] = Bθ,ρ
(
φ[N ]

)
= φ[N ] − θ[N ]Ω

(
θ[N ], ρ[N ]

)−1
Ω
(
φ[N ], ρ[N ]

)
,

ψ[N+1] = B−†θ,ρ
(
ψ[N ]

)
= ψ[N ] − ρ[N ]Ω

(
θ[N ], ρ[N ]

)−†
Ω
(
θ[N ], ψ[N ]

)†
,

(18)

with

θ[N ] = φ[N ]|φ→θN , ρ[N ] = ψ[N ]|ψ→ρN , (19)

where L(θi) = M(θi) = 0 and L†(ρi) = M†(ρi) = 0 such that i = 1, . . . , N . By introducing the notations
Θ = (θ1, . . . , θN ) and P = (ρ1, . . . , ρN ), these eigenfunctions can be expressed in terms of quasigrammians

φ[N+1] =

∣∣∣∣∣Ω(Θ, P ) Ω(φ, P )

Θ φ

∣∣∣∣∣ , ψ[N+1] =

∣∣∣∣∣Ω(Θ, P )† Ω(Θ, ψ)†

P ψ

∣∣∣∣∣ , (20)

and

Ω(φ[N+1], ψ[N+1]) =

∣∣∣∣∣Ω(Θ, P ) Ω(φ, P )

Ω(Θ, ψ) Ω(φ, ψ)

∣∣∣∣∣ . (21)

3.3. Dimensional reductions of the binary Darboux transformation

In this subsection, we describe a dimensional reduction of the BDT from (2 + 1) to (1 + 1) dimensions
by a separation of variables:

φ(x, y, t) = φr(x, t)eλy, θ(x, y, t) = θr(x, t)eΛy,

ψ(x, y, t) = ψr(x, t)eµy, ρ(x, y, t) = ρr(x, t)eΠy,
(22)

where λ, µ are two constant scalars and Λ,Π are two k × k constant square matrices. Here, the superscript
r denotes reduced functions. Then, the differential operators L and M in (11) become

Lr = ∂x +

N∑
i=0

uiλ
i, Mr = ∂t +

N∑
i=0

viλ
i, (23)

and the reduced eigenfunction θr satisfying

θrx +

N∑
i=0

uiθ
rΛi = 0, θrt +

N∑
i=0

viθ
rΛi = 0. (24)

Similarly we can write down the reduced adjoint eigenfunction ρr. It follows that the y−dependence of the
potential Ω can also be made explicit by letting

Ω(θ, ρ) = eΠ†yΩr (θr, ρr) eΛy,

Ω(φ, ρ) = e(Π†+λI)yΩr (φr, ρr) ,

Ω(θ, ψ) = Ωr (θr, ψr) e(Λ+µ†I)y,

(25)

where the reduced potential Ωr satisfying the following conditions

Π†Ωr (θr, ρr) + Ωr (θr, ρr) Λ = ρr†θr,(
Π† + λI

)
Ωr (φr, ρr) = ρr†φr,

Ωr (θr, ψr)
(
Λ + µ†I

)
= ψr†θr.

(26)
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Then the dimensionally reduced binary Darboux transformations are written as

Bθr,ρr = I − θrΩr (θr, ρr)
−1 (

Π† + λI
)−1

ρr†,

B−†θr,ρr = I − ρrΩr (θr, ρr)
−† (

Λ† + µI
)−1

θr†.
(27)

The transformed operators

Lr[N+1] = Bθr,ρrL
r
[N ]B

−1
θr,ρr ,

Mr
[N+1] = Bθr,ρrM

r
[N ]B

−1
θr,ρr

(28)

have generic eigenfunctions and adjoint eigenfunctions

φr[N+1] = φr[N ] − θ
r
[N ]Ω

r
(
θr[N ], ρ

r
[N ]

)−1

Ωr
(
φr[N ], ρ

r
[N ]

)
,

ψr[N+1] = ψr[N ] − ρ
r
[N ]Ω

r
(
θr[N ], ρ

r
[N ]

)−†
Ωr
(
θr[N ], ψ

r
[N ]

)†
,

(29)

with

θr[N ] = φr[N ]|φr→θN , ρr[N ] = ψr[N ]|ψr→ρrN . (30)

From now on, for notational simplicity, we omit the superscript r and consider only the reduced BDT.

4. Constructing quasigrammian solutions of the GI equation

In this section, we find out the effect of the BDT on the differential operator L given by (3). It can be
easily checked that the corresponding results also hold for the operator M given by (4). We observe that
the Lax operators L and M are both anti-Hermitian, i.e., L† = −L and M† = −M . Due to this property,
we choose the adjoint eigenfunction ρ = θ and the constant matrix Π = Λ. Furthermore, under the BDT,
the operator L is transformed to a new operator L̂:

L→ L̂ = BθLB
−1
θ , (31)

where

Bθ = I − θΩ(θ, θ)−1
(
Λ† + λI

)−1
θ†. (32)

It follows that

R̂ = R+
[
J, θΩ(θ, θ)−1θ†

]
, (33)

where the potential Ω(θ, θ) satisfies

Ω(θ, θ)Λ + Λ†Ω(θ, θ) = θ†θ, (34)

in which the eigenfunction θ and the diagonal constant matrix Λ are given by (8). For notational convenience
let us introduce a 2× 2 matrix Q such that R = [J,Q], of the form

Q =
1

2i

(
q

−r

)
, (35)

where the entries left blank are arbitrary and do not contribute to R. From (33), it follows that R̂ = [J, Q̂]
where

Q̂ = Q− θΩ(θ, θ)−1θ† (36)

which can be written in a quasigrammian form as

Q̂ = Q+

∣∣∣∣∣Ω(θ, θ) θ†

θ 02

∣∣∣∣∣ . (37)
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4.1. Iteration of the binary Darboux transformation

Let Q[1] = Q, Q[2] = Q̂, θ[1] = θ1 = θ and Λ1 = Λ such that Λ1 = diag(λ1,−λ1). Then, the solution (36)
can be written as

Q[2] = Q[1] − θ[1]Ω(θ[1], θ[1])
−1θ†[1]. (38)

After N repeated applications of the reduced BDT (32), we have

Q[N+1] = Q[N ] − θ[N ]Ω(θ[N ], θ[N ])
−1θ†[N ] (39)

with θ[N ] = φ[N ]|φ→θN , where the general eigenfunction φ[N ] is given by (29) as

φ[N+1] = φ[N ] − θ[N ]Ω(θ[N ], θ[N ])
−1Ω(φ[N ], θ[N ]). (40)

Let φ1, . . . , φN be a particular set of eigenfunctions of the linear operators L, M given by (3)−(4), and define
Θ = (θ1, . . . , θN ) for the 2× 2 matrices θi (i = 1, . . . , N) such that

θi =

(
ϕi ϕi
ψi −ψi

)
. (41)

We may now express Q[N+1] and φ[N+1] in quasigrammian form as

Q[N+1] = Q+

∣∣∣∣∣∣∣
Ω(Θ,Θ) Θ†

Θ
0 0
0 0

∣∣∣∣∣∣∣ , φ[N+1] =

∣∣∣∣∣Ω(Θ,Θ) Ω(φ,Θ)

Θ φ

∣∣∣∣∣ . (42)

Let us define the 2× 2N matrix Θ as

Θ =

(
φ
ψ

)
, (43)

where φ and ψ denote the row vectors

φ = (ϕ1, ϕ1, . . . , ϕN , ϕN ) , (44)

ψ = (ψ1,−ψ1, . . . , ψN ,−ψN ) . (45)

Then it follows from (42)

Q[N+1] = Q+


∣∣∣∣Ω(Θ,Θ) φ†

φ 0

∣∣∣∣ ∣∣∣∣Ω(Θ,Θ) ψ†

φ 0

∣∣∣∣
∣∣∣∣Ω(Θ,Θ) φ†

ψ 0

∣∣∣∣ ∣∣∣∣Ω(Θ,Θ) ψ†

ψ 0

∣∣∣∣

 . (46)

By substituting (35) into (46), we obtain quasigrammian expressions for q and r, namely

q[N+1] = q + 2i

∣∣∣∣Ω(Θ,Θ) ψ†

φ 0

∣∣∣∣ , (47)

r[N+1] = r − 2i

∣∣∣∣Ω(Θ,Θ) φ†

ψ 0

∣∣∣∣ . (48)

We have constructed a quasigrammian solution q[N+1] of the GI equation (1), along with its complex con-
jugate r[N+1]. It is necessary to show that these two expressions are consistent. That is, that the pair are
indeed complex conjugate to each other. The proof of this is given in Section 4.2.
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4.2. Proof of consistency

In the expressions (47)-(48), the potential Ω(Θ,Θ) is 2N × 2N matrix satisfying the relation

Ω(Θ,Θ)Λ + Λ†Ω(Θ,Θ) = Θ†Θ, (49)

where Λ is 2N × 2N constant matrix such that Λ = diag (Λ1, . . . ,ΛN ). Solving this relation for Ω(Θ,Θ), we
obtain the explicit expression

Ω (Θ,Θ) =


Ω(θ1, θ1) Ω(θ2, θ1) . . . Ω(θN , θ1)
Ω(θ1, θ2) Ω(θ2, θ2) . . . Ω(θN , θ2)

...
...

...
Ω(θ1, θN ) Ω(θ2, θN ) . . . Ω(θN , θN )

 , (50)

where Ω(θi, θj) is 2× 2 potential satisfying the relation

Ω(θi, θj)Λi + Λ†jΩ(θi, θj) = θ†jθi, (51)

in which Λk = diag (λk,−λk) and i, j, k ∈ {1, 2, . . . , N}. It follows from this relation that the potential Ω is
written explicitly as

Ω(θi, θj) =

(
fij −gij
gij −fij

)
, (52)

where fij and gij are two scalar functions such that

fij =
1

λi + λ∗j

(
ϕiϕ

∗
j + ψiψ

∗
j

)
,

gij =
1

λi − λ∗j

(
ϕiϕ

∗
j − ψiψ∗j

)
.

Here we observe that the functions fij and gij hold the relations f∗ij = fji and g∗ij = −gji, where i, j =
1, . . . , N . Then the 2× 2 potential Ω(θi, θj) satisfies the symmetry condition

Ω(θi, θj)
† = Ω(θj , θi), (53)

and the 2N × 2N matrix potential Ω(Θ,Θ), as given by (50), is self-adjoint,

Ω(Θ,Θ)† = Ω(Θ,Θ). (54)

By using the symmetry property (54) of the potential Ω, it is easily seen that the expressions given in (47)
and (48) are complex conjugate. This completes the proof.

4.3. Explicit quasideterminant solutions

In this subsection, we consider the quasigrammian solution (47) of the GI equation (1), in which we
derive the following quasideterminant solution

q[N+1] = q + 2i

∣∣∣∣∣∣∣∣∣∣∣

F11 F12 . . . F1n ϕ1

F21 F22 . . . F2n ϕ2

...
...

...
...

Fn1 Fn2 . . . Fnn ϕn
ψ∗1 ψ∗2 . . . ψ∗n 0

∣∣∣∣∣∣∣∣∣∣∣
, (55)
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where

Fij =
1

Λij

(
λiψiψ

∗
j − λ∗jϕiϕ∗j

)
, (56)

in which Λij = λ2
i − λ∗j

2. For one-fold BDT (N = 1), the solution (55) yields

q[2] = q + 2i

∣∣∣∣ F11 ϕ1

ψ∗1 0

∣∣∣∣ , (57)

where

F11 =
1

Λ11

(
λ1|ψ1|2 − λ∗1|ϕ1|2

)
,

in which Λ11 = λ2
1 − λ∗1

2 such that Λ11 ∈ iR. Thus, we obtain a new explicit solution for the GI equation
(1), namely

q[2] = q − 2iΛ11
ϕ1ψ

∗
1

λ1|ψ1|2 − λ∗1|ϕ1|2
, (58)

where Φ1 = (ϕ1, ψ1)T is a solution of the eigenvalue problems L(Φ1) = M(Φ1) = 0, in which L and M are
given by (3)-(4). For two-fold BDT (N = 2), the solution (55) gives us

q[3] = q + 2i

∣∣∣∣∣∣
F11 F12 ϕ1

F21 F22 ϕ2

ψ∗1 ψ∗2 0

∣∣∣∣∣∣ , (59)

where the scalar functions Fij are given by (56) for i, j = 1, 2. This solution can be written as

q[3] = q − 2i

|F |
(ϕ1ψ

∗
1F22 + ϕ2ψ

∗
2F11 − ϕ1ψ

∗
2F21 − ϕ2ψ

∗
1F12) , (60)

where |F | = F11F22 − F12F21. Here (60) is the explicit solution of the GI equation (1) which yields

q[3] = q − 2i
Λ11Λ22 (Λ12ϕ1ψ

∗
2h21 − Λ∗12ϕ2ψ

∗
1h12) + |Λ12|2 (Λ11ϕ1ψ

∗
1h22 + Λ22ϕ2ψ

∗
2h11)

Λ11Λ22h12h21 + |Λ12|2 h11h22

, (61)

where Λ11 = λ2
1 − λ∗1

2, Λ22 = λ2
2 − λ∗2

2, Λ12 = λ2
1 − λ∗2

2 such that Λ11,Λ22 ∈ iR and

h11 = λ1|ψ1|2 − λ∗1|ϕ1|2, h12 = λ1ψ1ψ
∗
2 − λ∗2ϕ1ϕ

∗
2,

h21 = λ2ψ
∗
1ψ2 − λ∗1ϕ∗1ϕ2, h22 = λ2|ψ2|2 − λ∗2|ϕ2|2,

in which Φ1 = (ϕ1, ψ1)T and Φ2 = (ϕ2, ψ2)T are two solutions of the eigenvalue problems L(Φ1) = M(Φ1) = 0
and L(Φ2) = M(Φ2) = 0 respectively, where L and M are given by (3)-(4).

5. Particular solutions

Let us consider the spectral problem L(Φj) = M(Φj) = 0 with eigenvalue λj , where Φj = (ϕj , ψj)
T and

L,M are given by (3)-(4) so that

Φjx + JΦjλ
2
j −RΦjλj +

1

2
qrJΦj = 0,

Φjt + 2JΦjλ
4
j − 2RΦjλ

3
j + qrJΦjλ

2
j + UΦjλj +WΦj = 0,

(62)

where j = 1, . . . , N .
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5.1. Solutions for zero seed

For q = r = 0, the first-order linear system (62) becomes

Φjx + JΦjλ
2
j = 0,

Φjt + 2JΦjλ
4
j = 0,

(63)

which is solved for the eigenfunction Φj = (ϕj , ψj)
T as

Φj =

(
ϕj
ψj

)
=

(
e−iλ

2
j(x+2λ2

j t)

eiλ
2
j(x+2λ2

j t)

)
(64)

where j = 1, . . . , N .

Case 1 (N = 1): One-soliton solution

Substituting the eigenfunction (ϕ1, ψ1)T given by (64) into the solution (58) with the choice λ1 = ξ+ iη,
leads to the one-soliton solution of the GI equation (1)

q[2] = −4iξη
e−2i[(ξ2−η2)x+2(ξ4−6ξ2η2+η4)t]

η cosh (4ξη [x+ 4 (ξ2 − η2) t]) + iξ sinh (4ξη [x+ 4 (ξ2 − η2) t])
, (65)

which yields ∣∣q[2]

∣∣2 = 16
ξ2η2

η2 cosh2 (4ξη [x+ 4 (ξ2 − η2) t]) + ξ2 sinh2 (4ξη [x+ 4 (ξ2 − η2) t])
. (66)

This solution is plotted in Fig. 1.

(a) (b)

Fig. 1. (Color online) One soliton solution |q[2]| of the GI equation (1) when ξ = 0.7, η = 0.6. Figure (a) describes its surface
and (b) gives its profiles at different times t = −4 (red), t = 0 (blue), t = 4 (green).

Case 2 (N = 2): Two-soliton solution

Let λ2 = iλ1 with the choice λ1 = ξ + iη under the condition ξη 6= 0. By substituting the eigenfunctions
(ϕ1, ψ1)T and (ϕ2, ψ2)T given by (64) into (61), we obtain the two-soliton solution of the GI equation (1) as
follows:∣∣q[3]

∣∣2 = K2 8ξ2η2
(
ξ2 − η2

)
+
(
ξ2 + η2

)3
coshα cosh γ −

(
ξ2 + η2

)
H1 sinβ + 2ξηH2 cosβ[

(ξ2 − η2)
2

sinhα+ (ξ4 − η4) sinh γ
]2

+ 4ξ2η2
[

(ξ2 + η2) cosh γ + 2ξη cosβ
]2 , (67)
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where H1 and H2 are hyperbolic functions such that

H1 =
(
ξ4 − η4

)
sinhα+

(
ξ4 − 6ξ2η2 + η4

)
sinh γ,

H2 =
(
ξ2 + η2

)2
coshα+ 2

(
ξ4 − η4

)
cosh γ,

in which

α = 8ξηx,

β = 4
(
ξ2 − η2

)
x,

γ = 32ξη
(
ξ2 − η2

)
t,

K = 8
ξη
(
ξ2 − η2

)
ξ2 + η2

.

By choosing appropriate parameters, the two soliton solution of the GI equation (1) is plotted in Fig. 2.

(a) (b)

Fig. 2. (Color online) Two soliton solution |q[3]| of the GI equation (1) when ξ = 0.6 and η = 0.3. (a) Surface diagram. (b)
Contour diagram.

5.2. Solutions for non-zero seed

For q, r 6= 0 with r = q∗,

q = ke−iµ (68)

is a periodic solution of the GI equation (1), where µ = ax + bt in which a, k ∈ R and b = a2 + ak2 − 1
2k

4.
We use (68) as a seed solution for the application of the binary Darboux transformation. Substituting (68)
into the linear system (62) and solving for the eigenfunction Φj = (ϕj , ψj)

T , we obtain

ϕj(x, t, λj) = e−
1
2 iµ
(
c1e

1
2 iγj + c2e

− 1
2 iγj

)
,

ψj(x, t, λj) =
ie

1
2 iµ

2kλj

(
c̃1e

1
2 iγj + c̃2e

− 1
2 iγj

)
,

(69)

where γj = sj [x + (a + 2λ2
j )t], c̃1 = c1(k2 − a + 2λ2

j + sj) and c̃2 = c2(k2 − a + 2λ2
j − sj) in which

sj =
√
k4 − 2ak2 + a2 + 4λ4

j − 4aλ2
j and c1, c2 are integration constants (j = 1, . . . , N).
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In the case N = 1, inserting the eigenfunction Φ1 = (ϕ1, ψ1)T (69) into (58) with the choice λ1 = ξ + iη
(ξη 6= 0) yields

q[2] = ke−i[ax+(a2+ak2− 1
2k

4)t]

(
1− 16iξη

a1e
1
2 iγ + a2e

− 1
2 iγ + a3e

1
2 iγ̃ + a4e

− 1
2 iγ̃

b1e
1
2 iγ + b2e−

1
2 iγ + b3e

1
2 iγ̃ + b4e−

1
2 iγ̃

)
, (70)

where

γ(x, t) = (s− s∗)x+ [(s− s∗)a+ 2(λ2s− λ∗2s∗)]t,
γ̃(x, t) = (s+ s∗)x+ [(s+ s∗)a+ 2(λ2s+ λ∗2s∗)]t,

and

a1 = |c1|2e∗1, a2 = |c2|2e∗2, a3 = c1c
∗
2e
∗
2, a4 = c∗1c2e

∗
1, b1 = |c1|2

(
|e1|2 − 4k2λ∗2

)
,

b2 = |c2|2
(
|e2|2 − 4k2λ∗2

)
, b3 = c1c

∗
2

(
e1e
∗
2 − 4k2λ∗2

)
, b4 = c∗1c2

(
e∗1e2 − 4k2λ∗2

)
,

in which s =
√
k4 − 2ak2 + a2 + 4λ4 − 4aλ2, e1 = k2 − a+ 2λ2 + s, e2 = k2 − a+ 2λ2 − s.

Case 3 (N = 1): Breather solution

For the choices k2 = 2a and c1 = c2 in (70), we have the breather solution of the GI equation (1) as

q[2] =
√

2a e−i(ax+a2t) m1 coshα+m2 sinhα+m3(sinβ − i cosβ)

n1 coshα+ n2 sinhα+ 8ξη(a sinβ + i cosβ)
, (71)

where α(x, t) = 4ξη
[
x+ 4

(
ξ2 − η2

)
t
]
, β(x, t) =

[
a+ 2η2 − 2ξ2

]
x+

[
a2 − 4

(
ξ4 − 6ξ2η2 + η4

)]
t and

m1 = a2 − 4a
(
ξ2 − η2

)
+ 4

(
ξ4 − 6ξ2η2 + η4

)
− 4i

(
ξ2 − η2

)
,

m2 = a2 − 4
(
ξ4 − 6ξ2η2 + η4

)
− 2i

(
a+ 2η2 − 2ξ2

)
,

m3 = 16ξη
(
ξ2 − η2 − 2iξη

)
,

n1 = a2 − 4a
(
ξ2 − η2

)
+ 4

(
ξ2 + η2

)2
+ 8iξη,

n2 = a2 − 4
(
ξ2 + η2

)2
.

Fig. 3 shows the dynamical evolution of the breather solution of the GI equation (1).

Case 4 (N = 1): Breather and Rogue wave solutions

For simplicity, let c2 = −c1 and a = 2
(
ξ2 − η2

)
so that Im (k4 − 2ak2 + a2 + 4λ4 − 4aλ2) = 0 in (70).

Then we obtain the breather solution of the GI equation (1) in the following form

q[2] = ke−2iµ̃

[
1 +

8ξη
[(

4ξη + ik2
)

(coshα− cosβ)− s(sinβ + i sinhα)
]

k2 [s sinhα− (k2 − 2a+ 4iξη) coshα] + 4ξη [s sinβ + (4ξη + ik2) cosβ]

]
, (72)

where

µ̃(x, t) =
(
ξ2 − η2

)
x+

[
2
(
ξ2 − η2

)2
+
(
ξ2 − η2

)
k2 − 1

4
k4

]
t,

α(t) = 4ξηst,

β(x, t) = s
[
x+ 4

(
ξ2 − η2

)
t
]
,

in which s =
√
k4 + 4 (η2 − ξ2) k2 − 16ξ2η2. By choosing appropriate parameters, the breather solution of

the GI equation (1) is plotted in Fig. 4.
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(a) (b)

Fig. 3. (Color online) Breather solution |q[2]| of the GI equation (1) when a = 1, ξ = 0.5 and η = 0.7. (a) Surface diagram.
(b) Density diagram.

(a) (b)

Fig. 4. (Color online) Breather solution |q[2]| of the GI equation (1) when k = 1.5, ξ = 0.3 and η = −0.4. (a) Surface diagram.
(b) Density diagram.

To derive a rogue wave solution of the Gerdjikov-Ivanov equation (1), we shall use the breather solution
of the GI equation given by (72). Here we shall apply the Taylor expansion approach in order to construct
the rogue wave solution of the GI equation. The Taylor expansion of the breather solution (72) with limit
k → −2ξ gives us the first-order rogue wave solution of the GI equation as follows

q[2] = 2ξe−2iµ̃

(
1 +

32ξ2η (ξ − iη) t− 2

1 + 8ξ2η(η + iξ) [x2 + 8ζxt+ 16 (ξ2ζ + η4) t2]− 4ξη [x+ 4 (ξ2 + ζ) t]

)
, (73)

where µ̃ =
(
ξ2 − η2

)
x + 2

(
ξ4 − 4ξ2η2 + η4

)
t and ζ = ξ2 − η2. This first-order rogue wave solution of the

GI equation is shown in Fig. 5.
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(a) (b)

Fig. 5. (Color online) The first-order rogue wave solution |q[2]| of the GI equation (1) when ξ = −0.5 and η = 0.6. (a) Surface
diagram. (b) Density diagram.

6. Conclusion and discussion

In this article, the exact quasigrammian solutions of the GI equation have been constructed using the BDT
method. Then we have showed that these quasigrammian solutions are written in terms of quasideterminants.
As particular examples, we have presented the multi-soliton and breather solutions of the GI equation for
zero and non-zero seeds. In addition to these particular solutions, the first-order rogue wave solution of the
GI equation has been constructed explicitly from the breather solution given by (72). All these particular
solutions are plotted in the figures 1− 5 with the chosen parameters.

We should emphasise that the method presented in this paper allows us to construct explicit solutions
of various other integrable equations such as [14, 39, 52, 51]. Morever, we should also point out that we
have constructed the first-order rogue wave solution of the GI equation via the Taylor expansion method. In
general, the DT cannot be directly used to construct rational solutions for evolution equations. In [16], Gue
et al proposed a simple method (the modified DT) which can be applied to the GI equation for constructing
the higher-order rogue wave solutions [17, 32].

In the current work, we have presented the first-order rogue wave solution of the GI equation. In our
future work, we would like to construct the multi-rogue wave solutions for integrable equations. In addition
to this, we would also like to study integrable nonlocal equations. In 2013, by using the symmetry reduction
method, Ablowitz and Musslimani [1] proposed a nonlocal nonlinear Schrödinger equation

iqt(x, t) + qxx(x, t) + 2q2(x, t)q∗(−x, t) = 0.

The authors proved that this equation is integrable. From then on, integrable nonlocal systems have become
one of the most popular research topics in mathematical physics. Many researchers have made significant
contributions to the study of this research area. These scholars have constructed exact solutions of many
nonlocal equations by using different techniques such as Inverse Scattering transformation [2, 25, 33, 34, 53],
Darboux transformation [43, 44, 45, 50, 54] and Hirota bilinear method [6, 18, 30, 31, 41]. We believe that
the idea presented in our paper can be used to obtain explicit solutions to integrable nonlocal equations.
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