Direct Write 3D-Printed Interconnects for Heterogenous Integration of Ultra Thin Chips

Ma, S., Dahiya, A. S. and Dahiya, R. (2022) Direct Write 3D-Printed Interconnects for Heterogenous Integration of Ultra Thin Chips. In: 2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), Vienna, Austria, 10-13 Jul 2022, ISBN 9781665442732 (doi: 10.1109/FLEPS53764.2022.9781596)

Full text not currently available from Enlighten.

Abstract

Direct ink writing or printing with high- resolution (well within few micrometres) is gaining attention as for hybrid or heterogeneous integration of electronics on flexible substrates. This technology offers interesting opportunity for realising reliable interconnects for ultra-thin chips (UTCs). This paper presents a single-step method for fabrication of reliable (low-resistivity and high robustness) conductive tracks using extrusion of high-viscosity conductive paste. To demonstrate the potential of the presented approach for bonding of UTCs, a Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) chip was thinned down to 35 ± 0.6 μm. Then, the UTC was attached to a flexible printed circuit board (PCBs) and the metal interconnects are printed to connect the MOSFET devices on chips with extended pads on flexible PCBs. The systematic electrical characterization of MOSFET devices, before and after printing of interconnects, reveals an acceptable level of variation in device mobility (change from 780 to 630 cm 2 /Vs). The present study open avenues for realising heterogeneous integrated flexible systems for high performance applications.

Item Type:Conference Proceedings
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Dahiya, Dr Abhishek Singh and Dahiya, Professor Ravinder and Ma, Sihang
Authors: Ma, S., Dahiya, A. S., and Dahiya, R.
College/School:College of Science and Engineering > School of Engineering > Electronics and Nanoscale Engineering
ISBN:9781665442732
Published Online:10 June 2022

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
170185Engineering Fellowships for Growth: Printed Tactile SKINRavinder DahiyaEngineering and Physical Sciences Research Council (EPSRC)EP/M002527/1ENG - Electronics & Nanoscale Engineering
301728Engineering Fellowships for Growth: Printed Tactile SKINRavinder DahiyaEngineering and Physical Sciences Research Council (EPSRC)EP/R029644/1ENG - Electronics & Nanoscale Engineering
301327`Hetero-print: A holistic approach to transfer-printing for heterogeneous integration in manufacturingPeter SkabaraEngineering and Physical Sciences Research Council (EPSRC)EP/R03480X/1ENG - Electronics & Nanoscale Engineering