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Abstract. The growing electricity demand of cloud and edge comput-
ing increases operational costs and will soon have a considerable impact
on the environment. A possible countermeasure is equipping IT infras-
tructure directly with on-site renewable energy sources. Yet, particularly
smaller data centers may not be able to use all generated power directly
at all times, while feeding it into the public grid or energy storage is
often not an option. To maximize the usage of renewable excess energy,
we propose Cucumber, an admission control policy that accepts delay-
tolerant workloads only if they can be computed within their deadlines
without the use of grid energy. Using probabilistic forecasting of com-
putational load, energy consumption, and energy production, Cucumber
can be configured towards more optimistic or conservative admission.
We evaluate our approach on two scenarios using real solar production
forecasts for Berlin, Mexico City, and Cape Town in a simulation envi-
ronment. For scenarios where excess energy was actually available, our
results show that Cucumber’s default configuration achieves acceptance
rates close to the optimal case and causes 97.0% of accepted workloads
to be powered using excess energy, while more conservative admission
results in 18.5% reduced acceptance at almost zero grid power usage.

Keywords: admission control · on-site renewable energy · load predic-
tion · resource management · green computing · sustainability

1 Introduction

As the demand for computing continues to grow year by year, so are operating
expenses and the associated carbon emissions caused by consuming energy from
the public power grid [9]. So far, negative effects could partially be mitigated
through advances in hardware efficiency, cooling, and the continuous shift of
cloud computing towards highly energy-optimized hyperscale data centers, which
already host about 50% of all compute instances [23]. Still, data centers already
account for more than 1% of global energy consumption and this number is
expected to rise further [23] – especially when considering the additional demand
of novel domains like the internet of things (IoT), edge and fog computing [32].
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To reduce its carbon footprint, the IT industry is pushing to integrate more
and more low-carbon energy sources into data centers [1], not least because car-
bon pricing mechanisms, such as emission trading systems or carbon taxes, are
starting to be implemented around the globe [4]. For example, Google plans to
operate their data centers solely on carbon-free energy by 2030 [12]. One ap-
proach towards more sustainable and cost-effective computing systems in cloud
as well as edge environments is directly equipping IT infrastructure with on-site
renewable energy sources like solar or wind [18,20]. However, especially smaller
compute nodes, such as on-premise installations or edge data centers, are not
always able to consume all generated power directly, as depicted in Figure 1.

SRZHU�FRQVXPSWLRQ

SRZHU�SURGXFWLRQ

UHQHZDEOH�H[FHVV�HQHUJ\

Fig. 1. Problem setting: Renewable excess energy can ocurr at compute nodes when
local demand does temporarily not cover all produced energy.

Energy storage can mitigate this problem to some extent, but is expensive,
therefore often not available in sufficient capacity, and may be reserved to ensure
operation during power outages. Moreover, storing energy involves power con-
version loss, and frequent charging cycles accelerate battery aging [21]. On the
other hand, feeding excess energy back to the power grid is often unattractive in
practice due to statutory regulations and low compensation. Microgrids address
this by directly integrating renewables and energy storage to locally balance
excess energy [14]. Such systems can greatly benefit from participants who are
flexible and able to adapt their energy consumption to the expected supply.

To make better use of renewable excess energy (REE) occurring close to
compute nodes, delay-tolerant workloads originating locally or within the sur-
rounding distributed system should be computed on free computational capac-
ity. Delay-tolerant workloads are common in cloud environments, ranging from
machine learning jobs, certain Function-as-a-Service (FaaS) executions, nightly
backups and CI/CD runs, and other periodic jobs like generating daily re-
ports [31]. However, they may also occur in otherwise time-critical edge comput-
ing environments, such as cache and index updates as well as federated and/or
iterative machine learning trainings on locally available data at edge nodes.

We propose Cucumber, an admission control policy for delay-tolerant work-
loads in resource-constrained compute nodes that have access to renewable en-
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ergy sources but no access to energy storage. We assume that this infrastructure
usually runs high-priority, time-critical workloads with quality of service (QoS)
constraints, like user-facing services, but is not always fully utilized. Cucumber
admits delay-tolerant workloads to the local system only if they can be com-
puted within their deadlines on free capacity and without the use of grid energy.
This leads to increased use of renewable energy sources, hence reducing asso-
ciated carbon emissions and electricity costs, and contributes to stabilizing the
power grid. We furthermore expect Cucumber to be an integral building block
of decentralized systems that exploit the varying spatio-temporal availability of
renewable energy. Towards this, we make the following contributions:

– we define a method for forecasting free computational capacity that can be
powered using REE only. The prediction can be tuned towards conservative
or optimistic results using probabilistic forecasts of load, energy consumption
and energy production

– based on these forecasts, we propose an admission control policy that decides
whether incoming delay-tolerant workloads with known size and deadline can
be scheduled on free capacity using REE only

– we evaluate our approach on two scenarios using real solar production fore-
casts for Berlin, Mexico City, and Cape Town in a simulation environment

– we make all datasets and code used for this experimental evaluation publicly
available for future research to build on our results3

The remainder of this paper is structured as follows: Section 2 reviews re-
lated work. Section 3 proposes the admission control policy and explains how we
generate forecasts on free computational capacity that can be powered by REE.
Section 4 evaluates our approach. Section 5 concludes the paper.

2 Related Work

Carbon-Aware and Renewable-Aware Computing. Incorporating the availability
of renewable or low-carbon power into scheduling decisions has been increasingly
researched over the last decade. However, many works in this context focus on
load migration in geo-distributed settings or optimize for low carbon signals in
the public power grid. For example, Google employs a suite of analytics pipelines
to defer delay-tolerant workloads if power from the public grid is associated
with high carbon intensity [25]. While their work is targeted at large-scale data
centers, Cucumber is meant to be deployed in resource-constrained environments
with direct access to renewable energy sources. Toosi et al. [27] proposed a load
balancer for web applications that increases on-site renewable energy usage at
data centers. However, other than Cucumber, their approach is reactive and does
not make use of forecasting for better decisions. GreenSlot [10] is a batch job
scheduler for data centers with on-site renewable energy sources using hourly
predictions of solar energy and optimizes for a low price if grid power usage is

3 Github: https://github.com/dos-group/cucumber

https://github.com/dos-group/cucumber
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unavoidable. Cucumber, on the other hand, aims at using REE only and tries
to avoid using any grid power. Aksanli et al. [2] proposed a scheduler using
short-term predictions of wind and solar power to reduce grid power usage and
the number of canceled jobs. In contrast, Cucumber rejects workloads in danger
of violating their deadlines upfront so they can be scheduled elsewhere. The
Zero-Carbon Cloud [8] is the only project of which we are aware that aims at
exploiting REE by placing data centers close to renewable energy sources. Our
approach complements these efforts and opens up a way to distribute workloads
in a decentralized manner across their proposed infrastructure by making local
decisions about whether or not to accept a job.

Admission Control is a validation process in communication systems to check if
sufficient resources are available to, for example, establish a network connection
or process a request. Other than most publications on admission control that
operates on a network packet level, we consider workloads that can be several
minutes or even hours long. Because of this, most related work is in the con-
text of web-based applications or cloud computing where certain requests are
prioritized to improve quality of service (QoS) or maximize revenue [7,33]. An
admission control policy in green computing was proposed by [13], where a PID
controller used in industrial control applications is extended by a hybrid green
policy, to reduce grid power usage. Eco-IDC [22] targets energy-aware admis-
sion control on a data center level by exploiting electricity price changes while
dropping excessive workload if required. Other than these approaches, Cucum-
ber optimizes for utilizing locally available REE while prioritizing time-critical
workloads. Furthermore, our approach utilizes probabilistic forecasting methods
to be configurable towards more optimistic or conservative admission.

3 Admission Control

Cucumber accepts delay-tolerant workloads based on forecasts of load, power
consumption, and power production. A high-level overview and outline of the
approach are presented in Figure 2. This section describes all steps in detail.

3.1 Forecasting Load, Power Consumption, and Power Production

Cucumber uses probabilistic multistep-ahead forecasts to predict time series of
probability distributions, which inherent the uncertainty for each observation, to
later infer the available REE at different confidence intervals. If no probabilistic
forecasts are available, Cucumber can still be operated in its default configuration
based on the expected/median forecast.

Forecasting Computational Load. Load prediction is a widely researched field
covering forecasts related to application metrics, such as the number of messages
in a stream processing system [11], as well as the utilization of (virtualized) hard-
ware resources like CPU, GPU or RAM. Although load prediction systems are
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Fig. 2. Cucumber periodically forecasts computational load, power consumption, and
power production to compute the freep capacity forecast. It determines how much
computational capacity will be available in the future, that can be powered using REE
only. Based on this forecast and the amount, size, and deadlines of already queued
workloads, Cucumber accepts or rejects new workload requests.

usually formulated as time series forecasting problems based on historical data,
they can also take information from other contexts into account. For example,
in edge computing use cases like traffic monitoring, additional information on
weather, holidays, events, etc. can improve the forecast quality. Whatever type
of forecast is most suitable in a concrete use case, Cucumber uses it to identify
future time windows with free capacity. Furthermore, these load predictions are
used as a factor in the power consumption forecast. In the following, we denote
the load of a node as U and any load forecasts as Upred.

Forecasting Power Consumption. The power demand of IT infrastructures can
be influenced by many factors like CPU or GPU usage, memory, I/O, and storage
access, temperature, etc. While perfect modeling without precise knowledge of
workload and infrastructure characteristics is not possible [17], it has been shown
that power usage can often be modeled with sufficient accuracy based only on
the node’s utilization [5] – which usually refers to its CPU usage. In fact, power
modeling based on CPU usage only is being used in production at modern hyper-
scale data centers [24]. For simplicity, here we assume a simple linear power model
to convert from a certain load U to the nodes power usage P :

P = Pstatic + U · (Pmax − Pstatic) (1)

where Pstatic is the amount of power a node consumes in idle state and Pmax is
the amount of power the node consumes under full load. Besides energy used for
computing, the power forecast should also take the expected demand from other
co-located consumers into account that are powered by the renewable energy
source, like cooling or lighting, to correctly derive the actually available REE.
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Forecasting Power Production. Since information on future power production
is useful in many domains ranging from high-level application design to low-
level grid control, the prediction of variable renewable energy sources like solar
panels [6,16] and wind turbines [3,19] is an active field of research. Such models
are usually based on weather models for mid- and long-term forecasts as well as,
in case of solar, satellite data for short-term forecasts, that enable the observation
and movement of clouds [15]. Very short-term models with one-minute resolution
can even be based on live video data using sky cameras4. As wind and solar power
production are known for their high variability, probabilistic prediction methods
are especially common in this domain [28,34].

3.2 Deriving the freep capacity forecast

Based on the previously generated forecasts, we now determine the main input to
Cucumber’s admission control: the freep (free REE-powered) capacity forecast.

For this, we first calculate the REE forecast Pree. If no probabilistic fore-
casting was used to generate the power production Pprod and consumption Pcons

forecasts, we can directly define Pree = max(0, Pprod − Pcons). If probabilistic
forecasting was applied, we now have the possibility to decide that Pree should
describe a more optimistic or more conservative view of the future and hence
manipulate the behavior of the admission control policy.

However, we need to differentiate between two kinds of probabilistic forecasts.
The first contains actual probability distributions for each forecasted observa-
tion, which, in practice, is mostly implemented as ensembles of non-deterministic
single-value predictions. In this case, the simplest way to build a joint distribu-
tion Pree is by randomly sampling from both distributions and subtracting the
returned values for power production and consumption. We can then use the
quantile function Q to determine a concrete single-valued time series.

P α
ree = max(0, Q(α, Pree)) (2)

where α ∈ [0, 1] determines how optimistic (big α) or conservative (small α) our
forecasts are. For example, P 0.95

ree returns the 95th percentile of Pree.
In the second case, one or both forecasts do not contain the actual distri-

butions but only values for a number of pre-initialized quantiles, usually the
median and an upper and lower bound like the 10th and 90th percentile. In this
case, we propose a fall-back method as we cannot simply join the distributions:

P α′

ree = max(0, Q(α, Pprod)−Q(1− α, Pcons)) (3)

where α′ can only take certain values determined by the pre-initialized quantiles.
Note that using this equation α′ holds the same semantic value as α (e.g. big α′

represents optimistic forecasts) but no guarantees of actual probability. In the
following, we use α and α′ interchangeably.

4 https://solcast.com/utility-scale/solar-data-api/

super-rapid-solar-farm-forecasts

https://solcast.com/utility-scale/solar-data-api/super-rapid-solar-farm-forecasts
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Using the forecasts for computational load Upred and availbale REE P α
ree we

can now compute the freep capacity forecast Ufreep, which determines how much
of the free capacity in the future can be powered using only REE:

Ufreep = min(

Ufree! "# $
1− Upred,

Ureep! "# $
P α
max − Pstatic

Pmax − Pstatic
) (4)

The freep capacity forecast is defined as the minimum of Ufree, the expected
free capacity of the node, and Ureep, the expected fraction of capacity that could
be REE-powered. If Upred is a probabilistic forecast, it first has to be converted
to a single-valued time series, for example using Q(0.5, Upred). The equation for
Ureep depends on the used power model and it was derived by rearranging the
linear power model from Equation 1.

3.3 Admission Control Policy
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Fig. 3. Cucumber rejects workloads if it ex-
pects any future deadline violations using the
freep capacity forecast.

Cucumber admits workload requests
based on the above derived freep
capacity forecast and the amount,
size, and deadlines of already queued
workloads. For this, all workload re-
quests are expected to provide a
job size estimate and a deadline.
In practice, deadlines are often pro-
vided directly by users or services
or can be derived from, for exam-
ple, application graphs. Estimating
the size of jobs is a common prob-
lem in scheduling and is usually per-
formed based on previous executions
of the same or similar workloads.
In the current approach, we do not
consider uncertainty in job size esti-
mates, parallelism, or additional re-
source constraints besides computa-
tional load, like memory. However,
Cucumber can be extended to con-
sider such factors.

The approach is agnostic to the applied scheduling mechanism, including
multiple levels of priority or preemptive workloads, as long as it can be reliably
modeled with the available information. For every incoming request, Cucumber
models the expected processing of the queue if the workload was accepted and
evaluates if any deadlines are being violated. That is, for each queued workload it
progresses in time on the freep capacity forecast until the expected (remaining)
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workload size is covered and then checks if the workload’s deadline was violated.
If any violation occurs, the request gets rejected, otherwise accepted.

Depending on the number of workload requests and the average queue length,
this basic algorithm can become computationally inefficient, since a re-evaluation
has to take place for each request. However, performance issues can be mitigated
in many ways, for example by grouping jobs with the same or similar deadlines
and only evaluation violations per group. Moreover, different heuristics can be
applied to decrease the number of re-evaluations, like caching the remaining
time and capacity of each group until their deadline, and only performing a full
re-evaluation once violations become likely. Concrete performance adjustments
depend on the nature of the underlying system, such as the level of parallelization
as well as frequency, distribution, and kind of incoming workloads.

3.4 Limiting Power Consumption at Runtime

To ensure that accepted workloads run on REE only, their resource usage needs
to be limited at runtime. In practice, there are several ways to approach this,
including adjustments of hardware power and speed settings like dynamic volt-
age and frequency scaling (DVFS). Nevertheless, to propose a simple approach,
modern high-level tools or resource orchestration solutions allow for conveniently
controlling the usage of resources such as CPU or GPU. For instance, the CPU
usage of a process can be limited using tools like cpulimit. Likewise, frameworks
like Docker and Kubernetes have built-in flags for limiting CPU usage by adapt-
ing the settings of a containers cgroup. As load U and available REE Pree can
be measured periodically at runtime to derive the current Ugec, such tools can
be used to adjust the node’s power consumption to the correct level without
inferring with the time-critical baseload. However, the suitability of this simple
approach depends highly on the concrete environment and more sophisticated
measures might be needed in certain scenarios.

Even when performing admission control at a low α (meaning in conservative
mode), conditions at runtime might still be worse than expected. If less REE
is available than forecasted, the previously described power limiting could lead
to deadline violations of accepted jobs, although there is free computational ca-
pacity available. While this behavior might be acceptable in some environments,
usually it is more important to meet promised deadlines than ensuring that no
grid energy is used at all. To mitigate violations, Cucumber uses the freep ca-
pacity forecasts at runtime to periodically evaluate whether the currently active
jobs can still meet their deadlines. If a running job is expected to violate its
deadline, we temporarily stop power limiting and finish it using all free capacity
Ufree. Since also load forecasts are uncertain, deadline violations still cannot be
completely ruled out, but will be mitigated as effectively as possible based on
the current state of knowledge.
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4 Evaluation

We evaluate Cucumber on real datasets over the course of two weeks (January
18-31) using the discrete-event simulation framework SimPy. In total, 36 ex-
periments were conducted: Six admission control policies (three baselines and
Cucumber at α ∈ {0.1, 0.5, 0.9}) in two scenarios at three solar sites each. All
data and simulation code are publicly available as mentioned in Section 1.

4.1 Experimental Setup

We want to upfront explain some simplifications we made in our simulation-based
evaluation. First, we assume that the reported size of workload requests is always
correct, while in practice runtime estimates are often noisy. Yet, we consider
this a problem not addressed by Cucumber. Second, we do not explicitly model
parallelism but process the workload queue next to the time-critical baseload in
sequential order using non-preemptive earliest deadline first (EDF) scheduling.
Third, we do not model the energy demand of Cucumber itself. However, we
expect its overhead to be very small as forecasts are only updated every 10
minutes and the admission control itself can be implemented efficiently.

Admission Control Policies We evaluate six admission control policies for
each of the below-described scenarios and solar sites. If deadlines are violated,
jobs are not canceled but continue to run until they are completed.

– Optimal w/o REE accepts workloads using perfect forecasts for Upred but
without considering the availability of REE. It declares the upper bound for
accepted jobs without deadline misses but accepts high grid power usage.

– Optimal REE-Aware accepts workloads using perfect load and renewable
energy production forecasts. It declares the upper bound for accepted jobs
without deadline misses and without any grid power usage.

– Naive accepts workloads only if there is currently REE available and there
is no other workload in process. This approach does not rely on forecasts.

– Conservative, Expected, and Optimistic describe Cucumber admission con-
trol using realistic forecasts at α ∈ {0.1, 0.5, 0.9}, respectively.

Scenarios We define two scenarios where each consists of a high-priority baseload
and a number of workload requests. Exemplary baseload patterns are depicted
in Figure 4. Since, to the best of our knowledge, trace datasets with information
on the delay-tolerance of workloads do not exist yet, we modeled both scenarios
based on related real-world datasets:

1. ML Training is based on the cluster-trace-gpu-v2020 dataset from the Al-
ibaba Cluster Trace Program5, which contains two months of traces from

5 https://github.com/alibaba/clusterdata

https://github.com/alibaba/clusterdata
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a GPU production cluster [29]. Baseload is modeled using tasks labeled as
worker, which are highly variable and hard to predict. Each of the 5477
delay-tolerant workload requests corresponds to an xComputeWorker task
in the dataset. The size of workloads is determined by the plan gpu property
and each workload has to be finished by midnight the day it was issued,
meaning deadlines can be anywhere from 0 to 24 hours.

2. Edge Computing : is based on the NYC Taxi Trip dataset6 from Dec 2020
and Jan 2021. Baseload is modeled on the number of yellow taxi rides, which
is highly seasonal. The 2967 workload requests correspond to long-distance
green taxi rides: Every green taxi ride over 10 km length emits a job at
lpep pickup datetime which has to be computed until lpep dropoff datetime.
The median deadline is 41 minutes. All jobs have the same size.

We generated baseload forecasts by training a DeepAR [26] probabilistic fore-
casting model7 on the first 1.5 months of data to then generate 24-hour forecasts
with a 10-minute resolution for every 10-minute step in the last two weeks of
the datasets. Note, that the arrival rate of workload requests is not forecasted
by Cucumber. Power consumption forecasts are derived using Equation 1 with
Pmax = 180W and Pstatic = 30W .

Fig. 4. In red: actual and forecasted baseload power consumption in both scenarios at
an exemplary day. In green: exemplary power production at the three solar sites.

Solar Sites We assume every compute node has access to a solar panel with
400W peak production. We collected real solar power production forecasts using
the Solcast8 utility-scale API during the second half of January 2022. Like load
forecasts, the solar forecasts cover 24 hours in 10-minute resolution each and
were generated in 10-minute intervals. Each forecast contains the median as well

6 https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
7 DeepAR parameters: GRU, 3 Layers, 64 nodes, 0.1 Dropout; 20-30 minutes training
time on commodity hardware

8 https://solcast.com

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://solcast.com
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as the 10th and 90th percentile of expected energy production for each time step.
To evaluate the effectiveness of our approach at different geographical locations
and during different seasons, we gathered forecasts at three different sites located
at different continents and latitudes:

1. Berlin during winter (8 hours of daylight; 2 hours of sunshine)
2. Mexico City during the dry season (11 hours of daylight; 7 hours of sunshine)
3. Cape Town during summer (14 hours of daylight; 11 hours of sunshine)

For orientation, the roughly expected hours of daylight and sunshine in Jan-
uary at each site are listed in parentheses. Exemplary values for each site are
displayed in Figure 4.

4.2 Results

For each experiment, we report the admission control acceptance rate and the
fraction of REE that was used to actually power the workloads. Figure 5 illus-
trates the results.

Fig. 5. Acceptance rate of workload requests and the fraction of these workloads that
was actually powered via REE during execution (green).

As expected, Optimal w/o REE accepts almost all workload requests at the
cost of requiring a substantial amount of grid energy. Worth mentioning is the
constant acceptance rate of 100% across all experiments of the ML Training
scenario, which is a result of the rather relaxed deadlines. The stricter dead-
lines in the Edge Computing scenario lead to a slight decrease in acceptance
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rates. Both baselines utilize perfect forecasts but only Optimal REE-Aware con-
siders available REE, which is why is does not use any grid energy across all
experiments.

We observe that there was barely any REE available at the Berlin solar site
during the observed period. Even Optimal REE-Aware accepts only a maximum
of 2% of all workloads. Since the uncertainty and error rate of solar forecasts is
extremely high at the Berlin site, only Conservative forecasts achieved compara-
bly low grid power usage. Admission control based on Optimistic and Expected
forecasts resulted in very low REE usage of 5.7 - 10.7% and 34.8 - 45.7%, respec-
tively. Under such conditions, the usage of a forecast-based admission control
policy such as Cucumber can hardly be justified, as it does not show improved
performance compared to a Naive approach.

However, in Mexico City and Cape Town, which had a lot longer days and
better weather during January than Berlin, Cucumber clearly outperforms the
Naive admission control, which achieves 31.1% acceptance rate at 97.3% REE
usage in average. Cucumber’s Expected case configuration maintains almost the
same REE usage (97.0%) but increases the acceptance rate to 37.8%, while the
Conservative configuration manages 99.9% REE usage at an acceptance rate of
31.9%. The trade-off when tuning the forecasts is clearly visible: While Conser-
vative admission control results in almost perfect REE coverage, the acceptance
rate was on average 18.5% lower.

Fig. 6. Aggregated number of accepted workloads per hour for all admission control
policies during the ML Training scenario in Mexico City. The orange line indicates the
average solar production during a day.

Figure 6 depicts the aggregated number of jobs per hour for an exemplary
solar site on the ML Training scenario (all deadlines are midnight). We observe
that the acceptance rate over time differs strongly between the different ap-
proaches: Considering that Optimal w/o REE describes all workloads that can
be accepted without deadline violations, Optimal REE-Aware describes the op-
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timal subset that can be computed using only REE. The Naive approach cannot
exploit this potential, as it only accepts workloads once there is REE available.

The Cucumber admission control, on the other hand, is based on forecasts
of REE and hence already accepts workloads before the sun is rising. It can
be observed, that in the the Expected case’s behaviour is close to the optimal
case and almost all jobs before 11 am get accepted. After that, the number of
accepted jobs per hour falls drastically since the forecasted solar energy until
midnight is already reserved by queued workloads and forecasts in Mexico City
are comparably precise. In Conservative mode, Cucumber is more cautious and
accepts fewer jobs during early morning hours. However, it accepts additional
jobs throughout the day as uncertainty decreases when progressing in time.

We note that Optimistic forecasts barely increase REE usage compared to
Expected forecasts in most experiments. For example, the acceptance rate for
the Edge Computing scenario in Mexico City went up by 16.3%, but the REE
usage by only 0.5%, meaning that almost all additionally accepted jobs were
powered by grid energy. Furthermore, we note that the Optimistic experiments
resulted in 1, 5, and 7 deadline misses in the Edge Computing scenario (which
has tight deadlines), while none of the other configurations caused any deadline
misses. We conclude that users should pick α > 0.5 with caution.

5 Conclusion

This paper presents Cucumber, a configurable admission control policy for re-
source-constrained compute nodes with on-site renewable energy sources. Cu-
cumber accepts delay-tolerant workloads to increase REE utilization through
probabilistic multistep-ahead forecasts of computational load, energy consump-
tion, and energy production. Our simulation-based evaluation uses real solar
production forecasts for Berlin, Mexico City, and Cape Town and compares dif-
ferent configurations of our approach with baseline policies on two exemplary
scenarios. The results show, that Cucumber’s default configuration shows similar
acceptance rates than the optimal case baseline while achieving an REE coverage
of 97.0% on average in Mexico City and Cape Town. Conservative admission
results in almost perfect REE coverage at a 18.5% reduced acceptance rate.

For future work, we plan to implement Cucumber in a hardware testbed
to study its behavior and computational overhead under realistic conditions.
Furthermore, we want to extend the approach to also consider available energy
story and make Cucumber part of a decentralized architecture that exploits the
spatio-temporal availability of REE in a distributed system via local decisions.
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