High Performance n-and p-channel Flexible Transistors Using Roll Printed Silicon Nanoribbons

Zumeit, A., Dahiya, A. S. , Christou, A. and Dahiya, R. (2022) High Performance n-and p-channel Flexible Transistors Using Roll Printed Silicon Nanoribbons. In: 2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), Vienna, Austria, 10-13 Jul 2022, ISBN 9781665442732 (doi: 10.1109/FLEPS53764.2022.9781569)

Full text not currently available from Enlighten.

Abstract

Uniform and large-area printing of high mobility nano/microscale structures can enable high-performance flexible electronics, which is much needed in numerous electronic and optoelectronic applications. In this work, we report an optimized direct roll transfer printing method to integrate arrays of high mobility silicon nanoribbon (Si NRs) in a single step on a variety of flexible substrates including polyimide, polyethylene terephthalate, and metal foils, etc. Compared to conventional transfer printing, the developed method does not require the use of elastomeric transfer stamp. In consequence, significant improvements are accomplished in terms of accuracy of printed structures (~100nm) and excellent transfer yield (~95%) over printed area of ~2 cm 2 . Such features are essential to achieve uniform device-to-device performance characteristics over large areas. Further, the dependency study of the applied force on transfer yield is performed. The efficacy of the developed roll-based transfer printing process is demonstrated by realizing both n-and p-channel silicon NRs based high performance flexible field-effect transistors (Si NR-FETs). The present work opens new avenues for printed high performance integrated circuits.

Item Type:Conference Proceedings
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Dahiya, Dr Abhishek Singh and Zumeit, Ayoub and Dahiya, Professor Ravinder and Christou, Mr Adamos
Authors: Zumeit, A., Dahiya, A. S., Christou, A., and Dahiya, R.
College/School:College of Science and Engineering > School of Engineering > Electronics and Nanoscale Engineering
ISBN:9781665442732
Published Online:10 June 2022

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
301327`Hetero-print: A holistic approach to transfer-printing for heterogeneous integration in manufacturingPeter SkabaraEngineering and Physical Sciences Research Council (EPSRC)EP/R03480X/1ENG - Electronics & Nanoscale Engineering