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Detailed analysis of excited-state systematics in a lattice QCD calculation of gA
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Excited state contamination remains one of the most challenging sources of systematic uncertainty to control
in lattice QCD calculations of nucleon matrix elements and form factors: early time separations are contaminated
by excited states and late times suffer from an exponentially bad signal-to-noise problem. High-statistics
calculations at large time separations �1 fm are commonly used to combat these issues. In this work, focusing
on gA, we explore the alternative strategy of utilizing a large number of relatively low-statistics calculations
at short to medium time separations (0.2–1 fm), combined with a multistate analysis. On an ensemble with a
pion mass of approximately 310 MeV and a lattice spacing of approximately 0.09 fm, we find this provides
a more robust and economical method of quantifying and controlling the excited state systematic uncertainty.
A quantitative separation of various types of excited states enables the identification of the transition matrix
elements as the dominant contamination. The excited state contamination of the Feynman-Hellmann correlation
function is found to reduce to the 1% level at approximately 1 fm while, for the more standard three-point
functions, this does not occur until after 2 fm. Critical to our findings is the use of a global minimization, rather
than fixing the spectrum from the two-point functions and using them as input to the three-point analysis. We
find that the ground state parameters determined in such a global analysis are stable against variations in the
excited state model, the number of excited states, and the truncation of early-time or late-time numerical data.

DOI: 10.1103/PhysRevC.105.065203

I. INTRODUCTION

Lattice QCD (LQCD) calculations of nucleon matrix ele-
ments have reached a level of maturity for inclusion in the
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most recent Flavour Lattice Averaging Group (FLAG) review
[1]. Results are now commonly obtained with multiple lattice
spacings, multiple volumes, and pion masses at or near the
physical pion mass. Control over the continuum, infinite vol-
ume, and physical pion mass extrapolations are necessary to
compare LQCD results amongst themselves as well as with
experiments.

However, there is an additional source of systematic uncer-
tainty in the calculations which must be brought under control
before the extrapolations can be relied upon, and that is the
excited state contamination of the correlation functions. The
source of the issue is tied to the well-known signal-to-noise

2469-9985/2022/105(6)/065203(24) 065203-1 Published by the American Physical Society

https://orcid.org/0000-0002-4686-3667
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.105.065203&domain=pdf&date_stamp=2022-06-09
https://doi.org/10.1103/PhysRevC.105.065203
https://creativecommons.org/licenses/by/4.0/


JINCHEN HE et al. PHYSICAL REVIEW C 105, 065203 (2022)

(S/N) problem [2]. At early time, where the stochastic noise
is under control, the correlation functions have significant
contamination from excited states, while at large time, where
there is ground state saturation, the noise overwhelms the sig-
nal. To date, there are no calculations of nucleon three-point
functions performed at light pion masses with sufficient statis-
tics that the ground state matrix element can be determined
at sufficiently large times that excited state contributions can
be neglected—the equivalent of a single exponential fit to the
two-point function to extract the ground state energy.

The FLAG review summarizes challenges in controlling
the excited state contamination in these calculations and the
strategies various groups use to do so. In this article, we
will focus on two important points that are not discussed
in the FLAG review and which are generally lacking in the
literature:

(1) Stability of the ground state matrix element under the
truncation of data and/or the variation in the number
of excited states used in the analysis.

(2) Quantification of the excited state contamination.

The first issue is generally not discussed because most cal-
culations utilize too few values of fixed source-sink separation
times (tsep) for data truncation to be feasible. A larger number
of matrix elements are required to perform multistate fits, so
a limited number of tsep values used limits the number of ex-
cited states that can be removed. In the flavor physics LQCD
community, stability of the extracted ground state observable
over an appreciable time range (sufficiently large to rule out
correlated fluctuations) has long been recognized as crucial
for ruling out excited state contamination in two-point and
three-point calculations [3–7]; any residual contamination of
the ground state observable from excited states will either be
observed as a trend in time of its value, or is smaller than
the precision with which the observable has been extracted.
For nucleon correlation functions, it is even more crucial that
this stability be demonstrated as they are more susceptible to
correlated late-time fluctuations through their more severely
degrading S/N ratios. Care must be taken, however, to demon-
strate this stability before the exponential growth of the noise
erases the ability to detect time dependence in the observable.

The second issue is typically addressed qualitatively as
most calculations rely upon numerical results with larger
values of the source-sink separation time, where the size of
the excited-state contributions are relatively smaller and the
stochastic noise is larger, thus limiting the ability to obtain
a controlled, quantitative understanding of the excited state
contributions to the correlation function.

In order to address these issues, we have generated re-
sults with a large number of short to intermediate values
of the source-sink separation time (13 values for tsep ≈
0.18–1.22 fm) on an a09m310 (a ≈ 0.09 fm, mπ ≈ 310 MeV)
ensemble. The large number of tsep values with precise nu-
merical results allows us to include up to five states in the
correlation function analysis while performing a variety of
data cuts, as discussed in detail in Sec. III.

We focus our analysis and discussion on gA, the nucleon
matrix element of the axial current in the forward limit, as

this matrix element has proved to be one of the most chal-
lenging regarding control of excited state contamination. The
first LQCD calculation of gA with relatively light dynamical
quarks (mπ � 350 MeV) appeared in 2005 [8], resulting in
a value that had a 7% statistical uncertainty and agreed with
the experimental value after extrapolation to the physical pion
mass. This led the community to anticipate gA would soon
become a precision benchmark quantity for LQCD.

However, subsequent calculations confounded these ex-
pectations, with the results remaining roughly independent
of the pion mass (and below the physical value) or, worse,
trending away from the physical value as the pion mass was
reduced [9–11]. It was speculated that the issue might be due
to finite volume corrections which were much larger [12–14]
than predicted by chiral perturbation theory (χPT) [15]. As
groups investigated the sensitivity of the extracted matrix
elements as a function of tsep, and added an excited state
in the fit model for the correlation function, it became clear
that the dominant unresolved issue was contamination from
excited states [16–21].1 After this, a number of calculations
were performed [18,24–37] that were in agreement with the
physical value of gA [38–47]. Following the computation with
the Feynman-Hellmann method described in Ref. [48], other
groups have also utilized a larger number of tsep values at
the physical pion mass [35,36] and found an improved un-
derstanding of excited states.2

Despite this progress, there remains some tension in the
literature, in particular between our results [30–33] and those
from the PNDME Collaboration [27,34], both of which are the
only results to utilize three (CalLat) or four (PNDME) lattice
spacings and physical pion masses. Both sets of results were
generated with mixed actions that use the NF = 2 + 1 + 1
highly improved staggered quark (HISQ) action [51] in the
sea-quark sector generated by the MILC Collaboration [52]
and, in the former case, also by the CalLat Collaboration
[53,54]. The CalLat results are generated with a Möbius
[55] domain-wall [56–58] fermion (MDWF) valence action
[59] and are computed with a ≈ {0.09, 0.12, 0.15} fm lat-
tice spacings while the PNDME results are generated with
a tadpole-improved [60] clover-Wilson valence action with
a ≈ {0.06, 0.09, 0.12, 0.15} fm.

In Ref. [34], it was shown that the tension between the
CalLat and PNDME results is driven by the PNDME results
on the a ≈ 0.06 fm ensembles, which tend to pull the final
result to a smaller value, suggestive that the discrepancy may
be a discretization effect. However, it was pointed out that the
lever arm in values of tsep between the smallest and largest
source-sink separation times was the smallest on the a ≈ 0.06
fm ensembles, and that the high correlation between neigh-
boring time slices on these fine ensembles makes them more

1It should be noted that there are still relatively large and impor-
tant finite volume corrections that must be accounted for to achieve
percent-level control of the nucleon matrix elements [22,23].

2To the best of our knowledge, the use of a large number of tsep

values was first advocated in Refs. [49,50], which demonstrated
the benefit with LQCD calculations of heavy-hadron axial matrix
elements using five tsep values.
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susceptible to correlated fluctuations [61]. Further, subsequent
analysis by PNDME demonstrated an under-reported excited-
state fitting systematic in their results which seems to alleviate
the tension [62].

Another difference between the CalLat and PNDME re-
sults is that the PNDME results rely on the more common
fixed source-sink separation method while the CalLat results
utilize a variant of the summation method [63] which can
be derived with the Feynman-Hellmann theorem [48]. As
was shown in Ref. [18], the summation method suppresses
excited states more than the standard fixed source-sink sep-
aration method, and, as we will discuss in some detail in
Sec. II, the Feynman-Hellmann derived correlator suppresses
excited states even more than the summation method. The
excited state systematic uncertainty, therefore, deserves more
scrutiny. This has been recognized by the community, illus-
trated by the focus on excited state contamination in the most
recent review on nucleon structure from the annual lattice field
theory symposium [64].

The challenge of controlling calculations of gA and other
matrix elements has inspired a series of papers aimed at un-
derstanding the excited state contamination by utilizing chiral
perturbation theory [65–70]. This work has led to further
ideas to try to improve the calculation of the nucleon axial
form factor [62,71,72] as well as an earlier study showing the
importance of excited states and consistency of the partially
conserved axial current (PCAC) relation from LQCD [73].
It is worth noting, however, that χPT predicts that the ex-
cited state contributions should shift the correlation function
above its asymptotic value, while numerical results from all
calculations show that the ground state limit is approached
from below, thus there is a significant discrepancy between
this theoretical prediction and the numerical data. While there
are some significant indications that SU(2) baryon chiral per-
turbation theory, without explicit delta degrees of freedom, is
not a converging expansion even at the physical pion mass
[31,33,74–78], one might anticipate that the predictions from
chiral perturbation theory should be at least qualitatively cor-
rect. For gA, it is known that the inclusion of explicit delta
degrees of freedom leads to a partial cancellation of the NLO
corrections [79,80], which can be understood from large Nc

arguments [81,82]. The delta degrees of freedom also lead
to competing finite volume corrections as compared to the
virtual nucleon-pion loops [15]. A more careful investigation
of such effects is warranted.

In this work, we take a data-driven approach and ask, given
a large dataset, what can we learn about the excited state con-
tamination of the nucleon axial-vector three-point function?
We begin with a summary of the spectral representation of the
three point functions in Sec. II, then we turn to our numerical
results and analysis in Sec. III. We offer some observations
and conclusions in Sec. IV, and we present extensive details
of our results and analysis in the Appendices.

II. SPECTRAL DECOMPOSITION

Lattice QCD calculations are performed in Euclidean space
in a mixed time-momentum basis. In this paper, we focus on
the forward matrix element at zero momentum. Most LQCD

calculations are performed with a local creation operator and
a momentum-space annihilation operator. With such a setup,
the relevant two-point correlation function at zero momentum
and time separation tsep is given by

C2(tsep) =
∑

x

〈�|N (tsep, x)N†(0, 0)|�〉

=
∞∑

n=0

|zn|2e−Entsep

= |z0|2e−E0tsep

[
1 +

∞∑
n=1

|rn|2e−�n0tsep

]
. (1)

In this expression, we assume that the overlap factors, zn =
〈�|N |n〉, used to create (N†) and annihilate (N) the states with
quantum numbers of the nucleon from the vacuum (|�〉) are
conjugate to each other.3 In the last line, we have defined the
energy splitting and ratio of overlap factors:

�mn = Em − En, rn = zn

z0
. (2)

The parametrization of Eq. (1) recasts all excited-state pa-
rameters with respect to the ground state, and yields a more
universal set of excited-state distributions, simplifying the es-
timation of their starting values in a frequentist minimization
or prior distribution in a Bayesian minimization [83].

A. Three-point correlators

The matrix elements of interest (with Dirac and isospin
structure �) are determined through an analysis of three-point
correlation functions which are also computed in a mixed
time-momentum basis. The most common strategy is to use
a sink with fixed definite spatial momentum at t = tsep with a
current insertion ( j�) at τ , between the source (N†) at t = 0
and the sink (N). In the limit of zero momentum and zero-
momentum transfer, the three-point function is given by

C� (tsep, τ ) =
∑
y,x

〈�|N (tsep, y) j� (τ, x) N†(0, 0)|�〉

=
∑

n

|zn|2 g�
nn e−Entsep

+ 2
∑
n<m

znz†
m g�

nm e−(En+ �mn
2 )tsep

× cosh

[
�mn

(
τ − tsep

2

)]
, (3)

where the matrix elements of interest are given by

g�
mn = 〈m| j�|n〉. (4)

In this limit, the correlation functions are real, so z†
n = zn and

g�
nm = g�

mn, which are used to simplify Eq. (3).

3We are using the nonrelativistic normalization 〈n|m〉 = δnm and
1 ≡ |�〉〈�| + ∑∞

n=0 |n〉〈n|. We assume that the contributions from
the thermal terms that are exponentially suppressed from the full
temporal extent are sufficiently suppressed that they can be ignored.
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Typically one determines the ground state matrix element,
g�

00, by performing the computation for 1, 2, 3, or some-
times 4 values of tsep in the range tsep ≈ 1−1.5 fm while
utilizing local three-quark interpolating fields for the creation
and annihilation operators. The correlation functions are then
analyzed using models with zero, one, or more excited states
[18,24–37], with some analysis using up to four states
[62,84,85]. There are several challenges and shortcomings
with this strategy, which we will summarize. We note the LHP
and ETM Collaborations have performed calculations with
significantly more values of tsep than is common [35,36].

The ground state (gs) matrix element g�
00 is typically deter-

mined by constructing the ratio correlation function

R� (tsep, τ ) = C� (tsep, τ )

C2(tsep)
, (5)

which gives the ground state matrix element in the limit

lim
tsep→∞ R� (tsep, τ ≈ tsep/2) = g�

00. (6)

The energies and overlap factors can be constrained from
the two-point function, leaving the three-point function to
constrain the matrix elements g�

nn and g�
nm.4 From Eq. (3), one

observes that only the transition terms (n �= m) are sensitive to
the current insertion time τ . To isolate the ground state matrix
element, the minimum number of values of tsep required is at
least one greater than the number of states used in the analysis
in order to have a one-degree-of-freedom fit. For example, a
two-state fit requires the determination of g�

00, g�
11, and g�

01: the
latter can be constrained from the τ dependence, leaving the
remaining tsep dependence to constrain the two former ma-
trix elements. In this minimal scenario, computations which
utilize three values of tsep (or less) are not able to perform
a systematic study on omitting values of tsep, or changing
the number of states used in the analysis. This prohibits a
verification that the full uncertainty on g�

00 associated with ex-
cited state contamination has been correctly captured. In other
words, we would have to assign an unquantified systematic
uncertainty to the ground state matrix element.

Another significant challenge is that lattice computations
of three-point functions are typically performed for tsep � 1
fm, which is roughly the time separation when the stochas-
tic noise becomes significant. Again, because of the limited
values of tsep typically used, one cannot determine if the data
at this time are susceptible to a correlated fluctuation or not,
which, if present, would cause a bias in the results. We will
return to this point in Sec. III.

To understand the various sources of excited state (es)
contamination, we reorder Eq. (5) in a way which deliberately

4Some groups fix the overlap factors and energies from the two-
point correlation function and then pass the central or correlated
values into a three-point function analysis. This strategy can be
particularly problematic, as emphasized in Ref. [62], because the
two-point functions generated from purely local three-quark interpo-
lating operators are not sufficiently constraining of the excited state
spectrum, which can lead to significant differences in the extracted
ground state matrix elements. Instead, we perform a simultaneous fit
to the two- and three-point functions.

disentangles the different types of excited state contributions.
For the two-point correlation function, it is straightforward to
separate the ground state from the excited states

C2(tsep) = Cgs
2 (tsep) + Ces

2 (tsep), (7a)

Cgs
2 (tsep) = |z0|2e−E0tsep , (7b)

Ces
2 (tsep) =

∑
n�1

|zn|2e−Entsep . (7c)

For the three-point functions, we denote the n-to-n as scat-
tering (sc) states and the n-to-m as transition (tr) states such
that

C� (tsep, τ ) = Cgs
� (tsep) + Csc

� (tsep) + Ctr
� (tsep, τ ), (8a)

Cgs
� (tsep) = |z0|2g�

00e−E0tsep = g�
00C

gs
2 (tsep), (8b)

Csc
� (tsep) =

∑
n�1

|zn|2g�
nne−Entsep , (8c)

Ctr
� (tsep, τ ) =

∑
n<m

znz†
m 2g�

nm e−(En+ �mn
2 )tsep

× cosh

[
�mn

(
τ − tsep

2

)]
. (8d)

The ratio correlation function can then be expressed as

R� (tsep, τ ) = Cgs
� (tsep) + Csc

� (tsep) + Ctr
� (tsep, τ )

C2(tsep)

= g�
00 + Csc

� (tsep) − g�
00C

es
2 (tsep)

C2(tsep)

+ Ctr
� (tsep, τ )

C2(tsep)

= g�
00 +

∑
n�1

(
g�

nn − g�
00

)|zn|2e−Entsep

C2(tsep)

+ Ctr
� (tsep, τ )

C2(tsep)
. (9)

Consider the leading excited state contamination to g�
00 arising

from g�
11, and g�

01:

R� (tsep, τ ) ≈ g�
00 + |r1|2

(
g�

11 − g�
00

)
e−�10tsep

+ 2r†
1g�

01e−�10
tsep

2 cosh
[
�10

(
τ − tsep

2

)]
+ · · · , (10)

where the · · · includes terms from higher excited states as
well as from the first excited state, but further suppressed by
extra powers of exp(−�10tsep). The scattering and two-point
excited state contributions, in addition to canceling against
each other for same-sign values of g�

11 and g�
00, are suppressed

by the full tsep, exp(−�10tsep). In contrast, the transition ex-
cited states are only suppressed by half the time separation,
exp(−�10

tsep

2 ), and so they are expected to be the dominant
source of excited state contamination.
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B. Feynman-Hellmann and summed correlators

Rather than analyzing the three-point functions, one can
construct a correlation function in which the current insertion
time is summed over, cutting τc time slices from either end of
the correlation function:

	� (tsep, τc) =
tsep−τc∑
τ=τc

C� (tsep, τ )

=
∑

n

|zn|2(tsep + 1 − 2τc)g�
nne−Entsep

+ 2
∑
n<m

znz†
mg�

nme−(En+ �mn
2 )tsep

× sinh
[

�mn
2 (tsep + 1 − 2τc)

]
sinh

(
�mn

2

) . (11)

The original implementation of this idea included a sum over
all time slices, including the contact terms (τ = 0 and τ =
tsep) as well as “out-of-time-order” regions (τ < 0 and τ >

tsep) [63]. Given a set of fixed source-sink separation datasets,
one is of course free to perform the sum in a variety of
ways, e.g., excluding data from the out-of-time-order regions,
excluding the source and sink time [setting τc = 1 in Eq. (11)]
or also cutting time near the source and sink (τc > 1).

The summed correlation function at large tsep,

	� (tsep, τc) = |z0|2e−E0tsep

×
{

(tsep + 1 − 2τc)
[
g�

00 + |r1|2g�
11e−�10tsep

]

+ r†
1g�

01
e

�10
2 (1−2τc ) − e−�10(tsep+ 1

2 −τc )

sinh
(

�10
2

)
}

+ · · · ,

(12)

can be used to determine the leading excited state contami-
nation. Note that the ground state and the scattering (n-to-n)
states are relatively enhanced by tsep + 1 − 2τc. The transition
matrix elements (m-to-n) lead to a tsep-independent term and
those that depend upon tsep become exponentially suppressed
by the full excited state gap (e−�10tsep ) rather than half the
gap, as with the three-point function, Eq. (10), as noted in
Ref. [18]. Thus, one expects that the excited state contam-
ination of the summed correlation function is smaller than
for the standard fixed source-sink separation time three-point
correlation function, up to this tsep-independent term.

This summed correlation function has received some at-
tention in the literature [18,86–88]. Recently, there have been
calculations which utilize a Feynman-Hellmann approach,
by performing a computation in the presence of background
fields and extracting the matrix elements through the linear
response of the spectrum to the background field [89–91]. In
Ref. [48], it was shown that the application of the Feynman-
Hellmann theorem to the effective mass directly leads to a
derivative of the summed correlation function [63], relating
the matrix element to the spectrum without the need for an
explicit background field. We call this the Feynman-Hellmann

(FH) correlation function:5

FH� (tsep, τc, dt ) =
tsep−τc∑
τ=τc

R� (tsep + dt, τ ) − R� (tsep, τ )

dt

= 1

dt

[
	� (tsep + dt, τc)

C2(tsep + dt )
− 	� (tsep, τc)

C2(tsep)

]
,

FH� (tsep, τc) ≡ FH� (tsep, τc, dt = 1). (13)

Since the FH correlation function is constructed from
	� (tsep, τc), it enjoys the larger suppression of excited states,
with the leading excited state contamination scaling as
exp(−�10tsep) rather than with �10/2 (the tsep independent
pieces exactly cancel in the numerical derivative). Addition-
ally, the numerical derivative serves to both isolate the ground
state, whose contribution grows linearly in tsep, as well as to
further suppress the scattering (n-to-n) and transition (m-to-n)
excited states which do not strongly differ from one time slice
to the next. This stronger suppression of excited states is what
allowed us to utilize earlier Euclidean time data [30–32] than
is common in the three-point correlation function analysis and
to enjoy the benefits of the lower stochastic noise. We will
show this in some detail in Sec. III A.

III. LATTICE CALCULATION

For the present study, we use results from our MDWF on
gradient-flowed HISQ action [59] on the a09m310 ensem-
ble, which has a lattice spacing of a ≈ 0.09 fm and a pion
mass of mπ ≈ 310 MeV. We use the same parameters as in
Refs. [30,31,59] except we change the parameters that go
into the GAUGE_COVARIANT_GAUSSIAN smearing routine in
CHROMA [92] to σsmr = 3.5 and Nsmr = 45.

We generate 16 sources per gauge configuration on 784
configurations. We generate the three-point functions using a
sequential propagator through the sink at 13 values of tsep,

tsep/a09 ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}. (14)

Our sources and sinks are generated with a local three-quark
interpolating field using only the upper-spin components of
the quark field in the Dirac-Pauli basis (lower components for
the negative parity states), which gives the largest overlap onto
the ground state of the nucleon at rest [93,94]. In Appendix A,
we present further details of our computation, including the
cost-benefit analysis of improving the stochastic sampling
by combining eight coherent sinks [10] for each sequential
propagator, the use of spin-up and spin-down sources and
sinks (versus utilizing a spin projector that isolates one of
the spin states), and the use of time-reversed negative parity
correlators.

A. Full results

We begin with a presentation of our final results, which
come from a fully correlated Bayesian constrained curve-fit

5In the original implementation [48], the sum over the current time
is over all time slices, which we denote τc = none, as in the original
summation method [63].
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FIG. 1. Left (psychedelic moose/water buffalo plot): We plot the numerical results of RA3 (tsep, τ ) for tsep = 2 (the single gray point in the
middle) to tsep = 14, the top (red) dataset. In addition, we plot the resulting posterior description of the correlation function from our five-state
fit as the (correspondingly colored) fit bands. The (gray) squares in the upper left/right of the “moose antlers” are not included in the analysis,
as indicated by the break in the fit band from the inner region. The horizontal (gray) band is the ground state matrix element, g̊A. Right: The
FHA3 (tsep, τc = 1) numerical data (filled orange symbols) are plotted along with the posterior description of the correlation function from the
global analysis. As a comparison, for even values of tsep, we plot RA3 (tsep, τ = tsep/2) with open (colored) symbols (the numerical data in the
middle of the “moose”). The time axis is converted from lattice units (top) to fm (bottom) using our scale setting [54].

[3] with a five-state model to describe

C2(tsep), RA3 (tsep, τ ), RV4 (tsep, τ ), FHA3 (tsep, τc = 1),

FHV4 (tsep, τc = 1).

The final result is obtained with all values of τ between the
source and sink time, τ = [1, tsep − 1]. For R� (tsep, τ ), the
results are symmetrized about τ = tsep/2 and half the data
(plus τ = tsep/2 point for even values of tsep) are used in the
analysis.

In the left panel of Fig. 1 (the “psychedelic moose”), we
plot the numerical results for the ratio of the three-point func-
tion generated with the A3 = q̄γ3γ5τ3q current, divided by the
two-point function at the given value of tsep [cf. Eq. (5)]. We
also plot the resulting posterior description with our five-state
model. The fit quality is good and visually one can see that the
model accurately describes the numerical results over the full
range of tsep and τ used in the analysis. The horizontal (gray)
band is the value of the ground state matrix element g̊A. In the
right panel we plot the FHA3 (tsep, τc = 1) data that are used in
the global fit as well as the resulting posterior distribution of
this correlation function.

In Fig. 2, we explore the FHA3 (tsep, τc) data as the number
of data near the source and sink time are cut from the sum over
current insertion time denoted by increasing τc. The posterior
fit bands are from the global analysis that uses τc = 1. As τc

is increased, for a fixed tsep, one observes that the excited state
contribution becomes larger. This can be understood by look-
ing at the leading excited state contribution to FH� (tsep, τc)
that depends upon τc:

FH� (tsep, τc) 
 e�10(τc+ 1
2 )r†

1g�
01

e−�10tsep − e−�10(tsep+1)

sinh �10
2

.

As is evident from Fig. 1, the transition matrix element
gA3

01 < 0; an observation common to all LQCD calculations

of gA. Therefore, the leading excited state contamination that
depends upon τc is negative and grows exponentially with
increasing τc, consistent with the results.

In order to have confidence in our final results for mN = E0,
g̊A and g̊V ,6 as well as the ability to quantify and control the
excited state contamination, we discuss our analysis strategy
and the stability of our results under model variation and data
truncation.

B. Analysis strategy

We have two goals with this work:

(1) Identify the ground state mass and matrix elements, g̊A

(and g̊V ), with a complete systematic uncertainty.
(2) Obtain a quantitative understanding of the excited state

contamination of the correlation functions used in the
analysis.

The former is possible without the latter through a demon-
stration that the extracted ground state mass and matrix
elements are invariant under modifications of the fit model
(i.e., the number of excited states and the model of their mass
gap) and truncations in the time range used in the analysis.

A robust identification of the excited state spectrum and
matrix elements would require the use of a variational basis
that includes multihadron operators [95–102]. For this reason,
our second goal is to obtain a quantitative understanding of
the sum of all excited state contributions, and, in particular,
to quantify how they contaminate the ground state values. To
achieve this goal it is essential that the fit model accurately

6With our action, the axial-vector and vector renormalization fac-
tors are equal to 10−4 so the renormalized axial charge is given by
the ratio of the bare matrix elements, gA = g̊A/g̊V [31].
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FIG. 2. We plot the numerical FHA3 (tsep, τc ) data for various val-
ues of τc as well as the posterior reconstruction of these correlation
functions from the global analysis that uses τc = 1.

describes the correlation function over the full range of time
separations without overfitting the data.

An important point to note is that, with only the local three-
quark interpolating operators, it is anticipated that the excited
states determined in the analysis will be linear combinations
of the true eigenstates of the system. Therefore, the excited
state spectrum determined from the two-point function may
not be unique, and may be different than that determined from
a simultaneous fit with the three-point functions. Significant
attention was given to this issue in Ref. [62]: when the ex-
cited states used in the analysis of the three-point function
were priored to follow the anticipated P-wave N (q)π (−q)
(noninteracting) energy levels, the value of the ground state
matrix element was found to shift significantly as compared
to when the spectrum was taken from the analysis of the
two-point correlation functions. In both analyses, the authors
did not perform a simultaneous analysis of the two-point and
three-point functions, but instead used the excited state spec-
trum determined from either the two-point function or the A4

three-point function to inform priors for the analysis of the
three-point function.

We take a different viewpoint. Because the interpolating
operator basis is not sufficient to uniquely identify the spec-
trum, and the value of the ground state matrix elements can
change significantly based upon different models of excited
states, which all have acceptable χ2/dof in the analysis, it is
critical to perform a minimization of all correlation functions
simultaneously. Only with this global minimization is it pos-
sible to infer how similar or dissimilar the various analysis
strategies are.

In Appendix B, we provide a detailed description of the
analysis and the sensitivity of the ground state posteriors
under variations in the number of states used, the model of
excited states and the fit ranges in tsep and τ . Here, we sum-
marize the findings of this study.

We begin with a discussion of the model for the excited
states. The lowest-lying excited states consist roughly of ei-
ther a nucleon-pion in a relative P wave or a nucleon with a
two-pion excitation. With mπL ≈ 4 the noninteracting energy
levels of these two states are nearly identical and so a calcula-

tion without multi-hadron operators cannot distinguish them.
Therefore, they are treated as a single excited state. We then
use three different models for the spectrum of excitations and
parametrize the energy gaps �En, where n indicates the nth
state, as

nth energy level En = E0 +
n∑

l=1

�El ,

harmonic oscillator (HO) �En = 2mπ ,

inverse n (1/n) �En = 2mπ/n,

inverse n2 (1/n2) �En = 2mπ/n2. (15)

For each model, for each level n < Nmax, we set the prior as
�Ẽn = (�En, mπ ) where the first entry is the prior mean and
the second is the prior width. For the highest state, which we
expect to be a “garbage can,” we set the prior width to be 5mπ .
We observe two important facts when we vary the excited state
model:

(1) The ground state posteriors are insensitive to the model
used.

(2) The excited state posteriors are mostly insensitive to
the model used, even when the posterior is in signifi-
cant conflict with the prior.

Both are strong indicators that the extracted energy levels
are dictated by the numerical data and not the priors used. In
Fig. 3, we show the sensitivity of g̊A and the spectrum on the
excited state model versus the tmin

sep of the two-point correlation
function (in all cases for the full five-state, five-correlation
function analysis). The lowest panel is the relative weight
determined from the three models at a given tmin

sep :

wi = elogGBFi∑
j∈models elogGBF j

, (16)

where logGBF is the logarithm of the Gaussian Bayes factor.
The next panel gives the Q ∈ [0, 1] value, which is a mea-
sure of the fit quality. For the values of g̊A and En, the light
(red) horizontal band is the value of these quantities from the
chosen fit from the HO model at tmin

sep = 3, to guide the eye,
which is also denoted by the markers with a black border. The
vertical bars represent the prior width for the given quantity
and are aligned in the same vertical column as their corre-
sponding posterior values (for g̊A and E0, the prior widths are
larger than the displayed y limits and so they are not shown).7

Finally, the horizontal dashed lines give the non interacting
P-wave N (q)π (−q) energy levels, which are quite dense. The
lowest noninteracting N (q + p)π (−q)π (−p) level where all

7The energy spectrum is priored with a series of ordered energy
splittings. Therefore, to construct the priors shown in Fig. 3, we plot
Ẽn = Ê0 + ∑n−1

l=1 �Êl + �Ẽn where the priors are denoted with a
tilde and the posteriors are denoted with a hat.
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FIG. 3. Sensitivity of the extracted spectrum and g̊A to the model of excited states used as a function of tmin
sep in the C2(tsep) correlation

function. For a given tmin
sep , from left to right, offset for visual clarity, we plot the prior [vertical (colored) box] and posterior values (filled

markers) of g̊A, E0, and En for the harmonic-oscillator (HO), inverse n (1/n), and inverse n2 (1/n2) excited state models, Eq. (15). The prior
widths on g̊A and E0 are larger than the displayed y limits, and thus not shown. The horizontal light (red) bands (to guide the eye) are from the
chosen fit denoted with the black border on the (colored) markers. The horizontal dashed lines denote the noninteracting energy levels of the
P-wave Nπ states. See the text for more details.

hadrons are at rest is nearly degenerate with the lowest
N (q)π (−q) level. We further note that

(1) The extracted posteriors are consistent between mod-
els which all have a high fit quality, even when the
posterior value is in tension with the prior. This is a
strong indicator the extracted spectrum is highly con-
strained by the numerical data and not the priors, even
for the high-lying energy levels.

(2) The first excited state is consistent with the lowest
lying Nπ state. The higher lying states have an un-
certainty that spans several anticipated energy levels,
indicating that they are likely a linear combination of
eigenstates.

In Appendix B 2 c, we show that while the two-point func-
tions are not able to constrain the excited states on their own,
when analyzed in combination either the V4 or A3 correlation
functions (or both), the extracted spectrum becomes more
precise and very stable against variations in the fit model.
This observation supports our conclusion that it is important to
perform a global, fully correlated analysis to obtain a reliable
determination of the ground state parameters. A similar obser-
vation and conclusion were made in Ref. [22] and reviewed in
Ref. [64].

Next, we examine the stability of g̊A as we remove data
from the fit (all fits still use the set of five correlation func-
tions). We examine the sensitivity as we increase tmin

sep in
the analysis, as we reduce tmax

sep and also through using only

even or odd values of tsep in the three-point functions. For
each choice of which values of tsep to use, FH� (tsep, τc =
1, dt ) is constructed from the set of R� (tsep, τ ). When we use
consecutive values of tsep, we take dt = 1 in FH� (tsep, τc =
1, dt ). When we use only even or odd values of tsep, we
take dt = 2.

The left panel of Fig. 4 shows g̊A as a function of the
minimum and maximum values of tsep used in the analysis.
When tmin

sep is varied, tmax
sep is held fixed at 14. When tmax

sep is
varied, tmin

sep is fixed at 2. In the middle panel of Fig. 4, we show
the value of g̊A as a function of tmax

sep when only even values of
tsep are used in the analysis of R� (tsep, τ ) and FH� (tsep). The
right panel is the same as the middle panel but we only use the
odd, rather than the even, values of tsep in the analysis.

When the three-point functions are computed with a suf-
ficiently large number of tsep values, and the two-point and
three-point functions are analyzed in a fully correlated global
minimization, the ground state parameters are very stable
under data truncation and the excited state model. Of note,
it is sufficient to use every other value of tsep at this a ≈ 0.09
fm lattice spacing.

C. Excited state breakdown

Given a model that is demonstrated to accurately describe
the correlation functions over the full range of tsep and τ

used in the analysis, we can separate the various sources of
excited state contamination into the “scattering” (n-to-n) and
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FIG. 4. Stability of the determination of g̊A under data truncation. The horizontal band is the value of g̊A determined from the full analysis,
to guide the eye. The bottom part of each panel represents the fit quality Q ∈ [0, 1]. The left panel shows the stability as we increase tmin

sep while
holding tmax

sep = 14 to the left of the vertical dashed line and, similarly, the result as tmax
sep is increased with tmin

sep = 2 to the right of the dashed line.
The middle and right panels show the tmax

sep stability when only even or odd values of tsep are used in R� (tsep, τ ) and FH� (tsep, τc = 1, dt = 2).

“transition” (m-to-n) sources as well as those arising from the
excited states of the two-point function (see Sec. II A). While
we can accurately describe these various sources of excited
state contamination, we do not claim to have a rigorous deter-
mination of the spectrum, since the creation and annihilation
operators we have used are purely local three-quark operators
which are known to have poor overlap with the nucleon-pion
scattering states [101]. However, since only the transition

excited states depend upon the current insertion time τ , we
can confidently separate the excited states into these various
classes of excited state contamination.

In Fig. 5, we plot the percent contamination of various
sources of excited state contamination to the ground state
for RA3 (tsep, τ = tsep/2)/g̊A (left) and FHA3 (tsep, τc = 1)/g̊A

(right). The legend keys for Res
A3

(tsep, τ = tsep/2)/g̊A corre-
spond to

2pt es: − Ces
2 (tsep)

C2(tsep)
= Cdata

A3
(tsep, τ = tsep/2)
ˆ̊gACdata

2 (tsep)
− Ĉsc

A3
(tsep, τ = tsep/2)

ˆ̊gAĈ2(tsep)
− Ĉtr

A3
(tsep, τ = tsep/2)

ˆ̊gAĈ2(tsep)
,

3pt sc:
Csc

A3
(tsep, τ = tsep/2)

g̊AC2(tsep)
= Cdata

A3
(tsep, τ = tsep/2)
ˆ̊gACdata

2 (tsep)
+ Ĉes

2 (tsep)

Ĉ2(tsep)
− Ĉtr

A3
(tsep, τ = tsep/2)

ˆ̊gAĈ2(tsep)
,

3pt tr:
Ctr

A3
(tsep, τ = tsep/2)

g̊AC2(tsep)
= Cdata

A3
(tsep, τ = tsep/2)
ˆ̊gACdata

2 (tsep)
+ Ĉes

2 (tsep)

Ĉ2(tsep)
− Ĉsc

A3
(tsep, τ = tsep/2)

ˆ̊gAĈ2(tsep)
, (17)

where the ˆ denotes the posterior reconstruction of a given
contribution to the correlation function (or g̊A) and the “data”
superscript denotes the numerical data. The full correlations
between the numerical data and posteriors are used in these
reconstruction.

The 2pt + sc is the sum of the first two terms and the 3pt is
the sum of all excited states. The FHA3 (tsep, τc = 1)/g̊A keys
correspond to the same breakdown of various excited state
contributions after they are passed through Eq. (13). From
these plots, there are several observations and conclusions one
can make:

(1) There is a significant cancellation between the scatter-
ing excited states and two-point excited states.

(2) The transition excited states are the dominant source
of excited states and they are relatively suppressed in
FHA3 (tsep, τc) as compared to RA3 (tsep, τ = tsep/2).

(3) The total excited state contamination at tsep ≈ 1
fm is ≈8% for RA3 (tsep, τ = tsep/2) and ≈1% for
FHA3 (tsep, τc).

In Eq. (9) we see, from the proportionality of the nth
excited state to g�

nn − g�
00, an explicit cancellation between

the scattering (3pt sc) and two-point excited state (2pt es)
contamination. For this cancellation to be significant, as ob-
served in the posterior determination of the two classes of
excited states, one explanation is that g�

nn ≈ g�
00 for all n.

For the vector current, we know that in infinite volume, the
vector operator measures the isovector charge of the sys-
tem, which in the isospin limit is exactly equal to gV4

00 = 1
(up to renormalization). It has further been demonstrated
that in the forward scattering limit the finite volume inter-
action amplitudes conspire with the finite volume Lellouch-
Lüscher factors to ensure that gV4

nn = gV4
00 for two-particle

states [103].
This result, while not surprising, demonstrates charge con-

servation in finite volume by allowing one to relate n-point
Green’s functions to (n − 1)-point Green’s functions through
the Ward-Takahashi equations. In the case of the axial-vector
matrix element, it is plausible that in the forward scatter-
ing limit the corrections to such a relation arising from the
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FIG. 5. Ratio of excited state contributions to the ground state, gA, for RA3 (tsep, τ ) (left, 3pt) and FHA3 (tsep, τc = 1) (right, fh). Each panel
contains three types of data points: the n-to-n scattering (sc) excited states, Csc

� /(gAC2), the n-to-m transition (tr) excited states, Ctr
�/(gAC2),

and the excited states from the two-point (2pt es) function, −Ces
2 /C2 (and the corresponding Feynman-Hellmann versions of these ratios in

the right figure). The decomposition of the numerical data into these three classes of excited state contamination depends upon our posterior
reconstruction of the correlation functions (2pt, 3pt, and FH), see Eq. (17). Because we are looking down the middle of RA3 (along τ = tsep/2),
we only show data at even t ′

seps in the left panel. In addition to plotting the corresponding posterior contribution from each class of excited state,
we plot two hatched bands. The white hatched band is the sum of the 3pt sc and 2pt es contributions, which are observed to largely cancel, as
indicated in Eq. (9). The gray hatched band is the sum of all excited state contributions (the full posterior distribution, minus the ground state,
normalized by the ground state). The 3pt sc contribution is positive for RA3 (tsep, τ ) and it becomes negative for FHA3 (tsep, τc = 1) at tsep > 0.5
fm. The opposite is true for the 2pt es contribution. The sum of the scattering and two-point excited state contributions is opposite in sign to
the transition excited state contributions, unlike for RA3 (tsep, τ ) in which they are the same sign, leading to an even stronger suppression of
the total excited state contributions beyond the expected suppression, as described in the text. The horizontal red dashed lines represent the
threshold of a 1% contribution of excited state contamination to the ground state value.

partially conserved nature of the axial-vector current would
also vanish, such that in this limit the Lellouch-Lüscher fac-
tors are similarly removed. For example, for the nucleon,
we know that the induced pseudoscalar form factor, which
would provide a correction to the Ward-Takahashi equations,
vanishes in the forward limit. We leave a detailed study of this
question to future work.

In the left panel of Fig. 5 we see that the scattering excited
state contribution [the upper (red) band/data] and the con-
tribution from the excited states coming from the two-point
function [the middle (purple) band/data] are roughly equal
and opposite in sign. The hatched curve, which is mostly
white with gray hash lines, is the sum of these two contri-
butions and it lies between them. We observe that the sum of
these two sources of excited state contributions decay to a 1%
correction [the horizontal dashed (red) lines] at tsep ≈ 1 fm.
In contrast, the transition (3pt tr) excited states depicted by
the lowest (blue) band/data do not decay to the 1% level until
tsep ≈ 2.2 fm.

In the right panel of Fig. 5 we show the same excited
state breakdown for the Feynman-Hellmann correlation func-
tion. The sign of the scattering and two-point excited state
contributions both change compared to RA3 (tsep, τ = tsep/2).
This sign change can be understood from Eq. (13). It is
also interesting to note that the magnitude of the transition
excited state contributions at tsep ≈ 1 fm go from ≈7.5% for
RA3 (tsep, τ = tsep/2) to ≈2.5% for FHA3 (tsep, τc = 1). Finally,
for RA3 (tsep, τ = tsep/2), the sum of the scattering and two-
point excited state contributions is the same sign as the sum
of transition excited states, while for FHA3 (tsep, τc = 1) it is

the opposite sign at intermediate and large tsep. Thus, the total
excited state contamination decays to the 1% level for the
Feynman-Hellmann correlation function at tsep ≈ 1 fm while
this does not happen until tsep > 2 fm for RA3 (tsep, τ = tsep/2).

There is no proof that this fortunate cancellation must
happen. However, an examination of our results in Ref. [31]
shows a consistent picture that the excited state contamination
of the FHA3 (tsep, τc = none) correlation function decays to the
1% level by roughly 1 fm over a broad range of pion masses,
130 � mπ � 400 MeV.

D. Comparison with late-time only results

In this section, we perform the correlator analysis on
late time separation data, tsep = [10, 12, 14], which is di-
rectly comparable to the results in Refs. [27,34] that were
performed on the same ensembles, and otherwise mim-
icking the more common strategy used, for example, in
Refs. [18,24–26,28,29,37].

The results are obtained with a simultaneous fit to the two-
and three-point functions using the same priors as our main fit,
given in Appendix B 1. We also demonstrate the sensitivity of
the posterior distributions of the ground state parameters to
changes in the input priors as in Appendix B 2. Because we
have only three values of tsep, we use a minimal number of
excited states: with one excited state, there is only one degree
of freedom in describing the tsep dependence of R� (tsep, τ ),
after which the analysis relies upon the priors for the excited
state matrix elements.
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FIG. 6. We plot the numerical data for RA3 (tsep, τ ) and resulting
posterior fit bands obtained from a combined two-point and three-
point analysis when only tsep = [10, 12, 14] are used in the analysis.
The inner (colored) numerical data are used in the analysis. There is
a break in the fit band and the outer (gray) band and data indicate
regions of τ not used in the analysis. The horizontal gray band is the
resulting posterior value of the ground state, g̊A.

With the quark smearing we have used we find that we
must apply a relatively aggressive truncation on the current
insertion time in order for the model to describe the numerical
data, restricting the analysis to the “center” of the current
insertion time τ . We illustrate the region of τ used for each
tsep in Fig. 6 and depict the stability of the ground state axial
matrix element in Fig. 7. The optimal result is chosen as the fit
with the largest amount of numerical data while maintaining a
good fit quality (cf. the lower panel of Fig. 7). We refer to the
optimal choice of data included for this two-state model fit
as τinc = τ

opt
inc , but we also show results for the ground state

posteriors when one more (τ opt
inc + 1) or one less (τ opt

inc − 1)
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FIG. 7. The stability of g̊A versus the number of states and cur-
rent insertion times included in the analysis. τ opt

inc denotes our optimal
choice of included data. The bottom panel shows the correspond-
ing fit quality Q. The lower horizontal band indicates the optimal
fit from the late-tsep only analysis while the upper horizontal band
above it represents the optimal fit from the full analysis presented in
Sec. III A.
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FIG. 8. The extracted ground state energy as a function of tmin
sep

and the number of states (ns) used in the analysis. The late-tsep data
are subject to a correlated fluctuation, as observed in the 2σ increase
in E0 around tmin

sep = 12.

value of τ is included in the fit. While not depicted, the ground
state posteriors are also stable under variation of the choice of
tmin
sep in the two-point function.

We observe that for this specific dataset, the late-tsep result
is in ≈2σ tension with the result from the full analysis that
includes more values of tsep, and is clearly stable over a variety
of data truncations and model variations. This is indicative
that late-tsep data can be subject to correlated fluctuations
which are difficult to identify without having results at many
values of tsep.

The same systematic effect can be seen in a simpler case
using a fit to the two-point correlation function. In Fig. 8,
we show the result of the ground state energy extracted from
the two-point correlation function under varying tmin

sep . We
highlight the best fit ground state energy, which is supported
by a robust plateau in the dimension of tmin

sep with high Q
value. However, we see that at late time beyond 1 fm, a sec-
ond plateau develops approximately two standard deviations
above our best fit. This second plateau cannot be physical
and simply reached later in time due to latent excited state
contamination, as the 2pt correlator is positive definite and
therefore required to approach the ground state from above.
This second “stable” plateau is also the logical result for a one-
state fit. Analogously to the three-point analysis, if the model
fails to describe excited-state contaminations, the model must
extract ground state parameters at late time. These values
are then sensitive to uncontrolled statistical fluctuations. Also
note that we observe that the fluctuation in the effective mass
occurs approximately 0.2 fm later than the matrix elements;
see the top panel of Fig. 11 in Appendix B. Similarly to the
three-point analysis, in the absence of a more holistic view
as granted by analyzing more source-sink separation data,
there is no measure on the size of how large the potential
underestimation of errors are.

Without using more than three values of tsep, it is not
possible to identify if one is susceptible to such a fluctuation,
and therefore it is not possible to fully quantify the uncertainty
on the posterior distribution of the ground state parameters.
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FIG. 9. Comparison of g̊A determined from the three analysis
strategies described in the text with our result from Ref. [31], which
utilized the Feynman-Hellmann correlator with a sum over all current
insertion times [48] (note that the quark smearing in the present
analysis is different from that used in Ref. [31]).

E. Comparison with the two-state FH analysis

In this final section, we compare our result with that from
Ref. [31] on the same a09m310 ensemble. Those results were
obtained using the Feynman-Hellmann method as described
in Ref. [48], which is the same as Eq. (13) with the sum over
current insertion time running over the full time extent, includ-
ing contributions from contact operators at τ = [0, tsep] and
from out-of-time regions, τ < 0 and/or τ > tsep. We applied
a two-state model and a frequentist analysis on the data from
the two-point and Feynman-Hellmann correlation functions.

In Fig. 9 we show the extracted value of g̊A with three
different fully correlated analysis strategies:

23s: fit to C2(tsep), R� (tsep, τ ), and FH� (tsep, τc = 1);

2s: fit to C2(tsep) and FH� (tsep, τc = 1);

23: fit to C2(tsep) and R� (tsep, τ ).

The horizontal gray band is the result from Ref. [31]. These
results show the consistency between the four computational
and analysis strategies. Even though the FH� (tsep, τc) correla-
tion functions are constructed from the R� (tsep, τ ) correlation
functions, they are subject to a different pattern of excited state
contamination (cf. Sec. II). Therefore it is useful to include
them in the fully correlated analysis. The combined fit yields
a robust and consistent fitting strategy and precise extractions
of hadronic matrix elements at zero-momentum transfer.

In Fig. 10, we present the posterior correlation function
on top of the numerical data for both the results in Ref. [31]
as well as from the FHA3 (tsep, τc = 1) dataset in the present
work. Using the bootstrap results, the correlated ratio of gA

determined previously and now is

gA[31]

gA[present work]
= 1.009(31), (18)

showing the statistical consistency of the ground state matrix
element extracted from these two different methods on the
same ensemble.

2 4 6 8 10 12
tsep(a09)

2

0.2 0.4 0.6 0.8 1.0 1.2
tsep(fm)

1.1

1.2

1.3

g̊ A

FHA3
(tsep, τc = none)

FHA3
(tsep, τc = 1)

FIG. 10. Comparison of our FHA3 (tsep, τc = none) numerical re-
sults and analysis from Ref. [31] using a two-state frequentist
analysis (top data/band) to the FHA3 (tsep, τc = 1) numerical data
and posterior description of the correlation function from the fully
correlated five-state Bayesian analysis to C2(tsep), FH� (tsep, τc = 1),
and R� (tsep, τ ) in the present work (bottom data/band).

The FHA3 (tsep, τc = none) dataset from Ref. [31] is ob-
served to have significantly less excited state contamination
at early tsep as compared to FHA3 (tsep, τc = 1). This is what
enabled a two-state analysis in Ref. [31]. The combined fit
(23s) in the present work enables a determination of sig-
nificantly more excited state parameters through the precise
early-tsep data. Moreover, as shown in this section, a confi-
dent extraction of the ground state posterior distributions is
attained: as depicted in the figure, both strategies yield precise
and consistent extractions of the large-tsep extrapolation of the
results. The former result is more economical for obtaining a
precise value of g̊A, while the method in this work also enables
a determination of nonzero momentum transfer results which
can be used to determine the form factors.

IV. OBSERVATIONS AND CONCLUSIONS

In this work, we have computed the three-point correlation
functions that are used to determine the nucleon axial charge
for 13 values of the source-sink separation time in the range
tsep ≈ 0.17–1.22 fm on an ensemble with a ≈ 0.09 fm and
mπ ≈ 310 MeV. This large numerical dataset (Fig. 1) has
enabled us to robustly determine the ground state mass and
matrix elements with a fully quantified systematic uncertainty
arising from excited states. Important to this study is the use
of a fully correlated global minimization of the two-point and
respective three-point correlations functions.

We were further able to quantify the excited state contri-
bution to the correlation function with greater detail than has
been previously achieved in the literature. We were able to
demonstrate that the ground state parameters are stable against
the model of excited states [Eq. (15) and Fig. 3], the number
of excited states used in the analysis, and truncations of either
small tsep or large tsep results as well as through the use of only
even or odd values of tsep results (Fig. 4).

A rewriting of the spectral decomposition of the three-
point correlation functions revealed a prospective cancellation
between two classes of excited states arising from the n-to-n
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scattering states and those arising from the two-point corre-
lation function used to construct R� (tsep, τ ), Eq. (9) (there
is an exact cancellation for the vector matrix element for
which gV4

nn = gV4
00 = 1 up to renormalization). For our calcu-

lation, this cancellation seems to materialize for gA (Fig. 5)
leaving the dominant excited state contributions to be the
n-to-m transition terms. In the standard fixed source-sink sep-
aration method, the excited state contributions do not decay
down to the 1% contamination level until tsep � 2 fm while
in the Feynman-Hellmann correlation function, Eq. (13), they
decay to the 1% level at tsep ≈ 1 fm. We further observed
that the Feynman-Hellmann correlation function constructed
with a sum over the entire time extent of the lattice [48]
[FH� (tsep, τc = none)], rather than just between the source
and the sink [FH� (tsep, τc = 1)], leads to an even further
suppression of excited state contamination (Fig. 10). This
stronger cancellation of excited states enabled us to com-
pute gA with a ≈1% uncertainty by utilizing early-time data
[30–33], which demonstrated this higher suppression of ex-
cited states over a broad range of pion masses, 130 � mπ �
400 MeV.

By utilizing a large number of early to mid-time data, one
is able to detect if the late-time data is subject to a correlated
fluctuation which might otherwise bias the determination of
the ground state matrix elements (Figs. 7 and 8). With only
three values of tsep at late time, it is not possible to perform
such a data truncation study that could identify this issue.

We have found that including the Feynman-Hellmann cor-
relation functions in a global fully correlated analysis, even
though they are constructed from the three-point functions
as in Eq. (13) and are highly correlated with R� (tsep, τ ),
improves the stability and precision of the extracted ground
state parameters (Fig. 9). This improvement arises because the
excited states present themselves differently in the two sets of
matrix-element correlation functions.

Even though the Feynman-Hellmann correlation function
has greater noise than the standard three-point correlator at
equal tsep and statistics (compare, for example, tsep = 1 fm in
Fig. 1), the more rapid decay of excited states demonstrated
in Sec. III C means that this strategy mitigates the exponen-
tial degradation of the signal-to-noise ratio of the nucleon’s
two- and three-point correlation functions as tsep is increased,
which requires exponentially more computational resources
to control the stochastic precision. The strategy we present
in this work offers a more economical method of obtaining
the ground state matrix elements than that which is more
commonly advocated for in the literature, which is to use
high-statistics calculations at tsep ≈ 1–2 fm or larger. In fu-
ture work, we will investigate the same strategy for nonzero
momentum transfer correlation functions which are used to
determine the nucleon form factors.

The computations were performed utilizing LALIBE [104]
which utilizes the CHROMA software suite [92] with QUDA

solvers [105,106] and HDF5 [107] for I/O [108]. They were
efficiently managed with METAQ [109,110] and status of tasks
logged with ESPRESSODB [111]. The final extrapolation anal-
ysis utilized GVAR [112] and LSQFIT [113]. The analysis and
data for this work can be found online [114].
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APPENDIX A: DISCRETE SYMMETRY SYSTEMATICS

“Coherent sink technique” [10]. We reduce the numerical
cost of the computations by solving for a single sequential-
propagator from many sequential sinks simultaneously. We
found that we can combine eight sinks into a single coherent
sink generated with two sources per time slice, with a 10–20%
loss in statistical precision as compared to solving a single
sequential-propagator for each of the eight sources separately.
For each t0, a random origin (O) is chosen and then the
antipode (A) location is also chosen [115]

sO(t0) = (x0, y0, z0)

sA(t0) =
[

sO(t0) + L

2
(1, 1, 1)

]
mod L.

We repeat this for four values of t0 spaced by T/4. We gen-
erate all 16 sources by running a second set of eight sources
shifted by T/8 from the first set of sources.

Spin averaging. We find that combining the spin-up to spin-
up and spin-down to spin-down correlation functions (with a
+ sign for V4 and a − sign for A3) leads to a near perfect√

2 reduction in the stochastic uncertainty of the numerical
data. We further observe that the nonsymmetric behavior of
R� (tsep, τ ) about τ = tsep/2 for larger values of tsep, which

065203-13



JINCHEN HE et al. PHYSICAL REVIEW C 105, 065203 (2022)

must vanish in the infinite statistics limit, is less pronounced
when we perform this spin averaging.

Time-reversal symmetry. We find that combining the back-
wards temporal propagation of the negative-parity two- and
three-point functions—the time-reversed correlation func-
tions (negative parity three-point functions with negative
values of the source-sink separation time tsep = tsnk − tsrc <

0)—with the positive parity three-point functions generated
with tsep > 0 leads to a near-perfect

√
2 reduction in stochastic

uncertainty, allowing us to make use of both the positive and
negative parity components of the quark propagators.

APPENDIX B: ANALYSIS DETAILS

In this Appendix, we discuss in detail the analysis of the
various correlation functions and what led us to our final
strategy presented in Sec. III.

To analyze the two-point (2pt), Eq. (1), three-point (3pt),
Eq. (5), and Feynman-Hellmann (FH), Eq. (13) correlation
functions and determine the parameters of the fit model, we
perform a maximum-likelihood Bayesian analysis. We ex-
plore analyzing three combinations of correlation functions in
a global (simultaneous) analysis:

23s: C2(tsep), R� (tsep, τ ) and FH� (tsep, τc = 1);

2s: C2(tsep) and FH� (tsep, τc = 1);

23: C2(tsep) and R� (tsep, τ ).

1. Prior selection

The first step in the analysis is to choose prior distributions
for the parameters. In order to estimate the ground state pri-
ors, we use the effective mass, the effective overlap, and an
effective gA plot:8

meff (tsep) = ln

(
C2(tsep)

C2(tsep + 1)

)
,

z2
eff (tsep) = emeff (tsep )tsepC2(tsep),

geff
A = FHA3 (tsep, τc = 1). (B1)

In Fig. 11, we plot these effective quantities which all asymp-
tote to their ground state values in the large tsep limit. We
choose conservative ground state priors to be

Ẽ0 = 0.50(5), g̃A = 1.2(2),

z̃0 = 0.00034(34), g̃V = 1.0(2), (B2)

which are plotted as the wide gray horizontal bands. We
also plot the resulting posterior distribution of the effective
quantities resulting from the parameters of our final analysis.

For the excited state energies we explore three models of
excited states, Eq. (15). As shown in Fig. 3, the posterior en-
ergies are largely insensitive to the model. We therefore focus
the discussion on the spectrum of our chosen model, �En =
2mπ for all n. The lowest-lying excitation is a nucleon-pion

8We do not show the effective gV plot since gV is very close to 1
with our lattice action.
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FIG. 11. The effective mass (top), overlap factor z (middle) and
gA correlation functions (bottom). The wide horizontal gray bands
are the chosen ground state priors, while the blue overlay bands are
the reconstructed effective quantities using the posterior distributions
from the final analysis.

P wave or a nucleon with two-pions at rest, up to interac-
tion energies which are a small fraction of the total energy.
For our mπL, these two energy levels are practically de-
generate and therefore modeled as a single excitation. We
prior all the �En with a log-normal distribution, ln(�En) =
( ln(2mπ ), 0.5) such that the resulting energies, En = E0 +∑n

l=1 �El , are ordered.
While the creation and annihilation operators are conjugate

to each other, this does not fix the absolute sign of zn. Further,
there is a redundancy in sign of the transition matrix elements:
if all the overlap factors are taken to be positive, zn > 0, a
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negative contribution will manifest in a negative value of gnm.
Only the combination znz†

mgnm has a well defined sign.
To be conservative, we prior the central values of the ex-

cited state overlap factors with a central value of 0. For the first
excited state, we choose a slightly smaller prior width with
respect to the ground state and for the higher excited states we
use again a slightly smaller width:

z̃1 = 0(0.00025), z̃n�2 = 0(0.00015). (B3)

These slight reductions are motivated by the use of a smeared
quark source, which suppresses excited state overlap factors
compared to the ground state.

For the vector matrix elements, the conserved charge pro-
tects the charge of all states to be gV

nn = 1, even in finite
volume [103]. For the transition matrix elements, we postu-
late that these are the same order of magnitude, but with an
unknown sign. For the axial-vector matrix elements, we pos-
tulate the excited state matrix elements and transition matrix
elements are of the same order of magnitude as gA. This leads
us to the prior values of

gV
nn = 1.0(2), gA

00 = 1.2(2), gA
nn = 0(1) for n > 0,

gV
nm = 0(1), gA

nm = 0(1). (B4)

A complete list of the prior and posterior distributions of all
fit parameters is provided in Appendix C.

When performing a multiexponential fit, it is expected that
the highest state used in the analysis serves as a “garbage” can
that is contaminated by the tower of more highly excited states
not included in the analysis. The 3pt and FH correlation func-
tions have different parametric dependence upon the excited
states. Therefore, when exploring the parameter space of fits,
if the number of states used for example in the FH correlation
functions differs from the 2pt function, we allow the highest
lying state in each correlation function to have different priors.
Specifically, if the 2pt uses five states and the FH uses three
states, then the energy and overlap priors of the third FH state
are decoupled from the third state of the 2pt function. When
the number of states used is the same, we find we are able
to describe the correlation functions well when keeping the
highest garbage-can state the same in all correlation functions.

2. Sensitivity analysis

For each set of correlation functions, the best fit is chosen
after a careful study of the posterior distribution sensitivity
on input fit parameters including fit ranges, number of states
in the fit model, prior widths, and model dependence of the
excited state spectrum. In the following sections, we discuss
the best fit under the context of three different fit strategies, 23,
2s, and 23s, and then the costs and benefits of these different
strategies.

a. Fit region and nstates stability analysis

Due to the structure of excited state contamination, the
posterior distributions are most sensitive to changes in tmin

sep ,
the minimum source-sink time, and the number of excited
states nstates (ns) included in the model. In this section we
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FIG. 12. Stability analysis for the axial coupling for the com-
bined two-point and Feynman-Hellmann fit for (top) varying tmin

sep

of the two-point function only and (bottom) Feynman-Hellmann
correlation function only. In both cases, results of ns = [1, 2, 3] state
fit Ansatzë are shown. The best fit for a given ns is highlighted
by a solid marker and corresponding horizontal band. The filled
horizontal red band for the ns = 2 result highlights the best fit out
of the entire explored parameter space. The corresponding Q values
are also provided.

discuss the stability of the best fit under changing these two
dimensions.

Two-point with Feynman-Hellmann analysis (2s).
Figure 12 shows the dependence on the axial-vector matrix
element fit parameter, g̊A, under varying two-point and
FH tmin

sep , and their corresponding nstates. Typically, stability
plots demonstrate that the best fit lies at a locally optimal
point in the parameter space. The simplest strategy is to
simply fix all but one parameter, such as tmin

sep or nstates in
this section. If results surrounding the best fit are absent of
spurious correlations, then the stability plots provide evidence
that systematic errors arising from the fit procedure are
all accounted for. However, in the case of the FH form of
the correlation function, the time dependence observed is
analogous to a two-point correlation function. And similarly
to the two-point function, the best fit for a given number
of excited states requires a more careful choice of tmin

sep .
For example, a two-point fit with many excited states may
successfully describe the data at small source-sink separation
times, but will surely fail when the model is simplified.
Therefore, for the stability plots shown in Fig. 12, the analysis
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varies tmin
sep around the best fit for a given number of states in

the model. For simplicity, we vary the tmin
sep of the vector and

axial-vector matrix elements in tandem.
After the summation, the three-point correlation function

only has one degree of freedom per time slice. Coupled with
the fact that the signal-to-noise ratio is exponentially worse
compared to the two-point function (see Fig. 11), this means
that in order to prevent over-fitting the data, simpler fit mod-
els with less excited states should be chosen. Therefore, the
stability shown in Fig. 12 is checked for fits with 1, 2, and 3
states. Beyond three states, the model will have comparable
or more parameters than data. While this can in principle
be alleviated with careful choices of priors, strategies that
rely more heavily on prior information may also inadvertently
introduce possible systematic errors.

For a single state, we observe the fit to be stable at
approximately a source-sink separation time of 1 fm. This
identifies the length scale where, given a percent-level de-
termination of the matrix element, all excited states have
decayed to below the noise. This observation is consistent
with what is observed in our previous work [31,48]. With
two- and three-state fits, we observe that the best fit tmin

sep
can encompass progressively shorter source-sink separation
times, in agreement with expectation. Furthermore, the best fit
for the three models, and neighboring results, are all consistent
within one standard deviation with no appreciable systematic
trend.

A two-state fit allows us to capture some of the excited
state dependence in order to not rely entirely on the correlator
reaching the plateau region. Simultaneously, fitting to two
states avoids the possibility of overfitting since an introduc-
tion of three additional fit parameters (ground state and first
excited state matrix elements) can be extracted from ten data
points in this specific analysis (tmin

sep of 5 to 14). We assume
that the overlap and energies are well constrained by the two-
point correlation function in this counting. The three-state fit
introduces six new matrix element parameters and is at the
edge of what is naively allowed by data. Fitting to three states
allows tmin

sep to encompass down to tsep = 4, resulting in 12 data
points. However, since lattice correlation functions have an
exponential signal-to-noise ratio problem, data points do not
carry equal weight in determining the posterior distributions.
In particular, the weighted loss function penalizes larger time
separation data with the inverse of the variance. Referring
back to Fig. 11, we see for this specific example, data beyond
tsep = 9 have little impact on the outcome of the result. This
can be seen for example in Fig. 13 where the results are given
for varying tmax

sep of the two-point function. As a result, the
three-state fit with six extra parameters is effectively con-
strained by approximately six data points. It follows that more
complicated fit functions run into the danger of overfitting.
We conclude that fits to the FH correlation function are best
performed with two states.

Two-point with three-point analysis (23). Rather than con-
structing the FH combination, we explore the possibility of
fitting directly to the three-point correlator as a function of
both source-sink and current-sink insertion time. Figure 14
shows the stability of the best fit for the two-point and three-
point simultaneous fit under varying tmin

sep for the two-point
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FIG. 13. Stability analysis for the axial coupling for the com-
bined two-point and Feynman-Hellmann fit for varying tmax

sep of the
two-point function. The best fit highlighted by a solid marker and
corresponding horizontal band is identical to the one shown in
Fig. 12. The corresponding Q values are provided.

and three-point function. Similar to the FH fit in the previous
section, we simplify the analysis by varying the tmin

sep for the
vector and axial-vector matrix elements simultaneously. The
best fit presumably can be slightly improved if this condition
is relaxed. Due to the complexity involved in choosing a
two-dimensional fit region, we further simplify the decision
making process by fitting to all valid insertion-sink time sep-
aration times (the contact terms are dropped) as shown in
Fig. 15. This choice reduces the tmin

sep stability study to again
a single dimension.

To capture this curvature, a large number of excited states
are required. This is corroborated by our analysis of the two-
point correlation functions: since we have used conservative
smearing on the quark interpolating operators, fits to small
source-sink separation times also require a large number of
excited states. Due to the large number of states, stability with
respect to tmin

sep are less sensitive to nstates. As a result, we fur-
ther simplify the study by showing only stability with respect
to the final result, instead of first identifying nstates-dependent
best fits shown in Fig. 12.

The best fit, which includes nearly all current insertion
times (aside from the source and sink time) is observed to
require a 5 state model and includes source-sink separation
times that are commensurate to the inclusion of small current-
sink times. Unlike the FH correlator, the three-point correlator
supplies many data points as shown in Fig. 1, and can be
used to fully capture the complicated excited-state structure.
The best fit lies in the region of stability, and is chosen to
incorporate the most data possible given a fit model. At the
same time, for a given fit region, the simplest model is chosen
(fewest number of states). For example, the best fit with a
three-point tmin

sep = 3 includes 5 states even though 6 or 7 states
yields similar ground state posterior distributions. This deci-
sion is corroborated with the set of Bayes Factors normalized
to a fixed fit region, Eq. (16). For example, Fig. 14 suggests
that 5 state and 7 state fit have comparable probability for
reproducing the underlying data.
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FIG. 14. Stability analysis for g̊A for the combined two-point and
three-point fit for (top) varying tmin

sep of the two-point function and
(bottom) three-point correlation function. In both cases, results of
ns = [4, 5, 6, 7] state fit Ansatzë are shown. The filled marker and
horizontal green band for the ns = 5 result highlights the best fit.
The corresponding Q values are provided. The Bayes factors w for a
given tmin

sep are shown in the bottom panel of each plot.

While we make the choice of fitting data over all current
insertion times, the ground state posterior distributions are
stable when extracted from a subset of the data. In Fig. 16,
the fit region with respect to current insertion time is symmet-
rically truncated, keeping, however, at least one data point per
source-sink separation time (e.g., tsep = 3 includes τ = [1, 2],
so a τc = 1 will not eliminate any data since otherwise the
entire dataset for t = 3 would be eliminated). It is also ob-
served that while curvature in τ is dependent predominantly
on excited-state behavior, aggressively truncating data still
leads to larger statistical uncertainty in ground state param-
eters since less data is being included in the analysis.

We conclude that a simultaneous fit to the two- and three-
point correlators is best performed by fitting to the maximum
amount of data while choosing the simplest model which can
describe the data. In particular, we observe that the under this
strategy, the accompany two-point correlator also provides
sufficient constraints on the excited state overlap and energy
parameters.

Two-point, three-point, and FH analysis (23s). Finally,
we perform a simultaneous fit to the two-point correlator
along with all FH and three-point correlators. Since the FH
correlator exposes different excited-state dependence when

−10 −5 0 5 10

τ − tsep/2
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14

t s
ep

FIG. 15. This figure depicts the regions in tsep and τ used in the
23 analysis. The numerical results have been averaged about τ =
tsep/2 denoted by the light-shaded squares on the right half of the
figure. The outermost (red) squares for each tsep are the points τ = 0
or τ = tsep which are excluded from the analysis. For tsep > 10, the
values of τ = 1 and τ = tsep − 1 are also excluded from the optimal
fit. Moving in, the (black) squares represent the values of τ closest
to the source/sink times included in the optimal analysis (with all
“inner” values of τ also included), τ

opt
inc . Cutting an additional value

of τ closest to the source/sink times is τ
opt
inc − 1 denoted by the lighter

(blue) squares. The lighter (green) squares denote τ
opt
inc − 2 and the

innermost (yellow) squares denote τ
opt
inc − 3. When cutting values of

τ , we always keep one (for even tsep) or two (for odd tsep) values of τ

in the middle of the source-sink separation time.

compared to the three-point correlator, it may be possible to
extract a more robust calculation of the ground state parame-
ters. Unfortunately, the overall strategies of the previous two
studies are incompatible with one another. In the case of the
FH analysis, the strategy is to fit simpler models in order to
avoid overfitting, while for the three-point analysis overfitting
is much less of a concern and instead a majority of clean data
are fit with more complex models. A successful combined fit
will need to reconcile these differences.
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Q

FIG. 16. Stability analysis for the combined C2(tsep ) and
R� (tsep, τ ) analysis for varying regions of current-insertion time. The
best fit given by τ

opt
inc is defined in Table III (see also Fig. 15 for a

graphical depiction of τ
opt
inc − n). The filled marker and horizontal

green band highlights the best fit and is identical to the best fit in
Fig. 14. The Q values are provided.
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FIG. 17. Stability analysis for the combined two-point, three-
point, and Feynman-Hellmann analysis. These plots follow what is
shown in Fig. 14.

We take a simple approach by recognizing that the ex-
cited state information extracted from the three-point analysis
can be used to constrain a more complex FH fit function.
Following this logic, the best combined fit follows the same
five-state model as the two-point with three-point correlator
fit discussed previously, while the FH fit is now modeled by
five states with the intention of relying on the three-point
correlator to constrain high excited state parameters. Figure 17
demonstrates the stability of the combined best fit under
changes in tmin

sep of the two-point, three-point, and FH corre-
lators. We observe that in the combined fit the ground state
parameters are insensitive to changes in tmin

sep for all datasets,
including the FH correlation functions. This observation cor-
roborates the hypothesis that the three-point correlator lends

1.1

1.2

1.3
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τ opt
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inc τ opt
inc − 1 τ opt

inc − 2 τ opt
inc − 3

0

1

Q

FIG. 18. Stability analysis for the combined two-point, three-
point, and Feynman-Hellmann analysis for varying regions of
current-insertion time. This plot follows what is shown in Fig. 16.

support to high excited-state contributions, which is consistent
with the predicted spectral decomposition for both correlation
functions. Additionally, while the best fit tmin

sep for the three-
point is kept the same as the three-point with two-point fit, the
best-fit FH tmin

sep now extends down to tsep = 3 (previously, in
the 2s best fit tmin

sep is 5) due to the inclusion of more states in
the model.

Finally, sensitivity under varying current insertion time
for the three-point correlator is studied. Unlike the simpler
three-point with two-point correlator analysis, we have to drop
one additional data point away from the contact interaction at
t = 11 to t = 14 for the ground state posterior distributions
to be insensitive to changes in fit region. Figure 18 shows
the varying fit region with respect to the best fit. In partic-
ular, the τ

opt
inc + 1 fit is to all current insertion dependence

between the source and sink, τ = [1, tsep − 1] for all tsep. The
colored regions in Fig. 15 highlight the various τinc regions
with the colored boxes. The black region denotes the best

1.1

1.2

1.3

g̊ A

g.s. g.s. and 1 e.s. best fit

0.1σ 0.5σ 1σ 2σ 10σ
prior width

0

1

Q

FIG. 19. Sensitivity analysis of the best fit result from the
combined two-point, three-point, and Feynman-Hellmann fit under
varying prior widths for the ground state (red) and together with
the first-excited state (blue). The x axis indicates that the study
performed variations from 0.1 to 10 times the best fit prior width.
The filled marker and horizontal green band highlights the best fit
and is identical to the result shown in Fig. 17.
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FIG. 20. Consistency of the extracted spectrum and matrix elements from various analyses. In the top panel, we show the extracted
spectrum as a function of the excited state model and tmin

sep of the two-point function. The horizontal (red) bands are from the HO analysis
with tmin

sep = 3, to guide the eye. In the bottom panel, we show the HO model of excited states for various global minimizations. From left to
right (for each tmin

sep ), we show the full analysis (2pt + gA + gV), a fit to the two-point functions (2pt), a fit to the two-point and A3 correlation
function (2pt + gA), and a fit to the two-point and V4 correlation function (2pt + gV).

fit region. We observe that the best fit lies in a region that
is insensitive to varying subsets of the three-point correlator.
Conversely, the combined fit suggests that at large values of
tsep, where the distribution of the correlator become undersam-
pled, the three-point data shows signs of being inconsistent
with the FH data, leading to the instability seen in the
τ

opt
inc + 1 fit.

We conclude that the three-point correlator provides
enough information to constrain the excited states of the FH
correlator. A combined fit is, therefore, best performed by
rooting the calculation in a two-point with three-point strategy
and extending the analysis to encompass as much of the FH
correlator as is describable by the truncated spectral decom-
position.
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TABLE I. We list the prior and posterior energies and overlap
factors, in lattice units, for each of the parameters that describe the
two-point correlation function. The prior and posterior values are
listed in (μ, σ ) pairs. The energy splittings are priored with a log-
normal distribution with �En = (2mπ , mπ ), except for the highest
state which has a prior width of 5mπ , with the total energy given by
the sum in Eq. (15). For the optimal fit, all energy splittings are given
a central value of 2mπ .

Parameter Prior Posterior

E0 (0.50, 0.05) (0.4904, 0.0016)
�En<4 (0.29, 0.14) (0.3, 0.028)
E1 (0.79, 0.15) (0.79, 0.028)
E2 (1.07, 0.21) (1.136, 0.099)
E3 (1.36, 0.25) (1.66, 0.16)
�E4 (0.29, 0.72) (1.119, 0.033)
E4 (1.65, 0.76) (2.78, 0.16)
z0 (0.00034, 0.00034) (0.0003211, 0.0000039)
z1 (0, 0.00025) (0.000333, 0.000031)
z2 (0, 0.00015) (−0.000331, 0.000062)
z3 (0, 0.00015) (0.000617, 0.000034)
z4 (0, 0.00015) (0.00032, 0.00011)

b. Prior width analysis

Our overall strategy is to extract ground state parameters
from a multiexponential fit, subject to prior constraints. Since
the objective function now depends on prior distributions in
addition to data, we check that the posterior distributions of
interest are insensitive to our prior knowledge. The purpose
of introducing priors in this context is not to supplement
additional information, but to constrain the search space of
the numerical minimization for faster convergence. Lower
computation costs allow us to more thoroughly investigate
the sensitivity of ground state posterior distributions, which in
turn lends to more robust results. We enforce the expectation
that choices of priors should not yield changes in the posterior
distributions of ground state parameters.

TABLE III. We list the range of tsep values used in our optimal fits
for each of the three sets of correlation functions we analyze. We also
list the values of the current insertion time, τ , for which the optimal
fit uses τ = [1, tsep − 1] for the 23 analysis (2pt and 3pt). When we
perform the 23s (2pt, 3pt, and FH) analysis, there is mild tension
when including the current times τ = 1 and τ = tsep − 1 for tsep > 10
and so our optimal fit removes one extra current insertion time for
these later tsep values. For FH, the τ range indicates the values used
in the summation over current time.

(2pt, 3pt) (2pt, FH) (2pt, 3pt, FH)

2pt tsep range [3, 17] [5, 17] [3, 17]
3pt tsep range [3, 14] [3, 14]
FH tsep range [5, 13] [3, 13]
3pt τ range [1, tsep − 1] [1, tsep − 1] [1, tsep − 1], tsep � 10

[1,tsep − 1] [2, tsep − 2], tsep > 10
FH τ range [1, tsep − 1] [1, tsep − 1]
nstates 5 2 5

Figure 19 demonstrates the robustness of our quoted re-
sults under variations of the ground state and first-excited
state prior widths for the combined fit. The study indicates
that the extracted matrix elements are unconstrained by prior
distributions until the widths are reduced by a factor of
10, while broadening the prior distribution by a factor of
10 leaves the matrix elements unchanged. Similar conclu-
sions hold for the vector matrix element for the 2s and 23
strategies.

c. Consistency of spectrum and matrix elements from different
correlation functions

In Fig. 20, we show the consistency (or lack thereof) of
the excited and ground state spectrum from various global
minimizations of different sets of correlation functions. One
observes that the analysis of the two-point correlation function
is not sufficient to constrain the excited state spectrum: for

TABLE II. Priors and posteriors of the vector and axial-vector matrix elements. The values are listed in (μ, σ ) pairs.

gA
nm Prior Posterior gV

nm Prior Posterior

gA
00 (1.2, 0.2) (1.253, 0.019) gV

00 (1, 0.2) (1.02238, 0.00087)
gA

01 (0, 1) (−0.271, 0.068) gV
01 (0, 1) (−0.0041, 0.004)

gA
11 (0, 1) (0.89, 0.2) gV

11 (1, 0.2) (0.997, 0.02)
gA

02 (0, 1) (−0.16, 0.11) gV
02 (0, 1) (0.002, 0.013)

gA
12 (0, 1) (−0.05, 0.3) gV

12 (0, 1) (0.013, 0.042)
gA

22 (0, 1) (0.71, 0.53) gV
22 (1, 0.2) (1.05, 0.12)

gA
03 (0, 1) (0.1, 0.043) gV

03 (0, 1) (0.0798, 0.0075)
gA

13 (0, 1) (0.14, 0.14) gV
13 (0, 1) (0.071, 0.025)

gA
23 (0, 1) (0.25, 0.31) gV

23 (0, 1) (−0.011, 0.062)
gA

33 (0, 1) (0.87, 0.22) gV
33 (1, 0.2) (0.789, 0.047)

gA
04 (0, 1) (0.61, 0.21) gV

04 (0, 1) (0.35, 0.12)
gA

14 (0, 1) (0.4, 0.25) gV
14 (0, 1) (0.33, 0.13)

gA
24 (0, 1) (−1.06, 0.52) gV

24 (0, 1) (−0.34, 0.16)
gA

34 (0, 1) (0.72, 0.39) gV
34 (0, 1) (0.63, 0.24)

gA
44 (0, 1) (−0.32, 0.95) gV

44 (1, 0.2) (1, 0.2)
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most results, the posterior energy levels simply follow their
priors. In contrast, when either the axial or vector three-
point function (or both) are simultaneously analyzed (with
the full data-covariance), the excited state spectrum is much
more precisely constrained, often in tension with the priors.
Further, once a global minimization is performed, the val-
ues of the excited state spectrum become significantly more
consistent.

APPENDIX C: PRIOR AND POSTERIOR DISTRIBUTIONS

In Table I, we list the prior and posterior distributions of the
energies and overlap factors used in our final analysis. The
matrix element prior and posterior distributions are given in
Table II. We use the (μ, σ ) format to report the central value
μ and the width σ of the distributions. In Table III, we list
the range of tsep values used in the three sets of correlation
functions that are analyzed.
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