

Petrov, A. and Macdonald, C. (2022) Effective and Efficient Training for Sequential

Recommendation using Recency Sampling. In: ACM Conference on Recommender

Systems (RecSys 2022), Seattle, USA, 18-23 Sep 2022, pp. 81-91. ISBN

9781450392785 (doi: 10.1145/3523227.3546785).

This is the Author Accepted Manuscript.

There may be differences between this version and the published version. You are

advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/273792/

Deposited on: 28 July 2022

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

https://doi.org/10.1145/3523227.3546785
http://eprints.gla.ac.uk/242796/
http://eprints.gla.ac.uk/

Effective and Efficient Training for Sequential Recommendation
using Recency Sampling

Aleksandr Petrov

University of Glasgow

United Kingdom

a.petrov.1@research.gla.ac.uk

Craig Macdonald

University of Glasgow

United Kingdom

craig.macdonald@glasgow.ac.uk

ABSTRACT
Many modern sequential recommender systems use deep neural

networks, which can effectively estimate the relevance of items

but require a lot of time to train. Slow training increases expenses,

hinders product development timescales and prevents the model

from being regularly updated to adapt to changing user preferences.

Training such sequential models involves appropriately sampling

past user interactions to create a realistic training objective. The

existing training objectives have limitations. For instance, next item

prediction never uses the beginning of the sequence as a learning

target, thereby potentially discarding valuable data. On the other

hand, the item masking used by BERT4Rec is only weakly related

to the goal of the sequential recommendation; therefore, it requires

much more time to obtain an effective model. Hence, we propose

a novel Recency-based Sampling of Sequences training objective

that addresses both limitations. We apply our method to various

recent and state-of-the-art model architectures – such as GRU4Rec,

Caser, and SASRec. We show that the models enhanced with our

method can achieve performances exceeding or very close to state-

of-the-art BERT4Rec, but with much less training time.

ACM Reference Format:
Aleksandr Petrov and Craig Macdonald. 2022. Effective and Efficient Train-

ing for Sequential Recommendation using Recency Sampling. In Six-
teenth ACM Conference on Recommender Systems (RecSys ’22), Septem-
ber 18–23, 2022, Seattle, WA, USA. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3523227.3546785

1 INTRODUCTION
Sequential recommender models is a class of recommender systems,

which consider the order of the user-item interactions, are increas-

ingly popular [39]. Early sequential recommender systems used

Markov Chains [41, 55], howevermost modern ones use deep neural

networks, and have adapted ideas from other domains such as lan-

guage modelling [15, 16, 18, 42] or image processing [43]. These

deep neural models have been shown to outperform traditional

non-neural methods by a significant margin [18, 42, 43, 50].

However, the most advanced sequential models, such as BERT4-

Rec, suffer from a slow training problem. Indeed, our experiments

show that in order to reproduce result reported in the original

publication, BERT4Rec requires more than 10 hours training using

RecSys ’22, September 18–23, 2022, Seattle, WA, USA
© 2022 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in Sixteenth ACM
Conference on Recommender Systems (RecSys ’22), September 18–23, 2022, Seattle, WA,
USA, https://doi.org/10.1145/3523227.3546785.

Figure 1: The SASRec [18] model trained with our pro-
posed training method outperforms BERT4Rec on the
MovieLens-20M dataset [14] and requires much less train-
ing time. SASRec-vanilla corresponds to the original version
of SASRec; BERT4Rec-1h and BERT4Rec-1h are versions of
BERT4Rec trained for 1 hour and 16 hours respectively.

modern hardware (see also replicability paper [31]). This is illus-

trated in Figure 1, which portrays the NDCG@10 of MF-BPR [40],

SASRec [18] and BERT4Rec [42] models for different training dura-

tions on the MovieLens-20M dataset [14].

Slow training is a problem in both research and production en-

vironments. For research, slow training limits the number of ex-

periments that can run using available computational resources.

In production, it increases the costs of using recommender sys-

tems due to the high running costs of GPU or TPU accelerators.

Furthermore, slow training hinders how quickly the model can be

retrained to adapt to changing user interests. For example, when a

new episode of a popular TV show is released, the recommender

system might still be recommending the old episode because it was

not retrained yet. Hence, in this paper, we focus on the time-limited

training of models. The main question we address in this paper is

can the training of existing sequential recommendation models be
improved so that they attain state-of-the-art performance in limited
training time?

The primary components of model training can be characterized

as follows: (i) the model architecture that is being trained, (ii) the

training objective that defines what the model is being trained to

reconstruct, and (iii) the loss function used to measure its success.

Although all three components have a marked impact on training

1

https://doi.org/10.1145/3523227.3546785
https://doi.org/10.1145/3523227.3546785

RecSys ’22, September 18–23, 2022, Seattle, WA, USA Aleksandr Petrov and Craig Macdonald

efficiency, in this work, we focus on the training objective, identi-

fying two key limitations in existing approaches, as well as an

appropriate loss function for the objective.

Among the training objectives in the literature, sequence cont-

inuation [15, 16, 43] (including its popular form, next item pre-

diction) is probably the most intuitive and popular. However, this

objective never uses the beginning of the sequence as a training tar-

get, hence it discards potentially valuable knowledge and limits the

number of training samples it can generate from a single sequence.

Second, in the item masking approach – which is used by BERT-

4Rec [42] – the task of the model is to recover masked items at

any position in the sequence, which is a much more general and

complex task than the next item prediction. We argue that this is

only weakly related to the end goal of sequential recommendation.

Indeed, we will show that, despite leading to better effectiveness,

the more general training task requires considerable training time.

These limitations of the existing approaches motivate us to

design a new Recency-based Sampling of Sequences (RSS) approach
that probabilistically selects positives from the sequence to build

training samples. In our method, more recent interactions have

more chances of being sampled as positives; however, due to the

sampling process’ probabilistic nature, even the oldest interactions

have a non-zero probability of being selected as positives.

Our experiments are conducted on four large sequential recom-

mender datasets, and demonstrate the application of the proposed

RSS approach upon three recent sequential recommendation model

architectures (GRU4Rec, Caser and SASRec), when combined with

both pointwise and listwise loss functions. We find that RSS im-

proves the effectiveness of all three model architectures. Moreover,

on all four experimental datasets, versions of RSS-enhanced SAS-

Rec trained for one hour can markedly outperform state-of-the-art

baselines. Indeed, RSS applied to the SASRec model can result in

an 60% improvement in NDCG over a vanilla SASRec, and a 16%

improvement over a fully-trained BERT4Rec model, despite taking

93% less training time than BERT4Rec (see also Figure 1).

In short, the main contributions of this paper are as follows: (i)

We identify limitations in the existing training objectives used by

sequential recommendation models; (ii) We propose Recency-based

Sampling of Sequences, which emphasises the importance of more

recent interactions during training; (iii) We perform extensive em-

pirical evaluations on four sequential recommendation datasets,

demonstrating significant improvements over existing state-of-the-

art approaches. The structure of this paper is as follows: Section 2

provides a background in sequential recommendation; Section 3

covers existing approaches and identifies their limitations; In Sec-

tion 4 we explain Recency-based Sampling of Sequences for efficient

training. Section 5 describes research questions and experimental

setup; In Sections 6 & 7 we respectively provide analysis of the

experiments and concluding remarks.

2 BACKGROUND
In the following, we provide an overview of neural sequential recom-

mendation models. Indeed, over the last several years, most of the

next item prediction approaches have applied deep neural network

models. Some of the first solutions based on deep neural networks

were GRU4rec [16] and the improved GRU4Rec
+
[15] (using an

improved listwise loss function), which are models that use the

Recurrent Neural Networks (RNN) architecture. On the other hand,

Caser [43] uses ideas from computer vision; it generates a 2D “im-

age" of the sequence using item embeddings and then applies hori-

zontal and vertical convolution operations to that image. Another

model that is based on convolution operation is NextItNet [50],

which applies several layers of 1D convolutions to generate rich

semantic representations of each user sequence. These models all

use variations of a sequence continuation task for training, details

of which we provide in the Section 3.

Figure 2 illustrates the principal architecture of many of the

sequential recommendation models used in this work. These gen-

erate an embedding of the user’s sequence and then multiply this

embedding by the matrix of item embeddings to obtain item scores.

GRU4rec, Caser, and – with minor modifications (see Section 3)

– SASRec use this architecture. Recent state-of-the-art sequential

recommendation models use variations of the transformer [44] ar-

chitecture. SASRec [18] uses transformer blocks to predict the next

item in the sequence based on all previous elements. BERT4Rec [42]

adapts the well-known BERT languagemodel [10] for the sequential

recommendation task. Following the original BERT model, BERT4-

Rec is trained to reconstruct masked items that are hidden from the

model during training. In particular, as both SASRec and BERT4Rec

use the transformer architecture, the only significant difference

between these two models is the training scheme. Using item mask-

ing, BERT4Rec outperforms SASRec in terms of quality; however, it

requires much more training time. In this work, we identify limita-

tions in the existing training objectives, which we discuss further in

Section 3. Indeed, the goal of this work is to close the gap between

effectiveness and efficiency and design a new training scheme that

allows matching the performance of state-of-the-art models within

limited training time.

Finally, recent advances have used graph neural networks

(GNNs) for sequential recommendation [34–36, 38]. These models

usually use additional information, such as cross-session connec-

tions or item attributes. In this work, we focus on a more general

case of sequential recommendations, without the assumption of

availability of cross-session (user) information or cross-item con-

nections; therefore graph-based models, as well as those tailored

for personalised shopping basket completion (e.g. [29, 45]) are out

of the scope of this work. On the other hand, CL4SRec [48] applies

data augmentation by modifying the input sequences (e.g. crop-

ping, masking, or reordering). These augmentations are orthogonal

to changing the training task and could be used together with an

improved training objective. Nevertheless, we focus on the training

objective for sequential models operating without use of GNNs nor

data augmentation. We provide details of these training objectives

in the next section.

3 TRAINING SEQUENTIAL
RECOMMENDATION MODELS

Consider a set of users 𝑈 and items 𝐼 . Each user 𝑢 ∈ 𝑈 has a se-

quence of interactions 𝑠𝑢 = {𝑖𝑢1
, 𝑖𝑢2

, 𝑖𝑢3
...𝑖𝑢𝑛 } where items 𝑖𝑢𝜏 ∈ 𝐼

are ordered by the interaction time. The next item prediction task is

defined as follows: given a sequence 𝑠𝑢 , rank the items from 𝐼 , ac-

cording to their likelihood of being the sequence continuation 𝑖𝑢𝑛+1 .

2

Effective and Efficient Training for Sequential Recommendation using Recency Sampling RecSys ’22, September 18–23, 2022, Seattle, WA, USA

...

Figure 2: Principal architecture of many sequential recom-
menders. This applies to GRU4rec [16], GRU4rec+ [15],
Caser [43] and, with minor modifications to SASRec [18].

This task corresponds to Leave One Out evaluation - hold out the last
element from each user’s interactions sequence and then evaluate

how well a model can predict each held-out element.

As mentioned in Section 2, the best models for the next item pre-

diction task are based on deep neural networks. Generally speaking,

their training procedure consists of iterations of the following steps:

(1) Generate a batch of training samples, each with positive and

negative items; (2) Generate predictions, using the model; (3) Com-

pute the value of the loss function; (4) Update model parameters

using backpropagation.

We aim to improve the training of existing models, so step 2

is not within the scope of our work. Backpropagation (step 4) –

e.g. through stochastic gradient descent – is a very general and

well-studied procedure, and we follow the best practices used by

the deep learning models, details of which we describe in Section 5.

This leaves us with two essential parts of model optimization - gen-

eration of the training samples and the loss function. These two

parts are not independent: a loss function designed for one training

task does not always fit into another. For example, BPR-max loss

(used by GRU4Rec
+
[15]) has an assumption of only one positive

item per training sample and therefore is not applicable to a se-

quence continuation with multiple positives task, as used by Caser.

Hence, a new training task requires selection of an appropriate loss

function. We further discuss some possible choices of the loss func-

tions for our proposed method later in Section 4.2. In the following,

we review approaches to generate training samples and identify

their limitations, a summary of which we provide in the Section 3.2.

3.1 Generation of Training Samples
A training sample for a sequential model consists of three parts - the

input sequence, positive items, and negative samples. Sequential

recommender models [15, 16, 18, 43] treat ground truth relevance as

a binary function; by definition, every non-positive item is negative.

In practice, to make the training more tractable, most models only

consider samples of negative items, identified using techniques such

as random sampling [18, 40], in-batch negatives [16], or the negat-

ives with highest scores [49]. This work focuses on constructing

positive samples. Negatives sampling approaches are orthogonal

to positive sampling and can be applied independently. We do not

use negative sampling in our work and leave improvement of our

method via negative sampling to future research. In the remainder

of this section, we describe positive sampling strategies for sequen-

tial recommendations. Figure 3 illustrates sequence continuation

and item masking, the most commonly used strategies, which we

discuss in turn below.

Matrix factorization methods use a straightforwardmatrix recon-
struction training objective: for each user 𝑢 and item 𝑖 , the goal of

the model is to estimate whether the user interacted with the item.

This goal leads to a simple training samples generation procedure -

we sample (user, item) pairs as inputs and assign labels for the pairs

based on interactions. A classic model that uses matrix reconstruc-

tion is Bayesian Personalized Rank (BPR) [40], which we use as one

of our baselines. The main disadvantage of matrix reconstruction is

that it does not consider the order of the interactions, and therefore

sequential recommendation models can not use it.

In the sequence continuation training objective, training samples

are generated by splitting the sequence of interactions into two

consequent parts:

𝑠 = {𝑖1, 𝑖2, 𝑖3 ..𝑖𝑛} ↦→
{
𝑠𝑖𝑛𝑝𝑢𝑡 = {𝑖1, 𝑖2, 𝑖3, ...𝑖𝑛−𝑘 };
𝑠𝑡𝑎𝑟𝑔𝑒𝑡 = {𝑖𝑛−𝑘+1, 𝑖𝑛−𝑘+2, ..𝑖𝑛}

where 𝑘 is a hyperparameter. We use 𝑠𝑖𝑛𝑝𝑢𝑡 as the model input,

and assign label 1 to the postive items from 𝑖+ ∈ 𝑠𝑡𝑎𝑟𝑔𝑒𝑡 and label 0

to the negative items 𝑖− ∉ 𝑠𝑡𝑎𝑟𝑔𝑒𝑡 . If 𝑘 is equal to 1, the sequence

continuation task turns into the next item prediction task, which

matches the end goal of sequential recommender systems.

Using sequence continuation in its basic form, we can produce

precisely one training sample out of a single sequence of interac-

tions. Some models (e.g. Caser [43]) use the sliding window ap-

proach to generate more than one sequence - which generates

shorter subsequences out of a whole sequence and then creates

training samples out of these shorter subsequences. The sliding

window approach allows to generate up to 𝑛 − 1 training samples

out of a sequence of 𝑛 interactions. However, shorter sequences

only allow to model short-term user preferences, and researches

have to find a balance between the number of generated samples

and the maximum length of the sequence [43]. GRU4rec, GRU4rec
+

and Caser models use variations of the sequence continuation task

for training. The training task used by SASRec and NextItNet [50]

is slightly different: they work as a sequence-to-sequence models

where the target sequence is shifted by one element compared to

the input. These models predict the second element of the input

sequence by the first, third by the first two, etc.. When these models

predict the 𝑗𝑡ℎ item in the output, they only have access to the first

(𝑗 −1) elements of the input so that this shifted sequence prediction

task essentially is 𝑛 independent sequence continuation tasks.

Thus, the main limitation of sequence continuation is that it

only generates a small number of training samples out of a single

sequence and the items in the first part of the user’s sequence never

have a chance to be selected as a target, which means that the

recommender system is unlikely to learn how to recommend these

items, even though they may be relevant for some users. We refer

to this limitation as Limitation L1.

BERT4Rec [42] uses an item masking training objective, which it

inherited from the original BERT model. In BERT, the idea is to hide

3

RecSys ’22, September 18–23, 2022, Seattle, WA, USA Aleksandr Petrov and Craig Macdonald

Figure 3: Training sample generation strategies used in existing models. White boxes represent model inputs and filled boxes
represent model outputs. In Sequence Continuation, the sequence is split into two parts, with the aim of predicting whether or
not an item belongs to the second part based on the sequence of elements in the first part. In Sequence Continuation with a
sliding window, we first generate shorter sub-sequences from the original sequence and then apply the sequence continuation
method. In item masking, some elements are removed and replaced with a special "[mask]" value, with the aim of correctly
reconstructing these masked items.

some terms from the sentence and then ask the model to reconstruct

these hidden elements. Similarly, in BERT4Rec, some items in the

sequence are masked, and the model is retrained to recover these

items. The target sequence, in this case, exactly matches the original

sequence (without masking):

𝑠 = {𝑖1, 𝑖2, 𝑖3, 𝑖4, ..𝑖𝑛} ↦→
{
𝑠𝑖𝑛𝑝𝑢𝑡 = {𝑖1, [𝑚𝑎𝑠𝑘], 𝑖3, [𝑚𝑎𝑠𝑘], ...𝑖𝑛};
𝑠𝑡𝑎𝑟𝑔𝑒𝑡 = {𝑖1, 𝑖2, 𝑖3, 𝑖4, ..𝑖𝑛}

This approach generates up to 2
𝑛
training samples out of a single

training sequence of length 𝑛. BERT4Rec does not mask more than

𝜏 percent of items in a sequence, where 𝜏 is a hyperparameter; how-

ever, it still generates many more training samples compared to the

single training sample generated from a sequence under sequence

continuation. As Sun et al. [42] showed, more training ensures to

avoid overfitting and achieves better performance compared to

other models with similar architecture.

However, we argue that the main disadvantage of the item mask-

ing approach is that it is weakly related to the next item prediction

task. To make a prediction, BERT4Rec adds the [mask] element to

the end of the input sequence and tries to reconstruct it; so that

training and evaluation samples have a different distribution. The

model must learn how to solve the evaluation task (reconstruct the

last item in the sequence) as part of a much more general and more

complicated task (reconstruct any item in the sequence). BERT4Rec

adds a small proportion of training samples with only the last ele-

ment masked to address this mismatch, but the consequence is still

a substantially more complicated training task and longer time to

converge compared to the models that use sequence continuation.

We refer to this problem of weak correspondence to the original

task as Limitation L2.

3.2 Summary of Limitations
We reviewed two main training objectives used in sequential reco-

mmendations - sequence continuation (including its variations,

shifted sequence prediction, and sliding window) and item masking.

Indeed, as argued above, both of these training objectives have their

limitations, which we summarize as follows

L1 Sequence continuation can only generate a small number of

training samples from a single training sequence. This allows

training to be performed relatively quickly, but performance

of these models is lower compared to a state-of-the-art model

such as BERT4Rec.

L2 Reconstruction of masked items is a very general task, which

is loosely connected to the sequential recommendation task.

Using this task, models can reach state-of-the-art perform-

ance, but model training can takemarkedly longer than other

training objectives.

In the next section, we introduce Recency-based Sampling of
Sequences, a novel training task that addresses these limitations and

discuss possible choices of the loss function for this training task.

4 RECENCY-BASEDSAMPLINGOFSEQUENCES
As shown in Section 3, to train a model we need to have a train-

ing task and choose a loss function that matches the task. Hence,

the training task and the loss function are both essential parts of

our solution. In this section we introduce both training objective

(Section 4.1) and choice of loss function (Section 4.2).

Recency-based Sampling of Sequences (RSS) is a training ob-

jective that is closely related to the sequential recommendations

and allows to generate many training samples out of a single user

sequence simultaneously. To address the limitations of existing

4

Effective and Efficient Training for Sequential Recommendation using Recency Sampling RecSys ’22, September 18–23, 2022, Seattle, WA, USA

training objectives described in Section 3.2, we first outline the

principles used to design our training task:

P1 Each element in a sequence can be selected as the target;

multiple items can be selected as a target in each training

sample. Using this principle, we match the main advantage

of the item masking approach - generating up to 2
𝑛
training

samples out of each user sequence. This principle addresses

Limitation L1.

P2 More recent training interactions in a sequence better indic-

ate the user’s interests, and hence these are more realistic

targets. User interests change over time, and one of the main

advantages of sequential recommender systems is taking

these changes into account. Therefore, the methods that rely

on this principle will retain a close connection to sequential

recommendations. This principle addresses Limitation L2.

In our proposed training objective, to follow these two principles,

we use a recency importance function, 𝑓 (𝑘), that is defined for each

position 0 .. 𝑛 − 1 in the sequence of the length 𝑛 and indicates

chances of each position to be selected as a target: probability of an

item at position 𝑘 of being selected as a positive is proportional to

the value of 𝑓 (𝑘). 𝑓 (𝑘) must exhibit the following properties: 𝑓 (𝑘)
is positive (𝑓 (𝑘) > 0) and monotonically growing (𝑓 (𝑘) ≤ 𝑓 (𝑘 +1)).
This first property corresponds to Principle P1 and defines that the

likelihood of each item to be selected as a target are positive. The

second property corresponds to Principle P2, and ensures that more

recent items have higher or equal chances to be selected as a target.

To generate a training sample, we first calculate 𝑐 - how many

target items we want to sample. Following BERT4Rec, we define a

parameter 𝜏 that controls the maximum percentage of items that

can be used as targets and then calculate 𝑐 via multiplying 𝜏 by the

length of the sequence. We then randomly sample, with replace-

ment, 𝑐 targets from the sequence, with the probability of being

sampled, 𝑝 (𝑖), proportional to the value of a recency importance

function, 𝑓 (𝑖):

𝑝 (𝑖) = 𝑓 (𝑖)∑𝑛−1
𝑗=0 𝑓 (𝑗)

(1)

We generate the input sequence to the model by removing tar-

gets from the original sequence. The full procedure is described in

Algorithm 1. One example of a recency importance function that

has the required properties is the exponential function:

𝑓 (𝑘) = 𝛼𝑛−𝑘 (2)

where 0 < 𝛼 ≤ 1 is a parameter that controls importance of the

recent items in the sequence and 𝑛 is the sequence length. If 𝛼 = 1,

then each item has equal chances of being sampled as a target,

and Recency-based Sampling of Sequences to the item masking

approach (but without providing the positions of masked items) or

to the matrix reconstruction approach, where items are sampled

uniformly from the sequence. If 𝛼 is close to zero, items from the

end of the sequence have a much higher chance of being sampled,

and therefore RSS becomes equivalent to the sequence continuation

task. Figure 4 provides an example of the recency importances (for

𝛼 = 0.8) and the generated samples.

Figure 4: Recency-based Sampling of Sequences. The begin-
nings of the sequences remains largely unchanged, whereas
elements from the end of the sequence are chosen as positive
samples more frequently.

4.1 The RSS Training Objective
There are other possible position importance functions, such as

linear 𝑓 (𝑘) = 𝑘 + 1, and the best function may be a property of

particular dataset. However, in this work, we only consider the

exponential function, leaving other possibilities to future research.

4.2 Loss Functions for RSS
The second important component of the training procedure is the

loss function. Loss functions for recommender systems can be gen-

erally divided into three categories - pointwise (optimize the rel-

evance estimation of each item independently), pairwise (optimize

a partial ordering between pairs of items) and listwise (optimize

the recommendations list as a whole) losses [25]. RSS works with

all types of loss functions that support multiple positive samples

within each training sample.

GRU4rec
+
[15] showed the advantages of applying a listwise

loss function above pointwise and pairwise methods, however

the Top-1-max and BPR-max losses introduced in that paper have

an assumption that there is only one positive item within each

training sample. Instead, we use LambdaRank [4] (or 𝜆Rank), an-

other listwise optimization loss function. 𝜆Rank has been widely

deployed in training learning-to-rank scenarios [6, 33] for web

search. Similarly, 𝜆Rank has been shown to be advantageous for

recommender tasks [24], for example when applied to Factorisa-

tion Machines [49] or transformer-based sequential models [32].

𝜆Rank [4] uses Lambda Gradients instead of objective function

gradients in the gradient descent method. The Lambda Gradient

for an item 𝑖 ∈ 𝐼 is defined as follows:

𝜆𝑖 =
∑︁
𝑗 ∈𝐼
|Δ𝑁𝐷𝐶𝐺𝑖 𝑗 |

−𝜎
1 + 𝑒𝜎 (𝑠𝑖−𝑠 𝑗)

(3)

where 𝑠𝑖 and 𝑠 𝑗 are predicted scores,Δ𝑁𝐷𝐶𝐺𝑖 𝑗 is a change in NDCG

metric in case of swapping items 𝑖 & 𝑗 , and 𝜎 is a hyperparameter

typically set to 1.

In addition to 𝜆Rank, we also experiment with the standard

Binary Cross-Entropy (BCE), following [18, 43], to investigate the

effect of the listwise loss and the necessity of both training objective

and the loss function in our solution.

5

RecSys ’22, September 18–23, 2022, Seattle, WA, USA Aleksandr Petrov and Craig Macdonald

Algorithm 1 Recency-based Sampling of Sequences

Input: 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 - a sequence of interactions; 𝜏 - maximum percent

of target items; 𝑓 - recency importance function

Output: 𝑖𝑛𝑝𝑢𝑡 is a generated input sequence for the model; 𝑡𝑎𝑟𝑔𝑒𝑡

is a set of sampled positive items

function RecencySeqenceSampling(𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 , 𝜏 , 𝑓)

𝑠𝑎𝑚𝑝𝑙𝑒𝑑𝐼𝑑𝑥 ← 𝑠𝑒𝑡 ()
𝑛 ← 𝑙𝑒𝑛𝑔𝑡ℎ(𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒); 𝑐 ←𝑚𝑎𝑥 (1, 𝑖𝑛𝑡 (𝑛 ∗ 𝜏)))
𝑝𝑟𝑜𝑏 ← 𝐴𝑟𝑟𝑎𝑦 [𝑛]
𝑝𝑟𝑜𝑏 [𝑖] ← 𝑓 (𝑖)∑𝑛−1

𝑗=0 𝑓 (𝑗) for i in [0, 𝑛 − 1]
𝑠𝑎𝑚𝑝𝑙𝑒𝑑𝐼𝑑𝑥 ← 𝑟𝑎𝑛𝑑𝑜𝑚.𝑐ℎ𝑜𝑖𝑐𝑒 (𝑟𝑎𝑛𝑔𝑒 (0..𝑛 − 1), 𝑐, 𝑝𝑟𝑜𝑏)
𝑖𝑛𝑝𝑢𝑡 ← 𝑙𝑖𝑠𝑡 (); 𝑡𝑎𝑟𝑔𝑒𝑡 ← 𝑠𝑒𝑡 ()
for 𝑖 ← 0, 𝑛 − 1 do

if 𝑖 ∈ 𝑠𝑎𝑚𝑝𝑙𝑒𝑑𝐼𝑑𝑥 then 𝑡𝑎𝑟𝑔𝑒𝑡 .𝑎𝑑𝑑 (𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 [𝑖]) else
𝑖𝑛𝑝𝑢𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 [𝑖])

end for
return 𝑖𝑛𝑝𝑢𝑡, 𝑡𝑎𝑟𝑔𝑒𝑡

end function

We assume that function 𝑟𝑎𝑛𝑑𝑜𝑚.𝑐ℎ𝑜𝑖𝑐𝑒 (𝑎, 𝑐, 𝑝) is an equivalent of the

𝑛𝑢𝑚𝑝𝑦.𝑟𝑎𝑛𝑑𝑜𝑚.𝑐ℎ𝑜𝑖𝑐𝑒 function from the numpy package. It iteratively samples

𝑐 samples from collection 𝑎, where the probability of each item 𝑖 of being sampled

equals 𝑝 [𝑖] at each stage, with replacement.

5 EXPERIMENT SETUP
In the following, we list our research questions (Section 5.1), our

experimental datasets (Section 5.2), the recommender models on

which we build and our comparative baselines (Section 5.3), and

finally evaluation details (Section 5.4).

5.1 Research Questions
Our experiments aim to address the following research questions:

RQ1 Does Recency-based Sampling of Sequences (RSS) help for

training sequential recommendation models compared to sequence

continuation?

RQ2 Does a listwise 𝜆Rank loss function benefit RSS training?

RQ3 What is the impact of the recency importance parameter 𝛼

in the exponential recency importance function (Equation (2)) of

RSS?

RQ4 How do RSS-enhanced models compare with state-of-the-art

baselines?

5.2 Datasets
Our experiments are performed on four large-scale datasets for

sequential recommendation:

MovieLens-20M [14] is a movie recommendation dataset, and is

popular for benchmarking sequential recommenders [8, 11, 23, 27,

28, 36, 42, 47, 53]. Note that MovieLens-20M is a ratings dataset,

where users rate movies with stars, however following common

practice [23, 28, 42] we consider all ratings as positive interactions.

However, MovieLens-20M timestamps correspond to the time when

ratings were provided rather than when the items were consumed,

so the task is best described as “next movie to rate” rather than

“next movie to watch”. Nevertheless, as versions of the MovieLens

dataset are used in both well-cited [17, 18, 42] and recent [37, 51, 52]

sequential recommendation papers, we conclude that it is well

suited for the problem and it is important to include it as one of

our benchmarks.

Yelp1 - is a businesses reviews dataset. It is another popular

dataset for sequential recommendations [2, 3, 30, 37, 46, 54]. As for

MovieLens-20M, we consider all user reviews as positives.

Gowalla [7] contains user checkins to a location-based social net-
work. This dataset contains a large number of items (more than 10

6
)

and is very sparse: it has only 0.0058% out of all possible user-item

interactions.

Booking.com [13] is a travel destination dataset. Each interaction

sequence in this dataset represents a single multi-city trip of a user.

In contrast to other types of recommendations, such as movies or

books, multi-city trips have a strong sequential nature. Indeed, for

example, if a user is making a road trip by car, there could be only

one or two neighboring cities where the user can stop, and hence all

other more distant items are non-relevant. This strong sequential

nature could be problematic for RSS, as it contradicts Principle

P1, which says that any item in the sequence can be selected as a

relevant target for the preceding items.

Following common practice [18, 42, 54], we discard cold-start users

with fewer than 5 interactions from each dataset. Table 1 reports

the salient statistics of the three datasets.

5.3 Models

5.3.1 Experimental Architectures. We experiment using RSS with

three recent model architectures for sequence recommendation:

(i) GRU4Rec [16] is a sequential recommender architecture based on

recurrent networks; (ii) Caser [43] applies a convolutional neural
network structure for sequential recommendation. For our exper-

iments, we use the basic architecture described in [50]; (iii) SAS-
Rec [18] is a sequential recommendation architecture based on

transformers. The original implementation of SASRec is trained

as a sequence-to-sequence model, however only the final element

from the target sequence is used at inference time. In order to match

our common training framework and train the model with the RSS

training objective, we ignore all outputs of the architecture except

the final one. This is a notable change in the training process, be-

cause the original SASRec computes its loss over all outputs. To

make sure that this change does not lead to significant quality de-

gradation we include the original version of SASRec as a baseline

(see Section 5.3.2).

We implement these architectures using TensorFlow version

2 [1].
2
Note that for our experiments we reuse only the architectures

of these models and not the training methods or hyper-parameters.

Indeed, because our goal is to research the impact of the train-

ing task, the appropriate training parameters may differ from the

original implementation.

We implement RSS and sequence continuation training object-

ives on each of the three experimental architectures. We do not

apply an item masking training objective with these architectures:

item masking assumes that a model produces a scores distribution

per masked item, which is not compatible with those architectures;

1
https://www.yelp.com/dataset

2
The code for this paper publicly

available in a joint repository with our BERT4Rec replicability paper [32]

https://github.com/asash/bert4rec_repro

6

https://www.yelp.com/dataset
https://github.com/asash/bert4rec_repro

Effective and Efficient Training for Sequential Recommendation using Recency Sampling RecSys ’22, September 18–23, 2022, Seattle, WA, USA

Table 1: Datasets we use for experiments.

Name Users Items Interactions

Average

length

Median

length

sparsity

Booking.com 140746 34742 917729 6.52 6 0.999812

Gowalla 86168 1271638 6397903 74.24 28 0.999942

Yelp 287116 148523 4392169 15.29 8 0.999897

MovieLens-20M 138493 26744 20000263 144.41 68 0.994600

however, as discussed below, we include BERT4Rec as an item

masking baseline.

For our experiments, we set common training parameters for

all model architectures, following the settings in [18]. In particular,

we limit the length of the user sequences to 50 items for all three

datasets, and we set the size of the item embeddings to be 64. We

use the Adam optimizer, applying the default learning rate of 0.001

and 𝛽2 parameter set to 0.98. Following BERT4Rec [42], we set the

maximum percentage of a sequence to sample, 𝜏 = 0.2. Except

where otherwise noted, we set the recency parameter 𝛼 to 0.8.

Finally, in order to estimate the performance of the models under

limited training time, we fix the training time of all models to 1

hour. Experiments are conducted using 16-cores of an AMD Ryzen

3975WX CPU, 128GB of memory and an Nvidia A6000 GPU.

5.3.2 Baselines. In order to validate that using Recency-based

Sampling of Sequences it is possible to achieve performance compa-

rable with state-of-the-art recommender models, we compare with

a selection of popular and state-of-the-art recommenders. We use

the following models non-neural models as baselines: (i) Popularity
- the most popular items in the dataset; (ii) MF-BPR - Matrix fac-

torization with BPR Loss [40]. We use the implementation of this

recommendation model from the popular LightFM library [21].

We also use two Transformer-based models as state-of-the-art

baselines: (i) SASRec-vanilla - the original version of SASRec re-

commender [18], a transformer-based model that uses a shifted

sequence task, described in Section 3.1. To make the comparison

fair with the RSS-enhanced variant, we limit the training time of

this model to 1 hour; (ii) BERT4Rec is another transformer-based

model [42] based on the BERT [10] architecture. BERT4Rec has

been shown to outperform other traditional and neural architec-

tures and has been used as a strong baseline in a number of recent

works (e.g. [19, 22, 26, 31, 33]).

We use two versions of this model: BERT4Rec-1h denotes where

the training time of BERT4Rec is limited to 1 hour, to allow a fair

comparison in a limited-time setting; BERT4Rec-16h, where training
time is limited to 16 hours in order to compare the performance of

our approach with the state-of-the-art model. The original BERT4-

Rec publication [42] does not report the required amount of training,

but we find empirically that reproducing the reported results takes

around 16 hours on our hardware [31].

In contrast with other baselines, BERT4Rec calculates a score

distribution across all items in the catalog for each element in the

sequence, whereas other baselines calculate a single distribution

of scores per sequence. This means that BERT4Rec requires 𝑂 (𝑁)
more memory per training sample for storing output scores and

ground truth labels compared to other baseline models. This makes

training original implementation of BERT4Rec infeasible when a

dataset has too many items. Indeed, the original BERT4Rec public-

ation [42] only reports results on relatively small datasets with no

more than 55000 items and our own attempts to train BERT4Rec

on large Gowalla dataset with more than 1 Million items failed

because of memory and storage issues (see also Section 6.4). Hence,

we do not report BERT4Rec results for Gowalla and leave scaling

BERT4Rec to datasets with large number of items for the future

research.

5.4 Data Splitting and Evaluation Measures
Following many existing publications [18, 42, 43] we evaluate our

method using a Leave-One-Out strategy. Specifically, for each user

from we hold out the final interaction as the test set, which we

use to report metrics. We also construct a validation set using the

same Leave-One-Out strategy, using the second last interaction for

a group of 1024 users as validation. We set the number of training

epochs to maximise NDCG@10 on the validation sets. For train-

ing, we use all interactions except those included in the test and

validation sets.

We report two ranking evaluation measures: Recall
3
and Norma-

lized Discounted Cumulative Gain (NDCG). For both metrics, we

apply a rank cutoff of 10. To measure the significance of perform-

ances differences, we apply the paired t-test, and apply Bonferroni

multiple testing correction, following recommended practices in

IR [12].

Until recently, for efficiency reasons, most of the sequential re-

commendations papers reported sampledmetrics - i.e. they sampled

a small proportion of negative items and used only these items and

the positive item when calculating evaluation measures. However,

recent work by Krichene & Rendle [20] as well as Cañamares &

Castells [5] both showed that using sampled metrics frequently

leads to incorrect performance estimates, and the relative order of

evaluated models can change. Hence in our experiments, we use

full unsampled metrics: we rank all possible items in the catalog

and calculate metrics on this full ranking
4
.

6 RESULTS
We now analyse our experimental results for each of the four re-

search questions stated in Section 5.1.

3
In the context of sequential recommender systems, Recall corresponds to chances of

correctly retrieving a single relevant item, and therefore many publications [18, 42, 50],

call it Hit Ratio (HR). We prefer the more conventional Recall name for this metric.

4
Indeed, we also found that conclusions could change using sampled metrics.

7

RecSys ’22, September 18–23, 2022, Seattle, WA, USA Aleksandr Petrov and Craig Macdonald

Table 2: Comparing sequence continuation with Recency-based Sampling of Sequences training objectives under limited
training for various model architectures. Bold denotes a more effective training objective for an (Architecture, Loss, Dataset)
triplet. We use * to denote statistically significant differences compared to the other training objective (left vs. right), and † to
denote significant differences on the change of loss function (upper vs. lower). All tests apply a paired t-test with Bonferroni
multiple testing correction (𝑝𝑣𝑎𝑙𝑢𝑒 < 0.05). Training time of all models is limited to 1 hour.

(a) Recall@10

MovieLens-20M Yelp Gowalla Booking.com

Architecture Loss Cont RSS Cont RSS Cont RSS Cont RSS

GRU4Rec

BCE 0.0221† 0.0354* 0.0075† 0.0100*† 0.0026* 0.0005 0.4621 0.4962*
𝜆Rank 0.0082 0.1544*† 0.0009 0.0045* 0.0068† 0.0119*† 0.4780† 0.5084*†

Caser

BCE 0.1424† 0.1866* 0.0046† 0.0099*† 0.0076 0.0081 0.5600*† 0.5454†

𝜆Rank 0.0330 0.1496*† 0.0009 0.0017* 0.0087† 0.0157*† 0.4968 0.5273*

SASRec

BCE 0.1537† 0.1888* 0.0146† 0.0269*† 0.0089 0.0089 0.5845*† 0.5178

𝜆Rank 0.1050 0.1968*† 0.0045 0.0052* 0.0715 0.1020*† 0.5662* 0.52464†

(b) NDCG@10

MovieLens-20M Yelp Gowalla Booking.com

Architecture Loss Cont RSS Cont RSS Cont RSS Cont RSS

GRU4Rec

BCE 0.0115† 0.0183* 0.0035† 0.0049*† 0.0017* 0.0002 0.2829 0.2899*
𝜆Rank 0.0040 0.0839*† 0.0004 0.0014* 0.0033† 0.0067*† 0.3132*† 0.3093†

Caser

BCE 0.0784† 0.0995* 0.0021† 0.0049*† 0.0039 0.0040 0.3665*† 0.3311†

𝜆Rank 0.0177 0.0814*† 0.0003 0.0007* 0.0055† 0.0100*† 0.3181 0.3226*

SASRec

BCE 0.0850† 0.1002* 0.0076† 0.0136*† 0.0044 0.0044 0.3633*† 0.2966

𝜆Rank 0.0579 0.1073*† 0.0021 0.0025* 0.0478† 0.0749*† 0.3623* 0.3122†

Table 3: Comparing RSS-enhanced SASRec with baseline models under limited training. Bold denotes the best model for a
dataset by the metric in the main group, underlined the second best. Symbols * and † denote statistically significant difference
compared with SASRec-RSS-BCE and SASRec-RSS-𝜆Rank respectively, according to a paired t-test with Bonferroni multiple
testing correction (𝑝𝑣𝑎𝑙𝑢𝑒 < 0.05).
1 We do not report results for BERT4Rec models for the Gowalla dataset because due to large number of items in this dataset,
we were not able to train the model. 2 We report results for BERT4rec-16h separately due to its larger training time.

MovieLens-20M Yelp Gowalla Booking.com

Model

Train

time

Recall

@10

NDCG

@10

Recall

@10

NDCG

@10

Recall

@10

NDCG

@10

Recall

@10

NDCG

@10

Popularity 1h 0.049†* 0.025†* 0.006† 0.003†* 0.008* 0.004* 0.097†* 0.043†*

MF-BPR 1h 0.079†* 0.040†* 0.019†* 0.009†* 0.029†* 0.018†* 0.449†* 0.279†*

SASRec-vanilla 1h 0.136†* 0.067†* 0.022†* 0.011†* 0.010* 0.005†* 0.463†* 0.270†*

BERT4rec-1h 1h 0.107†* 0.053†* 0.014†* 0.007†* N/A
1

N/A
1

0.479†* 0.288†*

SASRec-RSS-BCE 1h 0.189* 0.100* 0.027* 0.014* 0.009* 0.004* 0.518* 0.297*

SASRec-RSS-𝜆Rank 1h 0.197† 0.107† 0.005† 0.003† 0.102† 0.075† 0.525† 0.312†
BERT4Rec-16h

2
16h 0.173†* 0.092†* 0.028* 0.014* N/A

1
N/A

1
0.565†* 0.354†*

6.1 RQ1. Benefit of Recency Sampling
To address our first research question, we compare our experi-

mental architectures (GRU4Rec, Caser, SASRec) trained with either

sequence continuation or RSS objectives. Table 2 reports the effect-

iveness results, in terms of Recall@10 and NDCG@10, of the three

architectures, trained with both sequence continuation (denoted

Cont) or RSS, and applying two different loss functions (Binary

Cross-Entropy – BCE – and 𝜆Rank) on four datasets (MovieLens-

20M, Yelp, Gowalla, Booking.com). Statistically significant differen-

ces – according to a paired t-test with Bonferroni multiple testing

correction (𝑝𝑣𝑎𝑙𝑢𝑒 < 0.05) – among the training objectives for a

given architecture, model and loss function are shown. On first

inspection of Table 2, we note that general magnitudes of the re-

ported effectiveness results are smaller than those reported in [42] -

indeed, as stated in Section 5.4, in contrast to [42], we follow recent

advice [5, 20] to avoid sampled metrics, instead preferring the more

accurate unsampled metrics. The magnitudes of effectiveness repor-

ted for MovieLens-20M are in line with those reported by [9] (e.g. a

Recall@10 of 0.137 for SASRec-vanilla is reported in [9] when also

using a Leave-One-Out evaluation scheme and unsampled metrics).

8

Effective and Efficient Training for Sequential Recommendation using Recency Sampling RecSys ’22, September 18–23, 2022, Seattle, WA, USA

We now turn to the comparison of training objectives. In par-

ticular, we note from the table that, on the MovieLens-20M, Yelp

and Gowalla datasets, RSS results in improved NDCG@10 in 17

out of 18 cases – 15 of which are by a statistically significant mar-

gin – and also improved Recall@10 in 16 out of 18 cases (15 stat-

istically significant). For instance, on MovieLens-20M, SASRec is

the strongest performing architecture (in line with previous find-

ings [18, 42]), however, applying RSS significantly improves its

Recall@10, both when using BCE (0.153→0.188) and when using

𝜆Rank (0.105→0.196). Similarly, and interestingly, SASRec with the

RSS objective and 𝜆Rank loss outperformed other models by a very

large margin on the Gowalla dataset (e.g. NDCG@10 0.102 vs. 0.071

when using sequence continuation). We postulate that the large

number of items in the dataset make the training task very hard,

and only the combination of RSS with 𝜆Rank allows to train the

model with reasonable quality in the given time limit – this can be

investigated further in future work.

On the other hand, for the Booking.com dataset, we observe

that in 3 out of 6 cases, RSS is less effective. This is not an unex-

pected result: as we argued in Section 5.2, this dataset violates the

underlying assumption encoded in Principle P1. Indeed, due to the

geographical distance between items in this multi-city trip dataset,

items cannot be considered out-of-order, and hence RSS does not

improve the stronger models on this dataset.

Overall, in response to RQ1, we conclude that Recency-based

Sampling of Sequences improves the training of models if the items

earlier in the user sequence can be treated as positives (properties

exhibited by the MovieLens-20M and Gowalla datasets).

6.2 RQ2. Comparison of Different Loss
Functions

Next, we address the choice of loss function, as per RQ1. We again

turn to Table 2, but make comparisons of the upper vs. lower per-

formances in each group. For instance, for RSS, we observe that

applying the listwise 𝜆Rank loss function on the GRU4Rec archi-

tecture on MovieLens-20M dataset results in a significant increase

(0.035→0.154), as denoted by the † symbol. Indeed, across all of

Table 2, we observe that when used with RSS training task, 𝜆Rank

improves NDCG@10 in 8 cases out of 12 (all 8 significantly) as well

ass Recall@10 in 8 cases out 12 (8 significantly). In contrast, 𝜆Rank

only improves over BCE in 7 out of 24 cases for the sequence con-

tinuation training objective (all by a significant margin). Overall,

and in answer to RQ2, we find that 𝜆Rank usually improves (ex-

cept Yelp) the effectiveness of our proposed RSS training objective,

while it does not offer the same level of improvement for sequence

continuation. We explain this finding as follows: in sequence conti-

nuation, there is only one relevant item per sequence, and hence

the benefit of a listwise loss function is limited. In contrast, RSS

selects multiple relevant items for each sequence, and in this case

a listwise loss function can benefit in training the model to rank

these items nearer the top of the ranking. However, as 𝜆Rank did

not improve RSS results on Yelp, we can not say that the improve-

ments are consistent, and the question of the loss function selection

requires further research.

6.3 RQ3. Impact of Position Recency
Importance

This research question is concerned with the importance of

sampling recent items in training sequences. To address this ques-

tion, we train every experimental architecture with the best per-

forming loss from Table 2 on the MovieLens-20M dataset. We vary

the recency importance parameter 𝛼 in the exponential recency

importance function (Equation (2)), to investigate its effect on effect-

iveness. In particular, as 𝛼 → 0, the training task turns to sequence

continuation, while large 𝛼 the training task loses its sequential

nature and becomes similar to matrix factorization.

Figure 5 summarizes the impact of 𝛼 on the model effective-

ness. We also present the performance of the MF-BPR [40] baseline.

From the figures, we observe that when we set 𝛼 close to zero,

the results match to those we report in Table 2 for the sequence

continuation task, illustrating that under small 𝛼 , RSS only samples

the last element in each sequence. Similarly, for 𝛼 = 1 we observe

that the effectiveness of all models drops almost to that of matrix

factorization baseline, as target items are simply sampled from se-

quences without any ordering preference. Note, that in this case

we sample target items uniformly, which is similar to BERT4Rec’s

item masking. However, BERT4Rec also has access to the positions

of masked items (through the position embeddings), whereas in the

case of 𝛼 = 1 the positional information is completely lost and the

model can not learn predicting the next item and predicts some item
instead. Overall, the general trends visible in Figure 5 suggest that

RSS allows to train effective models across a wide range of the 𝛼

parameter values: for Caser and SASRec, large improvements over

sequence continuation training is achieved for 0.2 ≤ 𝛼 ≤ 0.9; for

GRU4Rec, strong performance is obtained 0.6 ≤ 𝛼 ≤ 0.9. Indeed,

for small 𝛼 , the number of positive items are limited, and hence

the lambda gradients in 𝜆Rank are also small. This provides little

evidence to the GRUs in GRU4Rec, which therefore struggles with

the vanishing gradient problem (a problem faced by many such

recurrent architectures).

Overall, in response to RQ3, we find that the higher values of

the recency importance parameter 𝛼 ≤ 0.9 result in effective per-

formance for all three model architectures.

6.4 RQ4. Comparison with Baselines
To address our final research question concerning the compar-

ison with baselines models, we compare the best performing RSS-

enhanced model, SASRec-RSS, using both 𝜆Rank and BCE losses,

with the 5 baseline models described in Section 5.3. Table 3 summar-

izes the results of this comparison, reporting effectiveness metrics

as well as training time durations. In particular, recall that all mod-

els are trained for less than 1 hour, except for BERT4Rec-16h (a full

training of BERT4Rec). Moreover, we did not train BERT4Rec on

the Gowalla dataset, because the preprocessing code for BERT4Rec

does not scale to its large number of items (indeed, Gowalla has

more items than users, see Table 1). Indeed, the preprocessing code

to generate masked training sequences requires 14GB of storage

for MovieLens-20M, but 548GB for Gowalla.

On analysing Table 3, we observe that SASRec-RSS (𝜆Rank or

BCE) achieves the most effective performance on all four datasets

among the time-limited recommendation models. For instance, on

9

RecSys ’22, September 18–23, 2022, Seattle, WA, USA Aleksandr Petrov and Craig Macdonald

(a) Effect of position recency importance on Recall (b) Effect of position recency importance on NDCG

Figure 5: SASRec, GRU4rec and Caser performance on the MovieLens-20M dataset, when trained with Recency-based Sampling
of Sequences with the exponential importance function 𝑓 (𝑘) = 𝛼 (𝑛−𝑘) , where 𝑛 is the sequence length. Position recency
importance parameter 𝛼 is plotted on the 𝑥-axis. When 𝛼 = 0, the training objective turns into sequence continuation, and
when 𝛼 = 1 the task becomes similar to item masking or matrix reconstruction. Training time of all models is fixed at 1 hour.

theMovieLens-20Mdataset, compared to the original formulation of

SASRec (denoted SASRec-vanilla), the RSS adaptation significantly

improves NDCG@10 (by the margin of 60%) for the same training

duration. Moreover, compared to the 16 hour training of BERT4-

Rec, SASRec-RSS exhibits 16% higher NDCG@10 (the significant

improvement), despite needing only 6% of the training time (16h→
1h). For Booking.com, where RSS was less effective, SASRec-RSS

with 𝜆Rank objective obtains the NDCG@10 12% less than that

obtained by the expensive BERT4Rec-16h model, and the Recall that

is 7% less. Interestingly, on the Yelp dataset, the 𝜆Rank version of

SASRec is not effective (same performance as popularity baseline),

but the BCE version of the model significantly outperforms all

other models in the main group and achieves performance on par

with BERT4Rec-16h. Furthermore, we see that in all cases where

we able to train BERT4Rec, under limited training time, BERT4-

Rec underperforms compared to the SASRec-RSS (𝜆Rank or BCE

version).

Overall, in answer to RQ4, we find that SASRec-RSS can achieve

significantly higher effectiveness than the state-of-the-art SASRec

and BERT4Rec approaches when trained for a comparable time.

Furthermore, we can achieve performances exceeding or very close

to a fully-trained BERT4Rec, but with much less training time. This

highlights the importance of an appropriate training objective in

general, and the benefits of our proposed RSS training objective in

particular.

7 CONCLUSIONS
In this work, we identified two limitations in existing training

objectives for sequential recommender models. To address these

two limitations, we proposed a refined training objective, called

Recency-based Sampling of Sequences. Through experimentation

on four datasets, we found that this relatively simple change in

training objective can bring significant improvements in the overall

effectiveness of state-of-the-art sequential recommendation models,

such as SASRec and Caser. Furthermore, we showed that the 𝜆Rank

loss function brought further effectiveness benefits to training un-

der RSS not otherwise observed under a more traditional sequence

continuation task. Indeed, on the large MovieLens-20M dataset, we

observed that RSS applied to the SASRec model can result in an 60%

improvement in NDCG over the vanilla SASRec model, and a 16%

improvement over a fully-trained BERT4Rec model, despite taking

93% less training time than BERT4Rec (see also Figure 1). Moreover,

on the Yelp and Gowalla datasets, which both have geographic and

strong sequential characteristics, RSS applied to SASRec brought

significant benefits. Finally, while we did not apply RSS to BERT4-

Rec, due to its requirement of position embeddings (which it inherits

from BERT), we believe that BERT4Rec could be adapted in future

work to benefit from RSS.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.

2016. TensorFlow: A system for large-scale machine learning. In Proc. USENIX.
265–283.

[2] Mehrnaz Amjadi, Seyed Danial Mohseni Taheri, and Theja Tulabandhula. 2021.

KATRec: Knowledge aware attentive sequential recommendations. In Proc. ICDS.
305–320.

[3] Shuqing Bian, Wayne Xin Zhao, Kun Zhou, Jing Cai, Yancheng He, Cunxiang

Yin, and Ji-Rong Wen. 2021. Contrastive Curriculum Learning for Sequential

User Behavior Modeling via Data Augmentation. In Proc. CIKM. 3737–3746.

[4] Christopher JC Burges. 2010. From RankNet to LambdaRank to LambdaMART:

An overview. Learning 11, 23-581 (2010), 81.

[5] Rocío Cañamares and Pablo Castells. 2020. On target item sampling in offline

recommender system evaluation. In Proc. RecSys. 259–268.
[6] Olivier Chapelle and Yi Chang. 2011. Yahoo! learning to rank challenge overview.

Proceedings of Machine Learning Research (2011), 1–24.

[7] Eunjoon Cho, Seth A Myers, and Jure Leskovec. 2011. Friendship and mobility:

user movement in location-based social networks. In Proc. KDD. 1082–1090.
[8] Sung Min Cho, Eunhyeok Park, and Sungjoo Yoo. 2020. MEANTIME: Mixture of

attention mechanisms with multi-temporal embeddings for sequential recom-

mendation. In Proc. RecSys. 515–520.
[9] Alexander Dallmann, Daniel Zoller, and Andreas Hotho. 2021. A Case Study

on Sampling Strategies for Evaluating Neural Sequential Item Recommendation

Models. In Proc. RecSys. 505–514.

10

Effective and Efficient Training for Sequential Recommendation using Recency Sampling RecSys ’22, September 18–23, 2022, Seattle, WA, USA

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding. In

Proc. NAACL-HLT. 4171–4186.
[11] Elisabeth Fischer, Daniel Zoller, Alexander Dallmann, and Andreas Hotho. 2020.

Integrating keywords into BERT4Rec for sequential recommendation. In German
Conference on Artificial Intelligence (Künstliche Intelligenz). 275–282.

[12] Norbert Fuhr. 2021. Proof by experimentation? Towards better IR research. In

ACM SIGIR Forum, Vol. 54. 1–4.

[13] Dmitri Goldenberg and Pavel Levin. 2021. Booking.com Multi-Destination Trips

Dataset. In Proc. SIGIR. 2457–2462.
[14] F Maxwell Harper and Joseph A Konstan. 2015. The MovieLens datasets: History

and context. ACM Transactions on Interactive Intelligent Systems (TIIS) 5, 4 (2015),
1–19.

[15] Balázs Hidasi and Alexandros Karatzoglou. 2018. Recurrent neural networks

with top-k gains for session-based recommendations. In Proc. CIKM. 843–852.

[16] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.

2016. Session-based Recommendations with Recurrent Neural Networks. In Proc.
ICLR.

[17] Jin Huang, Wayne Xin Zhao, Hongjian Dou, Ji-Rong Wen, and Edward Y Chang.

2018. Improving sequential recommendation with knowledge-enhanced memory

networks. In Proc. SIGIR. 505–514.
[18] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-

mendation. In Proc. ICDM. 197–206.

[19] Tobias Koopmann, Konstantin Kobs, Konstantin Herud, and Andreas Hotho. 2021.

CoBERT: Scientific Collaboration Prediction via Sequential Recommendation. In

Proc. ICDMW. 45–54.

[20] Walid Krichene and Steffen Rendle. 2020. On sampled metrics for item recom-

mendation. In Proc. KDD. 1748–1757.
[21] Maciej Kula. 2015. Metadata Embeddings for User and Item Cold-start Recom-

mendations. In Proc. Workshop on New Trends on Content-Based Recommender @
RecSys (CEUR Workshop Proc., Vol. 1448). 14–21.

[22] Hojoon Lee, Dongyoon Hwang, Sunghwan Hong, Changyeon Kim, Seungryong

Kim, and Jaegul Choo. 2021. MOI-Mixer: Improving MLP-Mixer with Multi Order

Interactions in Sequential Recommendation. arXiv preprint arXiv:2108.07505
(2021).

[23] Haoyang Li, XinWang, Ziwei Zhang, JianxinMa, Peng Cui, andWenwu Zhu. 2021.

Intention-aware sequential recommendation with structured intent transition.

IEEE Transactions on Knowledge and Data Engineering (TKDE) (2021).
[24] Roger Zhe Li, Julián Urbano, and Alan Hanjalic. 2021. New Insights into Metric

Optimization for Ranking-based Recommendation. In Proc. SIGIR. 932–941.
[25] Tie-Yan Liu. 2009. Learning to Rank for Information Retrieval. Foundations and

Trends in Information Retrieval 3, 3 (2009), 225–331.
[26] Zhiwei Liu, Ziwei Fan, Yu Wang, and Philip S. Yu. 2021. Augmenting Sequential

Recommendation with Pseudo-Prior Items via Reversely Pre-training Trans-

former. In Proc. SIGIR. 1608–1612.
[27] Chen Ma, Peng Kang, and Xue Liu. 2019. Hierarchical gating networks for

sequential recommendation. In Proc. KDD. 825–833.
[28] Jianxin Ma, Chang Zhou, Hongxia Yang, Peng Cui, Xin Wang, and Wenwu Zhu.

2020. Disentangled self-supervision in sequential recommenders. In Proc. KDD.
483–491.

[29] Zaiqiao Meng, Richard McCreadie, Craig Macdonald, and Iadh Ounis. 2021. Vari-

ational Bayesian representation learning for grocery recommendation. Informa-
tion Retrieval Journal 24 (10 2021), 1–23.

[30] Umaporn Padungkiatwattana, Thitiya Sae-Diae, Saranya Maneeroj, and Atsuhiro

Takasu. 2022. ARERec: Attentive Local Interaction Model for Sequential Recom-

mendation. IEEE Access.
[31] Aleksandr Petrov and Craig Macdonald. 2022. A Systematic Review and Replic-

ability Study of BERT4Rec for Sequential Recommendation. In Proc. RecSys.
[32] Aleksandr Petrov and Yuriy Makarov. 2021. Attention-based neural re-ranking

approach for next city in trip recommendations. In Proc. WSDMWebTour. 41–45.
[33] Zhen Qin, Le Yan, Honglei Zhuang, Yi Tay, Rama Kumar Pasumarthi, Xuanhui

Wang, Michael Bendersky, and Marc Najork. 2021. Are Neural Rankers still

Outperformed by Gradient Boosted Decision Trees?. In Proc. ICLR.
[34] Ruihong Qiu, Zi Huang, Tong Chen, and Hongzhi Yin. 2021. Exploiting Posi-

tional Information for Session-based Recommendation. ACM Transactions on

Information Systems (TOIS) 40, 2 (2021), 1–24.
[35] Ruihong Qiu, Zi Huang, Jingjing Li, and Hongzhi Yin. 2020. Exploiting cross-

session information for session-based recommendation with graph neural net-

works. ACM Transactions on Information Systems (TOIS) 38, 3 (2020), 1–23.
[36] Ruihong Qiu, Zi Huang, and Hongzhi Yin. 2021. Memory Augmented Multi-

Instance Contrastive Predictive Coding for Sequential Recommendation. CoRR
abs/2109.00368 (2021).

[37] RuihongQiu, Zi Huang, Hongzhi Yin, and ZijianWang. 2022. Contrastive learning

for representation degeneration problem in sequential recommendation. In Proc.
WSDM. 813–823.

[38] Ruihong Qiu, Hongzhi Yin, Zi Huang, and Tong Chen. 2020. GAG: Global

attributed graph neural network for streaming session-based recommendation.

In Proc. SIGIR. 669–678.
[39] Massimo Quadrana, Paolo Cremonesi, and Dietmar Jannach. 2018. Sequence-

aware recommender systems. ACM Computing Surveys (CSUR) 51, 4 (2018),

1–36.

[40] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.

2009. BPR: Bayesian personalized ranking from implicit feedback. In Proc. CUAI.
452–461.

[41] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Fac-

torizing personalized markov chains for next-basket recommendation. In Proc.
WWW. 811–820.

[42] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Ji-

ang. 2019. BERT4Rec: Sequential recommendation with bidirectional encoder

representations from transformer. In Proc. CIKM. 1441–1450.

[43] Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recommendation

via convolutional sequence embedding. In Proc. WSDM. 565–573.

[44] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. In Proc. NeurIPS. 5998–6008.
[45] Mengting Wan, Di Wang, Jie Liu, Paul Bennett, and Julian McAuley. 2018. Repres-

enting and recommending shopping baskets with complementarity, compatibility

and loyalty. In Proc. CIKM. 1133–1142.

[46] ChenyangWang,WeizhiMa, and Chong Chen. 2022. Sequential Recommendation

with Multiple Contrast Signals. ACM Transactions on Information Systems (TOIS)
(2022).

[47] Qitian Wu, Chenxiao Yang, Shuodian Yu, Xiaofeng Gao, and Guihai Chen. 2021.

Seq2Bubbles: Region-Based Embedding Learning for User Behaviors in Sequential

Recommenders. In Proc. CIKM. 2160–2169.

[48] Xu Xie, Fei Sun, Zhaoyang Liu, Shiwen Wu, Jinyang Gao, Bolin Ding, and Bin

Cui. 2020. Contrastive Learning for Sequential Recommendation. arXiv preprint
arXiv:2010.14395 (2020).

[49] Fajie Yuan, Guibing Guo, Joemon M Jose, Long Chen, Haitao Yu, and Weinan

Zhang. 2016. LambdaFM: learning optimal ranking with factorization machines

using lambda surrogates. In Proc. CIKM. 227–236.

[50] Fajie Yuan, Alexandros Karatzoglou, Ioannis Arapakis, Joemon M Jose, and Xi-

angnan He. 2019. A simple convolutional generative network for next item

recommendation. In Proc. WSDM. 582–590.

[51] Zhuo-Xin Zhan, Ming-Kai He, Wei-Ke Pan, and Zhong Ming. 2022. Transrec++:

Translation-based sequential recommendation with heterogeneous feedback.

Frontiers of Computer Science 16, 2 (2022), 1–3.
[52] Mengqi Zhang, Shu Wu, Xueli Yu, Qiang Liu, and Liang Wang. 2022. Dynamic

graph neural networks for sequential recommendation. IEEE Transactions on
Knowledge and Data Engineering (TKDE) (2022).

[53] Pengyu Zhao, Tianxiao Shui, Yuanxing Zhang, Kecheng Xiao, and Kaigui Bian.

2021. Adversarial oracular seq2seq learning for sequential recommendation. In

Proc. ICJAI.
[54] Kun Zhou, Hui Wang, Wayne Xin Zhao, Yutao Zhu, Sirui Wang, Fuzheng Zhang,

Zhongyuan Wang, and Ji-Rong Wen. 2020. S3-rec: Self-supervised learning

for sequential recommendation with mutual information maximization. In Proc.
CIKM. 1893–1902.

[55] Andrew Zimdars, David Maxwell Chickering, and Christopher Meek. 2001. Using

temporal data for making recommendations. In Proc. UAI. 580–588.

11

	Abstract
	1 Introduction
	2 Background
	3 Training Sequential Recommendation Models
	3.1 Generation of Training Samples
	3.2 Summary of Limitations

	4 Recency-based Sampling of Sequences
	4.1 The RSS Training Objective
	4.2 Loss Functions for RSS

	5 Experiment Setup
	5.1 Research Questions
	5.2 Datasets
	5.3 Models
	5.4 Data Splitting and Evaluation Measures

	6 Results
	6.1 RQ1. Benefit of Recency Sampling
	6.2 RQ2. Comparison of Different Loss Functions
	6.3 RQ3. Impact of Position Recency Importance
	6.4 RQ4. Comparison with Baselines

	7 Conclusions
	References

