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Abstract

Array antennas are the basic components which are widely used in radar systems. In this paper, a fast failure diagnosis method is
proposed based on structure information of planar arrays when the number of faulty elements is small. The proposed algorithm
reduces the time spent locating the failed elements while maintaining the accuracy of the localization. Firstly, the sparse diagnosis
model of a failure planar array is introduced. Considering the structure features of planar arrays, the vertical and horizontal
elevation plane of the field pattern are used to decide the rows and columns of the failed elements, respectively. Besides, a new
smaller subarray is constructed based on the rows and columns above and further diagnosed by the new measured field pattern.
With the aid of theoretical analysis and simulation validation, it is shown that the proposed diagnosis method can localize faults
faster compared with conventional diagnosis methods.

1 Introduction

With the increasing demand for better abilities of target
detection and radar imaging, high-frequency radar systems
have been exploited to provide wider bandwidth and higher
resolution[1, 2]. In this case, due to shorter wavelengths, more
antennas with smaller size are installed in an area, which con-
stitute an array. This technology is applied in many applications
such as adaptive beamforming, multiple target detection and
synthetic aperture radar images[3].

Planar arrays are the simplest array structure in which the
array base elements are laid out along the vertical and hori-
zontal axes, so it can obtain high resolution both in azimuth
and elevation, respectively [4]. However, once base elements in
planar arrays fail, the whole array structure will change, such
as elements’ spacing, which results in the modification of the
Array Factor. Although the variation of physical structure is
slight, it leads to severe consequences, for example the alter-
ation of beam directions and increased sidelobes, which further
affect the performance of subsequent applications. Therefore, it
is necessary to find failed array elements. Instead of inefficient
detection of elements one by one, field pattern measurements
are used to infer the locations of faulty elements by solving an
inverse electromagnetic problem.

In general, there are several ways to achieve the goal of
failure localization by using field patterns. The first is called
the matrix method, which uses linear algebra and matrix the-
ory to calculate the values of excitation[5]. The second is the
theory of parameter estimation and optimization. In this case,
compressed sensing and its variants are utilized for array diag-
nosis when the number of faults is far smaller than that of the
total array elements[6–9]. Moreover, when the transformation
from the excitation of array elements to the field pattern is not

linear, optimization theory is used to find the optimal solu-
tion of excitation[10, 11]. The third type of failure diagnosis
is Artificial Intelligence, which uses the strategies of learn-
ing, including support vector machines and artificial neural
networks[12, 13].

In addition to the classification from the aspects of diagno-
sis methods, failure detection can be categorized according to
the different scenarios of practical applications. The first type
of diagnosis scenario is to use all information of either near-
field or far-field measurements, including amplitude and phase.
There is no difference of diagnosis between using near-field
and far-field measurements, except that their radiation matrices
are not the same. Considering the limitations of real measure-
ments, the second scenario focuses on the amplitude-only data
to avoid phase measuring because of its complex process and
high cost [10, 11, 14]. The third category is about some par-
ticular situations that diagnosis methods are applied in, such as
array mismatch and impluse noise, which are more challenging
for researchers and engineers[10, 11].

In spite of the fact that many methods of array diagnosis
have been utilized to determine the positions of faulty elements
and have achieved good results, there is still a practical and
urgent problem unsolved, that is the large amount of time for
diagnosis when the size of planar arrays increases. In addi-
tion, even though the existing methods are widely applied
to various shapes of antenna arrays, they do not explore the
physical structure features of planar arrays, which can bring
about opportunities to improve diagnosed time. Therefore, a
research question arises: how to save the time of failure diag-
nosis by using structure features of planar arrays? The old
way was to consider the sparse characteristics of excitation
and use compressed sensing to diagnose faults. Inspired by the
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cross approximation techniques of matrix decomposition[15–
17], another feasible approach is to explore and exploit the
structure properties of planar arrays by dividing into several
subarrays vertically and horizontally respectively, and to down-
size the area that faults lie in to further reduce the time cost of
failure diagnosis.

The contributions of this paper are summarized as follows.

1) A diagnosis framework based on the structure features of
planar arrays is proposed to accelerate failure diagnosis when
the number of faults is far smaller than the total number of
elements.

2) The proposed fast diagnosis method is compared with
another diagnostic method as a reference and works on the
premise of Gaussian noise.

The remaining sections of this paper are organized as fol-
lows. Section II presents the diagnosis model of failure arrays
and the problem statement. Section III gives the proposed fast
diagnosis framework based on the structure features of planar
arrays. Section IV shows the comparisons of diagnostic perfor-
mance between the proposed fast method and Sparse Bayesian
Learning, including the time cost and diagnosis error. Finally,
conclusions are drawn in section V.

2 Diagnosis model and problem statement

2.1 Diagnosis model

A planar array of size Nx ×Ny is given in Fig. 1(a), where
Nx and Ny is the number of elements along the x-axis and y-
axis, respectively. The circles marked in green represent the
normal elements while the black circles are failed. According
to the differential operation[7], the original problem of failure
diagnosis is equal to finding out the positions of excitation in
Fig. 1(b), where the black circles represent the failed elements
while the red elements are working properly.

Assuming that the far-field pattern is measured at
spherical angles θ,φ, where θ = [θ1, θ2, · · · , θM ]T, φ =
[φ1, φ2, · · · , φN ]

T, the far-field radiation model in Gaussian
noise is given by

b = As+ ne, (1)

where b is a vector representation of the far-field pattern with
respect to variables θ and φ, and its ith component bi cor-
responds to the measurement at angles (θm, φn), i = M(n−
1) +m. A is a far-field radiation matrix, whose elements are
given by

aij = ejkd
x
j sin θm cosφn+jkd

y
j
sin θm sinφn , (2)

where (dx
j , d

y
j ) represents the coordinates of the jth array ele-

ment. s is a 0-1 excitation vector and ne is zero-mean Gaussian
noise.

The problem of failure diagnosis is to retrieve the excitation
s and further localize faults according to the obtained far-field
measurements. Although many existing methods have been uti-
lized to recover s, compressed sensing is widely used because

(a) Original array antenna (b) Differential array antenna

Fig. 1. Planar array
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Fig. 2. Divide a planar array into subarrays

of its high efficiency. Since the number of faults in real situa-
tions is far smaller than that of the total elements, the diagnosis
model is built under the hypothesis of the sparse excitation s.
Therefore, it is possible to provide the unique recovery of s,
which is given by

min
s

∥s∥1

s.t. ∥b−As∥2 ≤ ϵ,
(3)

where ∥ · ∥p represents the lp-norm and ϵ is the error brought
about by Gaussian noise. It can be seen that (3) is the diag-
nosis model to localize faulty elements and this problem can
be solved via the algorithms of l1-norm minimization such as
Sparse Bayesian Learning (SBL).

2.2 Problem statement

Based on the antenna and array theory[18], a planar array can
be seen as a linear array with several subarrays as its base ele-
ments. And if all subarrays have the same field pattern, the total
far-field beam pattern of a planar array is equal to the far-field
pattern of a single subarray multiplied by an array factor. Con-
sidering a horizontal subarray composed of a row of elements,
as shown in Fig. 2(a), the planar array is converted to a lin-
ear array along the x-axis, whose far-field beam pattern with
respect to spherical angles (θp, φq) is written by

b(θp, φq) =

Nx∑
m=1

fm(θp, φq)e
jkxm sin θpcosφq + ne, (4)

where fm(θp, φq) is the beam pattern of the mth subarray with
respect to θp and φq, k is the wavenumber, xm is the position
of the mth subarray and ne is a zero-mean Gaussian random
variable. Moreover, the planar array is seen as a linear array
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along the y-axis with several vertical subarrays, as shown in
Fig. 2(b). Then its far-field beam pattern is given by

b(θp, φq) =

Ny∑
n=1

gn(θp, φq)e
jkyn sin θp sinφq + ne, (5)

where gn(θp, φq) is the beam pattern of the nth subarray with
respect to θp and φq, and yn is the position of the nth sub-
array. Obviously, the far-field pattern b is unchanged no matter
how the planar array is divided into subarrays. Accordingly, the
research problem of failure diagnosis is how to diagnose failed
planar arrays by using its structure information in order to save
time. A possible solution is to find out the area that failed
elements belong to by exploiting the vertical and horizontal
division of planar arrays.

3 Proposed diagnosis framework based on
structure features of planar arrays

In order to reduce the time of array diagnosis, a fast diagnosis
framework based on the structure information of planar arrays
is proposed and described in this section. Here, the structure
features of planar arrays indicate that a planar array can be cut
horizontally and vertically into several subarrays and be seen
as two linear arrays, respectively. Although these two ways of
cutting lead to the different types of subarrays, they contain the
same failed array elements, which reveals the information of
rows and columns that faults lie in. By taking advantage of this
property, the failure diagnosis of planar arrays can accelerate.

First, consider a planar array of size Nx ×Ny and split it
evenly into several rows as shown in Fig. 2(a), so the planar
array now is seen as a linear array with the length of Nx. It is
obvious that the failed elements are located in these subarrays,
so the original problem of recovering s is modified to recon-
struct the excitation of subarrays, fi, and to find out in which
subarrays that the failed elements lie.

Now rewrite (4) as

bu = Aufu + ne, (6)

where bu represents the elevation plane of the far-field pattern
at the azimuth 0◦ , Au is the radiation matrix composed of the
elements au

ij = ejkxj sin θi , and fu is a vector, whose elements
fu
j denote the excitation of each subarray. Since each subarray

is a linear array along the y-axis and the field pattern is at the
azimuth φ = 0◦ , fu is indepedent of θi.

Then the diagnosis problem of failed subarrays is to recon-
struct fu, given by

min
fu

∥fu∥1

s.t. ∥bu −Aufu∥2 ≤ ϵ.
(7)

The positions of nonzero components in fu correspond to the
rows of the planar array that failed elements lie in. As shown
in Fig. 3(a), the rows of faults are marked by the red dashed
rectangles.
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Fig. 3. Proposed fast diagnosis framework

Similarly, divide the planar array evenly into Ny columns,
which form a linear array along y-axis as shown in Fig. 2(b).
Without doubt, the diagnosis problem of array elements in a
plane is converted to the detection of failed subarrays.

Equation (5) is rewritten as

bv = Avgv + ne, (8)

where the elevation plane of the field pattern at the azimuth
90◦ is denoted by bv, the radiation matrix is denoted by Av =
(av

ij), a
v
ij = ejkyj sin θi and the excitation of vertical subarrays

is represented by gv. Here gv is also indepedent of θi because
each subarray is perpendicular to the elevation plane of the far-
field pattern. Now the recovery of gv is written by

min
gv

∥gv∥1

s.t. ∥bv −Avgv∥2 ≤ ϵ.
(9)

The failed elements are located in the columns which are
decided by the corresponding nonzero components in gv. It can
be seen in Fig. 3(b) that the columns of faults are marked by the
red dashed rectangles.

After the rows and columns of failed elements are obtained,
a smaller area with failed elements is determined, as shown
in Fig. 3(c), which means it is closer to finding out the faults.
Construct a new subarray with the rows and columns provided
above and measure its far-field beam pattern, which is given by

bw = Awsw + ne, (10)

where Aw denotes the radiation matrix of the new subarray and
sw represents the excitation of its elements. Hence the problem
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Fig. 4. Diagnosis performance vs. size of planar array

of failure diagnosis of this subarray is solved by using sparse
recovery in the following form:

min
sw

∥sw∥1

s.t. ∥bw −Awsw∥2 ≤ ϵ.
(11)

The approach mentioned above is the fast diagnosis frame-
work of planar arrays. It converts the problem of finding out
failed elements into the determinnation of the rectangular area
that faults lie in. The procedure of the proposed diagnosis
framework is summarized as follows.

1) Measure the elevation plane of the far-field pattern at the
azimuth 0◦ [b(θ), φ = 0◦], and find out the rows that failed
subarrays are in.

2) Measure the elevation plane of the far-field pattern at the
azimuth 90◦ [b(θ), φ = 90◦], and find out the columns that
failed subarrays are in.

3) Constructing a new planar subarray based on the intersection
of rows and columns above, measure its 3D far-field pattern
and diagnose the faulty elements of the new subarray.

In general, the proposed diagnosis framework decides the
rectangular area that faulty elements lie in by just measuring
a few points of the 3D far-field pattern of a planar array, and
further determines the positions of faulty elements by mea-
suring the field pattern of a new constructed subarray in this
region. Through a series of steps, diagnosis time can be reduced
largely. Moreover, it should be pointed out that the proposed
fast diagnosis framework only provides a quick procedure for
the diagnosis of planar arrays. It does not limit the specific
diagnosis algorithms, so any algorithms of failure diagnosis
can be used within the proposed fast diagnosis framework,
including inverse Fourier transform, matrix method, MUSIC
and compressed sensing, which only depend on the diagnosis
model [5, 7, 19].
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Fig. 5. Diagnosis performance vs. number of faults

4 Simulation and performance analysis

According to the sparse diagnosis model, this section presents
the simulation of two diagnosis methods from Sparse Bayesian
Learning (SBL) and the proposed fast diagnosis framework
based on SBL. First, similar to [7], the error of failure diag-
nosis is defined by the number of unsuccessful judgment of
excitation, that is

NERR = ∥s− ŝ∥1, (12)

where s is an unknown 0-1 excitation vector and ŝ is a 0-1
vector of its estimate.

The first simulation is about diagnosis performance versus
the size of a square planar array. Assuming that the operating
frequency of an Nx ×Ny square planar array is f = 3 GHz
and the number of failed elements is Nf = 1, measure its far-
field beam pattern on a spherical surface at θ = 0 : 0.5 : 90◦

and φ = 0 : 6 : 360◦ with no Gaussian noise. Diagnosis results
of the time and error with respect to the array size (Nx = 1 :
40, Nx = Ny), are shown in Fig. 4, where the left y-axis corre-
sponds to the diagnosis time and the right y-axis corresponds
to the diagnosis error. It illustrates that with the increase of
array size, the proposed fast diagnosis method achieves the
correct localization of failed elements with the error NERR =
0 and negligible diagnosis time. Although SBL achieves the
same detection error NERR = 0, its diagnosis time increases
exponentially with the array size. Given the trend in radar
and telecommunications systems to increase the array sizes in
millimetre-Wave and Terahertz applications, the fast diagnosis
method will be an asset for array failure analysis.

Moreover, the behaviour of diagnosis versus the number of
failed elements is also analysed. Keep the operating frequency
and spherical sampling surface unchanged with no Gaussian
noise. Diagnosis results of a planar array of size Nx = Ny =
20 versus the number of faults are shown in Fig. 5. It illus-
trates that SBL achieves the completely correct diagnosis while
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Fig. 6. Diagnosis performance vs. SNR

the proposed fast diagnosis method detects the faults success-
fully under the condition that the number of failed elements
Nf ≤ 10; for the time cost, SBL takes approximately 0.8 s
while the proposed fast algorithm takes no more than 0.05 s
when Nf ≤ 10. At first glance, it seems that the diagnosis
time spent by SBL is not very large compared to the proposed
algorithm. But the diagnosis results are acquired under the con-
dition of the small size of planar arrays. When a planar array
consisting of an enormous amount of antenna elements requires
testing in production, the diagnosis time performed by SBL
is considerable, which is analysed in Fig. 4. It is important
to note that there exists a limitation on the number of faults
for the accurate diagnosis of the proposed method. When Nf

increases, the assumption of sparse excitation is not guaran-
teed. To be more specific, Nf is large enough relative to the
number of elements in the new constructed subarray.

What’s more, diagnosis performance versus SNR (Signal-
To-Noise Ratio) in Gaussian noise is also analysed. All param-
eters remain unchanged but Nf = 1 and SNR is tested from
10 to 40 dB in 5 dB steps. Fig. 6 shows the diagnosis error
and time cost with respect to SNR in Gaussian noise. It can
be seen that both SBL and the proposed fast diagnosis method
achieve the accurate localization of faults when SNR is no
less than 20 dB. In a diagnosis scenario, a high SNR will be
guaranteed by the proximity of the test equipment to the array.
Therefore, this method is viable for array diagnosis in real con-
ditions. However, if SNR is less than 20 dB, for example, SNR
equals to 15 dB, the proposed method misses 2 failed elements,
NERR = 2. Regarding diagnosis time, SBL almostly achieves
an exponential decrease to about 1 sec with the increase of SNR
while the time of the proposed method is negligible.

5 Conclusion

In this paper, a fast diagnosis framework is proposed for the
localization of failed elements based on the structure properties
of planar arrays. The main methodological innovation in failure
diagnosis is utilizing the physical structure of planar arrays to

find out the rows and columns of faults. Hence the area of failed
elements in a plane is reduced, which leads to the substantial
reduction of diagnosis time if the size of planar arrays is large.

From a simulation point of view, the proposed fast diag-
nosis method reduces the diagnosis time against SBL in the
following cases:

i. Given the number of failed elements Nf = 1 and the array
size Nx = Ny = 40, the diagnosis time of the proposed
method is negligible while the time of SBL is about 25 s.

ii. In the case of a 20× 20 planar array with 10 failed ele-
ments, i.e., a failure rate of 2.5%, the diagnosis time of the
proposed method is nearly 0.05 s while the time of SBL is
about 0.8 s.

iii. Given SNR = 20 dB and a 20× 20 planar array with the
number of failed elements Nf = 1, the diagnosis time of
the proposed method is approximately negligible while the
time of SBL is about 2 s.

Since high SNR can be guaranteed by laying out absorbing
materials to suppress noise in real conditions, the proposed fast
diagnosis method is feasible in a test facility. It would be the
case for a manufacturing plant to test planar arrays that were
produced to see if there are any faults .

It is important to note that the diagnosis model in this paper
is based on the least l1-norm , so it should meet the require-
ments of the sparsity of exictation. For future works, other
diagnosis methods without the hypothesis of sparse structure
will be explored and exploited within the proposed failure
diagnosis framework.
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