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A B S T R A C T

Forecasts of various quantities over multiple time periods and/or spatial expanses are required to operate
modern power systems. Furthermore, probabilistic forecasts are necessary to facilitate economic decision-
making and risk management. This gives rise to the challenge of producing forecasts which capture the
dependency between variables, over time, and between locations. The Gaussian Copula has been widely
used for multivariate energy forecasts and is scalable because the entire dependency structure is captured
by a covariance matrix; estimating this covariance matrix in high dimensional problems remains a research
challenge. Here we focus on parametrising this covariance matrix as a step towards more robust estimation and
to enable conditioning on explanatory variables. We present a range of parametric structures and estimation
strategies suitable for multivariate energy forecasting.
1. Introduction

When planning and operating weather-dependent energy systems
one must consider patterns of spatial and temporal variation of supply
and demand. Will solar generation coincide with high demand for space
cooling? Will a wind drought exacerbate high winter demand? Is there
sufficient network capacity to transmit renewable energy to demand
centres? To answer these questions it is necessary to consider inter-
dependency on the relevant spatial and temporal scales. On operational
time scales, this means considering the spatial and temporal structure
of forecast uncertainty; or loosely speaking, describing whether the
impacts forecast errors are likely compound or alleviate one another.
For instance, if a forecast error persists at one wind farm, will we see
a similar error with the same sign at a neighbouring wind farm as well?

Copulas provide a mathematical framework for modelling depen-
dency between random variables and have been widely applied to
multivariate probabilistic energy forecasting [1–7]. The Gaussian cop-
ula in particular lends itself to this task in high-dimensional settings
involving 10 s or 100 s of dimensions, which demands calibrated
density forecasts as margins of the copula to be able to accurately
estimate covariance parameters from data. Even with calibrated density
forecast the parameters of the Gaussian copula can be challenging to
estimate, which is the subject of this paper. The empirical covariance
matrix can be calculated from training data but in the high-dimensional
setting may be close to singular with finite training data. Several
parametrisations have been proposed for wind power forecasting based
on covariance functions, which guarantee positive-definiteness of the
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resulting covariance matrix, or parametric precision matrices [4–6].
However these are generally limited to isotropic structures (covariance
depends on separation only, not specific time/location) and do not
consider possible dynamics arising from dependence on time-varying
covariates. Slowly-varying temporal dependency in wind power fore-
casts is considered in [1] using recursive estimation of the empiri-
cal covariance and motivates parametric modelling to capture faster
dynamics and avoid the lag associated with recursive estimation.

Covariance estimation plays an important role in many statistical
sciences including genetics, ecology, finance and machine learning
more generally. The main challenges arise from the constraint that co-
variance matrices must be positive-definite, and that the number of pa-
rameters grows quadratically with dimension 𝑝. Ensuring positive defi-
niteness can be achieved either through constrained optimisation or by
adopting an unconstrained covariance matrix re-parametrisation [8].
Such re-parametrisations may be based on matrix decomposition [8]
or covariance functions [9–12]. Additional properties such as sparsity
(of the precision matrix) or smoothness may also be desirable and
regularisation may be used to encourage these [13,14], perhaps the
most well-known example being the graphical LASSO [15].

In a static covariance context we have single covariance matrix
which, in the Gaussian copula case, can be estimated via the empirical
covariance, provided we have enough data to do so reliably. If not, it
may be advantageous to impose a structure with fewer parameters in
order to obtain a more robust estimate. Furthermore, if we want to let
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the covariance matrix change with one or more covariates capturing
weather or date/time effects, then the number of unknown parameter
grows by at least one order of magnitude relative to the static case.
In particular, non-parametric modelling (e.g., using splines) of each
covariate’s effect on each unique element of the covariance matrix leads
to an overly complex model that will over-fit to the available data. The
solution is making the covariance matrix vary with the covariates only
in a limited set of ‘directions’, for example by modelling only some of
its elements or by modelling the covariance matrix via a few global
parameters, which are then allowed to vary with the covariates. In
this work we consider some parametrisations that are meant to enable
the latter approach. Re-parametrisation using covariance functions can
drastically reduce the number of parameters to be estimated from
𝑝(𝑝+1)∕2 to just a few, provided that a suitable function can be found.

Two limitations the Gaussian copula are is symmetric nature, and
hat joint extreme events are unlikely, which may not be appropriate
or some data or applications [16]. Copula vines, which are a series
f linked bivariate copula families, offer a more flexible framework for
odelling high dimensional dependency [2,17]. However, estimation

nd sampling of the vine structure and bivariate families is computa-
ionally intensive even in a static context, making them unattractive
or developing dynamic correlation models, which is the focus of this
ork. Further the results in [2] show that the Gaussian approach with
n exponential covariance matrix outperformed the vine copula for
wo out of three wind farms in terms of the energy score and the p-
ariogram score. Alternatives copulas include forecasting multivariate
egions [18,19], using Stochastic Differential Equations [20,21], and a
ank-reordering method which preserves spatial–temporal characteris-
ics known as the Schaake shuffle [22,23]. To the best of the author’s
nowledge, none of these methods have been demonstrated in very
igh dimensional energy forecasting problems.

In this work we propose a framework for generalising covariance
unctions by allowing their parameters to take the form of additive
unctions of explanatory variables. We refer to these as GAC models
nd focus on the choice loss function and evaluation model. We begin
ith the necessary preliminaries in Section 2 before introducing GAC
odels and their estimation in Section 3. Before applying the proposed
ethods we describe a suite of evaluation metrics in Section 4. We
roceed with two simulation-based examples where the true covari-
nce matrix used to generate synthetic data is known and consider
ynamic isotropic covariance in Section 5.1 and static non-stationary
ovariance in 5.2; followed by an example using real energy forecasts
n Section 6. We conclude with a discussion and suggestions for future
evelopments.

. Covariance functions

Spatio-temporal datasets are widespread in environmental sciences,
limatology and meteorology, and related areas, including the energy
ector which is increasingly weather-dependent. Covariance models
lay an important role in these fields, and here we focus on functional
odels widely used in geostatistics when considering a random process
(𝒔, 𝑡) observed at location 𝒔 and time 𝑡. A subtlety of the present setting

s that the temporal dimension of interest is the forecast lead-time 𝑙 for
given issue time or origin 𝑡, hence we adopt the notation 𝑍𝑡(𝒔, 𝑙).

A covariance function, 𝐶𝑡, is stationary if the covariance

ov(𝑍𝑡(𝒔, 𝑙), 𝑍𝑡(𝒔 + 𝒉, 𝑙 + 𝑢)) = 𝐶𝑡(𝒉, 𝑢) (1)

depends only on separation (𝒉, 𝑢), and isotropic if a further condition of
invariance to the direction of 𝒉 and 𝑢

cov(𝑍𝑡(𝒔, 𝑙), 𝑍𝑡(𝒔 + 𝒉, 𝑙 + 𝑢)) = 𝐶𝑡(‖𝒉‖, |𝑢|) (2)

applies. Stationarity and isotropy may apply to only one of the spatial
or temporal components. Whether a process is spatially and/or tem-
2

porally stationary and isotropic must be determined on a case by case i
basis. However, a wider range of parametric isotropic covariance func-
tions exists and serve as a good starting point for many applications.
Some isotropic covariance functions are listed in Table 1. Anisotropy
accounting for direction may be included by replacing the 𝑟 with the
Mahalanobis distance between locations, and non-stationary extensions
to the Powered Exponential and Matérn covariance functions are de-
scribed in [11] and [24], respectively. We propose a new flexible
approach that encompasses non-stationary and anisotropic functions in
the next section.

In the remainder of this paper we focus on covariance functions
of a single distance measure only (i.e. spatial or temporal), although
the methods are easily extendable to multiple distances (i.e. spatio-
temporal). We consider random vectors 𝒛𝑡 with elements 𝑖 = 1,… , 𝑝
being realisations of 𝑍𝑡(𝑙𝑖) and define the separation matrix 𝑅 with
elements 𝑅𝑖,𝑗, = |𝑙2 − 𝑙1|. The dynamic (time-dependent) covariance
matrix 𝛴𝑡 may be formed as

𝛴𝑡 =

⎛

⎜

⎜

⎜

⎜

⎝

𝐶𝑡(𝑅1,1) 𝐶𝑡(𝑅1,2) … 𝐶𝑡(𝑅1,𝑝)
𝐶𝑡(𝑅2,1) ⋱ ⋮

⋮
𝐶𝑡(𝑅𝑝,1) … 𝐶𝑡(𝑅𝑝,𝑝)

⎞

⎟

⎟

⎟

⎟

⎠

. (3)

he time index 𝑡 is dropped if the covariance function under consider-
tion is static and does not depend on 𝑡.

. Generalised additive covariance modelling

The classes of covariance functions discussed above provide a frame-
ork which we extend to capture the complex covariance structures
bserved in practice, with a special focus on energy forecasting appli-
ations. In particular, let 𝐶(𝑟; 𝝃) be a covariance function parametrised
y the 𝑚-dimensional parameter vector 𝝃 (e.g., 𝝃 = {𝜃, 𝜎, 𝛾} for the
owered exponential, see Table 1) and let 𝒙𝑡 be a 𝑑-dimensional vector
f explanatory variables, which could include 𝑡 itself. We propose to let
ach element of 𝝃 vary with 𝒙𝑡 via a semi-parametric generalised addi-
ive model, which provides much modelling flexibility while retaining
nterpretability.

.1. Formulation

The elements of 𝝃 are modelled via

𝑗 (𝜉𝑗 ) = 𝑨𝑗,𝑡𝜷𝑗 +
∑

𝑖
𝑓𝑗,𝑖(𝒙

𝑆𝑗,𝑖
𝑡 ), for 𝑗 = 1,… , 𝑚, (4)

here 𝑔𝑗 (⋅) is a monotonic function, 𝑨𝑗,𝑡 is the 𝑡th row of the design
atrix 𝑨𝑗 , 𝜷𝑗 is a vector of regression coefficients and 𝑆𝑗,𝑖 ⊂ {1,… , 𝑑}

uch that, for instance, if 𝑆𝑗,𝑖 = {2, 4} then 𝒙𝑆𝑗,𝑖
𝑡 is a vector including

he second and fourth element of 𝒙𝑡. Each 𝑓𝑗,𝑖 is a smooth function of
he form

𝑗,𝑖(𝒙
𝑆𝑗,𝑖
𝑡 ) =

𝐾𝑗,𝑖
∑

𝑘=1
𝑏𝑗𝑖𝑘 (𝒙

𝑆𝑗,𝑖
𝑡 )𝛽𝑗𝑖𝑘 , (5)

here 𝑏𝑗𝑖𝑘 are spline basis functions of dimension |𝑆𝑗,𝑖|, while 𝛽𝑗𝑖𝑘 are
egression coefficients. Henceforth, we indicate the vector of regression
oefficients used to model all the elements of 𝝃 with 𝜷. Note that,
hile 𝝃 depends both on 𝜷 and 𝒙𝑡, in the following we use the simpler
otation 𝝃𝑡.

.2. Estimation

The above models may be fitted to data by minimising an appropri-
te loss function with respect to 𝜷. In the static case, model (4) contains
nly an intercept (i.e., 𝑔𝑗 (𝜉𝑗 ) = 𝛽𝑗) and one might consider a loss
hat quantifies the difference between the modelled covariance function
̂ (𝑟; 𝝃) and the empirical covariance �̂�emp(𝑟). Ordinary least squares

s generally sub-optimal for this purpose though because variogram
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Table 1
Some parametric classes of isotropic covariance functions where 𝐶(𝒉) takes the form 𝐶(‖𝒉‖; 𝝃). The
Whittle–Matérn covariance is defined in terms of the modified Bessel function of the second kind 𝐾𝜈 .
Class Function 𝐶(𝑟; 𝝃) Parameters 𝝃

Powered Exponential 𝜎2𝑒−(𝜃𝑟)𝛾 0 < 𝛾 ≤ 2; 𝜃 > 0; 𝜎 ≥ 0

Whittle–Matérn 𝜎2 21−𝜈

𝛤 (𝜈)
(𝜃𝑟)𝐾𝜈 (𝜃𝑟) 𝜈 > 0; 𝜃 > 0; 𝜎 ≥ 0

Cauchy 𝜎2(1 + (𝜃𝑟)𝛾 )−𝜈 0 < 𝛾 ≤ 2; 𝜈 > 0; 𝜃 > 0; 𝜎 ≥ 0

Spherical 𝜎2
(

1 − 2
𝜋
( 𝑟
𝜃

√

1 − ( 𝑟
𝜃
)2 + sin−1 𝑟

𝜃
)
)

𝑐(𝑟) = 0 if 𝑟 > 𝜃; 𝜎2 ≥ 0; 𝜃 > 0

Canonic Periodic 𝜎2 exp
(

− 2 sin2 (𝜔0𝑟∕2)
𝑙2

)

𝜎2 ≥ 0; 𝑙 > 0
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estimates at different lags are heteroscedastic and correlated. Therefore,
following [25,26], we apply Weighted Least Squares

𝐿𝑆
WLS(𝜷) =

∑

𝑖≠𝑗

(

�̂�(𝑅𝑖,𝑗 ) − �̂�(𝑅𝑖,𝑗 ; 𝝃)

1 − �̂�cor(𝑅𝑖,𝑗 ; 𝝃)

)2

(6)

in the case where 𝒙𝑡 = 𝒙 does not depend on time 𝑡, and where 𝐶cor(⋅) is
the correlation function corresponding to 𝐶(⋅), and recall that 𝝃 = 𝝃(𝜷)
is a function of 𝜷. But, if 𝝃 does depend on 𝑡, it is necessary to express
he loss in terms of the corresponding covariance matrix 𝛴𝑡 = 𝛴(𝝃𝑡) as

𝐷
WLS(𝜷) =

1
𝑇

𝑇
∑

𝑡=1

∑

𝑖≠𝑗

(

[𝒛𝑡 ⊗ 𝒛𝑡 − �̂�(𝝃𝑡)]𝑖,𝑗
1 − [�̂�cor(𝝃𝑡)]𝑖,𝑗

)2

, (7)

where 𝒛𝑡⊗𝒛𝑡 is the Kronecker product of realisations at time 𝑡 and �̂�cor
is the correlation matrix corresponding to �̂�. However, this approach is
correlation-focused as it does not evaluate the fit for variances (𝑖 = 𝑗),
so in cases where we cannot assume unit or otherwise known variances,
we consider the full weighted least squares

𝐿𝑆
WLSf(𝜷) =

∑

𝑖,𝑗
|�̂�cor(𝑅𝑖,𝑗 ; 𝝃)|

(

�̂�(𝑅𝑖,𝑗 ) − �̂�(𝑅𝑖,𝑗 ; 𝝃)
)2 , (8)

which may be similarly adapted for the dynamic case.
We may estimate 𝜷 by numerically minimising 𝐿𝑆

WLS or 𝐿𝐷
WLS (or

𝐿𝑆
WLSf or 𝐿𝐷

WLSf), noting that 𝐿𝐷
WLS is equivalent to 𝐿𝑆

WLS in the static
case but is more computationally demanding to evaluate. However, this
would lead to results that strongly depend on the number of spline basis
functions used. To address the issue, we use the penalised objective

�̂� = argmin
𝜷

𝐿𝐷
WLS(𝜷) +

𝐾
∑

𝑘=1
𝜆𝑘𝐽𝑘(𝜷), (9)

where the second term contains penalties of the form 𝐽𝑘(𝜷) = 𝜷⊺𝑺𝑘𝜷,
with 𝑺𝑘 being a positive semi-definite matrix, while 𝜆𝑘 are positive
tuning parameters. The purpose of the penalties is to control the
wiggliness of the smooth effects, the strength of the penalties being
controlled by the 𝜆𝑘’s, which we select by cross-validation. See [27,
Ch. 5] for details.

4. Evaluation framework

A range of scoring rules are available for evaluating multivariate
probabilistic forecasts in the setting where the ‘true’ distribution is
unknown and only a single realisation is available for a given predictive
distribution. However, since here we focus on the dependency structure
in a Gaussian copula framework we may evaluate forecast performance
in the Gaussian domain following the probability integral transforma-
tion of the observations. By applying conventional multivariate scoring
rules in this setting we are essentially calculating ‘copula scores’ as
coined by Ziel and Berk in [28]. Data in the original domain 𝒚 are trans-
formed element-wise through the corresponding predictive distribution
𝐹𝑖(⋅), which serves as the margin of the Gaussian copula, and standard
Gaussian distribution 𝛷(⋅) to yield 𝑧𝑖 = 𝛷−1(𝐹 (𝑦𝑖)) with zero mean and
unit variance. The vector 𝒛 of transformed data is considered a sample
from a multivariate Gaussian with covariance matrix 𝛴, the estimation
3

of which is the focus of this work.
The Energy Score (ES) is a multivariate generalisation of the con-
tinuous ranked probability score, and a strictly proper scoring rule [29,
30]. The ES for a single forecast-observation pair is given by

𝐿ES = 1
𝐽

𝐽
∑

𝑗=1
‖𝒛 − �̂�(𝑗)‖2 −

1
2𝐽 2

𝐽
∑

𝑖=1

𝐽
∑

𝑗=1
‖�̂�(𝑖) − �̂�(𝑗)‖2, (10)

where ‖.‖2 represents the 𝓁2 norm, 𝒛 is the observation, and �̂�(𝑗) is the
𝑗th scenario or ‘trajectory forecast’ sampled taken from the predictive
multivariate distribution.

The 𝑝-Variogram Score (VS-𝑝) [31] is designed to provide greater
discrimination between forecasts with different dependency structures
than the ES. For a single issue time it is

𝐿VS𝑝 =
𝐽
∑

𝑖,𝑗=1
𝑤𝑖𝑗

(

|

|

|

𝑧𝑖 − 𝑧𝑗
|

|

|

𝑝
− 1

𝐾

𝐾
∑

𝑘=1

|

|

|

�̂�(𝑘)𝑖 − �̂�(𝑘)𝑗
|

|

|

𝑝
)

2

, (11)

here 𝑝 is the order of the variogram and �̂�(𝑘) is the 𝑘th forecast
cenario. Note that this score is proper, but not strictly proper, so
ypically both the ES and VS-𝑝 are reported for forecast verification.
lso the small relative change between ES skill scores may be suffi-
ient to discriminate between dependency models when coupled with
ignificance tests [28].

The first two scores measure forecast ‘errors’ while the following
wo can be motivated by statistical or information theory. In particular,
he log or ‘ignorance’ score [32] for a Gaussian model with zero mean
s

LS = − log𝛷(𝒛; �̂�, �̂�) ∝ tr(�̂�−1𝒛𝒛⊺) + log det �̂� . (12)

he log score is equivalent to the negative log-likelihood of 𝒛 under the
odel, hence it evaluates the ability of the fitted model to generate the

bserved data. Its expected value is

(𝐿LS) ∝ tr(�̂�−1𝛴) + log det(�̂�) . (13)

y subtracting the constant log det (𝛴) + 𝑝 from 𝐸(𝐿LS) we obtain the
ullback–Leibler divergence 𝐿KL(𝛴, �̂�) or ‘relative entropy’ between

wo Gaussians, with mean zero but different covariances. 𝐿KL(𝛴, �̂�) ≥ 0
nd is a strictly proper scoring rule, that is 𝐿KL(𝛴, �̂�) = 0 if and only
f �̂� = 𝛴 (and �̂� = 𝜇, beyond the zero-mean setting). Of course, if 𝑧 is
ot Gaussian, then (12) is only proper, because distributional features
eyond the mean and covariance are ignored.

To compare model performance, and the significance of any appar-
nt difference in performance, it is useful to define skill scores. Skill
cores may be calculated for any metric using

kill =
𝑀ref −𝑀

𝑀ref −𝑀perf
, (14)

where 𝑀 is the metric’s value for the method being considered, 𝑀ref
is the metric’s value for a reference method, and 𝑀perf is the metrics
value for the ‘perfect’ method, usually zero. We will use bootstrap re-
sampling of skill scores to determine if apparent differences in forecast
performance (i.e. positive or negative skill) are significantly different
from the null hypothesis that skill is zero at the 0.05 level.
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5. Examples with synthetic data

Here we test the proposed covariance modelling approach using
synthetic data generated by sampling from multivariate normal distri-
butions with known covariance matrices. In both cases, we simulate
5000 samples from the ‘true’ model and attempt to estimate this
model using GACs. We then simulate a further 5000 samples to use
for out-of-sample testing and evaluation. The log and relative entropy
scores are calculated using the estimated covariance matrix �̂� directly,
however the energy and variogram scores require trajectory forecasts
to be produced. Therefore, for each sample in the test data, we draw
trajectories �̂�(𝑖), 𝑖 = 1,… , 1000 from  (𝟎, �̂�) for evaluation.

5.1. Dynamic isotropic covariance

First we consider the process 𝑍𝑡(𝑙) with covariance function 𝐶𝑡(𝑟)
that generates random vectors 𝒛𝑡 ∈ R6 with 𝑙 = 0, 0.2,… , 1. The
covariance function is given by

𝐶𝑡(𝑟) = 𝑒−𝜃(𝑥𝑡)𝑟, (15)
𝜃(𝑥𝑡) = sin(2𝜋𝑥𝑡) + 2, 0 < 𝑥 < 1, (16)

where the covariate 𝑥𝑡 is a realisation of 𝑋𝑡 ∼  (0, 1). We attempt to
estimate a covariance model of the form

�̂�𝑡(𝑟) = 𝑒−�̂�(𝑥𝑡)𝑟, (17)
�̂�GAC-CR(𝑥𝑡) = 𝛽0 + 𝑓cr(𝑥), (18)

where 𝑓cr(⋅) is cubic spline with five basis functions. The model is fitted
by minimising (9), with 𝜆 = 5 × 10−5.

For comparison, we also consider the empirical covariance matrix
of the 5000 training samples, and a GAC model with a simple linear
model for 𝜃, specifically

�̂�GAC-Linear(𝑥𝑡) = 𝛽0 + 𝛽1𝑥𝑡 . (19)

The true and GAC covariance structure are dynamic, introduced by
their dependency on 𝑥𝑡, but are guaranteed to be positive-definite as the
resulting covariance functions are always of the Powered Exponential
form for a given realisation of 𝑥𝑡. The estimation of the relationship
between 𝜃 and 𝑥𝑡 is the estimation problem we are addressing. Of
course data generated from a real-world process is unlikely to follow an
exact, known covariance function, but the purpose of this exercises if
to verify that the GAC modelling approach is able to recover something
like (16) from samples of 𝑍𝑡(𝑙).

The true and estimated functions 𝜃(𝑥𝑡), �̂�GAC-Linear(𝑥𝑡) and �̂�GAC-CR(𝑥𝑡)
are plotted in Fig. 1. The linear fit is unable to replicate the shape
of 𝜃(𝑥𝑡) but is an improvement on the static empirical covariance, as
verified by the evaluation metrics listed in Table 2. Visually, GAC-CR
is better able to reproduce the shape of 𝜃(𝑥𝑡), although even with 5000
samples in the training set, we found a non-zero smoothness penalty to
be necessary to achieve a good fit (not shown).

The GAC model is successfully capturing the dynamics of 𝑍𝑡(𝑙)
and has a clear interpretation though the estimated smooth function
�̂�GAC-CR(𝑥𝑡). However, in a real-world process is unlikely to be gov-
erned by a known parametric form so model specification may be
challenging with a large number of candidate covariance functions
and additive models for selected parameters, the latter associated with
several hyper-parameters (basis functions, smoothness penalties) to
tune.

5.2. Non-stationary static covariance

Motivated by a structure observed in energy forecasting, we con-
sider a non-stationary (and therefore also anisotropic) covariance func-
tion of the following form

cov(𝑍(𝑙 ), 𝑍(𝑙 )) = 𝐶(𝑙 , 𝑙 ) (20)
4

1 2 1 2
Fig. 1. True function 𝜃(𝑥𝑡), simple linear model estimate, and GAC estimate from the
dynamic isotropic example in Section 5.1.

Table 2
Results of simulation experiment for example 5.1: Isotropic dynamic covariance.
Underline indicates that the corresponding skill score relative to the GAC-CR model
are not significantly different from zero.

Name Energy Log VS-0.5 VS-1 KL

Static Empirical 1.607 6.993 3.777 11.950 0.292
GAC-Linear 1.606 6.930 3.736 11.810 0.147
GAC-CR 1.605 6.921 3.724 11.770 0.108
True 1.605 6.870 3.697 11.670 0.000

Fig. 2. True covariance matrix considered in the non-stationary example in Section 5.2.

with an exponential covariance function

𝐶(𝑙1, 𝑙2) = 𝜎2𝑒−𝜃(𝑠1 ,𝑠2)(|𝑠1−𝑠2|)
𝛾
, (21)

𝜃(𝑙1, 𝑙2) = 5
1 + 𝑙1 + 𝑙2

, (22)

with 𝜎 = 1 and 𝛾 = 0.8. This structure exhibits an larger decay rate for
greater values of coordinates 𝑙1 and 𝑙2, and is visualised in Fig. 2. This
feature resembles the observations that forecast errors tend to persist
for longer the further into the forecast horizon we look.

For the simulation experiment, we consider a 51 × 51 covariance
matrix with 𝑙1 and 𝑙2 taking values 0, 0.02, … , 1, illustrated in Fig. 2,
and aim to estimate the constant parameters 𝜎 = �̂� and 𝛾 = �̂�, and the



Electric Power Systems Research 211 (2022) 108446J. Browell et al.

a
w
t

𝜃

a
f
m
𝐿
e
p
f

i
s
e
‘
m
o
d
T

d
l
s
t
w

7

t
t
i
f
m
a
s
s
f
m
c
i
e
t

e
s
e
p
m
F

Table 3
Results of simulation experiment for example 5.2: Isotropic dynamic covariance.
Underline indicates that the corresponding skill score relative to the GAC model are
not significantly different from zero.

Name Energy Log VS-0.5 VS-1 KL

Stationary 4.811 28.98 314.7 995.1 3.073
Empirical 4.813 27.97 312.8 989.4 0.269
GAC 4.811 27.90 312.9 989.6 0.140
True 4.811 27.83 312.8 989.1 0.000

smooth function �̂�(𝑑) = 𝛽0 + 𝑓cr(𝑑), 𝑑 = 𝑙1 + 𝑙2 with 10 basis functions,
using full weighed least squares loss (8) within (9), and with 𝜆 = 10−4.
A drawback of this approach is there is no guarantee that the fitted
covariance function will produce positive-definite covariance matrices
when evaluated at all value of 𝑑. Here we apply the algorithm described
in [33] to find the nearest covariance matrix, though this is not entirely
satisfactory and discussed in Section 7.

For reference, we also evaluate the empirical covariance estimated
on the training data, and a stationary exponential covariance function
with constant 𝜃 = �̂�.

Evaluation metrics of the resulting models are presented in Table 3,
and the significance of apparent differences in these scores has been
tested using bootstrap re-sampling of skill scores. The resulting GAC
model, with constant parameter estimates �̂� = 0.992 and �̂� = 0.803 and
smooth estimate �̂�(𝑑), outperforms both the empirical and stationary
(constant 𝜃) references models in terms of the Log and relative entropy
(KL) scores. Energy and Variogram skill scores, are however not sig-
nificantly different from zero when comparing the GAC and Empirical
covariance models. In fact, the Energy score is not able to discriminate
between the performance of any of the models.

6. Wind power case study

Multivariate wind power forecasting has many use cases in power
system operation and energy trading. Spatial dependency is impor-
tant for managing network constraints, and temporal dependency for
scheduling storage and conventional generation. Furthermore, with
regions now containing 10 s or 100 s of wind farms, and lead-times
from 0 to 120 h ahead required for operational planning, multiple years
of historical forecast data are needed to estimate a positive definite (PD)
empirical covariance matrix. That said, practically speaking older years
are less relevant as wind farm development is ongoing, and missing
data due to curtailments and so on can pollute historic datasets. In this
high dimensional setting, parametrisation of the covariance matrix is
essential.

Here we consider the temporal dependency structure of short-term
wind power forecasts for the total of Scotland’s approximately 10 GW
of wind capacity. The dependency is modelled in a Gaussian copula
framework where the marginals of the copula are density forecasts
of wind power and the temporal dependencies are described by a
covariance matrix. We use a non-stationary GAC parametrisation to
capture the temporal covariance structures observed in the data.

The case study is based on short-term (0–48 h ahead) forecasting
of the metered Scottish wind fleet during 2018–2019. Periods where
curtailment is over 10% of the estimated total capacity are excluded.
Density forecasts for each half-hour period are generated using multiple
quantile regression with inputs based on 10 m and 100 m wind speed
forecasts from ECMWF, with parametric estimates for the tails of the
distributions [6]. The first 18 months of the dataset are used for model
training and tuning via cross-validation, and the last 6 months are used
for out-of-sample evaluation.

Fig. 3(a) shows the empirical temporal dependency structure for the
forecasts estimated on the training data, which is non-singular. The
correlation matrix has a ‘funnel’ structure along the diagonal describing
5

how errors tend to persist for longer further into the forecast horizon.
Table 4
Results for temporal wind power forecasting. Underline indicates that the corresponding
skill score relative to the GAC model are not significantly different from zero.

Name Energy Log VS-0.5 VS-1

Empirical 7.139 Inf 1409 5444
Constant 7.142 19.86 1409 5439
GAC 7.137 15.46 1406 5433

Furthermore, the funnel is not monotonically increasing but exhibits
some smooth, perhaps periodic, variation along its length and there is
also the suggestion of additional off-diagonal structures.

We model the funnel structure using the Powered Exponential cor-
relation function (𝜎 = 1) initially with constant parameters to serve as

reference, and then using the proposed GAC approach. In the latter,
e allow 𝜃 to be a smooth function of the distance 𝑑 = 𝑠1 + 𝑠2 along

he diagonal

= �̂�cr(𝑑) = 𝛽0 + 𝑓cr(𝑑), (23)

nd with a constant parameter 𝛾 = �̂� to be estimated. We model 𝜃
lexibly rather than 𝛾 in the first instance as it is the simpler effect in the
odel. Since this is a correlation matrix, the model is estimated using
𝑆
WLS(𝜷), and a smoothing parameter of 𝜆 = 0.1 is chosen. As in the
xample in Section 5.2, this non-stationary structure does not guarantee
ositive definiteness so as before we find the nearest PD matrix to the
itted GAC model where necessary.

The resulting stationary and GAC correlation matrices are plotted
n Figs. 3(b) and 3(c), respectively, and clearly highlights how the
tationary model is unable to capture the structure observed in the
mpirical correlation matrix. The GAC model successfully captures the
wavy funnel’ diagonal structure observed in the empirical correlation

atrix. Visually, the GAC matrix resembles a smoothed representation
f the Empirical, which is desirable, while the stationary matrix appears
eficient in comparison. This is verified by the evaluation scores in
able 4.

The three matrices are evaluated using the forecast metrics intro-
uced previously, however, with six months of testing data, only the
arge improvement in log score is significant at the 0.05 level. The log
core for the Empirical correlation matrix is returned as infinity due to
he precision limits of the computation, and highlights the challenge of
orking with high-dimensional probabilistic forecasts.

. Discussion and conclusions

We have proposed a modelling framework called Generalised Addi-
ive Covariance for covariance (or correlation) functions and matrices
hat depend on explanatory variables, as is the case in energy forecast-
ng and other applications. By modelling the parameters of covariance
unctions using additive models, it is possible to describe high di-
ensional covariance matrices with a small number of parameters in

n interpretable way. The proposed method has been verified in two
ynthetic examples of time varying isotropic covariance and static non-
tationary covariance, and on a further example using real wind power
orecast data. In all cases the proposed method out performs bench-
arks including the empirical covariance and conventional parametric

ovariance functions in terms of the ignorance score, the difference
s present but not always statistically significant in terms of other
valuation metrics. However, much work remains to determine the
heoretical properties of these models and to improve their estimation.

The use of a parsimonious parametrisation is key to enable mod-
lling of the covariance matrix as a function of explanatory variables
uch as date/time or meteorological conditions, which are common in
nergy forecasting. In particular, this approach limits that number of
arameters that need to be estimated and allows the user to focus on
odelling few, interpretable, parameters as functions of the covariates.

or example, if we consider the powered exponential function, it is
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Fig. 3. Correlation matrices describing temporal dependency structure of wind power forecasts from 0 to 48 hours-ahead issues at midnight, using the same colour scale as Fig. 2.
The forecasts have a visible non-stationary structure. The width of the diagonal ridge indicates how long forecast errors are likely to persist for in time, which grows with lead-time
but also appears to depend on the time of day.
quite simple to understand the effect of varying each parameter on the
resulting covariance structure. Hence, a modeller should be able to use
their expertise to develop a sensible additive model for each parameter,
and methods for automatic feature selection could be explored in future
works.

However, the resulting covariance function is generally not guaran-
teed to be positive definite. The lack of such a guarantee is problematic
from a model-fitting perspective. For instance, likelihood-based fitting
of a Gaussian copula requires a PD covariance at each optimisation step,
otherwise the likelihood corresponding to the proposed parameters is
not defined. Assuming that the current parameter vector lead to a PD
matrix, the simplest solution is to backtrack from the proposed towards
the current parameter until the resulting matrix is positive definite, as
done by [4] and [12]. But such a ‘‘brute-force’’ approach is inelegant
and might not scale well with the number of parameters. Other fitting
criteria, such the variations on least squares used here, do not rely on
the proposed matrix being PD at each optimisation step, but the final
matrix might not be positive definite. Hence, it must be perturbed to
produce a PD matrix, although this might disrupt the interpretation of
the underlying matrix parametrisation.

A possible solution to this problem is to penalise the smallest eigen-
value in the optimisation routine to maintain positive definiteness, as
in [13], although the implications of this on the quality of the resulting
fit are unclear. Alternatively, the positive definiteness problem can be
solved by adopting a parametrisation under which the resulting matrix
is PD for any parameter value. For example, positive definiteness can be
guaranteed by modelling the elements of the Cholesky decomposition
of a covariance matrix, but see [8] for other unconstrained parametri-
sations. The issues now are the lack of an intuitive understanding of the
covariance matrix’s Cholesky decomposition, and that modelling all the
element of the decomposition would likely lead to an over-parametrised
model.

In summary, parsimonious covariance modelling requires the use
of an interpretable parametrisation which enables users to focus on
modelling few parameters as functions of the covariates, but fulfill-
ing the PD constraint requires the adoption of an unconstrained, less
interpretable, parametrisation. How to fulfil the positive definiteness
constraint while retaining interpretability is an open research question,
see for example [14] for an overview.
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