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Abstract 

 The simultaneous imaging and tracking of manoeuvring extended objects (M-EOTs) is one of the most challenging problems in 

inverse synthetic aperture radar (ISAR) signal processing and has received significant attention recently. In this paper, we address 

multiple M-EOTs based on the track-before-detect (TBD) - Multi-Bernoulli (MB) approach, which is an efficient way to track low 

observable M-EOTs from ISAR images. To this end, we introduce a sub-Random Matrix Model (RMM)- MB-TBD composed of 

sub-ellipses; each one is represented by a RMM to denote the M-EOTs' extension. We also, propose a new ISAR observation model 

using a skewed (SK) normal distribution. 

1 Introduction 

IN recent years, detection and tracking of manoeuvring objects 

have attracted a lot of attention in the past decade and have 

played an increasingly important role in both military and civil 
fields [1-6]. Conventional maneuvering objects tracking 

methods consider point object that generates only one 

measurement for the object [2-3]. With the evolution of sensor 

technology, the focus of the object tracking literature shifted 

from point object tracking to extended object tracking (EOT) 

algorithms, which aim at estimating the object extent 

simultaneously with the kinematic state using a set of 

measurements per scan. The extent of an object can be 

considered as the region on the object's surface from which the 

measurements are obtained [1], [4-6]. The inverse synthetic 

aperture radar (ISAR) technique is an important tool for object 

recognition and classification; thus the high quality and real-

time performance are two essential indicators for ISAR imaging 

[11-13]. Modern ISAR with high resolution, the EOT can be 

resolved into a series of scattering centers occupying different 

range cells in the received signal. Since ISAR contains abundant 

geometric and scattering information about the target extension 
including orientation, shape, and size. Throughout this study, 

we will focus on the maneuvering EOT (M-EOT) tracking from 

ISAR images. In this paper, we address a multiple M-EOTs 

Based on track-before-detect (TBD) approach, which is an 

efficient way to track low observable M-EOTs from ISAR 

images. Among the popular EOT approaches [1], [4-10], the 

random matrix model (RMM) approach appears promising 

since it is capable to jointly estimate the kinematic state and 

extension state without data association.  

 

The RMM assumes an ellipse shape for the target's extent. 

These RMM methods perform well when scatter centers are 

symmetrically distributed around the centroid. For example, the 

distribution of these centers is uniform or Gaussian. However, 

in many real scenarios when a target maneuvers, the distribution 

over the whole EOT is not symmetric but skewed and 

distributed on some portions due to the unbalanced reflection of 

radar energy [14]. For ISAR radars, there are several factors that 

influence an EOT reflecting radar energy to the source, 

including the size, material, and orientation of the EOT, and the 

incident and reflected angles of the signal [14]. Different 
portions of an object can be made of various materials, and thus 

differ in abilities of reflection. Also, the incident and reflected 

angles can be different for portions of an object. All these factors 

lead to the phenomenon that measurement distribution is 

skewed. By consider that all of the kinematic state, extension, 

and skewness of ISAR measurement distribution may change 

when the EOT maneuvers. Moreover, further accurate data 

about orientation, shape, and size are extracted. However, only 

a single EOT tracker has been implemented so far. Thus, in [14], 

the authors presented an algorithm of EOTs tracking and 

estimated the non-linear kinematic state supported sub-RMM. 

To this point, we introduce a Sub-RMM-TBD composed of sub-

ellipses; each one is represented by an RMM to denote the M-

EOTs' extension and proposed a new ISAR observation model 

using a skew (SK) normal distribution. We organize the paper 

as follows. In Section II, we give a M-EOTs tracking problem 

from ISAR Images, in Section III the proposed algorithm, and 

the simulations results are given in Section IV. Section V 

contains conclusions. 
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2 Problem Formulation of Manoeuvering 

Extended Objects tracking from ISAR Images 

During this work, multiple maneuvering extended object 

tracking (M-EOT) in the received raw data by ISAR was 

implemented using a Sub-RMM approach. In the following, we 

will explain the M-EOT signal, dynamic, and observation 

models supported by ISAR imaging with a Sub-RMM 

approach. 

a. ISAR Image Model of Maneuvering Extended Objects 

According to the synthetic aperture principle, the ISAR 

image is constructed by collecting the scattered field for 

different frequencies and look angles. That is, the received data 

are collected in the spatial-frequency domains, and then 

projected onto the 𝑋𝑂𝑌  plane, as shown in Fig.1. As the 

convention of ISAR imaging, the M-EOT is often considered as 
an aggregation of strong scattering points, and the phase center 

𝑂 is generally selected as the geometry center of the object. 

Then in the geometric ISAR model, we assumed that the 𝑋 axis, 

in the direction of the radar line of sight (RLOS), to be along the 

radial direction, and the 𝑌  axis in the azimuth direction. 

𝑃𝑛(𝑥𝑛, 𝑦𝑛) is one of the 𝑁 scattering points on the M-EOT, with 

Υ𝑛 (𝑛 =  1,· · · ,𝑁) representing the backward scattering. Then 

the baseband signal describes as [11-13]  

𝑠(𝑘) =∑Υ𝑛

𝑁

𝑛=1

exp[−𝑗
4𝜋𝑓𝑡
𝑐

𝑅𝑛(𝑘)]                   (1) 

where 𝑓𝑡  is the transmitted frequency; 𝑐 is the speed of light; and 

𝑅𝑛(𝑘) is the instantaneous range from scattering point 𝑃𝑛 to 

ISAR. By denote 𝑇𝑎  as the observing duration, then 0 ≤ 𝑘 ≤ 𝑇𝑎 . 

Therefore, in far-field objects 𝑅𝑛(𝑘) ≈ 𝑅𝑘 + 𝑥𝑛 − 𝑦𝑛𝜃𝑘, where 

(𝑅𝑘 = 𝑅0 + ∆𝑟) is the instantaneous range from the phase 

center of M-EOT to the radar, ∆𝑟 is the range shift presented by 

the translational motion of M-EOT and 𝑅0 is the initial range; 

𝜃𝑘 is the instantaneous rotation angle. Practically, the successive 

baseband signal is often sampled along the fast-time (range) and 
the slow-time (cross-range/azimuth) dimension, to represent the 

relative discrete forms of the range direction and the azimuth 

direction. Assuming that the step frequency radar transmits a 

sequence of 𝒩 bursts with transmitting interval 𝑇𝐵 , and 

bandwidth 𝐵. Each burst consists of ℳ narrow frequency band 

pulses with the pulse repetition interval 𝑇𝑠. The rotated angle of 

M-EOT is Ω; then the ISAR resolution can be expressed by the 

range resolution (𝛿𝑟 = 𝑐 2𝐵⁄ ) and cross-range resolution   

(𝛿𝑐𝑟 = 𝜆𝑐 2Ω⁄ ), where 𝜆𝑐 is the wavelength. ISAR image 

obtained by IFT after motion compensation as [11-13]: 

𝐼𝑆𝐴𝑅(𝑋, 𝑌) = ∫ ∫[∑Υ𝑛

𝑁

𝑛=1

∙ 𝑒 𝑗
4𝜋𝑓𝑡
𝑐
(𝑋−𝑥𝑛). 𝑒

−𝑗
4𝜋
𝜆𝑐
(𝑌−𝑦𝑛)𝜃𝑘 ]

𝐵Ω

𝑑𝑓𝑡 𝑑𝜃𝑘 

             =
4𝜋Ω

𝑐𝜆𝑐
∑Υ𝑛
𝑁

sinc [
2𝐵

𝑐
(𝑋 − 𝑥𝑛),

2Ω

𝜆𝑐
(𝑌 − 𝑦𝑛)]  (2) 

After sampling on the time-range domain, the observation 

array is delivered to the ISAR processor as an input signal, and 

it is processed to form the radar output image 𝒁𝑘. On the other 

hand, it is the input to the M-EOT processor.  

 
Fig.1. Geometry for ISAR imaging of manoeuvering extended object 

 

Fig.2. Illustration of approximating M-EOT (DJI Inspire 1) by using five Sub-

ellipses, (left) ISAR images of M-EOT [11-13]; (right) Skewed M-EOT sub-

RMM model with different 𝜃𝑘
(ℓ,𝑠)

, β𝑘
(ℓ,𝑠)

, the arrows show skewness direction  

b. Dynamic model of Maneuvering EOT with sub-RMM 

In the recent research works for EOT [1], [4-10], and [14], 
the EOT shape model is approximated by one ellipsoid using the 

RMM approach. In [4-5], [7], and [9], the authors used the many 

ellipsoids for each object, which are defined by the sub-ellipses 

or sub-RMM, to implement the object' extension within a linear 

dynamic model. This approximation is explained in Fig. 2 (left). 

The sub-RMM applied more detailed data about the shape, size, 

classification, orientation, and features of EOT. In this paper, 

we consider this approach of sub-RMM for the M-EOT. Let us 

consider at time 𝑘, the hybrid state 𝝃𝑘
(ℓ,𝑠)

is combining of the 

extension and kinematic states of an M-EOT using sub-RMM is 

defined by(3) 

𝚾𝑘 = {{𝝃𝑘
(ℓ,𝑠)

}
𝑠=1

𝑛𝑘
(ℓ,𝑠)

}
ℓ=1

𝑁𝑥,𝑘

 ,    𝝃𝑘
(ℓ,𝑠) ≜  (𝒙𝑘

(ℓ,𝑠) ,  𝝌𝑘
(ℓ,𝑠)  ).       (3)   

where 𝑁𝑥,𝑘  is the number of M-EOTs, 𝑛𝑘
(ℓ,𝑠)

 is the sub-RMM' 

number, 𝒙𝑘
(ℓ,𝑠) ∈ ℝ𝑑𝑥  refer to be the kinematical model of sub-     

object 𝑠 of ℓ𝑡ℎ  M-EOT,  𝝌𝑘
(ℓ,𝑠) ∈ 𝕊++

𝑑  defines the extension state 

and  𝕊++
d  is represented by a set of 𝑑 × 𝑑 symmetric positive 

definite matrix (SPD), where 𝑑 is the dimension of the M-EOT 



extension. The kinematical state 𝒙𝑘
(ℓ,𝑠)

 Contains states related to 

sub-RMM kinematics, such as position, velocity, and heading. 

Thus, the maneuvering kinematic motion model of sub-RMM 

(𝑠) of the ℓ𝑡ℎ  M-EOT, 𝒙̃𝑘
(ℓ,𝑠) = [[𝒙𝑘

(ℓ,𝑠)]
𝑇
, 𝜔𝑘

(ℓ,𝑠)  ]
𝑇

∈ ℝ5 

combining the range and velocity 𝒙𝑘
(ℓ,𝑠) =

[𝑝𝑥,𝑘
(ℓ,𝑠) , 𝑝𝑦,𝑘

(ℓ,𝑠) , 𝑝̇𝑥,𝑘
(ℓ,𝑠) , 𝑝̇𝑦,𝑘

(ℓ,𝑠)] ∈ ℝ4 and the turn rate 𝜔𝑘
(ℓ,𝑠)

 The 

maneuvering kinematic motion  model is obtained by 

𝒙𝑘
(ℓ,𝑠) = (𝑭𝑘⊗  𝑰𝑑) 𝒙𝑘−1

(ℓ,𝑠) + 𝑮𝑘  𝔀𝑘
(ℓ,𝑠)                  (4) 

where 𝑭𝑘 ∈ ℝ
𝑑𝑥×𝑑𝑥  defined the transition matrix, 𝑰𝑑 ∈ ℝ

𝑑×𝑑 is 

described  by the identity matrix, "⊗" stands for Kronecker 

product, 𝑮𝑘 is the matrix of process noise and 

𝔀𝑘
(ℓ,𝑠)~𝒩(0,𝑸𝑘

(ℓ,𝑠)) is the white process noise with zero mean 

and covariance 𝑸𝑘
(ℓ,𝑠)

. For the extension 𝝌𝑘
(ℓ,𝑠)  the function to 

explain the extension dynamics in shape, orientation, size, and, 

in addition to, the measurements distorted from the true 

extension in shape, size, and orientation. Thus, the dynamic 

extension model for the state  (𝝌𝑘
(ℓ,𝑠)) of sub-object 𝑠 of ℓth M-

EOT is obtained as 𝑓𝑘|𝑘−1(𝝌𝑘
(ℓ,𝑠)|𝝌𝑘−1

(ℓ,𝑠)) =

𝒲 (𝝌𝑘
(ℓ,𝑠); 𝛿𝑘

(ℓ,𝑠), 𝑶𝑘
(ℓ,𝑠)𝝌𝑘−1

(ℓ,𝑠)(𝑶𝑘
(ℓ,𝑠))

𝑇
), 𝑶𝑘

(ℓ,𝑠) ∈ ℝ is the 

orientation angle of the ℓ𝑡ℎ  M-EOT, where the invertible matrix   

𝐎𝑘
(ℓ,𝑠) ∈ ℝ𝑑×𝑑 will explain the dependence of the orientation of 

extension (if 𝐎𝑘
(ℓ,𝑠) = (𝛿𝑘

(ℓ,𝑠))
−1 2⁄

[
cos𝜃 − sin 𝜃
sin𝜃 cos 𝜃

] is the 

matrix of rotation with angle 𝜃 = 𝜔𝑘𝑇), 𝑇 is the sampling time, 

shape (if 𝐎𝑘
(ℓ,𝑠)

 with other matrix), or size (e.g., 𝐎𝑘
(ℓ,𝑠) = 𝜆𝑰𝑑 ), 

and  𝛿𝑘
(ℓ,𝑠) > 𝑑 − 1  describes the degrees of freedom. 

𝒲(𝑌; 𝑎, 𝐶) is Wishart distribution' density using Sub-RMM 

𝑌 ∈ 𝕊++
d , 𝒲(𝑌; 𝑎, 𝐶) =

1

𝐶
|𝐶|−

1

2
𝑎|𝑌|

1

2
(𝑎−𝑑−1)etr (−

1

2
𝐶−1𝑌) with a ≥ d, where 𝐶 =

2𝑎𝑑/2Γ[a/d], Γ[∙] is multivariate Gamma 

function, and etr(A) = exp(Tr(A)) is exponential of tracing 

matrix.  

c. New ISAR-TBD Observation using Skewed-Sub-RMM  

In this section, we explain a new measurement model of the 

ISAR image in the TBD approach using sub-RMM and the 

skewed normal distributions. To cope with the possible abrupt 

changes of kinematic states, extensions, and measurement 

distributions over an object when a target manoeuvers. The 

imaging ISAR observation related to a sub-RMM is explained 

by using a Gaussian spread function (GSF) with a sub-RMM 

approximation. We consider that the image frame consists of 

pre-processed data from the ISAR system for different ranges of 

sub-RMM 𝑟𝑘
(ℓ,𝑠)

, range-rate 𝑟̇𝑘
(ℓ,𝑠)

 and azimuthal (rotation) angle  

𝜃𝑘
(ℓ,𝑠) = (𝜔𝑘

(ℓ,𝑠)  𝑇) bins for sub-RMM (𝑠) of ℓth M-EOT, that 

means 𝒙̃𝑘
(ℓ,𝑠) ≜ [𝑟𝑘

(ℓ,𝑠) , 𝑟̇𝑘
(ℓ,𝑠) , 𝜃𝑘

(ℓ,𝑠)]
𝑇

. Each ISAR image frame is 

considered to consist of (𝑁𝑟 ×𝑁𝑟˙ ×𝑁𝜃) bins. The resolutions 

of  𝑟𝑘
(ℓ,𝑠) , 𝑟̇𝑘

(ℓ,𝑠)
 and 𝜃𝑘

(ℓ,𝑠)
are denoted by ∆𝑟 , ∆𝑟˙, ∆𝜃, respectively. 

The (𝑎, 𝑏, 𝑐) th cell for 𝑎 =  1, 2, . . . , 𝑁𝑟, 𝑏 =  1, 2, . . . , 𝑁𝑟˙, 𝑐 =
 1, 2, . . . , 𝑁𝜃 , is then centered around (𝑎∆𝑟 × 𝑏∆𝑟˙ × 𝑐∆𝜃) . 

Based on these assumptions, the Doppler observation model for 

ISAR with sub-RMM is defined by 𝔃𝑘
(𝑎,𝑏,𝑐) = 𝑯̃𝑘

(𝑎,𝑏,𝑐)𝒙̃𝑘
(ℓ,𝑠) +

𝝊𝑘
(𝑎,𝑏,𝑐)

 where 𝑯̃𝑘
(𝑎,𝑏,𝑐) = 𝑯𝑘

(𝑎,𝑏,𝑐)⨂𝐈𝑑 , 𝑯𝑘
(𝑎,𝑏,𝑐)

 is the nonlinear 

sub-RMM spread function of 𝒙𝑘
(ℓ,𝑠)

, and 𝝊𝑘
(𝑎,𝑏,𝑐) is the white 

Gaussian measurement noise. In [14], the authors introduced a 

new observation model for a single M-EOT based on a skew 

normal distributions and RMM approach that is capable of 

estimating the kinematic state and extension of the EOT with a 

single ellipse. In this paper, we will improved this model to 

match with the proposed sub-RMM-TBD approach and ISAR 

images tracking for multiple M-EOTs. In [14], the skew normal 

distribution using the random vector 𝑧   with  𝑝 (𝑧) =
𝑝 (𝓎|𝜑 > 0), where 𝓎 is a 𝑝 -dimensional random vector with 

its probability density function (PDF) given by 𝑝 (𝓎) =
𝒩(𝓎; 𝜇, Σ)  and 𝜑  is an 𝒎  -dimensional random vector. The 

distribution of 𝑧  is 𝑝 (𝑧) = [𝑃{𝜑 > 0}]−1𝒩(𝔃;𝜇, Σ)𝑃{𝜑 >
0|𝓎 = 𝑦}, where 𝑃{𝐷} is the probability of the event 𝐷. Let's 

consider a particular case of 𝒎 =  1 then 𝑝 (𝓎) = 𝒩(𝓎; 𝜇 +

β 𝜑, Σ)  and 𝑝(𝜑) = 𝒯𝒩(𝜑; ξ, 𝜂, (0,∞)) , where β  is 𝑝 ×  1 

vector of constraint, 𝜑  is a random scalar, 𝒯𝒩(ξ, 𝜂, (𝔞,𝔟)) 

defined a truncated normal distribution on (𝔞, 𝔟). This paper 

considers the following observation model for ISAR skewed-

TBD-sub-RMM, 

𝔃𝑘
(𝑎,𝑏,𝑐)

≜

{
 
 

 
 
∑ ∑ Υ𝑥

(ℓ,𝑠)𝑯̃𝑘
(𝑎,𝑏,𝑐) [

𝑟𝑘
(ℓ,𝑠)

𝑟̇𝑘
(ℓ,𝑠)

𝜃𝑘
(ℓ,𝑠)

] + 𝝊𝑘
(𝑎,𝑏,𝑐)

𝑛𝑘
(ℓ,𝑠)

𝑠=1

𝑁(𝑘)

ℓ=1

, 𝑯1

𝝊𝑘
(𝑎,𝑏,𝑐)

  ,                                                         𝑯0  

 , 

𝑝 (𝝊𝑘
(𝑎,𝑏,𝑐)|𝜑𝑘

(ℓ,𝑠), 𝝌𝑘
(ℓ,𝑠)) ≅ 𝒩 (β𝑘

(ℓ,𝑠)𝜑𝑘
(ℓ,𝑠), 𝑩𝑘

(ℓ,𝑠) 𝝌𝑘
(ℓ,𝑠)(𝑩𝑘

(ℓ,𝑠))
𝑇
), 

𝑝(𝜑𝑘
(ℓ,𝑠))~𝒯𝒩 (ξ𝑘

(ℓ,𝑠), (𝜂𝑘
(ℓ,𝑠))

2
, (0,∞)) 

≅
1

[1 − Φ(−ξ
𝑘

(ℓ,𝑠) 𝜂
𝑘

(ℓ,𝑠)⁄ )]√2𝜋𝜂
𝑘

(ℓ,𝑠)

exp [−
(𝜑𝑘

(ℓ,𝑠)
− ξ𝑘

(ℓ,𝑠)
)
2

2(𝜂𝑘
(ℓ,𝑠)

)
2 ] (5) 

 

where 𝑯1 means if there are 𝑁(𝑘) M-EOTs present and 𝑯0 

denoting if there no M-EOTs, Υ𝑥
(ℓ,𝑠)

 is the complex amplitude 

of sub-RMM (𝑠) of the ℓ𝑡ℎ  M-EOT, the white Gaussian 

measurement noise cell, 𝝊𝑘
(𝑎,𝑏,𝑐) is with PDF related to the 

observation covariance matrix (𝑹𝑘
(𝑎,𝑏,𝑐)) and  

𝑝 (𝝊𝑘
(𝑎,𝑏,𝑐)|𝜑𝑘

(ℓ,𝑠), 𝝌𝑘
(ℓ,𝑠))~𝒩(𝝊𝑘

(𝑎,𝑏,𝑐); β𝑘
(ℓ,𝑠)𝜑𝑘

(ℓ,𝑠)  , 𝜆 𝝌𝑘
(ℓ,𝑠) +

𝑹𝑘
(𝑎,𝑏,𝑐)

). Here 𝝊𝑘
(𝑎,𝑏,𝑐)

 is following a white Gaussian noise with 

𝑹𝑘
(𝑎,𝑏,𝑐)

 given by 𝝌𝑘
(ℓ,𝑠)

 and  𝑩𝑘
(ℓ,𝑠)

Λ is a scalar effect of 𝝌𝑘
(ℓ,𝑠)

. 

Therefore, 𝝊k
(𝑎,𝑏,𝑐)

 can be approximated by considering 

𝑩𝑘
(ℓ,𝑠) =  (𝜆 𝝌𝑘

(ℓ,𝑠) + 𝑹𝑘
(𝑎,𝑏,𝑐))

1 2⁄
(𝝌𝑘

(ℓ,𝑠))
−1 2⁄

 which explains 

the distortion of the extension from the real one in shape, size, 

and orientation. β𝑘
(ℓ,𝑠)

 is 𝑑 ×  1 vector of constraint, and 𝜑𝑘
(ℓ,𝑠)

 

is a truncated Gaussian distributed random variable, for 

𝜑𝑘
(ℓ,𝑠) ∈ [0,+∞), Φ (·) represents the standard normal 

distribution function, and 

𝜑𝑘
(ℓ,𝑠) = 𝜌𝑘

(ℓ,𝑠)𝜑𝑘−1
(ℓ,𝑠) +𝜓𝑘

(ℓ,𝑠)                             (6)  



where 𝜌𝑘
(ℓ,𝑠) = 𝝌̂𝑘|𝑘−1

(ℓ,𝑠) 𝝌̂𝑘−1
(ℓ,𝑠)⁄  denoted the transition factor of 

sub-RMM (𝑠) of the ℓ𝑡ℎ  M-EOT and 

𝜓𝑘
(ℓ,𝑠)~𝒯𝒩(𝜓𝑘

(ℓ,𝑠); 0, (𝐾𝑘
(ℓ,𝑠))

2
, (0,+∞)) is the process noise. 

The contribution of the proposed ISAR skewed-TBD-sub-
RMM Doppler observation model is its ability to effectively 

describe the skewed distribution of Doppler observations using 

a simple random variable β𝑘
(ℓ,𝑠)𝜑𝑘

(ℓ,𝑠)
. The vector β𝑘

(ℓ,𝑠)
 

describes the skewness direction and latent variable 𝜑𝑘
(ℓ,𝑠)

 

defined how large is the skewness. For M-EOT, the vector 

β𝑘
(ℓ,𝑠)

 defined the skewness direction will be determined as 

β𝑘
(ℓ,𝑠) = [cosθ𝑘

(ℓ,𝑠) sin θ𝑘
(ℓ,𝑠)]

𝑇
, where θ𝑘

(ℓ,𝑠)
 is the skewness 

direction' angle. Fig. 2(right) shows example of 𝝊𝑘
(𝑎,𝑏,𝑐)  for M-

EOT with different values of  β𝑘
(ℓ,𝑠)

.  

 

3 Skewed Sub-RMM-TBD Multi-Bernoulli 

Filter   

In this section, on the basis of the multi-Bernoulli (MB) 

filter for EOTs proposed in [9], we will explain the closed-form 

expressions for an updated recursive Skewed (SK)-Sub-RMM-

MB-TBD filter. The conventional MB-EOT filtering algorithm 

proposed in [9] has proved that if  𝜋𝑘−1  is MB-EOT, the 

predicted multi-target density  𝜋𝑘|𝑘−1 is MB-EOT, then the 

updated multi-target density 𝜋𝑘 is also an MB-EOT under the 

assumption that the extents of the targets in the surveillance 

region are small and the targets do not overlap. Based on these 

approximations, the joint prior SK-Sub-RMM-MB-TBD 

distribution of the state 𝝃𝑘
(ℓ,𝑠)

≜ (𝒙𝑘
(ℓ,𝑠)

, 𝝌𝑘
(ℓ,𝑠)

 ) hybrid with the 

skewness parameter 𝜑𝑘
(ℓ,𝑠)

 that combination of multiple sub-

objects 𝑛𝑘−1
(ℓ,𝑠)

 of the ℓ𝑡ℎ  M-EOT at time 𝑘 − 1 is specified as 

 𝜋𝑘−1 = {{𝑟𝑘−1
(ℓ,𝑠), 𝑝𝑘−1

(ℓ,𝑠)(𝝃𝑘−1; 𝜑𝑘−1)}
𝑠=1

𝑛𝑘−1
(ℓ,𝑠)

}
ℓ=1

 𝑀𝑘−1

        (7) 

where 𝑟𝑘−1
(ℓ,𝑠)

 is the probability of existence and 𝑝𝑘−1
(ℓ,𝑠)

(. ) is state 

distribution of sub-object 𝑠  of ℓ𝑡ℎ  SK-Sub-RMM-MB-TBD 

component for each M-EOT. 𝑀𝑘−1  defines the hypothesized 

track number at time 𝑘 − 1. 

SK-Sub-RMM-MB-TBD Prediction: Given the posterior SK-

Sub-RMM-MB-TBD parameters  𝜋𝑘−1  at time  −1 , the 

predicted SK-Sub-RMM-MB-TBD parameters are 

 𝜋𝑘|𝑘−1 = {{𝑟𝑃,𝑘|𝑘−1
(ℓ,𝑠)

, 𝑝𝑃,𝑘|𝑘−1
(ℓ,𝑠) (𝝃𝑘 ;𝜑𝑘)}

𝑠=1

𝑛𝑘
(ℓ,𝑠)

}
ℓ=1

 𝑀𝑘−1

∪ {{𝑟Γ,𝑘
(ℓ,𝑠) , 𝑝Γ,𝑘

(ℓ,𝑠)(𝝃𝑘 ;𝜑𝑘)}
𝑠=1

𝑛𝑘
(ℓ,𝑠)

}
ℓ=1

 𝑀Γ,𝑘

     (8) 

where  𝑟𝑃,𝑘|𝑘−1
(ℓ,𝑠) =

 𝑟𝑘−1
(ℓ,𝑠)〈𝑝𝑘−1

(ℓ,𝑠)(𝝃𝑘−1; 𝜑𝑘−1), 𝑝𝑠,𝑘(𝝃𝑘−1; 𝜑𝑘−1)〉 ,    

𝑝𝑃,𝑘|𝑘−1
(ℓ,𝑠) (𝝃𝑘 ;𝜑𝑘)

=
〈𝑓𝑘|𝑘−1(𝝃𝑘 , 𝜑𝑘| ∙),𝑝𝑘−1

(ℓ,𝑠)(𝝃𝑘−1; 𝜑𝑘−1)𝑝𝑠,𝑘(𝝃𝑘−1; 𝜑𝑘−1)〉

〈𝑝𝑘−1
(ℓ,𝑠)(𝝃𝑘−1; 𝜑𝑘−1), 𝑝𝑠,𝑘(𝝃𝑘−1; 𝜑𝑘−1)〉

, 

𝑓𝑘|𝑘−1(𝝃𝑘 , 𝜑𝑘| ∙) =

𝑓𝒙,𝑘|𝑘−1(𝒙𝑘|𝒙𝑘−1) 𝑓𝝌,𝑘|𝑘−1(𝝌𝑘|𝝌𝑘−1) 𝑓𝜑,𝑘|𝑘−1(𝜑𝑘|𝜑𝑘−1). 

where 𝑓𝑘|𝑘−1(𝝃𝑘 , 𝜑𝑘| ∙) is the transfer function at time 𝑘, for the 

jointed state with tracking parameters such as 𝒙𝑘 , 𝝌𝑘  and 𝜑𝑘. ∪ 

is the union symbol, 𝑝𝑠,𝑘  is the probability of 

survival, (𝑟Γ,𝑘
(ℓ,𝑠)

, 𝑝Γ,𝑘
(ℓ,𝑠)

)are parameters of an SK-Sub-RMM-MB-

TBD for birth M-EOTs at time 𝑘  , where 〈∙,∙〉  explain the 

operation of the inner product. The predicted hypothesized' 

number is  𝑀𝑘|𝑘−1 = 𝑀𝑘−1 +𝑀Γ,𝑘 . Based on (6), 

 𝑓𝜑,𝑘|𝑘−1(𝜑𝑘|𝜑𝑘−1) = 𝒯𝒩(𝜑𝑘 ; ξ̂𝑃,𝑘|𝑘−1, 𝜂̂𝑃,𝑘|𝑘−1
2 , (0,∞)) 

withξ̂𝑃,𝑘|𝑘−1 = 𝜌𝑘 ξ̂𝑘−1   ,     𝜂̂𝑃,𝑘|𝑘−1
2 = 𝜌𝑘

2   𝜂̂𝑘−1
2 + 𝐾𝑘

2 . 

SK-Sub-RMM-MB-TBD Update: Assume that the predicted 

density of M-EOTs is an SK-Sub-RMM-MB-TBD with 

parameter  𝜋𝑘|𝑘−1 = {{𝑟𝑘|𝑘−1
(ℓ,𝑠) , 𝑝𝑘|𝑘−1

(ℓ,𝑠) (𝝃𝑘 ;𝜑𝑘)}
𝑠=1

𝑛𝑘
(ℓ,𝑠)

}
ℓ=1

 𝑀𝑘 𝑘−1⁄

. 

Since the origins of an M-EOT measurement are only partially 

resolvable, we also assume that no further information is 

available about the correspondences between sub-objects and 

measurements set 𝐙𝑘 ; and the measurement can be obtained 

from any possible sub-object. Then, the posterior density at time 

𝑘 can be approximated as   

𝜋𝑘 ≅ {{{(𝑟𝑘
(ℓ,𝑠), 𝑝𝑘

(ℓ,𝑠)
(𝝃𝑘|𝑾𝑘

( 𝒫,𝒿)
; 𝜑𝑘)) }

𝑾𝑘

( 𝒫,𝒿)
∈℘𝑘

(𝒫)∠𝐙𝑘

}

𝑠=1

𝑛𝑘
(ℓ,𝑠)

}

ℓ=1

 𝑀𝑘|𝑘−1

 

, 𝒿 = 1, ⋯ , |℘𝑘
(𝒫)
| , 𝒫 =  1,⋯ ,𝑵 ℘,𝑘                        (9)  

where ℘𝑘
(𝒫)

 is the 𝒫𝑡ℎ partition of the measurement set (𝐙𝑘), 

𝑾𝑘

( 𝒫,𝒿) ∈ ℘𝑘
(𝒫)

 is the 𝒿 th cell of partition ℘𝑘
(𝒫)

 , |℘𝑘
(𝒫)| is the 

number of cells from ℘𝑘
(𝒫)

and 𝑾𝑘

( 𝒫,𝒿)
 does not include null 

set; 𝑵 𝒫,𝑘  is the number of partitions at time step 𝑘 , the notation 

℘𝑘
(𝒫)∠𝐙𝑘  is the partitioning shorthand that means ℘𝑘

(𝒫)
 to 

partition the measurement set 𝐙𝑘  into non-empty cells 𝑾𝑘

( 𝒫,𝒿)
. 

During this paper, the mean of a known cell 𝑾𝑘

( 𝒫,𝒿)  is calculated 

by (10-11) in an appendix. Furthermore, a Sequential Monte 

Carlo (SMC) implementation is applied to estimate non-Linear 

kinematic M-EOTs state. The proposed algorithm is 
implementation using SMC technique, which obtains higher 

estimation accuracy than other filters, as the SMC-MB-TBD 

filter does not need the extra clustering method to extract M-

EOTs states. 

4 Numerical Results 

During this section, we will demonstrate the 

performance of the proposed SK-Sub-RMM-MB-TBD filter for 

M-EOTs in a TBD application and compare the results with H-

PMHT-TBD [8] and MM-One ellipse (RMM)-MB [1] filters. 

As in many actual ISARs, the signal transmitted by the radar is 

generated by Chirp or linear frequency modulation and is 

convolved with the impulse response of ISAR on the time 

domain, and the AWGN noise is added to it. The values of the 

radar's main parameters are presented in [11]. The size and 

shape of the M-EOTs are similar to DJI Inspire 1 and DJI 
Phantom 2. To evaluate the performances of the filters, we 

assessed location and the extent errors simultaneously with a 



single score by means of the Gaussian Wasserstein distance 

(GWD) [15]. The GWD compares two ellipses according to (12) 

in an appendix. In this case, the first ellipse is the ground truth, 

and the second one is the extended object tracking method 

estimate. The following parameters were used to generate ISAR 

data: 𝑇 = 1 𝑠 , θ = 1 s . The simulation uses a maximum of 

𝐿𝑚𝑎𝑥 = 5000  particles per hypothesized and 𝐿𝑚𝑖𝑛 = 1000 

particles. We consider a two-dimensional scenario over 400 ×

600 resolution cells with cell length    ∆𝑥= ∆𝑥= 1 m. Up to 4 

M-EOTs are included in the scenario whose trajectories during 

the entire surveillance period (K = 45 frames, frame interval is 

3 s ) are shown in Fig. 3 . Three models are considered in 

simulations with different known turn rates. The survival 

probability for actual targets is 𝑝𝑆,𝑘 = 0.99. We considered a 

realistic radar resolution of 2.5 m in range, 2
𝑚

𝑠
 in Doppler, and 

1 deg in azimuth. Since the observation array is an image, the 

array index will be treated as an ordered pair of integers 𝑖 =
(𝑎, 𝑏). The blurring factor 𝜎ℎ

2 = 1, and (𝑝𝑥,𝑘 , 𝑝𝑦,𝑘) being the 

position of the state 𝑥𝑘. A typical observation and real M-EOTs 

trajectories are shown in Fig. 3. At each time step in the 

proposed SK-Sub-RMM-MB-TBD and other filters, pruning 

and merging of an increased number of components are 

performed for each hypothesized track with a threshold 

𝑇𝑚𝑒𝑟𝑔𝑒 = 0.75  times the pixel width. Tracks with existence 

probabilities less than 𝑟 = 10−2are dropped, and a maximum of  

𝑇𝑚𝑎𝑥 = 100 tracks are kept.The birth process is an MB RFS 

with density: 𝜋Γ,𝑘 = {(𝑟Γ,𝑘
(𝑖), 𝑝Γ,𝑘

(𝑖)
)}
𝑖=1

4
, 𝑟𝛤,𝑘
(1), 𝑟𝛤,𝑘

(2), 𝑟𝛤,𝑘
(3), 𝑟𝛤,𝑘

(4) = .02 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

,𝑃𝛤,𝑘
(𝑖)(𝑥)𝑤𝛤,𝑘

(𝑖)𝑁(;  𝑚𝛤,𝑘
(𝑖) , 𝑝𝛤,𝑘

(𝑖) )where the mean matrices 𝑚 are the 

initial true states of 4 targets. The 100 Monte Carlo runs are 
achieved, the results are shown in Figs. 4 (a)-(d). They show that 

the new algorithm can solve the M-EOTs problem. The 

simulation results demonstrate the effectiveness of the proposed 

new algorithm using skewness-Sub-RMM-TBD. The sample 

images from a scenario simulation with low and high noise 

effect are shown in Figs. 4(a) and 4(b). As shown in fig 4(a), the 

proposed filter can obtain detailed extension information about 

size, shape, and orientation, while the other filters only can 

approximate the extension by using an ellipsoid (almost a circle) 

without shape and orientation information. The results of 

different filters with high noise effects are shown in Fig. 4(b). 

There is a downward trend while M-EOTs are maneuvering. 
 

 
Fig.3. True M-EOTs tracks in 𝑥 − 𝑦 plane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a)                                                                                                                     (b) 

          
     (c)                                                                                                                             (d)                

Fig 4  M-EOTs tracking moving in the different environments, (a) low noise effect (ℎ𝑖𝑔ℎ 𝑆𝑁𝑅 = 20 𝑑𝐵),  (b) high noise effect (𝑙𝑜𝑤 𝑆𝑁𝑅 = 7 𝑑𝐵), (c) 

Mean cardinality estimate, (d) Mean GWD estimate 

           



The reason is that other filters false to have the extension 

estimation. The measurements are typically treated as one M-

EOT through the other filters. The performance GWD and 

cardinality are shown in Fig. 4(c), (d). The proposed 

algorithm performs well without errors. The computational 

complexity of the proposed algorithm is approximately 

𝒪(𝑁𝑧,𝑘
2 ), 𝑁𝑧,𝑘 ≜ (𝑁𝑟 ×𝑁𝑟˙ ×𝑁𝜃).  

 

 

 

 

 

 

 

 

5       Conclusion 

In this paper, we consider the problem of multi-

manoeuvering EOTs tracking from ISAR images. We proposed 

an SK-Sub-RMM-MB-TBD filter to improve the extent state 

estimation of manoeuvering EOTs. We address a joint detection 

and tracking of M-EOTs. We introduce a skewness-Sub-RMM-

MB-TBD composed of sub-ellipses; each one is represented by 

an RMM, which is used to estimate maneuvering kinematic 

states and extensions of sub-objects for each M-EOTs. 

Simulations have verified the theoretical results.  
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Appendix 

The mean of a known cell 𝑾𝑘

( 𝒫,𝒿)
 is calculated by 

𝒛̅𝑘
( 𝒫,𝒿) ≜

1

|𝑾𝑘

( 𝒫,𝒿)
|
∑ 𝔃̃𝑘

(𝑎,𝑏,𝑐)

𝔃̃
𝑘
(𝑎,𝑏,𝑐)

∈𝑾
𝑘
( 𝒫,𝒿)

 ,     

𝒿 = 1,⋯ , |℘𝑘
(𝒫)|,    𝒫 =  1,⋯ ,𝑵 ℘,𝑘  , 

where |𝑾𝑘

( 𝒫,𝒿)| denoted by  the cell observations number. The 

updated MB filter, in the same cases, requires a likelihood of 

measurements in each cell 𝑾𝑘

( 𝒫,𝒿)
. Thus, the pseudo-likelihood 

of sub-object 𝑠 is a function of (𝑾𝑘

( 𝒫,𝒿)
,𝝃
𝑘

(ℓ,𝑠)
, 𝜑

𝑘

(ℓ,𝑠)
) and given 

by (8). Thus, the updated MB parameters are 

𝑟𝑘
(ℓ,𝑠) =

𝓌
℘( 𝒫)

𝑑𝑾
𝑘

( 𝒫,𝒿)
.   

𝑟𝑘|𝑘−1
(ℓ,𝑠) 〈𝑝𝑘|𝑘−1

(ℓ,𝑠) (𝝃𝑘 ;  𝜑𝑘),ℒ𝑾
𝑘
( 𝒫,𝒿)(𝝃𝑘 ;  𝜑𝑘)〉

1 − 𝑟
𝑘|𝑘−1

(ℓ,𝑠) + 𝑟
𝑘|𝑘−1

(ℓ,𝑠) 〈𝑝
𝑘|𝑘−1

(ℓ,𝑠) (𝝃𝑘 ;  𝜑𝑘), ℒ𝑾
𝑘
( 𝒫,𝒿)(𝝃𝑘 ;  𝜑𝑘)〉

, 

𝑝𝑘
(ℓ,𝑠) (𝝃𝑘|𝑾𝑘

( 𝒫,𝒿) , 𝜑𝑘) =
𝑝𝑘|𝑘−1
(ℓ,𝑠) (𝝃𝑘 , 𝜑𝑘) ℒ𝑾

𝑘
( 𝒫,𝒿)(𝝃𝑘 ,𝜑𝑘)

〈𝑝
𝑘|𝑘−1

(ℓ,𝑠) (𝝃𝑘 ,𝜑𝑘), ℒ𝑾
𝑘
( 𝒫,𝒿)(𝝃𝑘 ,𝜑𝑘)〉

 , 

𝒅
𝑾
𝑘
( 𝒫,𝒿) = 𝛿

1,|𝑾
𝑘
( 𝒫,𝒿)

|
+  

∑ ∑
𝑟𝑘|𝑘−1
(ℓ,𝑠) 〈𝑝𝑘|𝑘−1

(ℓ,𝑠) (𝝃𝑘 , 𝜑𝑘), ℒ𝑾𝑘

( 𝒫,𝒿)(𝝃𝑘 , 𝜑𝑘)〉

1 − 𝑟𝑘|𝑘−1
(ℓ,𝑠) + 𝑟𝑘|𝑘−1

(ℓ,𝑠) 〈𝑝𝑘|𝑘−1
(ℓ,𝑠) (𝝃𝑘 , 𝜑𝑘), ℒ𝑾

𝑘

( 𝒫,𝒿)(𝝃𝑘, 𝜑𝑘)〉

𝑛𝑘
(ℓ,𝑠)

𝑠=1

 𝑀𝑘 𝑘−1⁄

ℓ=1

(10) 

where ℒ𝒁𝑘(𝝃𝑘
(ℓ,𝑠); 𝜑𝑘

(ℓ,𝑠) , Υ𝑘) is the sub-RMM' likelihood 

function condition on  𝜑𝑘
(ℓ,𝑠)

  which is given by 

ℒ𝒁𝑘(𝝃𝑘
(ℓ,𝑠); 𝜑𝑘

(ℓ,𝑠) , Υ𝑘)

= 𝑒−𝛾(𝝃𝑘
(ℓ,𝑠)

)𝛾(𝝃𝑘
(ℓ,𝑠)) ∏

𝚿(𝔃𝑘
(𝑎,𝑏,𝑐)

|𝝃𝑘
(ℓ,𝑠); 𝜑𝑘

(ℓ,𝑠))

𝚽(𝔃
𝑘

(𝑎,𝑏,𝑐))
𝑎,𝑏,𝑐 ∈(𝝃

𝑘
(ℓ,𝑠)

):

𝝃
𝑘
(ℓ,𝑠)

∈𝑿𝑘

 (11) 

where 𝛾(∙) is predicted number of observations obtained by a 

sub-RMM, and is considered to be a function of sub-RMM' 

volume [9]; the quantities 𝓌
℘𝑘
(𝒫) and 𝒅

𝑾
𝑘
( 𝒫,𝒿)   are, respectively, 

non-negative coefficients of the partition ℘𝑘
(𝒫)

 and cell 𝑾𝑘

( 𝒫,𝒿)
, 

δ𝒽,ℊ is the Kronecker delta function (i.e., if 𝒽 = ℊ, δ𝒽,ℊ = 1; 

otherwise, δ𝒽,ℊ = 0).  

The GWD of two ellipses  

Λ𝐺𝑊𝐷 (𝝃𝑘
(𝑗,𝑠)

, 𝝃̂𝑘
(𝑖,𝑠)) = ‖𝒉𝑘𝒙𝑘

(𝑗,𝑠)
− 𝒉𝑘 𝒙̂𝑘

(𝑖,𝑠)‖
2

 

+Tr( 𝝌𝑘
(𝑗,𝑠) +  𝝌̂𝑘

(𝑖,𝑠) −2√√ 𝝌
𝑘

(𝑗,𝑠)   𝝌̂𝑘
(𝑖,𝑠)  √ 𝝌

𝑘

(𝑗,𝑠))  (12) 

Table 1  Average running time for single Monte Carlo, s 

Proposed SK- 

Sub-RMM- 

MB-TBD 

H-PMHT-

TBD   

MM-One ellipse  

(RMM)-MB  

30.56 55.34 32.93 

The average 100 Monte Carlo runs for the recent algorithms 

is reported in Table 1. It is apparent that proposed robustness 

filter outperforms all filters and has the best real-time 

performance. 
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