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a b s t r a c t 

The systematic alignment of low-frequency brain oscillations with the acoustic speech envelope signal is well 

established and has been proposed to be crucial for actively perceiving speech. Previous studies investigating 

speech-brain coupling in source space are restricted to univariate pairwise approaches between brain and speech 

signals, and therefore speech tracking information in frequency-specific communication channels might be lack- 

ing. To address this, we propose a novel multivariate framework for estimating speech-brain coupling where 

neural variability from source-derived activity is taken into account along with the rate of envelope’s amplitude 

change (derivative). We applied it in magnetoencephalographic (MEG) recordings while human participants 

(male and female) listened to one hour of continuous naturalistic speech, showing that a multivariate approach 

outperforms the corresponding univariate method in low- and high frequencies across frontal, motor, and tem- 

poral areas. Systematic comparisons revealed that the gain in low frequencies (0.6 - 0.8 Hz) was related to the 

envelope’s rate of change whereas in higher frequencies (from 0.8 to 10 Hz) it was mostly related to the increased 

neural variability from source-derived cortical areas. Furthermore, following a non-negative matrix factorization 

approach we found distinct speech-brain components across time and cortical space related to speech process- 

ing. We confirm that speech envelope tracking operates mainly in two timescales ( 𝛿 and 𝜃 frequency bands) 

and we extend those findings showing shorter coupling delays in auditory-related components and longer de- 

lays in higher-association frontal and motor components, indicating temporal differences of speech tracking and 

providing implications for hierarchical stimulus-driven speech processing. 
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. Introduction 

Our senses are confronted with signals often exhibiting regular or

emi-regular patterns over time. Similarly, fluctuations of synchronized

xcitatory and inhibitory cortical activity drive rhythmic patterns of

rain activity ( Bishop, 1932 ; Buzsáki and Draguhn, 2004 ) which mod-

late the processing of incoming sensory signals ( Arieli et al., 1996 ;

omei et al., 2010 ). Brain dynamics can temporally align to the rhyth-

ic structure of sensory signals ( Henry and Obleser, 2012 ; Obleser and

ayser, 2019 ; Schroeder and Lakatos, 2009 ), a process that is con-

idered to facilitate structuring and gating of incoming information

 Arieli et al., 1996 ; Lakatos et al., 2019 ; Romei et al., 2010 ) while

orming predictions about future incoming events in space and time

 Arnal and Giraud, 2012 ). In the case of audition, rhythmic auditory

nput can coordinate the phase of ongoing oscillations in the auditory
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ortex ( Lakatos et al., 2005 ) at multiple timescales ( Panzeri et al., 2010 ),

eflecting functionally-distinct mechanisms ( Ding and Simon, 2014 ).

mportantly, ‘neural tracking’ of stimuli shows regionally specific de-

ays, providing evidence for the timing and neural processing of sensory

vents ( Brasselet et al., 2012 ; Johnston and Nishida, 2001 ; Zeki and

artels, 1998 ). 

Similarly, during continuous speech comprehension, brain activity

ynamically aligns to quasi-rhythmic acoustic fluctuations ( Poeppel and

ssaneo, 2020 ) through the phase of low-frequency oscillations

 Luo and Poeppel, 2007 ). Speech-brain coupling has been promi-

ently observed in the 𝛿 (below 4 Hz) and 𝜃 (4 - 7 Hz) frequency

ange ( Ahissar et al., 2001 ; Ding and Simon, 2014 ; Jin et al., 2020 ;

ayser et al., 2015 ; Luo and Poeppel, 2007 ) and it has been proposed

o serve critical computations for speech comprehension including seg-

enting and decoding of acoustic features ( Giraud and Poeppel, 2012 ;
agnetism and Biosignal Analysis, Malmedyweg 15, 48149 Münster, Germany. 
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Figure 1. Multivariate speech tracking pipeline. (A) Par- 

ticipants (n = 24) listened to ∼1 hour of an audiobook, di- 

vided into 6 blocks, while Magnetoencephalographic (MEG) 

measurements were acquired. (B) Amplitude envelope (black) 

and its derivative (purple) were extracted from the continuous 

speech signal (see Methods). (C) Individual MRIs were used 

to estimate source models per participant which were inter- 

polated to a template volumetric grid. (D) Cortical areas were 

divided into 362 anatomical parcels according to the parcel- 

lation from the Human Connectome Project ( Glasser et al., 

2016 ) (E) For each parcel, estimated source time-series were 

extracted. (F) Acoustic signals (amplitude envelope and its 

derivative, see (B)) and source activity (three time-series per 

parcel, see Methods) were subjected to a continuous Morlet- 

transformation (0.5 - 40 Hz). After the transformation to fre- 

quency space, we computed Mutual Information between mul- 

tivariate time-series (acoustic signals and source-time series 

per parcel; see Methods for details). 
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s  
eelle and Davis, 2012 ; Rimmele et al., 2021 ). Notably, while the spec-

ral content of speech is crucial for comprehension ( Lorenzi et al., 2006 ;

bleser et al., 2012 ; Scott and McGettigan, 2012 ), recent work prop οsed

hat disrupting entrainment through electrical stimulation leads to com-

romised speech intelligibility ( Asamoah et al., 2019 ; Riecke et al.,

018 ; Wilsch et al., 2018 ; Zoefel et al., 2018 ). Speech tracking is also

odulated by attention ( Obleser and Kayser, 2019 ; Zion Golumbic

t al., 2013 ) and correlated with semantic context ( Broderick et al.,

019 ; Koskinen et al., 2020 ), indicating an interaction between bottom-

p (that is, feedforward) and top-down (that is, feedback) processes

 Assaneo et al., 2019 ; Barczak et al., 2018 ). Still, a complete whole brain

haracterization of speech tracking across relevant frequencies, delays,

nd cortical areas is lacking. 

To date, studies investigating speech-brain coupling in cortical space

ave used a univariate pairwise approach between source estimates and

peech signals. Voxel-based studies typically use the dominant source

irection for each voxel and atlas-based studies often use the first com-

onent of a principal component analysis (PCA) of all voxel time se-

ies for each atlas parcel. Both approaches can miss relevant informa-

ion as there is no fundamental justification to the assumption that the

trongest source orientation (which is based on power) or the strongest

CA component (again based on power) captures the brain activity with

he strongest coupling to the speech envelope ( Jaworska et al., 2022 ).

ere, we aimed to alleviate this limitation by using a novel atlas-based

ultivariate approach. 

First, we aimed to provide a comprehensive characterisation of

hole-brain speech tracking in data with high signal-to-noise ratios

ased on a novel multivariate mutual information analysis ( Ince et al.,

017 ). To this end, we developed an analytical multivariate approach

n which neural variability across and within parcels was taken into ac-

ount for estimation of speech-brain coupling along with information

rom speech envelope (Env) and its rate of change (derivative; EnvD,

ee Figure 1 ) . We show that multivariate speech tracking is superior

o univariate speech tracking in all brain areas and helps to uncover

he diverse spectro-temporal structure of speech tracking across cortical
2 
reas. Then, we followed an unsupervised non-negative matrix factor-

zation (NMF) approach to uncover spectral components across cortical

reas and temporal delays coupled to the acoustic envelope in passive

istening using MEG ( Baillet, 2017 ; Gross, 2019 ). 

. Methods 

.1. Participants and data acquisition 

A total of 24 volunteers (12 females; mean age = 24.0 years,

ge range 18-35 years) participated in this study. The study was ap-

roved by the College of Science and Engineering Ethics Committee

t the University of Glasgow (application number: 300170024). While

articipants listened to a 55 minute duration audiobook, brain activ-

ty was monitored with a 248-magnetometer whole-head MEG system

MAGNES 3600, 4-D Neuroimaging) in a magnetically-shielded room.

ata were acquired at a sampling rate of 1017.25 Hz for 10 participants

nd 2035.51 Hz for 14 participants. Individual head shapes were digi-

ized before each recording via five coils attached to the head. Each MEG

ession was separated into six blocks of ∼9.16 mins. To allow partici-

ants to better comprehend the story, the last 10 seconds of each block

ere repeated in the following block. In the case that head movement

xceeded 5mm for a block, measurement was repeated. The stimulus

as delivered using PsychToolBox ( Brainard, 1997 ) with two Etymotic

R-30 insert earphones. To assess whether participants paid attention

o the story, they had to answer 18 multiple choice questions (with

hree response options each) with the number of correct options vary-

ng between 1-3 per question (mean performance 0.95; SD 0.05; range

.78-1). A different analysis of this dataset has been reported elsewhere

 Daube et al., 2019 ). 

.2. Speech envelope extraction 

We extracted the amplitude envelope from the continuous speech

ignal. To this end, 31-channel Log-Mel-Spectograms (124.1 Hz - 7284.1
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z) were computed and absolute values were summed across bands to

btain a wideband speech envelope ( Schädler et al., 2012 ). 

.3. Data preprocessing 

MEG data were processed using the FieldTrip toolbox

 Oostenveld et al., 2011 ) for MATLAB 2021a (The MathWorks,

nc.) and in-house MATLAB routines. We note that data were pre-

rocessed again using the same scripts used for Daube et al., (2019) .

e briefly mention here that for each block, continuous data starting

t the onset of the story were denoised using the denoise_pca func-

ion of FieldTrip where bad channels were manually detected and

pherical-spline interpolated from neighboring channels (mean number

f rejected channels per block M = 3.07; SD = 3.64). Squid jumps were

eplaced with DC patches. Continuous data were filtered offline with

 fourth-order forward-reverse zero-phase Butterworth high-pass filter

ith a cutoff-frequency of 0.5 Hz and downsampled to 100 Hz for

omputational efficiency. Independent components (mean number of

ejected components per block M = 5; SD = 5.3) arising from heartbeats

nd eye movements were visually isolated and removed using the

unica ICA algorithm. 

.4. Source localization 

Individual T1-weighted MRIs were coregistered in the MEG coor-

inate system, aligned with the digitized head shapes using the iter-

tive closest point algorithm ( Besl and McKay, 1992 ), and segmented

into white matter, gray matter, and cerebrospinal fluid) for generating

ingle-shell volume conductor models ( Nolte, 2003 ). For group analyses,

ndividual MRIs were linearly transformed to a MNI template provided

y FieldTrip. Source activity was estimated computing LCMV beam-

ormer coefficients from the MEG time-series for each voxel on a 5mm

rid ( Van Veen et al., 1997 ). The sensor covariance matrix used was

omputed across all trials. The lambda regularization parameter was set

o 0% and time series were extracted for each dipole orientation, result-

ng in three time-series per voxel. To reduce the dimensionality of the

ata, we applied an atlas-based parcellation of cortical space, resulting

n 181 ROIs per hemisphere ( Glasser et al., 2016 ). Source time-series

or each parcel were concatenated across voxels and orientations and

e extracted the principal components, along with their explained vari-

nce. 

.5. Multivariate Mutual Information 

Statistical dependencies between the speech envelope together with

ts first derivative ( Ince et al., 2017 ) and the source space parcels were

omputed on the basis of information theory ( Shannon, 1948 ). We es-

imated mutual information (MI) using Gaussian Copula MI (GCMI) be-

ween multivariate speech signals and source time-series ( Ince et al.,

017 ). GCMI was estimated for various delays (-300ms to 300ms, steps

f 10ms). To identify frequency-specific interactions, we applied a con-

inuous wavelet transformation (CWT; cwtfilterbank.m in MATLAB;

t.m performs the actual transformation into the frequency domain)

or 64 frequencies (from 0.1 Hz to 40 Hz). With L1-normalization imple-

ented in the algorithm, equal amplitude oscillatory components across

ifferent scales have equal magnitude in the CWT, providing a more ac-

urate depiction of the signal. 

Our multivariate analysis capitalized on the inherent ability of GCMI

o estimate dependencies between multidimensional data ( Ince et al.,

017 ). We included three source time-series per parcel and two speech

ignals (envelope and derivative), making the estimation multivariate

3 ×2 analytical framework) for each parcel and frequency. While we

re not aware of any multivariate methods quantifying speech-brain

oupling in the frequency domain, multivariate methods based on re-

ression have been used in the time domain for this type of analysis

 Crosse et al., 2016 ; Daube et al., 2019 ). Our multivariate framework
3 
iffers from these methods in three important ways: First, as mentioned,

ur method operates in the frequency domain and not the time domain.

econd, our analysis is based on mutual information and therefore sen-

itive to nonlinear dependencies between speech and brain signals in

ontrast to the linear regression models. Third, regression models work

n n x 1 data meaning that decoding models reconstruct 1-dimensional

timulus data from n-dimensional brain data or encoding models predict

-dimensional brain data from n-dimensional stimulus data. Our frame-

ork operates on n x m data and allows the quantification of depen-

encies between n-dimensional stimulus data and m-dimensional brain

ata. 

For the GCMI estimation we additionally computed 500 surrogate MI

omputations on the basis of random temporal shifting of the speech sig-

al with respect to the source time-series via a circular wrapping around

he edges as proposed in ( Andrzejak et al., 2003 ). This way, we created

 distribution of 500 surrogate MI values for each frequency, delay, and

arcel. From the surrogate distribution we obtained normalized MI val-

es for each frequency and parcel by subtracting the mean of the dis-

ribution and dividing it by the standard deviation, thus correcting for

uto-correlation across frequencies. We obtained normalized MI values

or each participant, frequency, delay, and parcel. Significance of nor-

alized MI values at the group level was determined with cluster-based

ermutation tests ( Maris and Oostenveld, 2007 ) comparing empirical

I values with the 95th percentile of the 500 surrogate distribution. We

ote that in statistical comparisons maximum MI values across delays

ere used. This includes multiple steps: a series of one-tailed t-tests of in-

ividual MI per parcel and frequency were conducted and thresholded at

 = 0.05. This included 64 ×61 ×362 comparisons (Frequency x Delays x

arcels). To control for multiple testing a non-parametric cluster-based

ermutation test was applied. For that, spectro- and spatial- adjacent

ata were clustered together and assigned a cluster-level statistic de-

icting the sum of t-values within each cluster. Then, each cluster was

ubjected to significance testing through Monte-Carlo approximation.

or that, individual MI spectra were randomly interchanged with the

5th percentile of the initial surrogate distribution and t-tests were re-

omputed in the cluster-level. This procedure was applied 5000 times

nd then the original cluster-statistics were compared with the distri-

ution of the 5000 randomized null-statistics distribution. Significance

or the original clusters was reached when they exhibited a higher test

tatistic than 95% of the randomized null data. 

.6. Non-negative Matrix Factorization 

As MI values are inherently positive, we sought to further describe

he spatial, spectral, and temporal characteristics of cortical responses to

ontinuous speech. To this end, we applied non-negative matrix factor-

zation (NMF) to mutual information values across parcels, frequencies,

nd delays. NMF factors a n-by-m matrix A into W (n-by-k) and H (k-

y-m) factors, such that the root mean square between A and WxH is

inimized ( Berry et al., 2007 ). This method has been used previously

n speech processing ( Hamilton et al., 2018 ) and for identifying distinct

pectral and spatial patterns of source-reconstructed data ( Ince et al.,

015 ; Kluger and Gross, 2020 ; Schoffelen et al., 2017 ) as it extracts fea-

ures to reduce the dimensionality of the data, while preserving distinct

rofiles across a predefined number of components. The optimal number

f components (k) to be extracted from the NMF was determined with

 rank optimization using singular value decomposition ( Qiao, 2015 ),

esulting in 15 components. 

NMF is implemented as an iterative optimisation, where convergence

ay vary according to random initial values. To ensure reproducibility,

e repeated the NMF estimation 300 times. Each time, the NMF was

nitiated using the multiplicative algorithm with 10 iterations and the

est solutions based on residuals were used as starting points for 1000

ore NMF iterations using the alternating least squares algorithm. This

ombination of algorithms was applied to make use of the computational

fficiency of the multiplicative algorithm and stability in convergence
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Figure 2. Explained variance of principal components in cortical space. (A) Grand-average of cortical maps depicting the amount of variance (%) explained for 

components 1 - 6 after principal component analysis of source time-series of all voxels within a parcel (B) Amount of total variance (%) explained per participant in 

Left Primary Auditory Cortex ( Upper Left ), Right Primary Auditory ( Upper Right ), Left Primary Motor Cortex ( Bottom Left ), Right Motor Auditory ( Bottom Right ) (C) 

Cortical maps of grand-average of cumulative variance explained per parcel with 2 to 6 components (from top to bottom) 
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f the alternating least squares algorithm. From this procedure we chose

he best solution based on the residuals. Visual inspection of the first 10

est solutions confirmed the similarity between solutions and thus the

eproducibility of the method applied. 

NMF components of Frequency x Delays x Parcels were estimated

er subject. For identifying group-level consistent effects we applied

 cluster-based permutation statistical analysis of the spectral profiles

or each component. Statistical significance was determined with one-

ample t-tests, after permuting 5000 times the Frequency x Delays x

arcels matrix and thresholding it at p < 0.05 (FDR – corrected). 

. Results 

.1. Multivariate speech tracking: Differential modulation across cortical 

reas 

Before estimating speech-brain tracking, we wanted to validate the

mount of variance that the principal components time-series capture af-

er the PCA of source-time series within each parcel. Specifically, in each

arcel we stacked the time series (corresponding to the three source ori-

ntations [x,y,z]) across all voxels in this parcel and computed PCA com-

onents of this matrix. We used the grand average of variance per com-

onents, parcels, and participants. In Figure 2 we summarize the main

ndings. It is evident that the first component captures maximum vari-

nce (up to 80%) in early auditory areas but only around 40% of the to-

al variance for higher association, frontal, and motor areas ( Figure 2 a).

urther investigation of the variance explained for the primary audi-

ory and motor cortex reveals that at least the first three components

ontribute non-negligible variance to the total signal ( Figure 2 b). More
4 
mportantly, when the first three components are considered, it is suffi-

ient to capture 66-100% of total variance in cortical space ( Figure 3 c).

Thus, we simultaneously used three time series to represent each

rain area. The resulting time series represent the optimal (in the sense

f explained variance) three-dimensional representation of brain activ-

ty in a given parcel resulting from a weighted mixing of time series

cross different voxels and orientations For the speech signal we used

he speech envelope and its derivative. Although the speech envelope is

ritical for comprehension, recent evidence suggests that acoustic land-

arks (local maxima in the envelope rate of change) are encoded in

he human superior temporal gyrus ( Hertrich et al., 2012 ; Oganian and

hang, 2019 ). Thus, along with the speech envelope, we included the

ate of amplitude change, estimated by the first derivative. In summary,

e followed an information-theoretic approach following previously

alidated and systematically compared approaches ( Gross et al., 2021 ),

uantifying multivariate mutual-information (MI) between speech sig-

als (Env - EnvRate) and three source estimates per parcel (3 PCA com-

onents from 362 parcels; parcellation by ( Glasser et al. 2016 )). 

As we were interested in frequency-specific speech tracking, we

ransformed source estimates and speech signals with a continuous

avelet transform from 0.1-40 Hz before computing MI. We tested phase

lignment of cortical areas to speech signals and compared it to the 95th

ercentile of a surrogate distribution (see Methods). 

Figure 3 summarizes the group level results obtained with our multi-

ariate MI analysis. First, areas that are phase-aligned to speech signals

0.1-15 Hz) were localized to broad clusters including areas in tempo-

al, parietal, frontal, and motor cortex in both hemispheres (shown as

-values, p < .05, cluster corrected, see Figure 3 c and Methods section).

I spectra show stronger phase alignment in the right hemisphere, while
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Figure 3. Significant speech tracking. (A) Upper graphs show the averaged mutual information spectra of significant parcels for the left (Left) and right ( Right) 

hemisphere after a non-parametric cluster permutation test, comparing normalized mutual information values with the 95th percentile of the surrogate distribu- 

tion. For the comparison, maximum MI values across computed delays were selected. Shaded area depicts the bootstrapped standard deviation around the mean. 

Accordingly, lower graphs show t-values belonging to significant clusters (see Methods; n = 184, p < .05). Lines depict t-values for each parcel which are statistically 

significant (p < .05, cluster corrected) and bold lines depict the average (B) Grand-average of MI across significant parcels from panel (A) and frequencies at a fixed 

delay of 100 ms. (C) Cortical maps of t-values averaged across significant frequencies. 

Figure 4. Multivariate versus univariate speech-brain coupling. (A) Mutual information spectra of significant parcels with one PCA component (univariate; 

black) and three PCA components (multivariate; red), averaged across participants. Here, multivariate refers to the neural time-course at each parcel [three PCA 

components (multivariate); 1 PCA component (univariate)]. Shaded area depicts the bootstrapped standard deviation around the mean. On the bottom, t-values of 

significant clusters for the left and right hemisphere ( Upper) . Thin lines depict t-values that belong to significant clusters (see Methods; n = 122, p < .05) for each 

parcel and thick lines represent the average. Lines depict t-values for each parcel which are statistically significant, (p < .05, cluster corrected). For the comparison, 

maximum MI values across computed delays were selected (B) Cortical maps of averaged t-values across frequencies. Significant areas and spectra were clustered 

with k-means (k = 3; see Methods). Colormap indicates the clusters in the surface area. On the right, clustered mutual information spectra with k-means, extracted 

from significant t-values. 
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oth hemispheres exhibit spectral peaks at around 1 and 6 Hz ( Figure 3 a,

op and Figure 4 b). Additionally, spectra of t-values in significant brain

reas confirm the phase synchronization in low 𝛿 and 𝜃 frequency bands,

hile visual inspection of single-parcel spectra show different spectral

eaks, indicating differential modulations of cortical oscillations across

reas ( Figure 3 a, bottom). 

Our approach replicates previous findings showing phase alignment

f cortical oscillations in low 𝛿 and 𝜃 bands (1 and 6 Hz), lateralized to

he right hemisphere ( Boemio et al., 2005 ; Gross et al., 2013 ; Luo and

oeppel, 2007 ) and extends those findings by revealing differential mod-

lations of cortical oscillations across frequencies and areas. Before we

escribe these differential modulations in more detail, we first compare

he multivariate approach to a standard univariate approach for a better

nderstanding of the information we gain with multivariate data. 

.2. Neural variability in cortical components captures speech-tracking 

We hypothesized that accounting for higher-dimensional representa-

ions in each brain area would improve our estimate of coupling between

eural and speech signals in frequencies and areas relevant to speech

racking compared to univariate analyses. We further hypothesized

hat this improvement is not uniform across frequencies and cortical
5 
reas. Instead, we expected that brain areas showing more complex

rain activity patterns will benefit more from the higher dimensionality

sed in the multivariate analysis. Therefore, we computed cortical maps

uantifying the difference between multivariate and univariate analysis.

he analysis is based on a statistical comparison on the multivariate MI

aps used in the previous section (based on three PCA components) and

nivariate results where only the first PCA component is used for each

natomical parcel. 

In Figure 4 a, we show the normalized MI values for the multivariate

nd univariate approach (top panels) and the corresponding t-spectra

rom parcels where coupling with the speech envelope is significantly

igher in multivariate compared to univariate analysis (left hemisphere:

.1-12 Hz, 52 parcels; right hemisphere: 0.1-14.1 Hz, 70 parcels, group

tatistics; p < 0.05 cluster-corrected; bottom panels). Visual inspection

f t-value spectra indicates that the benefit of our multivariate approach

iffered across parcels. As we wanted to further unravel their spectral

haracteristics, we proceeded with an unsupervised clustering of spec-

ra to an optimal number of clusters (k = 3; see Methods). In Figure 4 b

e show spectra of three corresponding clusters (bottom) and their ren-

ering on the cortical surface (top). We find that bilateral auditory and

eft motor areas (Cluster #1) show increased MI values both for low

requencies (peaks at 0.8 and 1.2 Hz) and higher frequencies (peak at 7



N. Chalas, C. Daube, D.S. Kluger et al. NeuroImage 258 (2022) 119395 

Figure 5. Comparing speech tracking using the derivative vs the envelope. (A) At the top row, averaged mutual information spectra of significant parcels with 

the envelope (green) and the derivative of the envelope (black). Shaded area depicts the bootstrapped standard deviation around the mean. At the bottom, t-value 

spectra for the left and right hemisphere. Only significant t-values that reached significance at the cluster level (n = 33, cluster p < .05; see Methods) are shown 

(p < .05, cluster corrected). For the comparison, maximum MI values across computed delays were selected (B) Cortical maps of t-values averaged across frequencies 

where derivative > envelope. 
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z). Bilateral motor, temporal, and frontal areas exhibit a spectral peak

t 7 Hz (Cluster #2), whereas prefrontal and visual areas show no peak

ithin the significant frequencies (Cluster #3). 

Thus, we find that the investigation of speech tracking benefits from

he inclusion of more components in the estimation of speech-tracking,

s it includes more neuronal activity relevant for speech tracking. At

he same time, there is no disadvantage of applying multivariate speech

racking analysis since –as expected– we did not find significantly re-

uced speech-tracking for multivariate compared to univariate coupling

n any brain parcel. 

.3. Rate of amplitude change in the envelope drives low-frequency 

scillations 

Having established the benefit of using multivariate brain signals

or speech tracking analysis, we proceeded with a similar analysis for

he speech signal. Figure 1 illustrates that our multivariate approach

epresents the speech signal with both the speech envelope (Env) and

he derivative of the envelope (EnvD). Here, we aimed to contrast the

ndividual contributions of both signals (Env and EnvD) to speech track-

ng. As rapid changes in the speech envelope (corresponding to peaks

n EnvD) provide important temporal cues, we hypothesized that these

coustic landmarks will coordinate excitatory states of ongoing neural

ctivity by re-aligning the phase of low-frequency oscillations. This re-

lignment would not be evident considering only the amplitude modu-

ation of speech represented in Env. Thus, we expected to find increased

hase alignment of slow oscillatory activity when using EnvD compared

o Env. 

Consequently, we statistically compared normalized MI values based

n Env to those based on EnvD using a two-tailed nonparametric cluster

est (see Methods). Results of this analysis are summarized in Figure 5 .

e found acoustic landmarks (EnvD) to modulate the phase of low-

requency oscillations in temporal areas of the right hemisphere signifi-

antly stronger than the speech envelope (Env; 0.1-0.8 Hz; group statis-

ics; p < 0.05 cluster-corrected; see Figure 4 b). Interestingly, this effect

s localized to these low frequencies whereas higher frequencies (0.8-20

z) show the opposite effect. Here, brain activity shows higher phase

ynchronization with speech envelope compared to its derivative. 

In sum, we find evidence that acoustic landmarks in the broadband

peech signal provide temporal evidence to ongoing low-frequency os-

illations (below 1 Hz) in the right auditory areas, indicating a phase

ealignment. For the rest of the spectra (0.8-20 Hz) we find that the

hase of cortical oscillations is modulated to a stronger extent by the

peech envelope. 
6 
.4. Cortical coupling to speech consists of multiple spectral modes across 

elays 

Speech tracking has been extensively studied with respect to the tem-

oral cortex ( Ding and Simon, 2014 ; Hamilton et al., 2018 ; Oganian and

hang, 2019 ; Yi et al., 2019 ). However, other brain areas in the frontal,

arietal, and motor cortex have been implied as well ( Assaneo and Poep-

el, 2018 ; Park et al., 2015 ). Different areas are likely engaged in differ-

nt frequencies and at different delays relative to the incoming speech

tream, reflecting bottom-up and top-down processes at different time-

cales. 

We aimed to utilize the superior performance of our multivariate

pproach (compared to univariate analysis) to comprehensively charac-

erize the spatial and spectral structure of speech tracking across delays.

e applied our multivariate MI approach (using three PCA components

or each parcel and Env and EnvD for speech, see Figure 1 ) for 61 delays

etween brain and speech signals (brain signal following speech signals

ith a delay of -300 to 300ms in steps of 10ms). As MI values are inher-

ntly positive, we applied a non-negative matrix factorization (NMF) to

utual-information spectra across participants. This way, we sought to

educe the dimensionality of our data (Parcels x Frequencies x Delays)

nto a fixed number of spatial components, with each one exhibiting

istinct neural tracking for each time-lag. This approach is motivated

y NMF’s inherent clustering property ( Ding et al., 2005 ; Lee and Se-

ng, 1999 ) without a priori assumptions of the spectral or topological

roperties of the components. Using rank optimization, we found that

ur speech-brain mutual-information spectra can be divided into an op-

imal number of 15 anatomical components (see Methods). We used

ne-sample non-parametric statistical testing to emphasize consistent

ffects at the group level. The results of this analysis are summarized in

igure 6 (p < .05, FDR corrected). We note that in Supplementary figure

 we show an identical figure but with constant y-axis from the t-value

pectra across all components. 

Each subpanel corresponds to one component. The localisation of

ach component is displayed in the cortical rendering together with a

requency-delay map of group-level t-values. To illustrate how speech-

racking spectra change with delay, we plot t-values spectra for selected

elays (10, 100, 200, and 300 ms; see Supplementary figure 1 for GCMI

pectra). A number of observations can be made. 

First, NMF components show a striking variability of spectral pat-

erns and delay dependencies. This variability suggests the existence of

ultiple, partly independent processes that go well beyond two speech
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Figure 6. Spectral modes of speech coupling across delays: MI spectra clustered into 15 components as estimated from non-negative matrix factorization (NMF). 

Each subpanel (1-15) represents a component of mutual information spectra across delays. For each component, we illustrate the cortical rendering of the component 

(top left), the frequency-delays plot (top right ) , and t-values spectra for 4 delays (10, 100, 200, 300 ms; bottom) . In the center of the figure, we plot the cortical 

rendering of all estimated components with the same color code as in subpanels (1-15). 

7 
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racking channels at 𝛿 and 𝜃 frequencies predominantly described in the

iterature ( Ding and Simon, 2014 ). 

Second, t-values at low frequencies show a consistent profile inde-

endent of delays. This is expected, because our speech-tracking cap-

ures phase synchronization at any given delay [e.g., 50ms leads to very

mall changes in phase difference for low frequency signals (such as 1

z) compared to higher frequency signals (such as 5 Hz)]. Still, low fre-

uencies are informative and show three different patterns across com-

onents. Components localized partly in parietal and temporal areas

how no consistent peak at frequencies below about 2 Hz (see Com-

onents 6, 7, 8, 9, and 12). In contrast, components with contributions

rom motor areas show strong speech-tracking at these frequencies peak-

ng at the lowest computed frequency (Components 10, 11), even at

egative delays (i.e Component 10; see the frequency-delay map). Still

ther components show a distinct peak at frequencies below 3 Hz and

re mostly localized in the temporal cortex and around the lateral fissure

Components 2, 3, 4, 13, and 14). 

Third, two types of delay dependencies can be seen mostly at fre-

uencies of about 5 Hz and above and are clearly evident in Compo-

ents 2 and 8. While Component 8 shows highest t-values for longer

elays (300 ms) at frequencies between about 5-10 Hz, Component 2

hows highest t-values for short delays. More generally, components re-

ecting the strongest speech tracking at short delays are localized near

arly auditory areas (Components 1, 2, 3, and 12) also extending to

otor areas (Component 5). Components with maxima at longer delays

nclude higher-order areas in the left frontal and bilateral parietal cor-

ex (Components 7, 15). However, NMF also identifies components with

he preference for long delays in the temporal cortex (Components 3, 4,

, and 9). 

All in all, we report that speech tracking is associated with partly-

istinct spectral components operating in lower- and higher-association

reas with distinct faster- and slower–temporal modulations. 

. Discussion 

“Speech tracking ” operates at multiple timescales and arguably re-

ects both feed-forward and top-down processing, while orchestrating

omputations towards understanding. This study aimed to provide a

ovel multivariate framework, in which neural variability from multiple

ortical areas along with the rate of speech signal amplitude change are

lso utilized for the assessment of speech-brain coupling. After estab-

ishing the gain of information coupling with the multivariate approach

n speech-relevant timescales in auditory, frontal, and motor areas, we

roceeded with a data-driven spectro-temporal characterization of cor-

ical components coupled to the acoustic envelope. In summary, consis-

ent with previous reports ( Ding and Simon, 2014 ; Gross et al., 2013 ;

oeppel and Assaneo, 2020 ), we find auditory components in two dis-

inct timescales in low frequencies [ 𝛿 (0.6-3 Hz) and 𝜃 (4-7 Hz)], and

e extend those findings providing a characterisation of speech-brain

oupling across the cortex exhibiting higher-association bilateral mo-

or, frontal, and temporal components operating in distinct temporal

nd frequency channels. 

Our novel multivariate analysis was applied to investigate speech-

rain coupling, but we propose that it is of relevance to any study using

tlas-based source localisation. We find that representing activity of a

rain area with a single time series derived from dimension-reduction

echniques (such as PCA) is generally not sufficient as the first prin-

ipal component is computed to provide the linear combination of the

riginal time series (all time series along all three orientations of all vox-

ls/vertices in a parcel) that explains most of the total variance. Since

ignal amplitude in MEG/EEG signals is strongest in low frequencies

ompared to higher frequencies, the first SVD component mostly ac-

ounts for low frequency activity at the expense of higher frequencies.

herefore, using multivariate analysis can preserve higher frequency

omponents that are lost in the univariate case. Indeed, Cluster 2 in

igure 4 b shows a distinct boost of MI in frequencies between 5-10 Hz.
8 
owever, even frequencies below 5 Hz benefit significantly from the

ultivariate approach indicating the existence of several independent

omponents in the data. Here we chose a three-dimensional represen-

ation per brain area but future studies will need to assess the optimal

imensionality for a multivariate approach and its dependence on the

ize and location of the respective brain area. Similarly, it will be inter-

sting to compare multivariate mutual information to other multivariate

ethods such as multivariate pattern dependence, distance correlation,

epresentational connectivity analysis, or canonical component analysis

 Basti et al., 2020 ; de Cheveigné et al., 2018 ; Lankinen et al., 2014 ). We

eport significantly higher stimulus-brain coupling (as measured with

CMI) compared to univariate analysis across 122 out of 362 brain ar-

as and as we expected there was no significantly reduced coupling in

ny brain area ( Figure 4 ). Therefore, we can confidently posit that there

s no drawback in using multivariate analysis for studying speech track-

ng — a finding that awaits replication in other MEG and EEG data.

nstead, significantly increased performance can be seen for all frequen-

ies up to 15 Hz and in temporal, parietal, and frontal brain areas. Re-

arding superior temporal areas, we note that, as shown in Figure 3 b,

 univariate analysis might still be sufficient, as we did not find signif-

cant improvement with the multivariate approach. Higher-order areas

re those which might benefit more, as seen in lower captured variance

n their first principal component ( Figure 2 , Panel A), possibly related

o higher gradients of myelin density reflected in hierarchical gradients

f timescales ( Chien and Honey, 2020 ; Gao et al., 2020 ; Glasser and Van

ssen, 2011 ) and thus indicative of more multifold relations to speech

rocessing. 

We have similarly extended the multivariate approach for the speech

ignal by including the speech envelope and its derivative. Recent stud-

es have demonstrated that the speech envelope and derivative account

or partly different components of speech signal and neural activity

uring listening ( Brodbeck et al., 2018 ; Daube et al., 2019 ). Whereas

he envelope quantifies the instantaneous overall amplitude of speech,

he derivative quantifies the rate of change of speech amplitude. The

erivative is potentially informative since acoustic onset edges cue

yllabic nucleus onsets and their slopes are related to syllabic stress

 Oganian and Chang, 2019 ) and are represented in the auditory cor-

ex ( Brodbeck et al., 2020 ). Nevertheless, sharp amplitude modulations

f the speech signal provide acoustic indices for segmentation and en-

oding of continuous speech in faster timescales ( Doelling et al., 2014 ;

ganian and Chang, 2019 ). We speculate that acoustic edges coded in

he envelope’s derivative could serve as an update of sensory gain for the

ttended speech ( Obleser and Kayser, 2019 ). Supporting this notion, we

ound that the derivative was more informative compared to the enve-

ope at around 0.6 Hz. Low-frequency oscillations have been tradition-

lly associated with sensory selection ( Schroeder and Lakatos, 2009 ),

ttentional orientation ( Lakatos et al., 2013 , 2008 ), and temporal an-

icipations ( Herbst and Obleser, 2019 ; Stefanics et al., 2010 ), which

in line with the active sensing framework ( Bajcsy, 1988 ; Bajcsy et al.,

018 ; Prescott et al., 2011 ; Schroeder et al., 2010 ) — can facilitate lan-

uage processing ( Giraud, 2020 ; Kandylaki and Kotz, 2020 ; Meyer et al.,

020 ). At this frequency (around 0.5 Hz), neural tracking was also found

o be disrupted after altered temporal distribution of speech pauses

 Kayser et al., 2015 ). Future studies would need to assess the extent

o which endogenous 𝛿-band activity is associated with acoustic fluc-

uations of speech for sensory ( Boucher et al., 2019 ) and linguistic

 Bourguignon et al., 2013 ; Keitel et al., 2018 ) related chunking of con-

inuous speech. 

How complex sounds such as speech are integrated and processed

n the human brain remains a central question to neuroscientific re-

earch ( Brodbeck et al., 2018 ; Ding et al., 2016 ; Jin et al., 2020 ). For

hat, both the analysis of acoustic [i.e spectrotemporal modulations;

 Daube et al., 2019 ; Hullett et al., 2016 )] and category-specific [i.e lin-

uistic elements; ( Davis and Johnsrude, 2003 ; Di Liberto et al., 2019 ,

015 ; Gwilliams et al., 2020 )] computations are potentially informa-

ive. How these —presumably parallel ( Hamilton et al., 2021 ) — com-
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utational streams interact remains unclear. Our multivariate charac-

erization of speech-brain coupling across temporal delays, cortical ar-

as, and frequencies adds to the understanding of the stimulus-driven

ierarchical organization of speech processing. We show varying cou-

ling delays ranging from short negative to longer positive going beyond

 fixed delay of around 100 ms previously reported in similar studies

 Brodbeck et al., 2018 ; Broderick et al., 2019 ; Ding and Simon, 2014 ;

ross et al., 2013 ). We speculate that short negative delays found in

otor areas (see Components 10, 11) might be indicative of predictive

rocesses that serve as a top-down facilitation of early auditory pro-

essing during speech comprehension ( Park et al., 2015 ). We have to

ote that while the GCMI used here for assessing speech tracking pre-

erves sensitivity despite changes in phase distributions ( Gross et al.,

021 ; Ince et al., 2017 ), a natural concern arises whether the degree of

emporal smoothing (and hence precision of delay estimates) will vary

s a function of frequency and consequently confound our findings. For

nstance, it is apparent in Figure 5 that at lower frequencies, analyses

ppear to be relatively insensitive to changes in delays, but these be-

ome more sensitive at higher frequencies. Considering this, delayed

CMI was previously successful in recovering ground truth in a broad-

and filtered time series in various frequencies ( Daube et al., 2022 ).

s previously reported, we observe two main temporal timescales ( 𝛿

nd 𝜃) in auditory areas ( Donhauser and Baillet, 2020 ; Teng and Poep-

el, 2020 ) extending to frontal and motor areas, showing distinct com-

utations across cortical areas, previously reported for primary and non-

rimary auditory areas ( Norman-Haignere and McDermott, 2018 ). In

 similar vein, substantially longer integration windows (longer than

00ms) were found in non-primary compared to primary auditory ar-

as. Interestingly, we observed low- 𝛼 tracking of the acoustic enve-

ope in motor areas (see Components 5, 13, and 15), possibly reflecting

he excitability-related activity during segments of high sensory gain

 Kayser et al., 2015 ). Here, speech-brain coupling was assessed during

ontinuous speech, without dissociating temporal segments of speech.

or example, spatial dissociation in the STG has been reported be-

ween speech onsets (i.e the starting of a sentence) and sustained speech

 Hamilton et al., 2018 ). In the future, it would be interesting to inves-

igate whether such a distinction is reflected in excitability-related re-

ponses within the 𝛿, 𝜃, and 𝛼 frequency bands during attentive speech.
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