

Sanga, V., Rossitto, G., Seccia, T. M. and Rossi, G. P. (2022) Management and outcomes of primary aldosteronism in pregnancy: a systematic review. *Hypertension*, 79(9), pp. 1912-1921. (doi: <u>10.1161/HYPERTENSIONAHA.121.18858</u>).

This is the Author Accepted Manuscript.

There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it.

http://eprints.gla.ac.uk/273949/

Deposited on: 05 August 2022

Enlighten – Research publications by members of the University of Glasgow <u>http://eprints.gla.ac.uk</u>

1	Management and Outcomes of Primary Aldosteronism in Pregnancy:
2	A Systematic Review
3	
4	Short running title: Hyperaldosteronism in pregnancy
F	
5	
6	Viola Sanga ^{1,2} , Giacomo Rossitto ^{1,3} , Teresa Maria Seccia ¹ , Gian Paolo Rossi ¹
7	
8	¹ Hypertension and Emergency Unit, Department of Medicine - DIMED, University of Padua, Italy
9	² PhD Arterial Hypertension and Vascular Biology, Department of Medicine – DIMED, University
10	of Padua, Italy
11	³ Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
	institute of Cardiovascular and Wedicar Sciences, Oniversity of Glasgow, OK
12 13	Corresponding author:
 14	Prof. Gian Paolo Rossi, MD. FACC, FAHA
15	Clinica dell'Ipertensione Arteriosa,
16	Dept. of Medicine-DIMED University Hospital
17	Via Giustiniani, 2
18	35126 Padova, Italy
19	Phone: 39-049-821-2279 or 7821
20	Fax: 39-049-821-7873
21	E-mail: gianpaolo.rossi@unipd.it
22	
23	
24	Total word count: 6679 words

25 Abstract

Primary aldosteronism (PA) in pregnancy (PAP) can be a serious condition and is challenging to 26 diagnose. This study was conceived to help in the diagnosis of PAP and provide suggestions on 27 management of PAP based on evidences retrieved using a Population, Intervention, Comparison and 28 Outcome (PICO) search strategy. Based on the changes of aldosterone and renin occurring in normal 29 pregnancies, we developed a nomogram that will allow to identify PAP cases. Moreover, we found 30 that published PAP cases fell into 4 main groups differing for management and outcomes: i) unilateral 31 medically treated, ii) unilateral surgically treated, iii) bilateral medically treated and iv) familial 32 forms. Results showed that complications involved 62.2% of pregnant women with non-familial PA 33 and 18.5% of those with familial hyperaldosteronism type I. Adrenalectomy during pregnancy in 34 35 women with PAP did not improve maternal and foetal outcomes, over medical treatment alone. Moreover, cure of maternal hypertension and mother and baby outcome were better when unilateral 36 PA was discovered and surgically treated before or after pregnancy. Therefore, fertile women with 37 arterial hypertension should be screened for PA before pregnancy and, if necessary, subtyped to 38 identify unilateral forms of PA. This will allow to furnish adequate counselling, a chance for surgical 39 cure and, therefore, for a pregnancy not complicated by aldosterone excess. 40

41 KeyWords: Hypertension; Pregnancy; Primary Hyperaldosteronism; Aldosterone-producing

42 adenoma; Adrenalectomy during pregnancy.

43 Non-standard Abbreviations and Acronyms

- **ARR:** aldosterone-renin ratio
- **AVS:** adrenal venous sampling
- **BP:** blood pressure
- **C-section:** caesarean section
- **DRC:** direct renin concentration
- **FH:** familial hyperaldosteronism
- 50 HT: hypertension
- **ICU:** intensive care unit
- **IUGR:** intrauterine growth restriction
- 53 MRA: mineralocorticoid receptor antagonist
- **PA:** primary aldosteronism
- **PAC:** plasma aldosterone concentration
- **PAP**: primary aldosteronism in pregnancy

57 Introduction

Primary aldosteronism (PA) is a common cause of high blood pressure (BP) ¹. Most cases are sporadic; familial forms caused by with germ-line mutations usually resulting in bilateral adrenocortical hyperplasia are much rarer. PA can often involve young fertile women, ² who are exposed at high risk of complications because of severe hypokalaemia, drug-resistant hypertension (HT) and preeclampsia.

63 Currently, the cut-off values of plasma aldosterone concentration (PAC), direct active renin 64 concentration (DRC) and the aldosterone-renin ratio (ARR) that allow to diagnose PA in pregnancy 65 (PAP) are uncertain. Moreover, it remains controversial if sporadic unilateral PA discovered during 66 the 2nd trimester of pregnancy, when HT can become severe and/or drug-resistant, should be treated 67 medically or surgically. Likewise unsettled is the best management in pregnancy of familial 68 hyperaldosteronism (FH), except for the most common type 1 (FH-1), for which suggestions have 69 been recently provided ³.

Since only narrative reviews exist ^{4–12}, guidelines for PA ¹³, even the most recent for HT in pregnancy ¹⁴, devoted scant, or no, attention to the management of PA in pregnancy (PAP), we herein aimed at providing an appraisal of normal changes of PAC, DRC, and the ARR during pregnancy, and the clinical features and management of PAP, moving from a systematic structured search of the information available in public databases, and from recent data on diagnosis of PA in young patients ¹⁵. This search unveiled several findings that can serve as a basis for the diagnosis and management of this condition.

77 Methods

We searched the literature for studies that reported the changes of plasma renin activity and PAC during normal pregnancy. As the direct chemiluminescent assay of active renin (DRC) has replaced plasma renin activity, we calculated the corresponding DRC values from plasma renin concentration, and the ARR during each week of pregnancy (as DRC=PRA*0.05269-0.0476) by the ARR-app ¹⁶. We then determined the 95% confidence interval (CI) of the normal values of PAC, and DRC and ARR. Details of the structured search of available information are given in the Supplemental materials (see 'Complete Methods' section).

85 **Results**

86 Changes of PAC, renin and ARR during normal pregnancy and diagnosis of PAP

A painstaking study by Wilson et al. ¹⁷ depicted the changes in BP values, PAC, and plasma renin concentration, from the 8th to the 38th week of pregnancy, in a multiethnic cohort of women at a normal sodium intake (100-150 mEq/day). It allowed us to determine the normal values of PAC, DRC, and the ARR and their changes in normal pregnancy (Figure 1) and also to calculate values exceeding by three-fold the 95% upper (for PAC and ARR) and lower (for DRC) normal confidence values.

Results showed that PAC increased less than renin; therefore, at least until the 32th week, the ARR cut-off value suggesting the presence of PAP (because it surpasses by three-fold the 95% CI upper normal limit) was lower than 20.6 ng/mIU, which is the value identified for the diagnosis of PA ¹⁸.
Figure 1 shows a nomogram depicting the range of values (dashed areas) suggestive of PAP for these variables.

98 **PAP features**

We found 618 papers (Figure S1) that contained the terms reported in Table S1. Of them, 36 that
entailed 83 patients (56 cases with sporadic PA and 27 with FH-1) were relevant for this analysis.

101 The reported PAP cases fell into 4 main groups that differed for management and outcomes (Table 102 S2): i) unilateral medically treated, ii) unilateral surgically treated, iii) bilateral medically treated and 103 iv) familial forms (Table S3). They were analyzed and compared for outcomes with young fertile 104 women with unilateral PA treated with surgery before or after pregnancy.

- 105
- 106

i) Unilateral medically treated PA

108 31 women with HT presumed to have unilateral PAP based on imaging alone and treated medically 109 were reported thus far. In 3 unilaterality of the disease was uncertain ^{19,20}, leaving 28 cases for this 110 analysis. These women mainly received labetalol and/or methyldopa and/or calcium channel blockers 111 ¹. The mineralocorticoid receptor antagonist (MRA) eplerenone (50 mg BID), added from the 27th 112 gestation week, was given only one case. ²¹ 27 women underwent adrenalectomy after pregnancy, 113 around 19.5 months after delivery.

61% of pregnancies were complicated; 46% ended prematurely, mostly by urgent caesarean section
(C-section) owing to preeclampsia and foetal distress. 22% of the foetuses had intrauterine growth

restriction (IUGR); 7% of the newborns needed intensive care unit (ICU) (Table 1) and 7% died ²².

After pregnancy, subtyping was suboptimal: only 32% of the patients received adrenal venous sampling (AVS)-guided surgery. Notwithstanding this, HT was cured in 85% of the women (Figure S2A). Biochemical cure was claimed in all, but follow-up data were available only in 52% of the cases. All cases showed an adenoma, but aldosterone synthase (CYP11B2) expression ^{23,24} was immuno-histochemically confirmed in the tumor only in 2 cases ^{25,26}.

122 ii) Unilateral surgically treated PA during pregnancy

Ten women with unilateral PAP underwent adrenalectomy. The diagnosis was made before conception in 3, but surgery was not done because pregnancy was discovered before adrenalectomy could be planned. In 7 cases unilateral PA was only presumed based on magnetic resonance. AVS was performed during pregnancy in one case ²⁷, which ended at 30th week for preeclampsia. Notwithstanding X-ray exposure, the newborn showed no malformations.

Only one of the 10 women, with AVS done before conception ²⁸, showed cure of HT after
adrenalectomy (Figure S2B).

After adrenalectomy, normalization of the ARR in the 3rd trimester was reported only in another patient, in whom the high BP values did not normalize and required drug treatment: pregnancy ended at 30th week with urgent C-section for foetal distress and IUGR ²⁹.

Immuno-histochemical demonstration of aldosterone synthase (CYP11B2) expression in the tumor
 ^{23,24} was performed in one case ³⁰.

6 of the 10 pregnancies were complicated (Table 1) and ended prematurely between the 26th and the 35th week of gestation, mostly by urgent C-section, because of preeclampsia or foetal distress (Figure S3). Half of the foetuses had IUGR and one third needed ICU stay (Figure S4). The baby death rate was 20%: in one case due to miscarriage at the 26th gestational week, and in the other to sepsis after prolonged ICU stay because of significant growth retardation.

After adrenalectomy, the overall rate of HT cure was low (10%) and the number of drugs needed to control the high BP during the 2nd trimester decreased a from 2.25 to 1.0, but raised again after delivery (Figure S2B).

143 iii) Bilateral medically treated PA

144 15 women were presumed to have bilateral PAP based on imaging, which was diagnosed before 145 conception in 13 and after pregnancy in 2. Bilaterality was only presumed in 27% of the cases, as 146 AVS was performed in 11 cases that showed no lateralization.

66.6% of the PAP were complicated by preeclampsia, impaired umbilical artery flow or premature
membrane rupture and ended prematurely, mostly by urgent C-section. The newborn death rate was
13.3% (Table 1): one baby died by miscarriage at the 12th gestational week, another one at the 20th;
35.7% of the foetuses had IUGR.

151 During gestation the women required medical treatment because of high BP. They received labetalol,

152 methyldopa, calcium channel blockers (mainly nifedipine or verapamil), but surprisingly no MRA.

153

154

155 iv) Familial forms

Thus far, 4 types of familial hyperaldosteronism have been identified (for rev. ³¹), but only cases of
FH-1 in pregnancy were reported ³². Therefore, recommendations on management in familial forms
can be made only for FH-1 in pregnancy.

FH-1 is an autosomal dominant disorder characterized by HT of different degree and high prevalence of cardiovascular and cerebrovascular events before age 50 years in pedigrees. Acquisition of the adrenocorticotropic hormone (ACTH) responsive elements of 11-β hydroxylase (CYP11B1) in a chimeric gene entailing aldosterone synthase (CYP11B2), as a result of homologous gene recombination, explains the lowering of high BP values with dexamethasone treatment. As the management of FH-1 in pregnancy has been recently reviewed ³, we have summarized the key messages in the Supplemental materials (see 'FH-1 overview' section).

166 Diagnosis of PA before and after pregnancy

Laparoscopic adrenalectomy generally shows the highest rate of HT cure in young women with a short history of HT ³³. In women with unilateral PAP adrenalectomized after delivery, the cure rate was 8.5-fold higher (85% vs 10%) than in women adrenalectomized during pregnancy. This striking difference could be, at least in part, because the responsible adrenal gland can escape detection during gestation leading to unnecessary or wrong adrenalectomy, since AVS is unfeasible in pregnancy.

172 Anti-hypertensive treatment

The choice of medical treatment for PAP stands on anecdotal evidence. MRAs have been rarely used ³⁴ with only 3 cases reported: one in the medically treated group (eplerenone up to 50 mg BID from the 27th gestation week) ²¹ and 2 in the surgically treated. In one case eplerenone was up titrated to 200 mg day ³⁵; in the other, the dose of spironolactone was 50 mg/day ²⁷. Noteworthy, the MRA did not control hypokalemia and the high BP values. One case needed urgent C-section at 35th week and the others adrenalectomy during pregnancy because of drug-resistant HT. These pregnancies ended prematurely, despite surgery, at 28^{th 35} and 30^{th 27} week with urgent C-section performed because of

- preeclampsia and IUGR. The babies needed ICU stay for months after delivery because of significant
 growth retardation, and one died of sepsis after 3 months ³⁵.
- 182 These poor outcomes could be accounted for by a greater severity of PA in these cases; however,
- studies are needed to clarify if adequately up-titrated MRAs are more beneficial than harmful.

184 Discussion

In normal pregnancy, the increased production of vasodilatory prostaglandins ³⁶ and of progesterone, 185 186 which antagonizes aldosterone on the mineralocorticoid receptor, can lower, and even normalize, high BP during the 1st trimester ¹⁷. Due to utero-placental renin production, DRC increases up to 187 188 week 32 (Figure 1) and, because of oestrogen-stimulated production of angiotensinogen in the liver, angiotensin II increases up to almost 4-fold by the 8th week of pregnancy and 7-fold at term ^{17,37}. 189 Notwithstanding this, PAC and the ARR increase less ¹⁷ (Figure 1); therefore, during gestation the 190 191 interpretation of the ARR values should be guided by knowledge of the normal changes that are shown in Figure 1. At each week of pregnancy, values falling in the dashed area for these variables, 192 which comprises values three-fold higher (for PAC and ARR) and lower (for DRC) than the 95% CI, 193 should be regarded as suspicious of PAP with some words of caution. In fact, it is currently unknown 194 what proportion or plasma renin is of utero-placental origin and what originates from juxtaglomerular 195 cells, and also if these production sites undergo a similar regulation by volume expansion. 196

Because of the more prominent increase of renin than PAC, the ARR remains lower than 20.6 ng/mIU 197 (Figure 1, dotted grey line) until the 32th week of pregnancy. This implies that the diagnosis of PAP 198 can be concealed if one would apply the standard ARR cut-off values used to identify PA and might 199 200 explain why only relatively few cases, likely the most florid ones, were recognized in pregnancy and why most reported cases were diagnosed late, after the onset of severe and/or resistant-HT and/or 201 preeclampsia/eclampsia. In a recent Australian study, PAP was diagnosed in 9 women (37.5% with 202 preeclampsia) among 42 screened over 2 years, by a combination of an ARR > 14.4 ng/mIU and 203 DRC < 20 mU/l, i.e. an ARR is lower than the usual one (20.6 ng/mIU) and a renin non suppressed. 204

88.9% of these PAP women could not be diagnosed with unilateral PA and in other 8 with similarly
elevated ARR the diagnosis, albeit likely, was not confirmed, thus illustrating the challenges of
diagnosis PAP ³⁴.

This survey also unveiled four main categories of PAP that were associated with different mother and 208 baby outcomes (Table 1). In the medically treated unilateral PAP, even though there were no reported 209 maternal deaths, 61% of the pregnancies were complicated and the baby death rate was high (7%). 210 In women with unilateral PAP, who underwent adrenalectomy in pregnancy, the complication rate 211 212 was similar (60%), but the baby death rate was around 3-fold higher (Figure 2). Moreover, surgery in pregnancy cured HT in only 10% of the women, likely because it was performed in the most severe 213 cases requiring immediate surgery, and also because, being non AVS-guided, it exposed to the risk 214 of wrong or unnecessary adrenalectomy. Planning and performing surgery before pregnancy could 215 furnish a much better outcome, as adrenalectomy guided by the information obtained with AVS leads 216 to biochemical cure in 98% of PA young nonpregnant women ^{38,39}. In line with this, when performed 217 after delivery, adrenalectomy cured HT in 85% and furnished biochemical cure in all the cases that 218 had follow-up data. However, the latter comprised only a fraction of the women, which testifies the 219 difficulty of collecting information in these (often) lactating women. 220

221 Pharmacologic treatment of PA in pregnancy

The evidence supporting the choice of medical treatment of PAP is anecdotal: only 3 women were 222 reported to receive MRA, which failed to control hypokalaemia and the high BP values, suggesting 223 that MRAs are under used and under dosed possibly due to concerns on their safety, because they 224 225 cross the placenta and, due to their off-target actions on the androgen receptor, theoretically could affect genital differentiation in male foetuses. As the latter is complete by weeks 12th to 14th, MRAs 226 are probably safe in the second half of gestation, i.e. when their administration is most useful and 227 needed. When MRAs were used during all trimesters in pregnant women with Bartter's 228 (spironolactone up to 400 mg⁴⁰) and Gitelman's syndrome⁴¹, two channelopathies with marked 229

secondary aldosteronism and severe hypokalemia, no signal for feminization and genital ambiguity
was seen. Likewise, no male feminization was seen in two babies from women with PAP treated
with eplerenone ^{21,35}, which has less oestrogen-like effects than spironolactone ⁴². To date, clinical
experience with newer MRAs, as aparexone, exarenone and finerenone, lacks; however, the latter has
been found to reduce placental weight and induce signs of embryo-foetal toxicity in in rats ⁴³.

Labetalol, methyldopa, calcium channel blockers are approved for HT in pregnancy and were used in bilateral PA¹, where unilateral adrenalectomy shows inconsistent benefits ⁴⁴. However, since in two-thirds of the women with bilateral PA, pregnancy was complicated notwithstanding medical treatment, these women should receive counselling on their increased risk with pregnancy.

FH-1 women have a relatively benign course during pregnancy, as discussed elsewhere ³. Most of them (75%) did not need anti-hypertensive treatment; others were treated pharmacologically. In our experience in one case, where dexamethasone was restarted from the second half of gestation to control BP and potassium levels ⁴⁵, no negative effects on birth weight and baby hypothalamicpituitary axis development were reported (see 'FH-1 overview' section in the Supplemental materials). In another woman, who was recently diagnosed with FH-1 20 years after pregnancy, no complications occurred in spite of no treatment (Prof Rossi personal communication).

Do women with PAP carry a higher risk for complications than pregnant women with essential hypertension?

This question cannot be answered conclusively because secondary forms of HT are not systematically excluded in young fertile women. Therefore, since it remains uncertain whether HT is essential or not in most of the studies conducted in pregnancy ⁴⁶, a meaningful comparison in terms of outcomes between PA and essential HT women was precluded.

Considering that: i) the complication rate generally raises with increasing BP levels 47 ; ii) a large randomized clinical trial of women with mild chronic HT showed better pregnancy outcomes by targeting a blood pressure of < 140/90 mmHg than by reserving treatment only for severe

hypertension ⁴⁸; iii) women with PAP show substantial increase of high BP values; iv) over 20% of them can become resistant to treatment in the 3rd trimester, the conclusion is offered that women with PAP are at higher risk of complications. In line with this contention, in 211 women, where a secondary form of HT was excluded before pregnancy ⁴⁹, the rates of preeclampsia/eclampsia (18%), preterm delivery (28.9%), IUGR (17.5%) and baby death (3.8%), were all much lower than those (28.8%, 53.3%, 31.8% and 11%, respectively) recorded in women with sporadic PAP (Figure 3).

261 Limitations of the study

This review has an intrinsic limitation due to the fact that only 83 women with PAP were reported thus far. Likely, this reflects two facts: i) the underdiagnosis of PA in young fertile women in general and even more so during pregnancy for the reasons discussed above; ii) a publication bias as investigators cared to report only the most severe cases.

266 **Conclusions**

Available evidence indicates that undetected PAP is a severe condition, requiring close monitoringof BP and serum potassium levels, particularly during the second half of pregnancy.

The following recommendations for the management of women with PAP seem, therefore, reasonable 269 (Figure 4): all fertile women with arterial hypertension, who consider a pregnancy, should be screened 270 for PA. Detection of a raised ARR should be followed by subtyping with AVS, because an imaging-271 only strategy based on magnetic resonance overlooks unilateral surgically curable PA in over 47% of 272 the women younger than 45 years of age ⁵⁰, and also because X-rays exposure, and thus AVS ³⁹, is 273 not feasible in pregnancy. The ultimate goal of this strategy is to detect and treat surgically curable 274 unilateral PA before pregnancy. It should be mentioned that the AVIS-2 Young study showed an 275 276 accurate identification of the culprit adrenal gland, thus permitting adrenalectomy without performing AVS in young PA patients in the presence of hypokalemia concurrent with a unilateral adrenal 277 nodules > 5 mm in size and a normal contralateral adrenal gland. Unfortunately, such criteria apply 278 to only 32% of the women aged 45 years or younger ¹⁵. 279

At variance with non-pregnant women with unilateral PA, in whom removal of the responsible adrenal is the treatment of choice, the limited available evidence suggests that adrenalectomy performed during the 2nd trimester in women with a suspected unilateral adenoma did not improve and even worsened maternal and foetal outcomes compared to medical treatment alone. These findings reinforce the proposition that PA should be identified and resolved before conception.

Women with the surgically incurable bilateral PA should be warned about the risk of a further pregnancy and should receive a selective MRA, as part of their therapy, during the second half of pregnancy, a stage when the risk of feminization is negligible.

Finally, women who have a strong family history of HT and/or stroke at young age should be screened for the chimeric gene of FH-1 and, if positive, treated with low dose dexamethasone, which effectively controls high BP, as discussed in depth elsewhere ³.

291	Acknowledgements: Prof. Rossi conceived the study; Dr. Sanga collected data from literature,
292	performed statistical analysis and drafted the manuscript that was extensively revised and commented
293	on by Prof. Seccia and Dr. Rossitto.

- 294 Sources of Funding: Grant support to Prof. Rossi: FORICA (The FOundation for advanced Research
- 295 In Hypertension and CArdiovascular diseases), the University of Padua and The International PhD
- 296 Program in Arterial Hypertension and Vascular Biology.
- **Disclosures:** All authors have no conflicts of interest and no financial relationship to be disclosed.

298 Data Availability Statement: Data sharing is not applicable to this article as no datasets were299 generated or analysed during the current study.

- 300
- **301** Supplemental materials
- **302** List of Content:
- **303** Supplemental text
- 304 Complete Methods
- 305 FH-1 overview
- 306 Foetal outcomes in medically treated PA women: unilateral vs bilateral forms
- 307 Foetal outcomes in unilateral PA forms: medical vs surgical treatment during pregnancy
- 308 Characteristics of medically treated women with PAP: complicated vs non-complicated pregnancies
- 309 Subsequent pregnancies
- 310 Supplemental Tables and Figures
- 311 Tables S1-S6
- 312 Figures S1-S4

313 **References**

314	1.	Rossi GP, Bisogni V, Bacca AV, Belfiore A, Cesari M, Concistrè A, Del Pinto R, Fabris B,
315		Fallo F, Fava C, et al. The 2020 Italian Society of Arterial Hypertension (SIIA) practical
316		guidelines for the management of primary aldosteronism. Int. J. Cardiol. Hypertens.
317		2020;5:100029.
318	2.	Monticone S, Burrello J, Tizzani D, Bertello C, Viola A, Buffolo F, Gabetti L, Mengozzi G,
319		Williams TA, Rabbia F, et al. Prevalence and Clinical Manifestations of Primary
320		Aldosteronism Encountered in Primary Care Practice. J. Am. Coll. Cardiol. 2017;69:1811-
321		1820.
322	3.	Sanga V, Seccia TM, Rossi GP. A systematic review of pathophysiology and management of
323		familial hyperaldosteronism type 1 in pregnancy. Endocrine. 2021;74:5-10.
324	4.	Landau E, Amar L. Primary aldosteronism and pregnancy. Ann. Endocrinol. (Paris).
325		2016;77:148–160.
326	5.	Webb JC, Bayliss P. Pregnancy complicated by primary aldosteronism. South. Med. J.
327		1997;90:243–245.
328	6.	Matsumoto J, Miyake H, Isozaki T, Koshino T, Araki T. Primary aldosteronism in
329		pregnancy. J. Nippon Med. Sch. = Nihon Ika Daigaku zasshi. 2000;67:275–279.
330	7.	Okawa T, Asano K, Hashimoto T, Fujimori K, Yanagida K, Sato A. Diagnosis and
331		management of primary aldosteronism in pregnancy: Case report and review of the literature.
332		<i>Am. J. Perinatol.</i> 2002;19:31–36.
333	8.	Morton A. Primary aldosteronism and pregnancy. Pregnancy Hypertens. 2015;5:259-262.
334	9.	Riester A, Reincke M. Mineralocorticoid receptor antagonists and management of primary

aldosteronism in pregnancy. Eur. J. Endocrinol. 2015;

- Affinati AH, Auchus RJ. Endocrine causes of hypertension in pregnancy. *Gland Surg.* 336 10. 2020;9:69-79. 337
- Kamoun M, Mnif MF, Charfi N, Kacem FH, Naceur BB, Mnif F, Dammak M, Rekik N, 11. 338 Abid M. Adrenal diseases during pregnancy: Pathophysiology, diagnosis and management 339 strategies. Am. J. Med. Sci. 2014;347:64-73. 340
- 341 12. Manoharan M, Sinha P, Sibtain S. Adrenal disorders in pregnancy, labour and postpartum-an overview. J. Obstet. Gynaecol. (Lahore). 2020;40:749-758. 342
- Funder JW, Carey RM, Mantero F, Murad MH, Reincke M, Shibata H, Stowasser M, Young 13. 343
- WF. The management of primary aldosteronism: Case detection, diagnosis, and treatment: 344 An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 2016;
- 14. Garovic VD, Dechend R, Easterling T, Karumanchi SA, Baird SMM, Magee LA, Rana S, 346
- Vermunt J V., August P. Hypertension in Pregnancy: Diagnosis, Blood Pressure Goals, and 347
- Pharmacotherapy: A Scientific Statement From the American Heart Association. 348
- Hypertension. 2022;79:E21–E41. 349

345

- Rossi GP, Crimì F, Rossitto G, Amar L, Azizi M, Riester A, Reincke M, Degenhart C, 15. 350 Widimsky J, Naruse M, et al. Feasibility of Imaging-Guided Adrenalectomy in Young 351 Patients With Primary Aldosteronism. Hypertension. 2021;79:187-195. 352
- 353 16. Rossi GP, Bisogni V. A useful tool to improve the case detection rate of primary aldosteronism: The aldosterone -renin ratio (ARR)-App. J. Hypertens. 2016;34:1019-21. 354
- 17. Wilson M, Morganti AA, Zervoudakis I, Letcher RL, Romney BM, Von Oeyon P, Papera S, 355 Sealey JE, Laragh JH. Blood pressure, the renin-aldosterone system and sex steroids 356 throughout normal pregnancy. Am. J. Med. 1980;68:97-104. 357
- 18. Rossi GP, Ceolotto G, Rossitto G, Seccia TM, Maiolino G, Berton C, Basso D, Plebani M. 358

- Prospective validation of an automated chemiluminescence-based assay of renin and
 aldosterone for the work-up of arterial hypertension. *Clin. Chem. Lab. Med.* 2016;54:1441–
 1450.
- Piccoli GB, Mannucci C. Preeclampsia: A diagnosis-nondiagnosis that is too easily made:
 the case of primary hyperaldosteronism. *Kidney Blood Press. Res.* 2020;45:363–367.
- 364 20. August P. Hypertension in a pregnant patient: How I treat. *Clin. J. Am. Soc. Nephrol.*365 2019;14:1655–1657.
- 21. Cabassi A, Rocco R, Berretta R, Regolisti G, Bacchi-Modena A. Eplerenone use in primary
 aldosteronism during pregnancy. *Hypertension*. 2012;59.
- Benbrahim OF, Agudo RG, Cadenas FC, Calero AM, González-Spínola J. Diagnóstico de
 una hipertensión arterial secundaria en una gestante en el primer trimestre como causa de un
 aborto espontáneo. *Nefrologia*. 2011;31:229–231.
- 371 23. Gioco F, Seccia TM, Gomez-Sanchez EP, Rossi GP, Gomez-Sanchez CE. Adrenal
 histopathology in primary aldosteronism: Is it time for a change? Hypertension.
 2015;66:724–730.
- Williams TA, Gomez-Sanchez CE, Rainey WE, Giordano TJ, Lam AK, Marker A, Mete O,
 Yamazaki Y, Zerbini MCN, Beuschlein F, et al. International Histopathology Consensus for
 Unilateral Primary Aldosteronism. *J. Clin. Endocrinol. Metab.* 2021;106:42–54.
- Eguchi K, Hoshide S, Nagashima S, Maekawa T, Sasano H, Kario K. An adverse pregnancyassociated outcome due to overlooked primary aldosteronism. *Intern. Med.* 2014;53:2499–
 2504.
- 26. Teo AED, Garg S, Haris Shaikh L, Zhou J, Karet Frankl FE, Gurnell M, Happerfield L,
- 381 Marker A, Bienz M, Azizan EAB, et al. Pregnancy, Primary Aldosteronism, and Adrenal

382 CTNNB1 Mutations . *N. Engl. J. Med.* 2015;373:1429–1436.

- 383 27. Shiraishi K, Kikuta K, Nitta Y, Matsuyama H. Laparoscopic adrenalectomy due to primary
 aldosteronism during pregnancy. *Acta Urol. Jpn.* 2014;60:381–385.
- Shekhar S, Haykal R, Kamilaris C, Stratakis CA. Curative resection of an aldosteronoma
 causing primary aldosteronism in the second trimester of pregnancy. 2020;
- Nursal TZ, Caliskan K, Ertorer E, Parlakgumus A, Moray G. Laparoscopic treatment of
 primary hyperaldosteronism in a pregnant patient. *Can. J. Surg.* 2009;52:188–190.
- 389 30. Shigematsu K, Nishida N, Sakai H, Igawa T, Suzuki S, Kawai K, Takahara O. Primary
- aldosteronism with aldosterone-producing adenoma consisting of pure zona glomerulosatype cells in a pregnant woman. *Endocr. Pathol.* 2009;20:66–72.
- 392 31. Lenzini L, Prisco S, Caroccia B, Rossi GP. Saga of familial hyperaldosteronism yet a new
 393 channel. *Hypertension*. 2018;71:1010–1014.
- 394 32. Lifton RP, Dluhy RG, Powers M, Rich GM, Cook S, Ulick S, Lalouel JM. A chimaeric llβ hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and
 human hypertension. *Nature*. 1992;355:262–5.
- 397 33. Zarnegar R, Young WF, Lee J, Sweet MP, Kebebew E, Farley DR, Thompson GB, Grant
- CS, Clark OH, Duh QY. The aldosteronoma resolution score predicting complete resolution
 of hypertension after adrenalectomy for aldosteronoma. *Ann. Surg.* 2008;247:511–518.
- 400 34. Vidyasagar S, Kumar S, Morton A. Screening for primary aldosteronism in pregnancy.
 401 *Pregnancy Hypertens*. 2021;25:171–174.
- 402 35. Gunganah K, Carpenter R, Drake WM. Eplerenone use in primary aldosteronism during
 403 pregnancy. *Clin. Case Reports*. 2016;4:81–82.

404	36.	Eschler DC, Kogekar N, Pessah-Pollack R. Management of Adrenal Tumors in Pregnancy.
405		Endocrinol. Metab. Clin. North Am. 2015;44:381–397.
406	37.	Escher G. Hyperaldosteronism in pregnancy. Ther. Adv. Cardiovasc. Dis. 2009;3:123-132.
407	38.	Rossi GP, Cesari M, Cuspidi C, Maiolino G, Cicala MV, Bisogni V, Mantero F, Pessina AC.
408		Long-term control of arterial hypertension and regression of left ventricular hypertrophy with
409		treatment of primary aldosteronism. Hypertension. 2013;62:62-69.
410	39.	Rossi GP. Primary Aldosteronism: JACC State-of-the-Art Review. J. Am. Coll. Cardiol.
411		2019;
412	40.	Groves TD, Corenblum B. Spironolactone therapy during human pregnancy. Am. J. Obstet.
413		Gynecol. 1995;172:1655–1656.
414	41.	De Arriba G, Sánchez-Heras M, Basterrechea MA. Gitelman syndrome during pregnancy: A
415		therapeutic challenge. Arch. Gynecol. Obstet. 2009;280:807-809.
416	42.	Kolkhof P, Jaisser F, Kim SY, Filippatos G, Nowack C, Pitt B. Steroidal and novel non-
417		steroidal mineralocorticoid receptor antagonists in heart failure and cardiorenal diseases:
418		Comparison at bench and bedside. In: Handbook of Experimental Pharmacology. Handb Exp
419		Pharmacol; 2017. p. 271–305.
420	43.	
421		https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/215341Orig1s000IntegratedR.pd
422		f.
423	44.	Sukor N, Gordon RD, Yee KK, Jones M, Stowasser M. Role of unilateral adrenalectomy in
424		bilateral primary aldosteronism: A 22-year single center experience. J. Clin. Endocrinol.
425		Metab. 2009;94:2437–2445.
426	45.	Sanga V, Lenzini L, Seccia TM, Rossi GP. Familial hyperaldosteronism type 1 and

427	pregnancy: successful treatment with low dose dexamethasone. Blood Press. 2021;30:133-

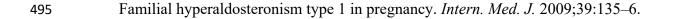
428 137.

429 46. Bramham K, Parnell B, Nelson-Piercy C, Seed PT, Poston L, Chappell LC. Chronic
430 hypertension and pregnancy outcomes: Systematic review and meta-analysis. *BMJ*.
431 2014;348.

- 432 47. Wu DD, Gao L, Huang O, Ullah K, Guo MX, Liu Y, Zhang J, Chen L, Fan JX, Sheng JZ, et
 433 al. Increased Adverse Pregnancy Outcomes Associated with Stage 1 Hypertension in a Low434 Risk Cohort: Evidence from 47 874 Cases. *Hypertension*. 2020;772–780.
- 435 48. Tita AT, Szychowski JM, Boggess K, Dugoff L, Sibai B, Lawrence K, Hughes BL, Bell J,
 436 Aagaard K, Edwards RK, et al. Treatment for Mild Chronic Hypertension during Pregnancy.
 437 *N. Engl. J. Med.* 2022;386:1781–1792.
- 438 49. Lecarpentier E, Tsatsaris V, Goffinet F, Cabrol D, Sibai B, Haddad B. Risk Factors of
 439 Superimposed Preeclampsia in Women with Essential Chronic Hypertension Treated before
 440 Pregnancy. *PLoS One*. 2013;8.
- 441 50. Rossi GP, Crimi F, Rossitto G, Amar L, Azizi M, Riester A, Reincke M, Degenhart C,

442 Widimsky J, Naruse M, et al. Identification of Surgically Curable Primary Aldosteronism by

443 Imaging in a Large, Multiethnic International Study. J. Clin. Endocrinol. Metab.


444 2021;106:E4340–E4349.

- 445 51. Santos CMDC, Pimenta CADM, Nobre MRC. The PICO strategy for theresearch question
 446 construction and evidence search. Rev. Lat. Am. Enfermagem. 2007;15:508–511.
- 447 52. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, Clarke M,
- 448 Devereaux PJ, Kleijnen J, Moher D. The PRISMA statement for reporting systematic
- 449 reviews and meta-analyses of studies that evaluate health care interventions: explanation and

450 elaboration. *PLoS Med.* 2009;6.

- 451 53. Quinkler M, Diederich S. Difference of in vivo and in vitro antimineralocorticoid potency of
 452 progesterone. *Endocr. Res.* 2002;28:465–70.
- 453 54. Zelinka T, Petrák O, Rosa J, Holaj R, Štrauch B, Widimský J. Primary Aldosteronism and
 454 Pregnancy. *Kidney Blood Press. Res.* 2020;45:275–285.
- 455 55. Krysiak R, Samborek M, Stojko R. Primary aldosteronism in pregnancy. *Acta Clin. Belg.*456 2012;67:130–134.
- 457 56. Albiger NM, Sartorato P, Mariniello B, Iacobone M, Finco I, Fassina A, Mantero F. A case
- of primary aldosteronism in pregnancy: Do LH and GNRH receptors have a potential role in
 regulating aldosterone secretion? *Eur. J. Endocrinol.* 2011;164:405–412.
- 460 57. Lu W, Zheng F, Li H, Ruan L. Primary aldosteronism and pregnancy: A case report:
 461 Clinical-Scientific Notes. *Aust. New Zeal. J. Obstet. Gynaecol.* 2009;49:558.
- 462 58. Al-Ali NA, El-Sandabesee D, Steel SA, Roland JM. Conn's syndrome in pregnancy
 463 successfully treated with amiloride. *J. Obstet. Gynaecol. (Lahore).* 2007;27:730–731.
- 464 59. Takehiko Murakami, Eriko Watanabe Ogura, Yuji Tanaka MY. Case report High blood
 465 pressure lowered by pregnancy. 2000;356:2000.
- 466 60. Nezu M, Miura Y, Noshiro T, Inoue M. Primary aldosteronism as a cause of severe
 467 postpartum hypertension in two women. *Am. J. Obstet. Gynecol.* 2000;182:745–746.
- Kreze A, Kothaj P, Dobáková M, Rohoň S. Primary aldosteronism caused by aldosteroneproducing adenoma in pregnancy Complicated by EPH gestosis. *Wien. Klin. Wochenschr.*1999;111:855–857.
- 471 62. Fujiyama S, Mori Y, Matsubara H, Okada S, Maruyama K, Masaki H, Yonemoto T, Nagata

- T, Umeda Y, Matsuda T, et al. Primary aldosteronism with aldosterone-producing adrenal
 adenoma in a pregnant woman. *Intern. Med.* 1999;38:36–39.
- 474 63. Saito Y, Omoto T, Fukuda M. Lobular pattern of choriocapillaris in pre-eclampsia with
 475 aldosteronism. *Br. J. Ophthalmol.* 1990;74:702–703.
- 476 64. Kosaka K, Onoda N, Ishikawa T, Iwanaga N, Yamamasu S, Tahara H, Inaba M, Ishimura E,
- 477 Ogawa Y, Hirakawa K. Laparoscopic adrenalectomy on a patient with primary aldosteronism
 478 during pregnancy. *Endocr. J.* 2006;53:461–466.
- 479 65. Shalhav AL, Landman J, Afane J, Levi R, Clayman R V. Laparoscopic adrenalectomy for
 480 primary hyperaldosteronism during pregnancy. *J. Laparoendosc. Adv. Surg. Tech. Part A.*481 2000;10:169–171.
- 482 66. Solomon CG, Thiet MP, Moore F, Seely EW. Primary hyperaldosteronism in pregnancy: A
 483 case report. *J. Reprod. Med. Obstet. Gynecol.* 1996;41:255–258.
- Baron F, Sprauve ME, Huddleston JF, Fisher AJ. Diagnosis and surgical treatment of
 primary aldosteronism in pregnancy: A case report. *Obstet. Gynecol.* 1995;86:644–645.
- 486 68. Aboud E, De Swiet M, Gordon H. Primary aldosteronism in pregnancy Should it be treated
 487 surgically ? *Ir. J. Med. Sci.* 1995;164:279–280.
- 488 69. Ronconi V, Turchi F, Zennaro MC, Boscaro M, Giacchetti G. Progesterone increase
 489 counteracts aldosterone action in a pregnant woman with primary aldosteronism. *Clin.*490 *Endocrinol. (Oxf).* 2011;74:278–279.
- Campino C, Trejo P, Carvajal CA, Vecchiola A, Valdivia C, Fuentes CA, Delgado JF, Lagos
 CF, Aglony M, Carrasco C, et al. Pregnancy normalized familial hyperaldosteronism type I:
 A novel role for progesterone. *J. Hum. Hypertens.* 2015;29:138–9.
- 494 71. Hamilton E, O'Callaghan C, O'Brien RM, Stowasser M, Gordon R, Zajac J, Grossmann M.

496 72. Mulatero P, Cella SM Di, Williams TA, Milan A, Mengozzi G, Chiandussi L, Gomez497 Sanchez CE, Veglio F. Glucocorticoid remediable aldosteronism: Low morbidity and
498 mortality in a four-generation Italian pedigree. *J. Clin. Endocrinol. Metab.* 2002;87:3187–91.

499 73. Wyckoff JA, Seely EW, Hurwitz S, Anderson BF, Lifton RP, Dluhy RG. Glucocorticoid500 remediable aldosteronism and pregnancy. *Hypertension*. 2000;35:668–72.

501

502 Tables and Figures Legends

503 Figure 1: Changes in plasma aldosterone concentration (PAC, ng/dl), direct active renin concentration (DRC, mIU/l), and aldosterone-renin ratio (ARR, ng/mIU) from the 8th to the 38th gestational week 504 in a multiethnic cohort of women on a normal sodium intake (100-150 Na⁺ mEq/day) during normal 505 pregnancy. Values were re-elaborated with the ARR-app ¹⁶ from Wilson et al. ¹⁷. The square symbols 506 show mean and 95% confidence interval. The grey circles and lines indicate values three-fold higher 507 (for PAC and ARR) or lower (for DRC) than the 95% confidence interval. The dashed areas indicate 508 values that should raise the suspicion of PAP. Please note that as the spread of the values increased 509 toward the end of pregnancy, the dashed areas narrowed. Please also note that up to the 32th 510 511 gestational week the proposed ARR cut-offs are lower than the 20.6 ng/mIU (identified here by the horizontal line) used to identify PA before and after pregnancy ¹⁸. 512

Abbreviations: ARR: aldosterone-renin ratio; DRC: direct renin concentration; n. pat.: number of
patients; PAC: plasma aldosterone concentration.

515 Figure 2: Maternal and foetal complications rate in pregnancy in women with unilateral medically

treated PA, unilateral surgically treated PA during pregnancy, bilateral medically treated PA and

- 517 FH-1. The overall rate of complications was compared with Chi-square test. For comparisons
- 518 between groups on overall complications see Table S5.

- 519 Abbreviations: C-section: caesarean section; IUGR: intrauterine growth restriction; n: number.
- 520 Figure 3: Maternal and foetal complications rate in pregnancy in women with sporadic PA vs
- 521 essential hypertension ⁴⁹. For comparisons between groups on overall complications see Table S6.
- 522 Abbreviations: EH: essential hypertension; IUGR: intrauterine growth restriction.
- Figure 4: Proposed algorithm for the screening and management of women with hypertension andpossible hyperaldosteronism.
- * Corresponding values are 26 (ng/mL)/(mg/mL/hour). For conversion use the ARR-app ¹⁶.
- 526 Abbreviations: ARR: aldosterone-renin ratio; AVS: adrenal venous sampling; BP: blood pressure;
- 527 FH-1: familial hyperaldosteronism type 1; HT: hypertension; MRA: mineralocorticoid receptor
- 528 antagonist; PA: primary aldosteronism.
- Table 1: Characteristics of the women with PAP and results of the analysis of the cases reported from1990 to 2021. For extended version of this table see Table S4.
- Abbreviations: ARR: aldosterone-renin ratio; AVS: adrenal venous sampling; BP: blood pressure; C section: caesarean section; CT: computed tomography; dexa.: dexamethasone; FH-1: familial hyperaldosteronism type 1; HT: hypertension; ICU: intensive care unit; IUFD: intrauterine foetal death; IUGR: intrauterine growth restriction; LA: laparoscopic adrenalectomy; MR: magnetic resonance; MRA: mineralocorticoid receptor antagonist; n: number; N/A: not available; NA: not applicable; PA: primary aldosteronism; PE: preeclampsia; pregn.: pregnancy; SGA: small for gestational age; tr.: trimester; US: ultrasound; w.: gestational week.

Tables and Figures

Figure 1:

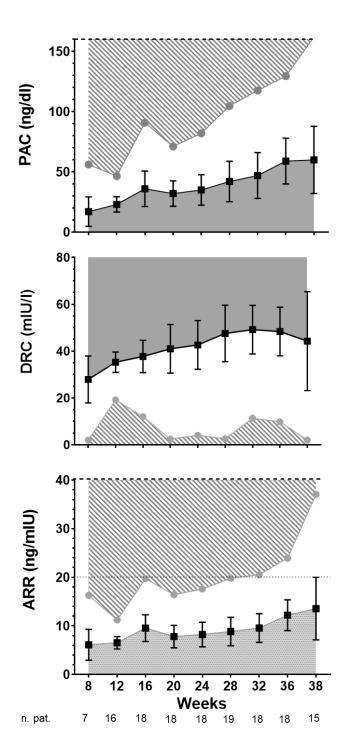


Table 1:

	N. of cases	Mean age (ys)	Previous pregnancies	HT discover (timing and BP increase in pregnancy)	PA diagnosis (timing)	Adrenalectomy (timing)	AVS guided (n)	Histological confirmation	HT cure after adrenalectomy (clinically / biochemically)
Unilateral medically treated PA	28	30.7	7/28 (2/7 complicated)	 12 before pregnancy 14 during pregnancy → BP increase during 2nd trimester (mean 20.8 w, ranging from 8 to 35 w) 2 in the first weeks after delivery 	 before conception (AVS confirmed) during pregnancy after pregnancy AVS confirmed) 	27/28 after pregnancy (19.5 months after delivery) (one woman is waiting for surgery)	9/28 (32%)	27/27 (100%)	23/27 (85%) / 14/14 (100%)
Unilateral surgically treated PA during pregnancy	10	27.7	4/10 (4/4 complicated)	 8 before pregnancy 2 during pregnancy → BP increase around 11-12 w 	3 before conception 7 during pregnancy (in Shiraishi et al. case ²⁷ ACTH-stimulated AVS was performed during pregnancy before 24 th w)	10/10 during 2 nd trimester (range 14-26 w)	2/10 (20%)	10/10 (100%)	1/10 (10%) / 1/1 (100%)
Bilateral medically treated PA	15	30.7	3/7 (2/3 complicated) (unknown for 8 women)	15 before pregnancy \rightarrow BP increase mainly during the 2 nd – 3 rd trimester (mean 24 w)	13 before conception(9 AVS confirmed)2 after pregnancy (both AVS confirmed)	0/7	11/15 (73%)	NA	NA
FH-1	27	26.2	12/27 (not known if complicated)	most of the cases before \rightarrow generally good BP control during pregnancy without medications	most of the cases before pregnancy	0/27	NA	NA	NA

	Mean n. of anti-HT drugs before pregnancy	Mean n. of anti-HT drugs 1 st trimester	Mean n. of anti-HT drugs 2 nd trimester	Mean n. of anti-HT drugs 2 nd trimester after LA	Mean n. of anti-HT drugs 3 rd trimester	Mean n. of anti-HT drugs at follow-up after LA	MRA use	Delivery (preterm miscarriage)	Complicated pregnancies	C- section	Foetal mortality	IUGR	Newborn ICU stay
Unilateral medically treated PA	l (data available for 4 women)	0.67	1.27	NA	1.44	0.37	1/28 no male foetus feminiza tion	13/28 (46.4%) (mean 34.5 w) 1/28 (3.6%) (at 10 th w)	17/28 (60.7%) (8 cases by PE, 4 by foetal distress, 2 by premature membrane rupture, 1 by HELLP syndrome, 1 by abruptio placentae, 1 by herpes genitalis, 1 by breech presentation, 1 by miscarriage)	17/27 (63%) (14/17 urgent)	2/28 (7%) (1 miscarriage at 10 th w; 1 baby died after 3 months ICU stay after urgent C- section at 27 w for PE)	6/27 (22%)	2/27 (7.4%)
Unilateral surgically treated PA during pregnancy	1.5 (data available for 5 women)	1.50 (at least 6 women over 10 needed a drug)	2.25	1.00	1.00	2	2/10 no male foetus feminiza tion	6/10 (60%) (mean 33.9 w) 1/10 (10%) (at 26 th w for failure in placenta blood flow)	6/10 (60%) (3 cases by PE, 2 by impaired umbilical artery flow with foetal distress, 1 by miscarriage)	6/9 (66.7%) (4/6 urgent)	2/10 (20%) (1 miscarriage at the 26 th gestational w; 1 baby died after 3 months ICU stay for sepsis after urgent C-section at 28 w for PE)	5/10 (50%)	3/9 (33.3%)
Bilateral medically treated PA	1 (6 women over 7 needed at least 1 drug, 1 no drugs)	0.4 (data available for 5 women)	1.3	NA	0.8 (data available for 5 women)	NA	0/15	10/15 (66.6%) (mean 33.3 w) 2/15 (13.3%) (at 12 th and at 20 th w)	10/15 (66.6%) (5 cases by PE, 2 by impaired umbilical artery flow, 2 by miscarriage, 1 by premature membrane rupture and antepartum hemorrhage)	11/14 (78.6%) (7/11 urgent)	(13.3%) (one miscarriage at the 12th and one at the 20th w)	5/14 (35.7 %)	2/14 (14.3%)
FH-1	1	0.1	0.04 (data were available only for half patients)	NA	0.18	NA	0/27 (3 cases took K ⁺ - sparing diuretics not better defined)	2/19 (10.5%) 0/27 (0%)	5/27 (18.5%) (1 PE, 1 chorioamnionitis, 1 failure of placental separation, 2 consistent blood loss during delivery)	7/27 (26%) (4/7 urgent)	0/27 (0%)	0/27 (0%)	N/A
Non- familial PA (excluding FH-1 cases)							,	29/53 (54.7%) 4/53 (7.5%)	33/53 (62.2%) (PE 16 cases: 30.2%)	34/50 (68%)	6/53 (11.3%)	16/51 (31.4 %)	7/50 (14%)

Figure 2:

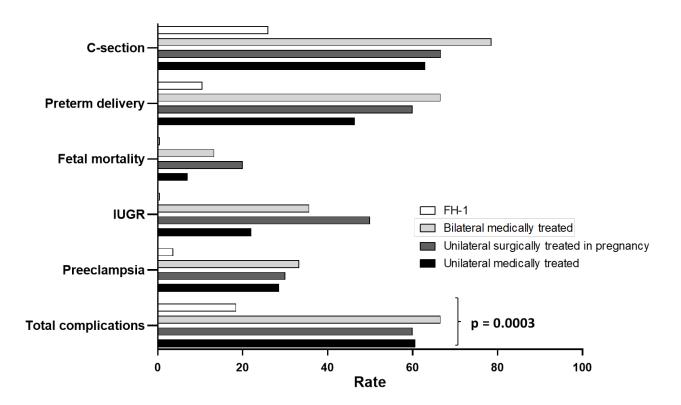


Figure 3:

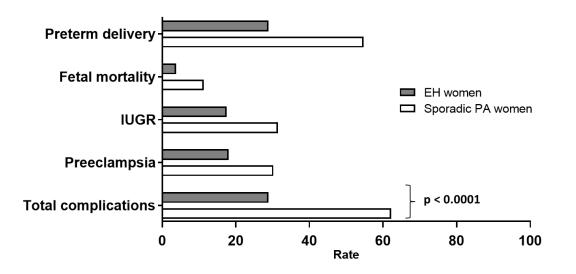
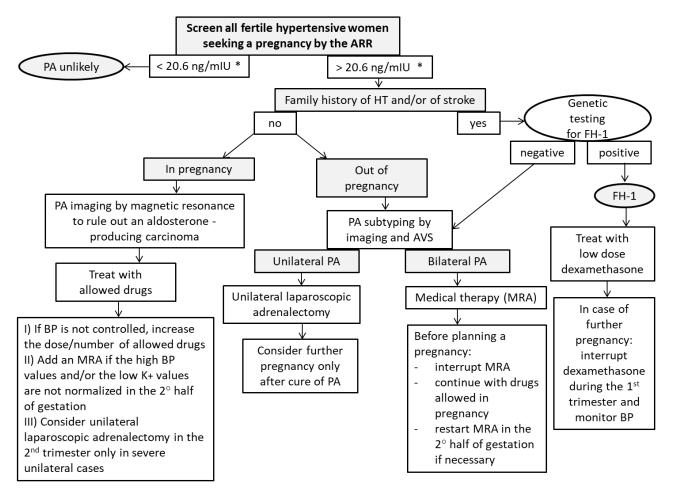



Figure 4:

ONLINE-ONLY DATA SUPPLEMENT

Management and Outcomes of Primary Aldosteronism in Pregnancy:

A Systematic Review

Viola Sanga^{1,2}, Giacomo Rossitto^{1,3}, Teresa Maria Seccia¹, Gian Paolo Rossi¹

¹ Hypertension and Emergency Unit, Department of Medicine - DIMED, University of Padua, Italy ² PhD Arterial Hypertension and Vascular Biology, Department of Medicine – DIMED, University of Padua, Italy

³ Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK

List of Content:

Supplemental text

Complete Methods

FH-1 overview

Foetal outcomes in medically treated PA women: unilateral vs bilateral forms

Foetal outcomes in unilateral PA forms: medical vs surgical treatment during pregnancy

Characteristics of medically treated women with PAP: complicated vs non-complicated pregnancies

Subsequent pregnancies

Supplemental Tables and Figures

Tables S1-S6

Figures S1-S4

Supplemental text

Complete Methods

We searched the PubMed and EuropePMC databases using a Population, Intervention, Comparison and Outcome (PICO) strategy ⁵¹ (Table S1) and the Preferred Reporting Items for Systematic reviews and Meta-Analyses Statement (PRISMA) method ⁵². The following boolean operators ['Primary aldosteronism' OR 'Hyperaldosteronism'] AND ['Pregnancy' OR 'Pregnant'] (Table S1) were used to identify available information on management of PA in pregnancy (Figure S1). Table S2 provides comprehensive data on the key information that were extracted from the retrieved papers.

FH-1 overview

In FH-1, BP values fell during the 1st trimester along with the generally modest increase of aldosterone production, the antagonist action of progesterone on the mineralocorticoid receptor ⁵³ and the prostaglandin-induced resistance to angiotensin II ³⁶.

Immediate withdrawal of dexamethasone in those, who become pregnant, is advised, followed by careful monitoring of BP values and serum K^+ levels during the 1st and 2nd trimester ³, when both PAC and BP values rose. Very low- to low-dose dexamethasone can be used in these women if BP rises during the 2nd and/or the 3rd trimester, with dose titration to normalize high BP, PAC, renin and serum K^+ levels. Our preference goes to dexamethasone, which potently suppresses the ACTH drive on the chimeric gene, and proved to be safe for both the mother and the baby in a recent case ⁴⁵.

Foetal outcomes in medically treated PA women: unilateral vs bilateral forms

In medically treated women with unilateral PA, foetal mortality rate (7% vs 13.3%) and IUGR rate (22% vs 35.7%) were half as common as in women with bilateral PA (Table 1). The rate of miscarriage rate was much lower in unilateral than in bilateral forms (3.6% vs 13.3%). However, in both conditions, a high proportion of preterm delivery occurred (46.4% vs 66.6%). The worse outcome seen in bilateral than in unilateral forms is not explained by treatment differences and, more likely, probably reflects the greater severity of the disease as both cohorts were similarly treated pharmacologically.

Foetal outcomes in unilateral PA forms: medical vs surgical treatment during pregnancy

In patients with unilateral PA, foetal outcomes were better in medically treated than in surgically treated women: the rate of baby death (7% vs 20%), IUGR (22% vs 50%) and of miscarriage (3.6% vs 10%) were lower (Table 1 and Figure 2). However, preterm delivery occurred in a high rate (46.4% vs 60%) in both treatment groups.

Characteristics of medically treated women with PAP: complicated vs non-complicated pregnancies

The complication rate of medically treated women with unilateral or bilateral PAP was 63%. Compared to non-complicated women, women with complications had a history of prior complicated pregnancies two-fold higher (13.6% vs 7%); their HT was diagnosed at a slightly younger age (26 vs 28.4 years old) and the BP increase occurred earlier during pregnancy (24.9 vs 30 week). Age (30.7 vs 30.8 years age) and the average number of anti-hypertensive drugs taken before conception (around 1 drug) were identical, but during pregnancy the mean number of anti-hypertensive drugs was three-fold higher in complicated than in non-complicated women (1.48 vs 0.54). Thus, on the whole, complicated cases seem to show a more severe form of HT than uncomplicated women.

Subsequent pregnancies

Reported PAP cases provided scant or no information and/or conflicting data on subsequent pregnancies. In 3 women, who were adrenalectomized after gestation a second pregnancy after some years was uncomplicated ^{25,54}; in another woman, who was not cured by adrenalectomy during gestation, but showed good control of high BP values with 3 antihypertensive agents, a new pregnancy was complicated by preeclampsia that required an emergency C-section ³⁵. In three women with bilateral PA, a new pregnancy was complicated: two women developed preeclampsia ^{8,54}; the third required C-section ⁵⁵.

Supplemental Tables and Figures

Table S1: PICO strategy applied for the research of clinical cases of patients with PA during pregnancy (articles from 1990 to 2021).

	Description
Population	[Primary aldosteronism OR hyperaldosteronism] AND [Pregnancy OR pregnant]
Intervention	Surgical OR Medical treatment
Comparison	Surgically vs Medically treated Primary aldosteronism
Outcome	Maternal outcomes (hypertension cure, complications, etc), foetal outcomes (survival, weight, ICU stay, etc)

Table S2: Parameters considered for the analysis.

	Parameters considered
Maternal features	Ethnicity
	Maternal age
	Previous pregnancies
	Comorbidities
	HT diagnosis (timing)
	PA identification (timing and diagnostic approach)
Pregnancy course	Complicated pregnancies rate
and complications	Miscarriage
	Preeclampsia (new-onset hypertension [blood pressure > 140/90 mmHg] plus new
	unexplained proteinuria [> 300 mg/24 hours or a urine protein/creatinine ratio of ≥ 0.3]
	after 20 weeks)
	Eclampsia (unexplained generalized seizures in patients with preeclampsia)
	Preterm delivery (before 37 th gestational week)
	Delivery week
	C-section rate, urgent C-section rate
Maternal outcomes	BP before, during, and after pregnancy
	Biochemical values before, during, and after pregnancy (direct renin, aldosterone,
	serum potassium, others)
	Drugs treatment before, during, and after pregnancy (HT drugs and potassium
	supplementation; use of MRA in pregnancy)
	Surgical therapy with adrenalectomy (timing and approach)
	Histological confirmation
	HT cure after adrenalectomy (clinically / biochemically)
Foetal outcomes	Survival rate
	Weight at birth and weight centile
	IUGR rate
	ICU stay
	Permanent disability

Abbreviations: BP: blood pressure; C-section: caesarean section; HT: hypertension; ICU: intensive care unit; IUGR: intrauterine growth restriction; MRA: mineralocorticoid receptor antagonist; PA: primary aldosteronism.

Table S3: Cases available in the literature (from 1990 to 2021) of patients affected by PA who underwent a pregnancy: treatment, BP control and outcomes.

14) Piccoli et al.	15) CT scan after	mg/d (increasing doses during	after delivery when BP	10) C section for	31) N/A	16) male neonate
2020 (case 1) 19	delivery (no clear	pregnancy)	increased again	foetal hypoxia,		weight 5-10th
15) Piccoli et al.	adenoma,	17) Amiloride 15 mg	8) N/A	uncontrolled		centile
2020 (case 2) 19	probable	18) Methyldopa, hydralazine and	9) HT before pregnancy; BP	HT and IUGR		17) normal
16) August 2019 ²⁰	unilateral	nifedipine L with scarce efficacy	increase at the 8 th month of	(40 w)		18) SGA
17) Teo et al. 2015	hyperplasia;	19) Nifedipine; at 24 w methyldopa	pregnancy	11) C section for		19) male neonate
(case 1) ²⁶	workup ongoing)	was added; at 27 w eplerenone 50	10) HT before pregnancy;	HT (39 w)		weight 10-
18) Eguchi et al.	16) CT scan after	mg/d was added, up titrated to	worsened hypertension,	12) C section for		25 th centile,
2014 ²⁵	delivery	100 mg/d	despite escalating	PE (31 w)		with no
19) Cabassi et al.	17) CT scan after	20) Calcium channel blocker	antihypertensive treatment	13) Spontaneous		evidence of
2012 21	delivery	21) Methyldopa 1500 mg/d	11) HT found in pregnancy;	delivery (40 w)		feminization
20) Albiger et al.	18) AVS confirmed	22) Nitroglycerine + nifedipine +	gradual BP increase	14) Vaginal		20) normal
2011 56	after delivery	labetalol + furosemide	12) HT before pregnancy;	delivery (39 w)		21) spontaneous
21) Fikri	19) MR during	23) Amiloride 15 mg/d; from 37 w:	worsened HT during 2nd	15) C section for		miscarriage
Benbrahim	pregnancy, CT	amiloride 20 mg/d + methyldopa	trimester	PE, severe		22) N/A
2011 22	scan after	1g/d + labetalol	13) Mild gestational hypertension	IUGR and		23) normal
22) Lu et al. 2009 57	delivery	24) Dihydralazine (2 mg/h,	(BP levels not exceeding	inversion of		24) foetal growth
23) Al-ali et al.	20) AVS confirmed	intravenously) and methyldopa	150/90 mmHg)	umbilical blood		retardation
2007 58	after delivery	(1000 mg/day, p.o.)	14) HT found at 25 w; BP not	flow (27 w)		25) male neonate
24) Okawa et al.	21) CT scan and MR	25) Hydralazine chloride 90 mg/d	systematically measured	16) C section for		weight 2.5-5 th
2002 7	after delivery	and nifedipine 40 mg/d since 36	during pregnancy; PA	PE (32 w)		centile
25) Matsumoto et	22) US scan during	W	diagnosed after delivery	17) Vaginal		26) N/A
al. 2000 ⁶	pregnancy, CT	26) N/A	15) HT before pregnancy	delivery (38 w)		27) N/A
26) Murakami et al.	scan after	27) No therapy	(diagnosed in a previous	18) C section for		28) N/A
2000 59	delivery	28) No therapy	pregnancy complicated by	PE (30 w)		29) deceased at
27) Nezu et al.	23) AVS confirmed	29) N/A; the patient refused	PE); poor BP control during	19) Delivery for		the 9 th day
2000 (case 1) 60	after delivery	adrenalectomy proposed during	pregnancy; PA diagnosed	persistent HT		after delivery
28) Nezu et al.	24) CT scan and I-	the 2 nd trimester	after delivery	(35 w)		(27 w)
2000 (case 2) 60	131 iodo-methyl-	30) Methyldopa 750 mg/d; at 30 w	16) HT before pregnancy; BP not	20) C section for		(weight N/A)
29) Kreze et al.	norcholesterol	switched to hydralazine	controlled in the 3 rd trimester	uncontrolled		30) foetal
1999 ⁶¹	scintigraphy after	intravenously + nifedipine 40	despite increasing doses of	HT (36 w)		distress;
30) Fujiyama et al.	delivery	mg/d for uncontrolled HT	nifedipine and labetalol; APA	21) Spontaneous		female
1999 ⁶²	25) AVS confirmed	31) N/A	diagnosed after delivery	miscarriage for		neonate
31) Saito et al. 1990	before pregnancy			persistent HT		weight 50-
63				(10 w)		75 th centile

26) CT scan after	17) HT found at 17 w; BP	22) Emergency C	31) N/A
delivery	increase at 37 w; APA	section for	
27) CT scan and I-	diagnosed after delivery	HELLP, HT	
131 iodo-methyl-	18) HT before pregnancy; BP	and placenta	
norcholesterol	increase at 24 w; poor BP	previa (25 w)	
scintigraphy	control with drugs; APA	23) Vaginal	
during dexa.	diagnosed after delivery	delivery (38 w)	
administration	19) HT before pregnancy; BP	(moderate PE at	
after delivery	increase to 155/110 mmHg at	(1100001010 1 12 ut 37 w)	
28) CT scan and I-	21 w under nifedipine; APA	24) Elective C	
131 iodo-methyl-	suspected during pregnancy	section for	
norcholesterol	20) HT found at 28 w; well	uncontrolled	
scintigraphy	controlled; APA diagnosed	HT, foetal heart	
during dexa.	after delivery	rate	
administration	21) HT found at 8 w; poor	deceleration	
after delivery	control with methyldopa;	and foetal	
29) N/A	APA diagnosed after delivery	growth	
30) CT scan, MR and	22) HT found at 20 w; poor	restriction (27	
I-131 jodo-	control with several drugs;	w)	
methyl-	APA suspected during	25) Abruptio	
norcholesterol		placentae (38	
scintigraphy	pregnancy 23) HT found at 17 w; good	w)	
during dexa.	control until 37 w; APA	26) At term	
administration	diagnosed after delivery	20) At term 27) N/A	
after delivery	24) HT before pregnancy; BP	27) N/A 28) N/A	
31) CT scan after	increase at 22 w (180/100	29) C section for	
delivery	mmHg); despite medical	29) C section for PE (27 w)	
denvery	0,7	× ,	
	treatment, BP remained uncontrolled	30) C section for	
		acute	
	25) APA diagnosed before	pulmonary edema of the	
	pregnancy not yet treated; BP		
	increase at 31 w	mother + foetal	
	26) HT diagnosed before	distress (31 w)	
	pregnancy; BP improvement	31) C section for	
	during pregnancy till	PE (34 w)	

						1	normotension; APA				
							diagnosed after delivery				
						27) Normotensive before and				
						21	during pregnancy; BP				
							increase 1 month post-partum				
							and consequent APA				
							diagnosis				
						28) Normotensive before and				
						20	during pregnancy; BP				
							increase 18 days post-partum				
							and consequent APA				
							diagnosis				
						29) Poor BP control; APA				
							diagnosed in pregnancy				
						30) HT found at 24 w;				
							uncontrolled HT under				
							treatment, complicated by				
							pulmonary edema; APA				
							diagnosed after delivery				
						31) N/A; APA diagnosed after				
							delivery				
Unilateral	10	1) Shekhar et al.	1) AVS confirmed	1)	Hydralazine 50 mg every 8 h and	1)	APA diagnosed before	1) I	Preterm	1) N/A	1) IUGR
surgically		2020 28	before pregnancy		labetalol $300 + 400 \text{ mg from 5 w}$		pregnancy; poor BP control,	(delivery by C	2) N/A	2) male neonate
treated PA		2) Gunganah et al.	2) MR during		when pregnancy was discovered;		solved with adrenalectomy;	S	section due to	3) N/A	with
during		2015 ³⁵	pregnancy		for uncontrolled HT, she did		after surgery, HT cured	I	[UGR (35 w)	4) N/A	significant
pregnancy		3) Shiraishi et al.	3) MR during		adrenalectomy at 19 w; then, no	2)	HT before pregnancy; BP	2) U	Urgent C	5) N/A	growth
		2014 ²⁷	pregnancy		need for anti-hypertensive		increase at 10 w; APA	5	section for PE	6) N/A	retardation,
		4) Nursal et al. 2009	4) MR during		medications		suspected during pregnancy;	((28 w) (Four	7) N/A	but no
		29	pregnancy	2)	Amiloride, methyldopa and		scarce control with therapy	3	years later,	8) N/A	evidence of
		5) Shigematsu et al.	5) MR during		doxazosin from 10 w; for	1	until adrenalectomy; after		during her sixth	9) N/A	feminization;
		2009 ³⁰	pregnancy		uncontrolled HT with this		surgery, good control with	_	pregnancy,	10) N/A	after 3
		6) Kosaka et al.	6) MR during		therapy, eplerenone was added at	1	drugs		despite well-		months of
		2006 64	pregnancy		18 w, starting at 50 mg and	3)	BP increase from the		controlled		ICU stay, he
		7) Shalhav et al.	7) MR during		quickly titrating to 200 mg/d in		beginning of pregnancy;		hypertension on		died from
		2000 65	pregnancy		divided doses; for uncontrolled		APA suspected during	t	three		sepsis

8) Solomon et al.	8) CT scan before		HT at 20 w adrenalectomy was		pregnancy; poor control		antihypertensiv		neonate
1996 ⁶⁶	pregnancy		performed; after that, she		during the whole pregnancy,		e agents, she		weight 5 th
9) Baron et al. 1995	9) MR during		continued with methyldopa and		also after adrenalectomy		developed pre-		centile
67	pregnancy		doxazosin	4)	HT before pregnancy		eclampsia and		SGA and
10) Aboud et al.	10) CT scan before	3)	Spironolactone 50 mg/d,		complicated by intracranial		required an		foetal
1995 ⁶⁸	pregnancy		methyldopa 375-750 mg/d,		hematoma 4 years before;		emergency		distress;
			nifedipine 20-60 mg/d;		APA suspected during		cesarean		weight at
			adrenalectomy at 24 w; then,		pregnancy; BP increase at 19		section to		birth < 5 th
			methyldopa 375-750 mg/d,		w to 220/140 mmHg despite		deliver a		centile; he
			nifedipine 20-60 mg/d, doxazosin		medical treatment; BP did not		healthy female	1	needed
			2 mg/d		normalize after		infant)	:	respiratory
		4)	Methyldopa 2000 mg/d;		adrenalectomy, so therapy	3)	C section for		ventilation
			adrenalectomy at 17 w; BP did		was restarted with good		persistent HT		and
			not normalize after		control		(30 w)		developed
			adrenalectomy, so she restarted	5)	HT found at 11 w (168/99	4)	C section for		pulmonary
			methyldopa with good control		mmHg); APA suspected		foetal distress		infection, but
		5)	N/A; adrenalectomy at 26 w for		during pregnancy		(30 w)		after 7 weeks
			hypokalemia	6)	HT before pregnancy; APA	5)	C section (38		of ICU he
		6)	Nifedipine 40 mg/d + hydralazine		suspected during pregnancy;		w)		was
			90 mg/d then surgery at 17 w for		BP increase at 14 w; BP	6)	IUFD (26 w) -		discharged
			uncontrolled HT and severe		control improved after		stillborn		normal
			hypokalemia; after surgery, she		surgery but medications were	7)	Induced		IUGR (21 w)
			continued with nicardipine 20		still required		delivery per		> IUFD (26
			mg/d	7)	HT found at 12 w (254/154		persistent HT		w) - stillborn
		7)	Amiloride 10 mg/d + nisoldipine		mmHg); APA suspected		(34 w)		normal
			30 mg/d; she did adrenalectomy		during pregnancy; BP	8)	C section at		normal
			at 14 w (to prevent 3 rd trimester		increase at 34 w despite		term	9) :	normal
			BP peak); after surgery she		adrenalectomy and drugs	9)	Induced	10):	normal
			continued with nisoldipine 40	8)	HT before pregnancy (APA		delivery (41 w)		
			mg/d until 34 w when BP		suspected before pregnancy;		(mild PE)		
			increased and she was switched		she became pregnant before	10) Vaginal		
			to methyldopa 750 mg/d +		completion of evaluation);		delivery at term		
			labetalol 100 mg/d		BP under control until 2 nd				
		8)	High doses of nifedipine and		trimester; after				
			nadolol in the 1st trimester;		adrenalectomy, good control				

Bilateral	15	1) Vidyasagar et al.	1) AVS confirmed	 adrenalectomy at 15 w for uncontrolled HT; after surgery, anti-hypertensive medication was withdrawn, with good control; new BP increase at 36 w that responded to bed rest 9) Labetalol 200 mg/d; adrenalectomy at 17 w; then, good BP control without medications 10) Interrupted spironolactone, enalapril and furosemide at 8 w when pregnancy was discovered; no other information was provided on therapy during gestation; in the 2nd trimester she did adrenalectomy, that normalize BP values 1) N/A but at least 1 drug, no MRA 	 without medication until 36 w 9) HT before pregnancy; APA suspected in pregnancy; BP increase at 14 w; BP normalization after surgery 10) APA diagnosed before pregnancy; normotensive after adrenalectomy 1) HT before pregnancy 	 Miscarriage at 	1) N/A	1) Spontaneous
medically treated PA		2021 (case 1) ³⁴ 2) Vidyasagar et al. 2021 (case 2) ³⁴	before pregnancyAVS confirmedbefore pregnancy	 N/A but at least 1 drug, no MRA N/A but at least 1 drug, no MRA N/A but at least 1 drug, no MRA 	 2) HT before pregnancy 3) HT before pregnancy 4) HT before pregnancy 	12th w2) Urgent C section before	 2) N/A 3) N/A 4) N/A 	miscarriage 2) SGA, ICU stay
		 3) Vidyasagar et al. 2021 (case 3) ³⁴ 4) Vidyasagar et al. 2021 (case 4) ³⁴ 5) Vidyasagar et al. 2021 (case 5) ³⁴ 6) Vidyasagar et al. 2021 (case 6) ³⁴ 7) Vidyasagar et al. 2021 (case 7) ³⁴ 8) Vidyasagar et al. 2021 (case 8) ³⁴ 	 AVS confirmed before pregnancy 	 5) N/A but at least 1 drug, no MRA 6) N/A but at least 1 drug, no MRA 7) N/A but at least 1 drug, no MRA 8) N/A but at least 1 drug, no MRA 9) > 1 antihypertensive drugs 10) Interrupted amiloride 10 mg at 5 w when pregnancy was discovered; BP remained controlled without medication 11) Interrupted enalapril and nifedipine when pregnancy was discovered, switching to nifedipine 40 mg and labetalol 	 5) HT before pregnancy 6) HT before pregnancy 7) HT before pregnancy 8) HT before pregnancy; BP increase from the 2nd trimester; bilateral PA diagnosed after pregnancy 10) bilateral PA diagnosed before pregnancy; normal BP values during pregnancy off treatment 	 37 w for PE 3) Urgent C section before 37 w for PE 4) Elective C section before 37 w for PE 5) Elective C section after 37 w 6) Elective C section after 37 w 	 5) N/A 6) N/A 7) N/A 8) N/A 9) N/A 10) N/A 11) N/A 12) N/A 13) N/A 14) N/A 15) N/A 	 SGA, ICU stay normal normal normal normal normal normal male neonate weight 5-10th centile normal pormal proventie proventie

HYPE/2021/18858 R3 40

9) Zelinka et al.	9) AVS confirmed	600 mg with poor BP control; at	11) bilateral PA diagnosed before	7) Vaginal after	centile;
2020 (case 14) 54	after pregnancy	27 w nifedipine was increased to	pregnancy; BP increase at 27	37 w	absent end-
10) Morton et	10) N/A	80 mg a labetalol to 1200 mg	w despite medications	8) Vaginal after	diastolic flow
al. 2015 (case 1) ⁸	11) N/A	12) Nifedipine 60 mg from 30 w	12) bilateral PA diagnosed before	37 w	and reduced
11) Morton et	12) N/A	13) Interrupted amiloride 10 mg at 5	pregnancy; BP increase at 30	9) C section for	cerebral flow
al. 2015 (case 2) ⁸	13) N/A	w when pregnancy was	w	PE (33 w)	(30 w)
12) Morton et	14) AVS confirmed	discovered and switched to	13) bilateral PA diagnosed before	10) Elective C	12) normal
al 2015 (case 3) ⁸	before pregnancy	labetalol 400 mg/d	pregnancy; BP increase at 30	section (38 w)	13) normal
13) Morton et	15) AVS confirmed	14) Methyldopa 750 mg/d; at 20 w	w	11) Urgent C	14) IUGR;
al. 2015 (case 5) ⁸	before pregnancy	uncontrolled HT despite	14) HT before pregnancy; good	section for	stillborn (20
14) Krysiak et		administration of methyldopa,	BP control until 19 w with	absent end-	w)
al. 2012 55		hydralazine, labetalol, diazoxide	methyldopa; at 20 w BP	diastolic flow	15) normal
15) Ronconi		and nifedipine	increase to 200/110 mmHg	and reduced	
et al. 2011 69		15) Amlodipine dose was reduced	and IUGR; bilateral PA	cerebral flow	
		during pregnancy till	diagnosed after delivery	(30 w)	
		discontinuation	15) bilateral PA diagnosed before	12) C section after	
			pregnancy; BP amelioration	an abrupt BP	
			during pregnancy that	increase and PE	
			allowed to discontinue	(36 w) (renal	
			amlodipine and maintain	biopsy, after	
			good BP control without	delivery,	
			medications	revealed IgA	
				nephropathy)	
				13) Emergency C	
				section because	
				of premature	
				membrane	
				rupture and	
				antepartum	
				hemorrhage	
				(30 w)	
				14) IUFD (20 w)	
				> stillborn	
				15) Vaginal	
				delivery (39 w)	

FH-1	27	1) Sanga et al. 2020	1) discontinued dexa. 0.50 mg	1) yes
		45	once pregnancy was known;	2) yes
		2) Campino et al.	restarted dexa. 0.25 mg o.d. at	3) yes
		2015 70	the end of 2nd trimester	4) yes
		3)Hamilton et al.	2) none (discontinued dexa. 0.25	5) yes
		2009 71	mg once pregnancy was	
		4) Mulatero et al.	known)	
		2002 72	3) none (discontinued verapamil	
		5) Wyckoff et al.	once pregnancy was known)	
		2000 73	4) not specified	
			5) 23% required ≥ 1	
			anti-hypertensive	
			medications: methyldopa	
			(n=2), potassium-sparing	
			diuretics (n=3), beta-blockers	
			(n=2), thiazides $(n=5)$	

Abbreviations: ARR: aldosterone-renin ratio; AVS: adrenal venous sampling; BP: blood pressure; C section: caesarean section; CT: computed tomography; dexa.: dexamethasone; FH-1: familial hyperaldosteronism type 1; HT: hypertension; ICU: intensive care unit; IUFD: intrauterine foetal death; IUGR: intrauterine growth restriction; LA: laparoscopic adrenalectomy; MR: magnetic resonance; MRA: mineralocorticoid receptor antagonist; N/A: not available; PA: primary aldosteronism; PE: preeclampsia; SGA: small for gestational age; US: ultrasound; w.: gestational week.

	N. of cases	Ethnicity	Mean age (ys)	Previous pregnancies	HT discover (timing and BP increase in pregnancy)	PA diagnosis (timing)	Adrenalectomy (timing)	AVS guided (n)	Histological confirmation	HT cure after adrenalectomy (clinically / biochemically)
Unilateral medically treated PA	28	18 caucasic 9 asiatic 1 black	30.7	7 women with previous pregnancies (2/7 with complicated pregnancies) 21 women primigravida	12 before pregnancy (age 26.8 ys) \rightarrow BP increase mainly during the 2 nd – 3 rd trimester (around 26.9 w) 14 during pregnancy \rightarrow BP increase during 2 nd trimester (mean 20.8 w, ranging from 8 to 35 w) 2 in the first weeks after delivery	1 before conception (AVS confirmed) 3 during pregnancy (2 nd trimester) 24 after pregnancy (around 18 months after delivery, ranging from 1 to 144 months) (8 AVS confirmed)	27/28 after pregnancy (mean time after delivery 19.5 months) (1 case is waiting for LA ²²)	9/28 (32%)	27/27 (100%)	Clinically: 23/27 (85%) Not cured: 3 cases did not reach the cure ⁵⁴ (the diagnosis of APA was also AVS-confirmed in 2 of them) despite biochemical cure in all 3 cases; these 3 patients needed 2 anti-hypertensive drugs after adrenalectomy Biochemically: 14/14 (100%)
Unilateral surgically treated PA during pregnancy	10	5 asiatic 3 black 2 caucasic	27.7	4 women with previous pregnancies and they were complicated 6 women primigravida	8 before pregnancy (mean age at diagnosis 24.1 ys) → BP increase mainly during the 1 st trimester 2 during pregnancy → BP	3 before conception 7 during pregnancy (through MR; in 1 case, also AVS was performed	10/10 (100%) during 2 nd trimester (range 14-26 w)	2/10 (20%) (in 1 case AVS was done before pregnancy; in Shiraishi et al. clinical case ²⁷ ACTH- stimulated AVS was	10/10 (100%)	Clinically: 1/10 (10%) (in this case, the diagnosis was done through TC, MR scan and AVS before conception ²⁸) Not cured: 6 showed persistent HT during 3 rd trimester and beyond (1 with HT responsive to bed rest, 1 complicated by mild PE, 3 with

Table S4: Characteristics of the PA patients who underwent a pregnancy and results of the analysis of the cases reported over 3 decades from 1990 to 2021.

					increase around 11-12 w	during pregnancy)		performed during pregnancy before 24 th w)		HT that needed 1-3 drugs, 1 with persistent HT where no information about administered therapy was provided) 2 had no resolution of HT after pregnancy Biochemically: 1/1 (100%)
Bilateral medically treated PA	15	15 caucasic	30.7	 3 women with previous pregnancies, 2 of them with complications 4 women primigravida 8 unknown 	15 before pregnancy (mean age at diagnosis $26.8 \text{ ys}) \rightarrow BP$ increase mainly during the $2^{nd} - 3^{rd}$ trimester (mean 24 w)	13 before conception (at least 9 AVS confirmed) 2 after pregnancy (both AVS confirmed)	0/15 (0%)	11/15 (73%)	not applicable	not applicable
FH-1	27	27 caucasic	26.2	12 women with previous pregnancies, not known if complicated 15 women primigravida	most of the cases before pregnancy → generally good BP control during pregnancy without medications	most of the cases before pregnancy	0/27 (0%)	not applicable	not applicable	not applicable

Abbreviations: ARR: aldosterone-renin ratio; AVS: adrenal venous sampling; BP: blood pressure; C section: caesarean section; CT: computed tomography; dexa.: dexamethasone; FH-1: familial hyperaldosteronism type 1; HT: hypertension; ICU: intensive care unit; IUFD: intrauterine foetal death; IUGR: intrauterine growth restriction; LA: laparoscopic adrenalectomy; MR: magnetic resonance; N/A: not available; PA: primary aldosteronism; PE: preeclampsia; SGA: small for gestational age; US: ultrasound; w.: gestational week.

(continued...)

	Mean n. of anti-HT before pregnancy	Mean n. of anti- HT drugs 1 st trimester	Mean n. of anti- HT drugs 2 nd trimester	Mean n. of anti- HT drugs 2 nd trimester after LA	Mean n. of anti- HT drugs 3 rd trimester	Mean n. of anti- HT drugs at follow- up after LA	MRA use	Delivery	Complicated pregnancies	C- section	Foetal mortality	IUGR	Newborn ICU stay
Unilateral medically treated PA	1 (data available for 4 women: 4 needed 1 drug)	0.67	1.27	not applicable	1.44	0.37	1/28 (no male foetus feminiza tion)	Preterm 13/28 (46.4%) (mean 34.5 w) Miscarriage 1/28 (3.6%) (at 10 th w)	17/28 (60.7%) (8 cases by PE, 4 by foetal distress, 2 by premature membrane rupture, 1 by HELLP syndrome, 1 by abruptio placentae, 1 by herpes genitalis, 1 by breech presentation, 1 by miscarriage)	17/27 (63%) (14/17 urgent)	2/28 (7%) (1 miscarriage at 10 th w; 1 baby died after 3 months ICU stay after urgent C-section at 27 w for PE)	6/27 (22%)	2/27 (7.4%)
Unilateral surgically treated PA during pregnancy	1.5 (data available for 5 women: 2 needed 3 drugs, 2 no drugs)	1.50 (at least 6 women over 10 needed a drug)	2.25	1.00	1.00	2	2/10 (no male foetus feminiza tion)	Preterm 6/10 (60%) (mean 33.9 w) Miscarriage 1/10 (10%) (at 26 th w for failure in placenta blood flow)	6/10 (60%) (3 cases by PE, 2 by impaired umbilical artery flow with foetal distress, 1 by miscarriage)	6/9 (66.7%) (4/6 urgent)	2/10 (20%) (1 miscarriage at the 26 th gestational w; 1 baby died after 3 months ICU stay for sepsis after urgent C- section at 28 w for PE)	5/10 (50%)	3/9 (33.3%)
Bilateral medically treated PA	1 (6 women over 7 needed at least 1 drug, 1 no drug; others unknown)	0.4 (data available for 5 women: 2 needed 1 drug, 3 no drugs)	1.3	not applicable	0.8 (data available for 5 women: 1 needed 2 drugs, 2 needed 1 drug, 2 no drugs)	not applicable	0/15	Preterm 10/15 (66.6%) (mean 33.3 w) Miscarriage 2/15 (13.3%) (one at the 12 th and one	10/15 (66.6%) (5 cases by PE, 2 by impaired umbilical artery flow, 2 by miscarriage, 1 by premature membrane rupture and antepartum hemorrhage)	11/14 (78.6%) (7/11 urgent)	2/15 (13.3%) (one miscarriage at the 12 th and one at the 20 th w)	5/14 (35.7 %)	2/14 (14.3%)

FH-1	1	0.1	0.04 (data were available only for half patients)	not applicable	0.18	not applicable	0/27 (3 cases took K ⁺ - sparing diuretics not better defined)	at the 20 th w) Preterm 2/19 (10.5%) Miscarriage 0/27 (0%)	5/27 (18.5%) (1 PE, 1 chorioamnionitis, 1 failure of placental separation, 2 consistent blood loss during delivery)	7/27 (26%) (4/7 urgent)	0/27 (0%)	0/27 (0%)	N/A
Non- familial PA (excluding FH-1 cases)								Preterm 24/45 (53.3%) Miscarriage 3/45 (6.7%)	28/45 (62.2%) (PE 13 cases: 28.8%)	29/43 (67.4%)	5/45 (11%)	14/44 (31.8 %)	5/43 (11.6%)

Table S5: Maternal and foetal complications rate in pregnancy in women with unilateral medically treated PA, unilateral surgically treated PA during pregnancy, bilateral medically treated PA and FH-1.

		FH-1	Sporadic PA women	Two-tailed p value *
Complicated pregnancies (n. over the total n. of	yes	5/27 (18.5 %)	33/53 (62.2 %)	0.0003
pregnancies)	no	22/27 (81.5 %)	20/53 (37.8 %)	

		Bilateral medically treated	Unilateral medically treated	Two-tailed p value *
Complicated pregnancies (n. over the total n. of	yes	10/15 (66.6 %)	17/28 (60.7 %)	0.7523
pregnancies)	no	5/15 (33.3 %)	11/28 (39.3 %)	

		Unilateral surgically treated in pregnancy	Sporadic medically treated PA	Two-tailed p value *
Complicated pregnancies (n. over the total n. of	yes	6/10 (60 %)	27/43 (62.8 %)	1.0000
pregnancies)	no	4/10 (40 %)	16/43 (37.2 %)	

		Unilateral medically treated	Unilateral surgically treated in pregnancy	Two-tailed p value *
Complicated pregnancies (n. over the total n. of	yes	17/28 (60.7 %)	6/10 (60 %)	1.0000
pregnancies)	no	11/28 (39.3 %)	4/10 (40 %)	

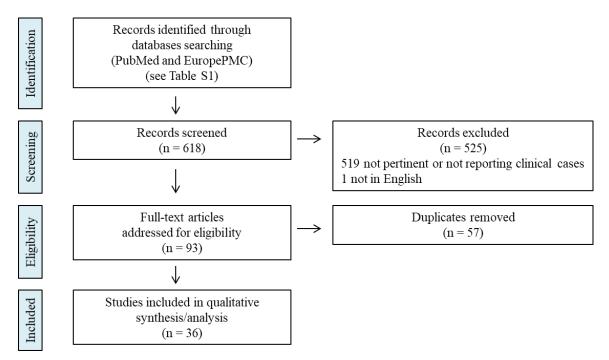
* Fisher test (calculated with MedCalc Software Ltd. Fisher exact probability calculator. <u>https://www.medcalc.org/calc/fisher.php</u> Version 20.027; accessed May 14, 2022)

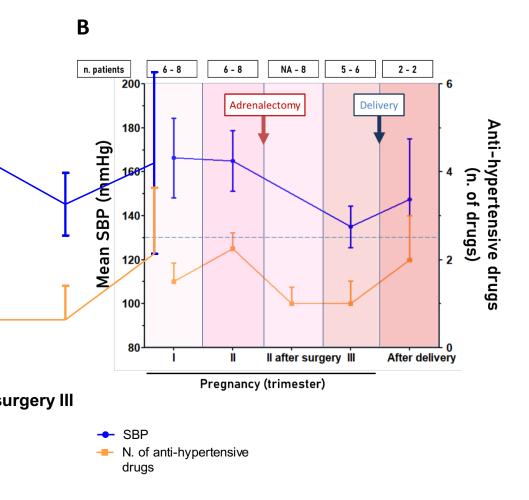
Table S6: Maternal and foetal complications rate in pregnancy in women with sporadic PA vs essential hypertension ⁴⁹.

		EH women	Sporadic PA women	Two-tailed p value *
Complicated pregnancies (n. over the total n. of	yes	61/211 (28.9 %)	33/53 (62.2 %)	< 0.0001
pregnancies)	no	150/211 (71.1 %)	20/53 (37.8 %)	

Fisher test (calculated with MedCalc Software Ltd. Fisher exact probability calculator. <u>https://www.medcalc.org/calc/fisher.php</u> Version 20.027; accessed May 14, 2022)

Figure S1: PRISMA strategy applied for the research of clinical cases of patients with PA during pregnancy (articles from 1990 to 2021).




Figure S2:

A) Course of systolic BP (mean ± SEM) and number of anti-hypertensive drugs before, during and after pregnancy in unilateral medically treated PA patients during pregnancy. The last value refers to SBP after adrenalectomy performed after pregnancy. Please note the fall during the 1st trimester, the progressive increase during the 2nd and 3rd and the fall after surgery. B) Course of systolic BP (mean ± SEM) and number of anti-hypertensive drugs before, during and after pregnancy in unilateral surgically treated during pregnancy PA patients.

Annotation: the n. of patients indicated on the top of the figures refer to the n. of patient at every timepoint with available office SBP value (first number) and/or with information about the n. of anti-hypertensive drugs (second number). The cut-off for normal BP values was set at 130 mmHg, identified here by the blue horizontal line.

 N. of anti-hypertensive drugs

Abbreviations: n: number; SBP: systolic blood pressure.

Figure S3: Delivery/miscarriage time in unilateral medically treated PA patients, unilateral surgically treated during pregnancy PA patients and bilateral PA. The cut-off for a preterm delivery was set at 37 gestational week, identified here by the vertical line.

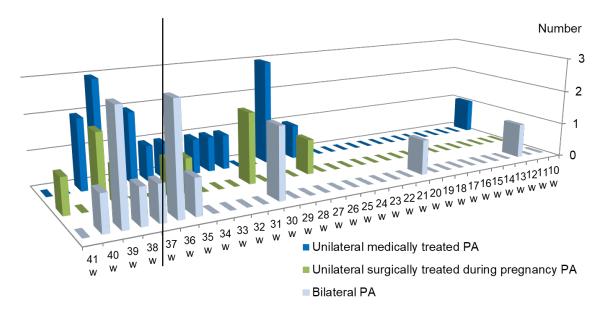
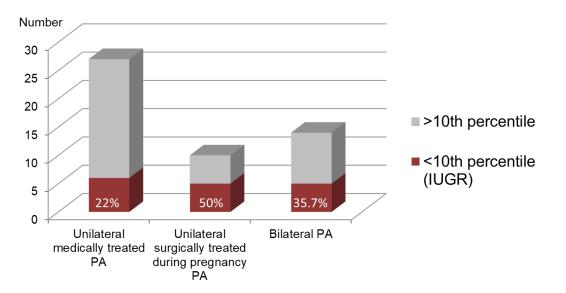



Figure S4: IUGR rate in unilateral medically treated PA patients, unilateral surgically treated during pregnancy PA patients and bilateral PA.

Abbreviations: IUGR: intrauterine growth restriction.