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A B S T R A C T

Growth-induced instabilities are ubiquitous in biological systems and lead to diverse morphologies in the
form of wrinkling, folding, and creasing. The current work focusses on the mechanics behind growth-induced
wrinkling instabilities in an incompressible annular hyperelastic plate. The governing differential equations for
a two-dimensional plate system are derived using a variational principle with no apriori kinematic assumptions
in the thickness direction. A linear bifurcation analysis is performed to investigate the stability behaviour of
the growing hyperelastic annular plate by considering both axisymmetric and asymmetric perturbations. The
resulting differential equations are then solved numerically using the compound matrix method to evaluate the
critical growth factor that leads to wrinkling. The effect of boundary constraints, thickness, and radius ratio of
the annular plate on the critical growth factor is studied. For most of the considered cases, an asymmetric
bifurcation is the preferred mode of instability for an annular plate. Our results are useful to model the
physics of wrinkling phenomena in growing planar soft tissues, swelling hydrogels, and pattern transition
in two-dimensional films growing on an elastic substrate.
1. Introduction

The growth process typically involves a change of body mass and
generation of residual stresses in an evolving system which induces
large deformation that triggers the mechanical instabilities. These
growth-induced instabilities lead to the formation of diverse patterns in
the form of wrinkling, folding, creasing [1] that are critical to biological
systems such as plants [2,3], tissues, and organs [4]. Moreover, certain
anomalies in human biological systems like narrowing airways due to
asthma [5], and malformation of the cerebral cortex [6] give rise to
patterns that defines a new physiological function of the biological
system. In addition, to avoid scar formation during surgeries, irregular
wrinkles generated during cutaneous wound healing are studied [7,8].
Besides biological applications, pattern formation and their transition
during growth and remodelling have been extensively studied from a
purely mechanics aspect of view [9–14]. Instabilities in soft solids such
as swollen hydrogels [15] and elastomers [16,17] can be tailored to
create desired patterns and have found applications in the design of
stretchable electronics [18], smart morphable surfaces in aerodynamics
control [19], wearable communication devices [20], and shape-shifting
structures [21]. Therefore, it is fundamentally important to under-
stand the mechanics of growth that regulate the instabilities in soft
growing bodies. To accomplish this, a consistent mathematical model
based on the continuum mechanics framework is used for studying
growth-induced instabilities in morpho-elastic structures [22,23].
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To describe the kinematics of growth, the total deformation gra-
dient is decomposed into a growth tensor and an elastic deformation
tensor [24] ignoring the initial residual stress configuration [25,26].
The former tensor describes the local change in volume with the
addition/subtraction of material as well as the deformation incompat-
ibility due to non-uniform growth in the neighbourhood of a material
point [27,28]. The elastic deformation tensor is required to ensure
compatibility and this generally results in residual stresses that can trig-
ger mechanical instabilities. Based on this principle, growth-induced
instabilities have been extensively studied in soft biological tissues
[1,9,29–33] as well as swelling hydrogels [34].

Numerous works employ a hyperelastic membrane model to study
instabilities in thin soft tissues [35–37]. Jia et al. [38] studied the bifur-
cation behaviour of thin growing film on a cylindrical substrate. They
showed that curvature delays the bifurcation point and requires a high
magnitude of growth factor to induce the circumferential wrinkling
instability on a curved surface. Recently, Wang et al. [39] developed
a model to describe the nonlinear behaviour of hyperelastic curved
shells under finite-strain. They explored the effect of curvature on the
tunability of wrinkling and smoothing regimes, and the post-buckling
evolution of a highly stretched soft shell. Above works show the in-
terplay between growth and elasticity induces large deformation and
one needs to adopt consistent plate or shell theories to capture the
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combined effect of bending and stretching deformation. Classical plate
theories like Kirchhoff–Love, Föppl–von Kármán (FvK), and Mindlin–
Reisner theory have been widely used to investigate the bifurcation
behaviour of thin elastic structures [40–42], and liquid crystal elas-
tomers [43]. Dervaux et al. [44] developed a FvK plate theory to
investigate large deformation and growth-induced patterns in a thin
hyperelastic plate. Efrati et al. [45] proposed the geometric theory
for non-Euclidean thin plates to capture the large displacements in
thin growing bodies where growth deformations are interpreted as the
evolution metric. Based on this theory, Pezzulla et al. [46] studied the
mechanics of thin growing bilayers by describing the geometry of mid
surface with first and second fundamental form and Dias et al. [47]
presented the inverse approach to investigate the growth (swelling)
patterns of initially prescribed axisymmetric shapes. Jones and Ma-
hadevan [48] developed the numerical framework to determine the
optimal distribution of growth stresses by specifying the deformed
target shape of the plate using FvK theory. Holmes [49] performed
post-bifurcation analysis to investigate the instability phenomena in
thin soft materials. Further, Mora and Boudaoud [50] experimentally
and theoretically investigated the patterns arising from differential
swelling of gels to mimic the behaviour of growth-induced deformation
in biological tissues. However, these theories are based on apriori
assumptions of displacement variation along the thickness of the plate
and therefore have certain limitations. This has led to the development
of a reduced 2-D plate theories with no apriori kinematic assumptions
that are consistent with the 3-D elasticity theory.

Kienzler [51] proposed a consistent asymptotic plate theory based
on linear elasticity which does not apply any kinematic assumptions
and all the unknowns are treated as independent variables. Dai and
Song [52] proposed a finite-strain plate theory for compressible hy-
perelastic materials based on the principle of minimisation of potential
energy which can achieve term-wise consistency without any ad-hoc as-
sumption for general loading conditions. Wang et al. [53] extended this
approach to incompressible hyperelastic materials with an additional
Lagrange multiplier to accommodate the incompressibility constraint.
Wang et al. [54] derived a consistent finite-strain plate theory for
growth-induced large deformation and studied the buckling and post-
buckling behaviour of a thin rectangular hyperelastic plate subjected
to axial growth. They also showed that the consistent theory reduces
to the FvK theory in the limit of small plate thickness. Recently, the
finite-strain asymptotic plate theory has been applied to study the
plane strain problems of growth-induced deformation in single and
multi-layered hyperelastic plates [55,56]. Wang et al. [57] studied
the inverse approach of determining the inhomogeneous growth fields
of target 3-D shapes by using stress-free [58] finite-strain theory for
thin hyperelastic plates. Liu et al. [59] discussed the large elastic
deformation in nematic liquid crystal elastomer and the authors of the
present paper [60] investigated the bifurcation behaviour of circular
hyperelastic plate under the influence of growth using finite-strain
asymptotic plate theory.

Instability behaviour of highly deformable soft tissues is best un-
derstood by a bifurcation analysis of the corresponding system of
partial differential equations (PDEs) [61]. Generally an analytical so-
lution is not possible and numerical approaches based on the finite
element method are appropriate [62,63]. Specialised finite element ap-
proaches have been employed to compute growth-induced deformation
in soft materials while avoiding the volumetric locking arising from the
assumption of incompressibility. Zheng et al. [64] developed the solid-
shell based finite element model to investigate the growth deformation
in incompressible thin-walled soft structures. Groh [65] developed
the seven parameter quadrilateral shell element to avoid locking phe-
nomena in shells and investigated the growth-induced instability in
slender structures. Kadapa et al. [66] proposed the mixed displacement-
pressure finite element formulation to study the compressible and
incompressible deformation in growth problems. A virtue of the plate
theory used in this paper, on the other hand, is that it works well with
2

Fig. 1. Possible out-of-plane wrinkled configurations of a hyperelastic annular plate
growing with in-plane growth function when subjected to different type of boundary
conditions i.e., (a) constrained outer boundary and unconstrained inner boundary,
and (b) constrained inner boundary and unconstrained outer boundary. The reference
configuration (left) is a flat plate and the deformed configurations (right) are the
buckled/wrinkled configuration. In each case, the unconstrained boundary exhibits
wrinkles induced by growth.

both compressible and incompressible materials without imposing any
kinematic assumptions. We provide quantitative comparisons obtained
via our approach with existing computational results in the literature.

The current work investigates wrinkling phenomena in growing hy-
perelastic annular plates that are appropriate models for human tissues
and plants [67,68] when subjected to different boundary constraints as
shown in Fig. 1. For example, (a) wrinkling patterns around contracting
skin wound subjected to constrained outer edge conditions [69, Figure
5] (b) wrinkle formation in a circular shaped leaf when the stiff inner
part can be approximated by a clamped boundary condition. Note that
we limit our discussion to only out of plane wrinkling instabilities and
have not considered local instabilities like folding [70] or creasing [71–
73]. In general, growing systems are more appropriately modelled by
anisotropic and inhomogeneous (differential) growth laws that lead
to diverse patterns [4,74] governing the final shape of the system.
However, in this work, we assume an externally-driven homogeneous
isotropic growth law to focus on the mechanics of growth in annular
plate structures. The growth function is considered as a control pa-
rameter responsible for the change of shape [55,75] and the onset of
instability. We also choose a neo-Hookean material model that allows
us to model nonlinear deformation while still keeping the resulting
equations relatively simple and retaining the key aspects of the me-
chanics of the system. We have applied the consistent finite-strain plate
theory introduced by Wang et al. [54] to derive the governing differ-
ential equations (GDEs) for general loading conditions. Subsequently,
we perform the stability analysis by perturbing the principal solution
subjected to two different cases of boundary conditions. In the first
case, the inner boundary of the annular plate is unconstrained and the
outer boundary is constrained. For the second case, the inner boundary
of the plate is constrained and the outer boundary is unconstrained. The
resulting nonlinear ordinary differential equations (ODEs) are solved
numerically to evaluate the critical value of growth parameter. For each
case of boundary conditions, we investigate the type of perturbation
namely, axisymmetric or asymmetric corresponding to stable bifurca-
tion solution of the annular plate and also study the effect of plate
thickness, radius ratio on the onset of instability.

1.1. Organisation of this manuscript

The remainder of this paper is organised as follows. In Section 2,
a general formulation for a three-dimensional annular plate is estab-
lished and then the same is reduced to a two-dimensional system
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Fig. 2. A schematic of finite deformation of an annular plate due to growing region 𝛺 with constrained outer boundary i.e., the outer radius is same in the reference, 0 (left)
and in the deformed, 𝑡 (right) configuration. The region 𝛺 is growing with a factor of 𝜆𝑟𝑟 and 𝜆𝜃𝜃 in the radial and hoop directions, respectively.
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by eliminating the dependence on the thickness variable using a se-
ries approximation. In Section 3, we discuss the principal solution
associated with the growth-induced deformation in an incompressible
neo-Hookean annular plate subjected to two different boundary condi-
tions. We validate our 2-D plate framework by comparing the obtained
numerical pre-buckling solution with the existing analytical solution
of a circular ring later in this section. In Section 4, we derive the
non-dimensional nonlinear ODEs associated with asymmetric as well as
axisymmetric perturbations. Section 5 begins with a comparison of the
current plate theory to FvK plate theory. Then, we apply the compound
matrix method to solve the bifurcation problem and compare the
bifurcation solutions associated with each type of perturbation and
boundary conditions. At the end of this section, we provide the compar-
ison of bifurcation solution obtained with this current plate theory with
the existing solution obtained using finite element approach. Finally,
we present our conclusion in Section 6. Supplementary mathematical
derivations are provided in Appendix B.

1.2. Notation

Brackets: Two types of brackets are used. Round brackets () are used
o define the functions applied on parameters or variables. Square
rackets [ ] are used to clarify the order of operations in an algebraic
xpression. Square brackets are also used for matrices and tensors. At
ome places we use the square bracket to define the functional.
ymbols: A variable typeset in a normal weight font represents a scalar.

A lower-case bold weight font denotes a vector and bold weight upper-
case denotes tensor or matrices. Tensor product of two vectors 𝐚 and

is defined as [𝐚 ⊗ 𝐛]𝑖𝑗 = [𝐚]𝑖[𝐛]𝑗 . Tensor product of two second
order tensors 𝐀 and 𝐁 is defined as either [𝐀 ⊗ 𝐁]𝑖𝑗𝑘𝑙 = [𝐀]𝑖𝑗 [𝐁]𝑘𝑙
or [𝐀 ⊠ 𝐁]𝑖𝑗𝑘𝑙 = [𝐀]𝑖𝑘[𝐁]𝑗𝑙. Higher order tensors are written in bold
calligraphic font with a superscript as (𝑖), where superscript ‘𝑖’ tells
that the function is differentiated 𝑖+1 times. For example, (1) =

𝜕𝑓 (𝐀)
𝜕𝐀𝜕𝐀

s a fourth order tensor. Operation of a fourth order tensor on a second
rder tensor is denoted as [(1) ∶ 𝐀]𝑖𝑗 = [(1)]𝑖𝑗𝑘𝑙[𝐀]𝑘𝑙 . Inner product is

defined as 𝐚 ⋅ 𝐛 = [𝐚]𝑖[𝐛]𝑖 and 𝐀 ∶ 𝐁 = [𝐀]𝑖𝑗 [𝐁]𝑖𝑗 . The symbol ∇ denotes
the two-dimensional differentiation operator. We use the word ‘Div’ to
denote divergence in three dimensions.
Functions: det(𝐀) denote the determinant of a tensor 𝐀. tr(𝐀) denote the
trace of tensor 𝐀. diag(𝑎, 𝑏, 𝑐) denotes a second order tensor with only
diagonal entries 𝑎, 𝑏 and 𝑐.

2. Governing equation with variational principle

Consider a thin annular plate with constant thickness (2ℎ) occu-
pying the region 𝛺 × [0, 2ℎ] in the reference configuration 0 ∈ ℛ3

hich then deforms to the current configuration 𝑡 ∈ ℛ3 as shown
n Fig. 2. Coordinates of a point in the undeformed configuration are
3

iven by 𝑅,𝛩,𝑍 and in the deformed configuration by 𝑟, 𝜃, 𝑧. Position
ector in 0 is denoted as 𝐗(𝑅,𝛩,𝑍) and denoted as 𝐱(𝑟, 𝜃, 𝑧) in 𝑡.
The inner and outer radii in the reference configuration are denoted
as 𝐴 and 𝐵, and the same in deformed configuration are denoted as 𝑎
and 𝑏, respectively. Using the position vector 𝐗 and 𝐱, the deformation
gradient is expressed as 𝐅 = 𝜕𝐱

𝜕𝜁
+ 𝜕𝐱
𝜕𝑍

⊗ 𝐤, where 𝜁 = 𝑅𝐞𝑅 + 𝛩𝐞𝛩 and
𝐤 is the unit normal to the surface 𝛺 in the reference configuration.
Following the multiplicative decomposition approach proposed by Ro-
driguez et al. [24], the total deformation gradient of a growing plate
is decomposed as 𝐅 = 𝐀𝐆 in 𝐴 ≤ 𝑅 ≤ 𝐵, where 𝐆 represents the
growth tensor and 𝐀 represents the elastic deformation tensor. We also
assume the material to be incompressible and therefore to follow the
constraint 𝐿(𝐅,𝐆) = 𝐿0(𝐅𝐆−1) = det(𝐀) − 1 = 0. The energy density (𝜙)
per unit volume of the material is assumed as 𝜙(𝐅,𝐆) = 𝐽𝐺𝜙0(𝐅𝐆−1),
where 𝐽𝐺 = det(𝐆) = det(𝐅) describes the local change in volume due to
rowth and 𝜙0(𝐅𝐆−1) is the elastic strain energy density. The internal
otential energy functional (𝜓) for the incompressible plate is

[𝐱(𝐗), 𝑝(𝐗)] = ∫𝛺 ∫

2ℎ

0
𝐽𝐺𝜙0(𝐅𝐆−1)𝑑𝑉 − ∫𝛺 ∫

2ℎ

0

[

𝐽𝐺 𝑝(𝐗)𝐿0(𝐅𝐆−1)
]

𝑑𝑉 ,

(2.1)

here 𝑝(𝐗) is the Lagrange multiplier associated with the incompress-
bility constraint. We apply the principle of minimum potential energy
nd vanishing of the first variation with respect to 𝐱 and 𝑝 of the above
unctional results in the GDEs with traction free boundary conditions

iv 𝐏 = 𝟎, in 𝛺 × [0, 2ℎ], (2.2a)

𝐤||
|𝑍=0

= 𝟎, 𝐏𝐤|𝑍=2ℎ = 𝟎, on 𝛺, (2.2b)

𝐏𝐧|𝑅=𝐴 = 𝟎, 𝐏𝐧|𝑅=𝐵 = 𝟎, on 𝜕𝛤 × [0, 2ℎ], (2.2c)

nd the incompressibility constraint, i.e., det(𝐀) − 1 = 0. Here, 𝐧
s the unit outward normal to the lateral boundary (𝜕𝛤 ) and 𝐏 =

𝐺

[

𝜕𝜙0
𝜕𝐀

− 𝑝
𝜕𝐿0
𝜕𝐀

]

𝐆−𝑇 in 𝛺 is recognised as the first Piola Kirchhoff
stress tensor.

2.1. Two-dimensional plate model

To obtain the 2-D formulation for the annular plate, we apply a
series expansion of the unknown variables, 𝐱 and 𝑝 about the bottom
surface of plate (𝑍 = 0) along the thickness direction following the
approach by Wang et al. [54] and Wang et al. [55]

𝐱(𝐗) =
3
∑

𝑛=0

𝑍𝑛

𝑛!
𝐱(𝑛)(𝜁 ) + 𝑂(𝑍4), and 𝑝(𝐗) =

3
∑

𝑛=0

𝑍𝑛

𝑛!
𝑝(𝑛)(𝜁 ) + 𝑂(𝑍4),

(2.3)

here we have used the notation 𝐱(𝑛) = 𝜕𝑛𝐱
𝜕𝑍𝑛 and 𝑝(𝑛) =

𝜕𝑛𝑝
𝜕𝑍𝑛 . Using

(2.3), we obtain a recursion relation for the deformation gradient as,
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𝐅(𝑛) = ∇𝐱(𝑛) + 𝐱(𝑛+1) ⊗ 𝐤. Similarly, we expand the elastic tensor 𝐀, and
inverse transpose of growth tensor (𝐆−𝑇 ) to obtain the Piola Kirchhoff
stress tensor 𝐏 (see (A.1)). Upon neglecting the body force and external
traction, the equilibrium Eq. (2.2a) is given as the recursive relation

∇ ⋅ 𝐏(𝑛) + 𝐏(𝑛+1)𝐤 = 𝟎, for 𝑛 = 0, 1, 2. (2.4)

Substituting 𝐀 = 𝐅𝐆−1 in the expression of Piola stress obtained as

= 𝐽𝐺

[

𝜕𝜙0
𝜕𝐀

− 𝑝
𝜕𝐿0
𝜕𝐀

]

𝐆−𝑇 and making use of (2.4), we obtain the

xplicit expressions of 𝐏(0), 𝐏(1), and 𝐏(2) which in component form
[𝐏]𝑖𝑗 = 𝑃𝑖𝑗) are given as

(0)
𝑖𝑗 = 𝐽𝐺

[

(0) − 𝑝(0)(0)
]

𝑖𝛼
𝐺̄(0)
𝛼𝑗 , (2.5a)

𝑃 (1)
𝑖𝑗 = 𝐽𝐺

[[

[

(1) − 𝑝(0)(1)
]

𝑖𝛼𝑘𝛽
𝐴(1)
𝑘𝛽 − 𝑝(1)(0)

𝑖𝛼

]

𝐺̄(0)
𝛼𝑗

+
[

(0) − 𝑝(0)(0)
]

𝑖𝛼
𝐺̄(1)
𝛼𝑗

]

, (2.5b)

𝑃 (2)
𝑖𝑗 = 𝐽𝐺

[[

(1)
𝑖𝑘𝛼𝛽𝐴

(2)
𝛼𝛽 +

[

(2) − 𝑝(0)(2)]
𝑖𝑘𝛼𝛽𝑚𝑛𝐴

(1)
𝛼𝛽𝐴

(1)
𝑚𝑛 − 2𝑝(1)(1)

𝑖𝑘𝛼𝛽𝐴
(1)
𝛼𝛽

− 𝑝(0)(1)
𝑖𝑘𝛼𝛽𝐴

(2)
𝛼𝛽 − 𝑝

(2)(0)
𝑖𝑘

]

𝐺̄(0)
𝑘𝑗 +

[

2(1)
𝑖𝑘𝛼𝛽𝐴

(1)
𝛼𝛽 − 2𝑝(0)(1)

𝑖𝑘𝛼𝛽𝐴
(1)
𝛼𝛽

− 2𝑝(1)(0)
𝑖𝑘

]

𝐺̄(1)
𝑘𝑗 +

[

(0) − 𝑝(0)(0)
]

𝑖𝑘
𝐺̄(2)
𝑘𝑗

]

, (2.5c)

with (𝑖)(𝐀(0)) =
𝜕𝑖+1𝜙0(𝐀)
𝜕𝐀𝑖+1

|

|

|

|

|𝐀=𝐀(0)
and (𝑖)(𝐀(0)) =

𝜕𝐿0(𝐀)
𝜕𝐀𝑖+1

|

|

|

|𝐀=𝐀(0)
. Fur-

her mathematical details of the above calculations are provided in the
upplementary document. Eqs. (2.5b)–(2.5c) involve higher derivatives
f 𝐀 which are obtained using the series expansion of 𝐅 and 𝐆−𝑇

(0) = 𝐅(0)𝐆̄(0)𝑇 , 𝐀(1) = 𝐅(0)𝐆̄(1)𝑇 + 𝐅(1)𝐆̄(0)𝑇 ,
(2) = 𝐅(0)𝐆̄(2)𝑇 + 2𝐅(1)𝐆̄(1)𝑇 + 𝐅(2)𝐆̄(0)𝑇 . (2.6)

he stress-free boundary conditions on the bottom and top surfaces of
he annular plate are obtained from (2.2b) as

𝐏𝐤|𝑍=0 = 𝐏(0)𝐤 = 𝟎, (2.7a)

𝐏𝐤|𝑍=2ℎ = 𝐏(0)𝐤 + 2ℎ𝐏(1)𝐤 + 2ℎ2𝐏(2)𝐤 + 𝑂(ℎ3) = 𝟎, (2.7b)

nd the conditions associated with the incompressibility constraint upto
econd order are given by

0(𝐀(0)) = 0, (0)[𝐀(1)] = 0, (0)[𝐀(2)] + (1)[𝐀(1), 𝐀(1)] = 0,

(0)[𝐀(3)] + 3(1)[𝐀(1), 𝐀(2)] + (2)[𝐀(1), 𝐀(1), 𝐀(1)] = 0,

(2.8)

where (0)[𝐀(1)] = (0) ∶ 𝐀(1) = det(𝐀)𝐀−𝑇 ∶ 𝐀(1). On subtracting the top
(2.7b) and bottom (2.7a) traction conditions we obtain the 2-D plate
GDE

∇ ⋅ 𝐏̃ = 𝟎. (2.9)

Here, 𝐏̃ = 𝐏(0) + ℎ𝐏(1) + 2
3
ℎ2𝐏(2) is the average stress obtained by

imply taking the integration over the thickness of the plate, 𝐏̃ =
1
2ℎ ∫

2ℎ

0
𝐏𝑑𝑍. Using the series expansion approach, the equilibrium

Eq. (2.9) is expressed as

∇ ⋅ 𝐏(0)
𝑡 + ℎ∇ ⋅ 𝐏(1)

𝑡 + 2
3
ℎ2∇ ⋅ 𝐏(2)

𝑡 + 𝑂(ℎ3) = 𝟎,
[

∇ ⋅ 𝐏̃
]

⋅ 𝐤 = ∇ ⋅
[

𝐏(0)𝑇 𝐤
]

+ ℎ∇ ⋅
[

𝐏(1)𝑇 𝐤
]

+ 2
3
ℎ2∇ ⋅

[

𝐏(2)𝑇 𝐤
]

+ 𝑂(ℎ3) = 0,

⎫

⎪

⎬

⎪

⎭

(2.10)

where the subscript ‘𝑡’ represents the in-plane (or tangential) compo-
nent of a vector or tensor. Eq. (2.10) is then reduced to a refined plate
4

𝐃

equation [76,77] by neglecting the contribution of 𝐏(2), but keeping
terms of 𝑂(ℎ2) that correspond to the bending energy of the plate

∇ ⋅ 𝐏(0)
𝑡 + ℎ∇ ⋅ 𝐏(1)

𝑡 = 𝟎, (2.11a)

⋅
[

(𝐏(0)𝑇 𝐤) − (𝐏(0)𝐤)
]

+ ℎ
[

∇ ⋅
[

(𝐏(1)𝑇 𝐤) − (𝐏(1)𝐤)
]

]

+ 1
3
ℎ2∇ ⋅ [∇ ⋅ 𝐏𝑡(1)] = 0,

(2.11b)

he explicit expressions of unknowns variables 𝐱(2), 𝑝(1) and 𝐱(3), 𝑝(2)
n terms of 𝐱(0), 𝐱(1) and 𝑝(0) which result in a closed form system
re provided in our previous work [60]. One advantage of this plate
heory is that if we neglect the bending term in (2.10), the plate
ystem is reduced to a membrane system. By solving the annular plate
ystem (ignoring 𝑂(ℎ) and 𝑂(ℎ2) terms in (2.10) or (2.11)) and applying
n incompressible Varga hyperelastic material model, we recover the
embrane equation obtained by Swain and Gupta [36].

. Growth-induced deformation in annular plates

In this section, we discuss the deformation of an annular plate
ndergoing isotropic growth i.e., plate growing with equivalent con-
tant growth factor (𝜆) in the radial and circumferential directions. The
rowth tensor 𝐆 then takes the form diag(𝜆𝑟𝑟, 𝜆𝜃𝜃 , 1) where 𝜆𝑟𝑟 = 𝜆𝜃𝜃 =
𝜆. To simplify the calculation, the plate is assumed to be made up
of an incompressible neo-Hookean material with elastic strain-energy
function 𝜙(𝐅,𝐆) = 𝐽𝐺𝜙0(𝐀) = 𝐽𝐺𝐶0

[

𝐼1 − 3
]

, where 𝐼1 = tr(𝐀𝑇𝐀)
and 2𝐶0 is the ground state shear modulus. Using (2.3), the series
approximation of unknown variables about the bottom surface in the
cylindrical coordinate system is given as

𝑟(𝑅,𝑍) =
𝑛=3
∑

𝑛=0

𝑍𝑛

𝑛!
𝑟(𝑛)(𝑅) + 𝑂(𝑍4), 𝜃(𝑅,𝑍) =

𝑛=3
∑

𝑛=0

𝑍𝑛

𝑛!
𝜃(𝑛)(𝑅) + 𝑂(𝑍4),

𝑧(𝑅,𝑍) =
𝑛=3
∑

𝑛=0

𝑍𝑛

𝑛!
𝑧(𝑛)(𝑅) + 𝑂(𝑍4), 𝑝(𝑅,𝑍) =

𝑛=3
∑

𝑛=0

𝑍𝑛

𝑛!
𝑝(𝑛)(𝑅) + 𝑂(𝑍4),

(3.1)

where (⋅)𝑛 =
𝜕𝑛(⋅)
𝜕𝑍𝑛 . The isotropic growth field with (3.1) results in

𝐆̄(0)] =

⎡

⎢

⎢

⎢

⎢

⎣

1
𝜆

0 0

0 1
𝜆

0
0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

,
[

𝐅(0)] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝑟(0)

𝜕𝑅
1
𝑅
𝜕𝑟(0)

𝜕𝛩
𝑟(1)

𝑟(0) 𝜕𝜃
(0)

𝜕𝑅
𝑟(0)

𝑅
𝜕𝜃(0)

𝜕𝛩
𝑟(0)𝜃(1)

𝜕𝑧(0)

𝜕𝑅
1
𝑅
𝜕𝑧(0)

𝜕𝛩
𝑧(1)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

𝐽𝐺 = det(𝐆) = 𝜆2, (3.2)

here 𝐆̄(0) and 𝐅(0) are the first terms in the expansion of 𝐆−𝑇 and
, respectively. Explicit expressions for the unknown variables can be
erived as

(0) =
2𝐶0𝜆4

|

|

|

∇𝐱(0)∗||
|

2
, 𝑟(1) =

𝑝(0)𝛥𝑥11
2𝐶0𝜆2

, 𝜃(1) =
𝑝(0)𝛥𝑥22
2𝐶0𝜆2𝑟(0)

, 𝑧(1) =
𝑝(0)𝛥𝑥33
2𝐶0𝜆2

.

(3.3)

quations associated with the derivation of (3.3) and the terms corre-
ponding to higher orders of 𝐆̄, 𝐅 are detailed in Appendix A.

.1. Pre-buckling solution

The principal or pre-buckling axisymmetric solution is given by
(0)(𝑅) = 𝑟(𝑅), 𝜃(0) = 𝛩, 𝑧(0)(𝑅) = 𝐶𝑍 , (3.4)

here 𝐶𝑍 is a constant function. Upon substituting the principal solu-
ion (3.4) in the plate Eq. (2.11), we obtain a fourth order equation in
(0). This is transformed to four first order ODEs of the form

′
𝐲 = 𝐪, (3.5)
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(
a

𝜆

b

o

I
b
2

𝑟

where a prime denotes derivative with respect to 𝑅, 𝐃 =
diag(1, 1, 1, 1), 𝐲′ = [𝑟(0)′ 𝑟(0)′′ 𝑟(0)′′′ 𝑟(0)iv]𝑇 = [𝑦′1 𝑦′2 𝑦′3 𝑦′4]

𝑇 ,
𝐪 = [𝑦2 𝑦3 𝑦4 2]𝑇 , and 1 and 2 are given as

1 = 2𝜌31𝜌
2
2𝜌

6ℎ̄2 𝜆6
[

4𝜌2 𝜆6 +𝜌21𝜌
4
2

]

,

2 = 80 ℎ̄2𝜆12𝜌8𝜌13𝜌2 𝜌3 𝜌4 − 72 ℎ̄2𝜆12𝜌8𝜌13𝜌33

+ 24 ℎ̄2𝜆12𝜌8𝜌12𝜌23𝜌4 + 64 ℎ̄2𝜆12𝜌8𝜌12𝜌22𝜌32

+ 82 ℎ̄2𝜆12𝜌8𝜌1 𝜌24𝜌3 − 6 ℎ̄2𝜆12𝜌8𝜌26

− 32 ℎ̄2𝜆12𝜌7𝜌13𝜌22𝜌4 − 24 ℎ̄2𝜆12𝜌7𝜌13𝜌2 𝜌32

− 200 ℎ̄2𝜆12𝜌7𝜌12𝜌23𝜌3 − 82 ℎ̄2𝜆12𝜌7𝜌1 𝜌25

+ 144 ℎ̄2𝜆12𝜌6𝜌13𝜌22𝜌3 + 136 ℎ̄2𝜆12𝜌6𝜌12𝜌24

− 24 ℎ̄2𝜆6𝜌6𝜌15𝜌25𝜌3 𝜌4 + 80 ℎ̄2𝜆6𝜌6𝜌15𝜌24𝜌33

− 8 ℎ̄2𝜆6𝜌6𝜌14𝜌27𝜌4 + 86 ℎ̄2𝜆6𝜌6𝜌14𝜌26𝜌32

+ 57 ℎ̄2𝜆6𝜌6𝜌13𝜌28𝜌3 + 20 ℎ̄2𝜆6𝜌6𝜌12𝜌210

+ 9 𝜆8𝜌6𝜌15𝜌26𝜌3 + 9 𝜆8𝜌6𝜌14𝜌28 − 48 ℎ̄2𝜆12𝜌5𝜌13𝜌23

− 4 ℎ̄2𝜆6𝜌5𝜌15𝜌26𝜌4 − 56 ℎ̄2𝜆6𝜌5𝜌15𝜌25𝜌32

− 36 ℎ̄2𝜆6𝜌5𝜌14𝜌27𝜌3 + 9 ℎ̄2𝜆6𝜌5𝜌13𝜌29 − 9 𝜆8𝜌5𝜌15𝜌27

+ 12 ℎ̄2𝜆6𝜌4𝜌16𝜌25𝜌4 − 60 ℎ̄2𝜆6𝜌4𝜌16𝜌24𝜌32

− 104 ℎ̄2𝜆6𝜌4𝜌15𝜌26𝜌3 − 93 ℎ̄2𝜆6𝜌4𝜌14𝜌28

+ 3 𝜆2𝜌4𝜌17𝜌210𝜌3 + 92 ℎ̄2𝜆6𝜌3𝜌16𝜌25𝜌3
+ 64 ℎ̄2𝜆6𝜌3𝜌15𝜌27 + 3 𝜆2𝜌3𝜌17𝜌211 + ℎ̄2𝜌2𝜌17𝜌210𝜌3
− 3 𝜆2𝜌2𝜌18𝜌210 + ℎ̄2𝜌 𝜌17𝜌211 − 𝜌18𝜌210ℎ̄2.

While deriving the above, we have used the dimensionless quanti-
ties

𝜌 = 𝑅
𝐵
, 𝜌1 =

𝑟(0)

𝐵
, 𝜌2 = 𝑟(0)′, 𝜌3 = 𝑟(0)′′𝐵, 𝜌4 = 𝑟(0)′′′𝐵2, and

ℎ̄ = ℎ
𝐵
. (3.6)

The principal solution for 𝜆 > 1 allows the contraction of inner radius
and expansion of outer radius of the plate which are investigated for
two different boundary conditions. In the first boundary condition, we
consider the inner boundary of the plate to be unconstrained or free to
contract due to growth (𝜆 > 1) and the outer boundary is constrained
(IFOC1). This condition is inspired from the behaviour of soft biological
tissue such as skin where the wounded skin grows to close a wound
[36,78]. The second boundary condition models a constrained inner
edge and unconstrained outer edge (ICOF2) of a plate where only the
outer edge is allowed to deform during growth process. This condition
is akin to the deformation of plants and soft polymeric material such
as swollen gels [50,79].

3.1.1. Case 1: Constrained outer boundary and unconstrained inner bound-
ary

If the inner edge (at 𝜌 = 𝐴∕𝐵 = 𝐴∗) of the plate is free to contract or
expand then the radial stress at inner edge on bottom and top surface
is 𝑃𝑅𝑟||𝑍=0 = 𝑃𝑅𝑟||𝑍=2ℎ = 0 (which corresponds to 𝑃 (0)

𝑅𝑟 = 𝑃 (2)
𝑅𝑟 = 0 using

2.10)) and can further be rewritten in terms of dimensionless variables
s
[

2𝜌1
𝜆

− 2𝜆5𝐴∗2

𝜌21𝜌
3
2

]

= 0, (3.7a)

8𝜌22𝐴
∗5 𝜆6 𝜌3 + 4𝜌2𝜌1𝜌4𝐴∗5 𝜆6 −4𝜌23𝜌1𝐴

∗5 𝜆6 −8𝜌32𝐴
∗4 𝜆6 −4𝜌2𝜌1𝜌3𝐴∗4 𝜆6

+ 2𝜌82𝜌1𝐴
∗3 + 7𝜌62𝜌

2
1𝐴

∗3𝜌3 + 𝜌52𝜌
3
1𝜌4𝐴

∗3 + 8𝜌41𝜌
3
1𝜌

2
3𝐴

∗3 + 8𝜌22𝜌1𝐴
∗3 𝜆6

1 IFOC — Inner boundary of the plate is unconstrained (free) and outer
oundary of the plate is constrained.

2 ICOF — Inner boundary of the plate is constrained and the outer boundary
f the plate is free.
5

+ 3𝜌72𝜌
2
1𝐴

∗2 − 𝜌52𝜌
3
1𝜌3𝐴

∗2 − 15𝜌62𝜌
3
1𝐴

∗ − 6𝜌42𝜌
4
1𝜌3𝐴

∗ + 10𝜌52𝜌
4
1 = 0.

(3.7b)

f the outer edge of the plate is constrained then the displacement of
ottom and top surface at 𝜌 = 1 is 0 i.e., 𝑟(0)(𝐵) = 𝐵, and 𝑟(0)+(2ℎ)𝑟(1)+
ℎ2𝑟(2) = 𝐵 and is given by

𝜌1(1) = 1, (3.8a)
(2)(1) = −2𝜌22 𝜆

6 −2𝜌1𝜌3 𝜆6 +2𝜌2𝜌1 𝜆6 −𝜌42𝜌
3
1𝜌3 − 𝜌

5
2𝜌

3
1 + 𝜌

4
2𝜌

4
1 = 0. (3.8b)

3.1.2. Case 2: Constrained inner boundary and unconstrained outer bound-
ary

If the inner edge of the plate is constrained then the displacement
of bottom and top surface at the inner edge

(

𝜌|𝐴∗ = 0
)

is

𝑟(0)(𝐴∗) = 𝐴∗ → 𝜌1(𝐴∗) = 𝐴∗, (3.9a)
𝑟(2)(𝐴∗) = −2𝜌22𝐴

∗4 𝜆6 −2𝜌1𝜌3𝐴∗4 𝜆6 +2𝜌2𝜌1𝐴∗3 𝜆6

− 𝜌42𝜌
3
1𝜌3𝐴

∗2 − 𝜌52𝜌
3
1𝐴

∗ + 𝜌42𝜌
4
1 = 0. (3.9b)

If the outer edge is unconstrained, the radial stress 𝑃 (0)
𝑅𝑟 = 𝑃 (2)

𝑅𝑟 = 0 at
𝜌 = 1 is expressed as

𝜆
[

2𝜌1
𝜆

− 2𝜆5

𝜌21𝜌
3
2

]

= 0, (3.10a)

8𝜌22 𝜆
6 𝜌3 + 4𝜌2𝜌1𝜌4 𝜆6 −4𝜌23𝜌1 𝜆

6 −8𝜌32 𝜆
6 −4𝜌2𝜌1𝜌3 𝜆6

+ 2𝜌82𝜌1 + 7𝜌62𝜌
2
1𝜌3 + 𝜌

5
2𝜌

3
1𝜌4 + 8𝜌41𝜌

3
1𝜌

2
3 + 8𝜌22𝜌1 𝜆

6

+ 3𝜌72𝜌
2
1 − 𝜌

5
2𝜌

3
1𝜌3 − 15𝜌62𝜌

3
1 − 6𝜌42𝜌

4
1𝜌3 + 10𝜌52𝜌

4
1 = 0. (3.10b)

3.1.3. Numerical pre-buckling solution
In this section, we discuss the deformation associated with the

principal solution (3.4) for both the boundary conditions. In the first
case (IFOC), we numerically solve the system of ODEs (3.5) subjected
to the boundary conditions (3.7) and (3.8). The numerical solutions for
primary in-plane deformation of an annulus plate for different radius
ratios 𝐵∕𝐴 = 1.1, 1.5, 2 (see Fig. 3) are obtained using the bvp4c
solver available in Matlab. The dependence of deformed inner radius
(𝑎∕𝐴) on the growth parameter (𝜆 > 1) for a plate of thickness ℎ̄ =
0.03 is presented in Fig. 3a. During growth, the inner boundary of
the annular plate contracts resulting in a decrease of the inner radius
(𝑎 < 𝐴). The plate with a high radius ratio 𝐵∕𝐴 = 2 shows more
contraction even for a smaller value of 𝜆 compared to the other ratios.
The numerical pre-buckling solution for the second case (ICOF) is
obtained by solving the system of ODEs (3.5) subjected to the boundary
conditions (3.9) and (3.10). In this case, we have shown the variation
of the deformed outer radius (𝑏∕𝐵) with growth factor 𝜆 in Fig. 3b. The
outer edge of the plate expands as 𝜆 increases and plates with higher
radius ratio show more expansion in comparison to plates with smaller
radius ratio.

3.2. Constrained growth of a circular ring

To validate the 2-D plate framework, we compare the pre-buckling
solution of an isotropically growing thin annular plate with the analyt-
ical solution of an incompressible neo-Hookean circular ring growing
with planar constant growth i.e., 𝜆𝑟𝑟 = 𝜆𝜃𝜃 = 1.35 provided by [80,
Figure 9]. The ring is subjected to (i) outer constrained boundary
(similar to IFOC in this work), and (ii) inner constrained boundary
(similar to ICOF) boundary conditions. The stress distribution curves
for (i), and (ii) boundary conditions are plotted in Figs. 4a, and 4b,
respectively. A numerical solution of the incompressible circular ring
with same boundary condition using solid-shell based finite element
approach subjected to identical isotropic growth function is also given
by Zheng et al. [64]. Both the analytical and numerical solution are
in good agreement with each other. To test the accuracy of current

plate theory, we numerically solved (3.5) subjected to both IFOC
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Fig. 3. (a) Dependence of the deformed inner radius (𝑎∕𝐴) on growth factor 𝜆 at ℎ̄ = 0.03 when outer edge of the plate is constrained and inner edge is unconstrained (IFOC),
and (b) Dependence of deformed outer radius (𝑏∕𝐵) on growth factor 𝜆 at ℎ̄ = 0.03 when the inner edge of the plate is constrained and the outer edge is unconstrained (ICOF).
In the first IFOC case, the inner boundary of the plate contracts and in the second ICOF case the outer unconstrained boundary expands on the application of 𝜆. The deformed
radius for both the cases is plotted for three different values of radius ratio that are 𝐵∕𝐴 = 1.1, 1.5, and 2.
Fig. 4. Comparison of stress distribution obtained using current plate theory with the analytical results for a circular ring [80] for the both (a) IFOC, and (b) ICOF boundary
conditions. The Piola Kirchhoff stress (both radial 𝑃𝑟 and circumferential 𝑃𝜃 stress) are plotted against the normalised radius 𝜌. The radial and circumferential stress distribution
urves are shown by blue and red colour lines, respectively. Numerical results of the current model are in perfect agreement with the analytical results.
d
r
r
c

4

b

𝜃

(3.7)–(3.8)) and ICOF ((3.9)–(3.10)) boundary conditions using same
arameters as 𝐵∕𝐴 = 2, plate thickness, 2ℎ = 0.001 → 2ℎ̄ = 0.0005,
rowth stretch 𝜆 = 1.35 and ground state shear modulus 2𝐶0 = 4000 by
sing the bvp4c solver in Matlab. The comparison of current numerical
esults with the existing analytical results are in good agreement. As
hown in Fig. 4, numerical results obtained using the current theory are
n agreement with the analytical results of Liu et al. [80] and numerical
esults of Zheng et al. [64].

. Linear bifurcation analysis

We derive the PDEs for the onset of buckling in an isotropically
rowing annular plate. We seek a bifurcation solution close to the
rimary solution by using three different types of perturbations: (a)
symmetric perturbation along radial, circumferential and thickness
6

irections (i.e, 𝑟, 𝜃, 𝑧 coordinates), (b) axisymmetric perturbation along
adial and thickness directions (i.e, 𝑟, 𝑧 coordinates), and (c) asymmet-
ic perturbation along circumferential and thickness directions (i.e, 𝜃, 𝑧
oordinates).

.1. Perturbation along radial, circumferential and thickness direction

Consider the following small asymmetric perturbations to the pre-
uckling solution (3.4) scaled by a parameter 0 < 𝜖 ≪ 1

𝑟(0)(𝑅,𝛩) = 𝑟(𝑅) + 𝜖𝛥𝑈 (𝑅) cos(𝑚𝛩),
(0)(𝑅,𝛩) = 𝛩 + 𝜖𝛥𝑉 (𝑅) sin(𝑚𝛩), (4.1)
𝑧(0)(𝑅,𝛩) = 𝐶𝑧 + 𝜖𝛥𝑊 (𝑅) cos(𝑚𝛩),
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where 𝑚 = 1, 2, 3, ... represents the wave number in the circumferential
irection and 𝐶𝑧 is a constant that models rigid motion of the plate.
pon substituting (4.1) in the plate governing Eq. (2.11), we obtain
DEs in terms of dimensionless displacement functions 𝑈 , 𝑉 and 𝑊 as

1𝑈
′′ + 𝑎2𝑈 ′ + 𝑎3𝑈 + 𝑎4𝑉 ′ + 𝑎5𝑉 + 𝑎6𝑊 ′′′ + 𝑎7𝑊 ′′ + 𝑎8𝑊 ′ + 𝑎9 𝑊 = 0,

(4.2a)

1𝑉
′′ + 𝑏2𝑉 ′ + 𝑏3𝑉 + 𝑏4𝑈 ′ + 𝑏5𝑈 + 𝑏6𝑊 ′′ + 𝑏7𝑊 ′ + 𝑏8 𝑊 = 0, (4.2b)

1𝑊
′′ + 𝑐2𝑊 ′ + 𝑐3 𝑊 + 𝑐4𝑈 ′′′ + 𝑐5𝑈 ′′ + 𝑐6𝑈 ′ + 𝑐7𝑈 + 𝑐8𝑉 ′′ + 𝑐9𝑉 ′ + 𝑐10𝑉

+ 𝑐11𝑊 iv + 𝑐12𝑊 ′′′ + 𝑐13𝑊 ′′ + 𝑐14𝑊 ′ + 𝑐15𝑊 = 0, (4.2c)

here 𝑈 = Δ𝑈∕𝐵, 𝑉 = Δ𝑉 ∕𝐵, and 𝑊 = Δ𝑊 ∕𝐵. Eqs. (4.2a)–(4.2c)
re rewritten into a system of first order differential equations by substi-
uting [𝑦1, 𝑦2, ..., 𝑦8] = [𝑈, 𝑈 ′, 𝑉 , 𝑉 ′, 𝑊 , 𝑊 ′, 𝑊 ′′, 𝑊 ′′′] resulting in

𝐘′ = 𝐠. (4.3)

ere, 𝐇 = diag(1, 𝑎1, 1, 𝑏1, 1, 1, 1, 𝑐11) is an 8 × 8 matrix, and 𝐘′ =
[𝑦′1, 𝑦

′
2, 𝑦

′
3, 𝑦

′
4, 𝑦

′
5, 𝑦

′
6, 𝑦

′
7, 𝑦

′
8]
𝑇 , and 𝐠 = [𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6, 𝑦7, 𝑦8]𝑇

re 8 × 1 column vectors. The coefficients in (4.2a)–(4.2c) are detailed
n the supplementary document. The displacement boundary conditions
or the IFOC case are

′(𝐴∗) = 𝑉 (𝐴∗) = 𝑊 ′′(𝐴∗) = 𝑊 ′′′(𝐴∗) = 0, (4.4a)

(1) = 𝑉 (1) = 𝑊 (1) = 𝑊 ′(1) = 0, (4.4b)

nd for the ICOF case are

(𝐴∗) = 𝑉 (𝐴∗) = 𝑊 (𝐴∗) = 𝑊 ′(𝐴∗) = 0, (4.5a)
′(1) = 𝑉 (1) = 𝑊 ′′(1) = 𝑊 ′′′(1) = 0. (4.5b)

Here, Eqs. (4.4a) (respectively, (4.5b)) correspond to unconstrained
nner edge (respectively, outer edge) of annular plate which allows
ontraction (respectively, expansion) and no restriction of bending
oment (𝑊 ′′ = 0) and transverse shear (𝑊 ′′′ = 0). Eqs. (4.4b) and

4.5a) correspond to clamped (constrained) outer and inner edges of
he plate, respectively.

.1.1. Perturbation along radial and thickness direction
In this case, the linear bifurcation analysis is performed by per-

urbing the principal solution (3.4) axisymmetrically with a small
arameter 0 < 𝜖 ≪ 1 by using the following ansatz

𝑟(0)(𝑅,𝛩) = 𝑟(𝑅) + 𝜖𝛥𝑈 (𝑅) cos(𝑚𝛩), 𝜃(0) = 𝛩,
(0)(𝑅,𝛩) = 𝐶𝑧 + 𝜖𝛥𝑊 (𝑅) cos(𝑚𝛩), (4.6)

here ‘𝑚’ is again an integer representing the wave number in the
ircumferential direction. On substituting (4.6) in the plate governing
q. (2.11), we obtain ODEs in terms of the dimensionless displacement
unctions 𝑈 and 𝑊 which one can simply obtain by setting the coeffi-
ients 𝑎4 = 𝑎5 = 0 in (4.2a) and 𝑐8 = 𝑐9 = 𝑐10 = 0 in (4.2c). The system
4.2) is now reduced to two ODEs which is further simplified into six
irst-order linear differential equations of the form

𝐦′ = 𝐦, (4.7)

here 𝐦 = [𝑈, 𝑈 ′, 𝑊 , 𝑊 ′, 𝑊 ′′, 𝑊 ′′′] and 𝐁 = diag(1, 𝑎1, 1, 1, 1, 𝑐11).
he IFOC boundary condition is given as

′(𝐴∗) = 𝑊 ′′(𝐴∗) = 𝑊 ′′′(𝐴∗) = 0, and 𝑈 (1) = 𝑊 (1) = 𝑊 ′(1) = 0,

(4.8)

nd the ICOF condition associated with this type of perturbation yields

(𝐴∗) = 𝑊 (𝐴∗) = 𝑊 ′(𝐴∗) = 0, and 𝑈 ′(1) = 𝑊 ′′(1) = 𝑊 ′′′(1) = 0.

(4.9)
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.1.2. Perturbation along circumferential and thickness direction
In this case, the bifurcation solution is obtained by applying an

symmetric perturbation to the principal solution along circumferential
nd thickness directions using the following ansatz
(0)(𝑅) = 𝑟(𝑅), 𝜃(0)(𝑅,𝛩) = 𝛩 + 𝜖𝛥𝑉 (𝑅) sin(𝑚𝛩), and
(0)(𝑅,𝛩) = 𝐶𝑧 + 𝜖𝛥𝑊 (𝑅) cos(𝑚𝛩), (4.10)

here 𝑚 = 1, 2, 3 ... represents the circumferential wave number. In
his type of perturbation, the incremental elastic strain is dependent
n the 𝛩-𝑍 coordinates. Thus, the incremental ODEs are obtained in
erms of dimensionless displacement functions 𝑉 and 𝑊 by substituting
4.10) in (2.11) or we can obtain these ODEs by setting the coefficients
4 = 𝑏5 = 0 in (4.2b) and 𝑐4 = 𝑐5 = 𝑐6 = 𝑐7 = 0 in (4.2c). The resulting

three equations in the system (4.3) is again reduced to two ODEs which
further can be rewritten in the form of

𝐊𝐭′ = 𝐭 (4.11)

where 𝐭 = [𝑉 , 𝑉 ′, 𝑊 , 𝑊 ′, 𝑊 ′′, 𝑊 ′′′] and 𝐊 = diag(1, 𝑏1, 1, 1, 1, 𝑐11).
The IFOC boundary conditions for this case are

𝑉 (𝐴∗) = 𝑊 ′′(𝐴∗) = 𝑊 ′′′(𝐴∗) = 0, and 𝑉 (1) = 𝑊 (1) = 𝑊 ′(1) = 0.

(4.12)

The ICOF boundary conditions are given by

𝑉 (𝐴∗) = 𝑊 (𝐴∗) = 𝑊 ′(𝐴∗) = 0, and 𝑉 (1) = 𝑊 ′′(1) = 𝑊 ′′′(1) = 0.

(4.13)

. Results

Before presenting the bifurcation solutions for hyperelastic annular
lates, we compare the bifurcation results obtained by the current
heory with the FvK plate theory in the small thickness regime for
alidation.

.1. Growth-induced instability in a rectangular plate

Consider a rectangular plate of thickness 2𝐻 clamped at the ends
= ±1 (as shown in Fig. 5) subjected to a plane strain in the 𝑌 -

irection and a Winkler foundation with effective stiffness 𝐾0 at 𝑍 =
2𝐻 . Analytical results for this problem are derived by Wang et al.
54]. The Winkler foundation allows for analytical solution [81]. The
late is made up of an incompressible neo-Hookean material growing
nder uni-axial constant growth field for which the growth tensor takes
he form 𝐆 = diag(𝜆, 1, 1). The Winkler support provides traction only
n the transverse direction at the bottom surface of the plate given
s 𝑡3 = −𝐾0 𝜆𝑊0 = −𝐾0 𝜆

[

𝑧(0)∕[2𝐻̄] + 𝑧(1) + 𝐻̄𝑧(2) + 2∕3[𝐻̄]2𝑧(3) − 1
]

here 𝐻̄ is the ratio of plate thickness to length (in the X direction)
.e., 𝐻̄ = 𝐻∕𝐿, 𝐾0 is the elastic constant of the foundation and 𝑊0 is
he transverse component of the displacement. We perturb the principal
olution scaled by a small parameter 𝜖; 𝑥(0)(𝑋) = 𝑋0+𝜖𝑈 (𝑋), 𝑧(0)(𝑋) =
2𝐻̄(𝜆−1) + 𝜖𝑊 (𝑋) where 𝑥(0), 𝑧(0) are the deformed coordinates,
nd 𝑈 and 𝑊 are the displacements in axial and transverse direction,
espectively. Upon substituting this ansatz in (2.11), equating (2.11b)
o 𝑡3, and collecting only 𝑂(𝜖) terms, the governing plate differential
quation is given by

1𝑊
′ + 𝜂2𝑊 ′′ + 𝜂3𝑊 iv = 0, (5.1)

ubjected to clamped boundary conditions, 𝑊 ′(±1) = 𝑊 ′′′(±1) = 0.
ere

1 = − 𝛼 𝜆
2𝐻̄

,

𝜂2 =
2 [1 − 𝜆4] − 𝐻̄𝛼 𝜆3 + 2𝐻̄𝛼 𝜆3 [1 + 𝜆4

]

,

𝜆 1 + 3 𝜆4
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Fig. 5. Possible mode of buckling of a rectangular plate under growth-induced deformation. The plate is in a plane strain condition in the 𝑌 -direction and subjected to Winkler
support with an effective stiffness, 𝐾0. The reference configuration (a) transforms to the deformed configuration (b) at the critical value of growth factor i.e., 𝜆 = 𝜆𝑐𝑟. Compression
ue to a constrained boundary leads to buckling of the plate.
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Table 1
Comparison of bifurcation solution using finite-strain plate theory with analytical and
numerical FvK plate results. The value of critical growth parameter 𝜆𝑐𝑟 is compared
for the plate thickness 𝐻̄ = 0.015 and associated mode numbers (𝑛). The results are in
good agreement with analytical results and close to the FvK results.

Mode number 𝑛 = 7 𝑛 = 8 𝑛 = 5 𝑛 = 9

FvK theory 1.01596 1.01712 1.01814 1.01916
Analytical results [54] 1.01626 1.01751 1.01839 1.01969
Current results 1.01626 1.01751 1.01839 1.01969

𝜂3 = −
4𝐻̄2(1 + 𝜆4)
(1 + 3 𝜆4)

[

2 𝜆5 −3 𝜆4 +2 𝜆−1
]

− 4
3
𝐻̄2[1 + 𝜆4] − 4𝐻̄3𝛼 𝜆

3[1 + 3 𝜆4]
[1 + 2 𝜆4][1 + 𝜆4],

and 𝛼 = 𝐾0∕𝐶0 where 2𝐶0 = 𝜇 is the ground state shear modulus
f the hyperelastic material. We follow the same numerical scheme
s described in Section 5.3 and obtained the bifurcation solution by
umerically solving the GDE (5.1) for critical value of growth (𝜆𝑐𝑟 )

responsible for the onset of instability. We compare our numerical
results with the existing analytical results using current theory and
numerical result using FvK plate theory provided by Wang et al. [54]
in Table 1. The current numerical results are an almost exact match
with the analytical solution and very close to the results obtained by
the FvK theory.

5.2. Results for annular plate

The previous Section 4 discussed the possible type of perturbations
(axisymmetry and asymmetric), corresponding ODEs and boundary
conditions for the stability analysis. In this section, we numerically
solve the derived ODEs to determine the critical growth factor at
the onset of bifurcation. The numerical strategy used to derive the
bifurcation solution is detailed in Section 5.3. We have shown only one
set of bifurcation solutions in Section 5.3.1 when a plate is perturbed
in 𝑅-𝛩-𝑍 direction and subjected to IFOC boundary condition. This
is to illustrate the stability of buckling solution of the growing plate
when perturbed. Then in Section 5.4, we compare the bifurcation
solution of each type of perturbation considered in Section 4 and
investigate the type of perturbation that results in the energetically
preferred bifurcation solution. In the next Section 5.5, we have shown
the comparison between the preferred bifurcation solutions for both
boundary conditions.

5.3. Numerical bifurcation analysis of growing annular plate

In this section, we numerically solve the ODEs obtained in Sec-
tion 4.1 for the critical growth factor (𝜆 ) responsible for the onset of
8

𝑐𝑟
instability. The numerical solutions of the resulting boundary value
problems (BVPs) are computed using the compound matrix method
[60,82] as well as the standard shooting method or determinant method
[83,84]. Both the numerical methods are implemented in Matlab
2018a and the computed results are within a very small norm. How-
ever, the compound matrix method is much faster than the shooting
method [85]. Equations are integrated using the 𝚘𝚍𝚎𝟺𝟻 ODE solver that
mplements an explicit Runge–Kutta method and then the
𝚖𝚒𝚗𝚜𝚎𝚊𝚛𝚌𝚑𝚋𝚗𝚍 optimisation subroutine [86] based on a Nelder–Mead
implex algorithm is used to minimise the errors.

.3.1. Bifurcation solution for a plate with clamped outer edge condition
In this section, we evaluate the value of 𝜆𝑐𝑟 for the first case as

discussed in Section 4.1 i.e., perturbation along 𝑅-𝛩-𝑍 direction to
demonstrate the behaviour of the bifurcation solution for an annular
plate. For this, we numerically solve the system (4.3) subjected to IFOC
boundary condition (4.4). The dependence of 𝜆𝑐𝑟 on the plate thickness
(ℎ̄) with different radius ratios 𝐵∕𝐴 = 1.1, 1.5, 2 at various circum-
ferential wavenumbers (𝑚) is shown in Fig. 6. The 𝜆𝑐𝑟 monotonically
increases with ℎ̄ suggesting that thicker plates with high bending stiff-
ness require more growth to cause wrinkling instability. Furthermore,
the magnitude of 𝜆𝑐𝑟 decreases with the increase of 𝐵∕𝐴 due to an
apparent decrease in the boundary layer effects of the annular plate.
We also observe that the critical wavenumber (𝑚𝑐𝑟) depends on the
thickness, radius ratio, and boundary layer effects of the plate. Higher
modes are energetically preferred for the low 𝐵∕𝐴 values whereas
lower modes are stable with an increasing value of 𝐵∕𝐴. For a plate
with smaller radius ratio, 𝐵∕𝐴 = 1.1, the obtained critical wavenumber
is 𝑚𝑐𝑟 = 22 in the thin regime (0.05 < ℎ̄ < 0.1), and 𝑚𝑐𝑟 = 23 in the
thick regime (ℎ̄ > 0.1). However, for 𝐵∕𝐴 = 1.5 and 2, the critical
wavenumbers are 𝑚𝑐𝑟 = 4 and 𝑚𝑐𝑟 = 2, respectively.

.4. Comparison between axisymmetric and asymmetric bifurcation

Here, we compare the bifurcation solutions for axisymmetric and
symmetric perturbations as discussed in Sections 4.1.1 and 4.1.2,
espectively. The 𝜆𝑐𝑟 is calculated by numerically solving the systems
4.7) and (4.11) subjected to the IFOC boundary conditions (4.8) and
4.12), respectively using the compound matrix method. Table 2 shows
he dependence of 𝜆𝑐𝑟 on plate thickness (ℎ̄) and plate radius ratio
𝐵∕𝐴) at the corresponding critical mode number (𝑚𝑐𝑟) for each type
f the considered perturbation. The bifurcation solution corresponding
o axisymmetric (i.e., along 𝑅-𝑍) and asymmetric (i.e., along 𝛩-𝑍)

perturbations to principal solution (3.4) follow a trend similar to the
solution obtained in Section 5.3.1. The bifurcation solution correspond-
ing to axisymmetric perturbation results in high 𝜆𝑐𝑟, thus requiring
higher growth factor as compared to bifurcation solution associated
with asymmetric perturbations.
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Fig. 6. Dependence of the critical growth factor on the thickness of the plate (ℎ̄) for various aspect ratios (a) 𝐵∕𝐴 = 1.1, (b) 𝐵∕𝐴 = 1.5, and (c) 𝐵∕𝐴 = 2 that results in a perturbation
n the radial-hoop-thickness direction. The bifurcation solution in each case is obtained for the IFOC boundary condition. Lowest value of 𝜆𝑐𝑟 in each case corresponds to the
inimum energy and therefore the preferable solution and determines the critical wave number 𝑚 that directly relates to the number of wrinkles in the deformed configuration.
Table 2
Comparison of dependence of critical growth factor 𝜆𝑐𝑟 on the dimensionless plate thickness (ℎ̄) at the corresponding critical circumferential wavenumber (𝑚𝑐𝑟) for plate radius
ratio, 𝐵∕𝐴 = 1.1, 1.5, 2. Critical value of the growth factor is obtained for both axisymmetric and asymmetric perturbations to the principal solution subjected to IFOC boundary
constraint. The highlighted boxed values represent the lowest value of 𝜆𝑐𝑟 and corresponds to the preferred bifurcation solution.
ℎ̄ 𝐵∕𝐴 = 1.1 𝐵∕𝐴 = 1.5 𝐵∕𝐴 = 2

𝜆𝑐𝑟
(𝑅-𝑍)

𝜆𝑐𝑟
(𝛩-𝑍)

𝜆𝑐𝑟
(𝑅-𝛩-𝑍)

𝜆𝑐𝑟
(𝑅-𝑍)

𝜆𝑐𝑟
(𝛩-𝑍)

𝜆𝑐𝑟
(𝑅-𝛩-𝑍)

𝜆𝑐𝑟
(𝑅-𝑍)

𝜆𝑐𝑟
(𝛩-𝑍)

𝜆𝑐𝑟
(𝑅-𝛩-𝑍)

0.03 1.2106
(𝑚𝑐𝑟 = 16)

1.1154
(𝑚𝑐𝑟 = 20)

1.1127
(𝑚𝑐𝑟 = 20)

1.0077
(𝑚𝑐𝑟 = 4)

1.0074
(𝑚𝑐𝑟 = 4)

1.0076
(𝑚𝑐𝑟 = 4)

1.0007
(𝑚𝑐𝑟 = 2)

1.0007
(𝑚𝑐𝑟 = 2)

1.0007
(𝑚𝑐𝑟 = 2)

0.05 1.4604
(𝑚𝑐𝑟 = 13)

1.1619
(𝑚𝑐𝑟 = 22)

1.1547
(𝑚𝑐𝑟 = 21)

1.0214
(𝑚𝑐𝑟 = 4)

1.0191
(𝑚𝑐𝑟 = 4)

1.0200
(𝑚𝑐𝑟 = 4)

1.0019
(𝑚𝑐𝑟 = 2)

1.0019
(𝑚𝑐𝑟 = 2)

1.0019
(𝑚𝑐𝑟 = 2)

0.1 1.7893
(𝑚𝑐𝑟 = 10)

1.1901
(𝑚𝑐𝑟 = 23)

1.1793
(𝑚𝑐𝑟 = 22)

1.0810
(𝑚𝑐𝑟 = 4)

1.0551
(𝑚𝑐𝑟 = 4)

1.0621
(𝑚𝑐𝑟 = 4)

1.0075
(𝑚𝑐𝑟 = 2)

1.0063
(𝑚𝑐𝑟 = 2)

1.0073
(𝑚𝑐𝑟 = 2)

0.15 1.8838
(𝑚𝑐𝑟 = 9)

1.1959
(𝑚𝑐𝑟 = 24)

1.1843
(𝑚𝑐𝑟 = 23)

1.1477
(𝑚𝑐𝑟 = 4)

1.0814
(𝑚𝑐𝑟 = 4)

1.0955
(𝑚𝑐𝑟 = 4)

1.0156
(𝑚𝑐𝑟 = 2)

1.0113
(𝑚𝑐𝑟 = 2)

1.0148
(𝑚𝑐𝑟 = 2)

0.2 1.9162
(𝑚𝑐𝑟 = 9)

1.1979
(𝑚𝑐𝑟 = 24)

1.1860
(𝑚𝑐𝑟 = 23)

1.1849
(𝑚𝑐𝑟 = 3)

1.0962
(𝑚𝑐𝑟 = 4)

1.1144
(𝑚𝑐𝑟 = 4)

1.0247
(𝑚𝑐𝑟 = 2)

1.0155
(𝑚𝑐𝑟 = 2)

1.0228
(𝑚𝑐𝑟 = 2)
For plates with 𝐵∕𝐴 = 1.5, 2, the bifurcation solution obtained for
he 𝛩-𝑍 perturbation has the minimum energy (highlighted values in
able 2 correspond to lowest values of 𝜆𝑐𝑟 and therefore the preferred
ifurcation solution) suggesting that the asymmetrically perturbed so-
ution is energetically preferred. On the other hand, for a plate with low
adius ratio 𝐵∕𝐴 = 1.1, the bifurcation solution obtained for the 𝑅-𝛩-𝑍

perturbation is energetically preferred. However, for small thickness
values ℎ̄ <= 0.05, difference in the critical value 𝜆𝑐𝑟 for each of the
perturbation types is very small and it is hard to predict the preferred
bifurcation mode. It is also observed that the critical wave number
𝑚𝑐𝑟 decreases with an increase in 𝐵∕𝐴 for a fixed value of the plate
thickness. This is expected since thinner rings (low 𝐵∕𝐴) have a larger
circumference in relation to their surface area and therefore tend to
develop more wrinkles compared to bulkier rings (high 𝐵∕𝐴) and is
corroborated by the experimental and analytical findings of Mora and
Boudaoud [50] and Liu et al. [79].

For 𝐵∕𝐴 = 1.1, the critical load 𝜆𝑐𝑟 and the corresponding 𝑚𝑐𝑟
increase with the thickness ℎ̄. For higher 𝐵∕𝐴 values, 𝑚𝑐𝑟 remains
constant but only 𝜆𝑐𝑟 increases with the thickness ℎ̄. In general higher
thickness value ℎ̄ results in larger compressive stresses at the bi-
furcation point due to a larger value of 𝜆𝑐𝑟 which is discussed in
the subsequent section. As a result, bifurcation occurs with a higher
wavenumber 𝑚𝑐𝑟 for 𝐵∕𝐴 = 1.1 as ℎ̄ increases. For 𝐵∕𝐴 = 1.5, 2, the
change in 𝜆𝑐𝑟 with the ℎ̄ value is not significant and as a result 𝑚𝑐𝑟
stays constant.

We conclude that the 𝛩-𝑍 (asymmetric) type of perturbation is
appropriate for the annular plate with moderate and high radius ratio
when subjected to IFOC condition as compared to other perturbations.
In the subsequent section, we analyse the influence of ICOF boundary
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condition (i.e., inner edge of the plate is clamped) on the bifurcation
solutions obtained using all types of considered perturbations and
compare these results with the IFOC results.

5.5. Influence of boundary condition on the buckling solution

In this section, we evaluate 𝜆𝑐𝑟 for an annular plate considering all
type of perturbations by numerically solving (4.3), (4.7), and (4.11)
subjected to ICOF conditions (4.5), (4.9), and (4.13), respectively and
compare with the solutions obtained in the previous section. The values
of 𝜆𝑐𝑟 are compared for each type of perturbation and then we identify
the preferred bifurcation solution by studying the lowest value of 𝜆𝑐𝑟
(at the corresponding 𝑚𝑐𝑟). Table 3 shows the dependence of preferred
bifurcation solution (lowest 𝜆𝑐𝑟) on plate thickness (ℎ̄) and radius ratio
𝐵∕𝐴 when the growing plate is subjected to ICOF boundary condition.
This table also compares the lowest values of 𝜆𝑐𝑟 of the plate subjected
to IFOC condition (highlighted in Table 2) with the obtained ICOF
results. We observe that the variation of 𝜆𝑐𝑟 with plate thickness (ℎ̄) and
radius ratio (𝐵∕𝐴) for both the boundary conditions is quite similar.
We also observe that for the plates subjected to ICOF boundary condi-
tion, the bifurcation solution associated with 𝑅-𝛩-𝑍 perturbation have
minimum energy and is preferable over other type of perturbations.

Unlike the IFOC case, the values of 𝑚𝑐𝑟 and 𝜆𝑐𝑟 increase with ℎ̄
for all values of 𝐵∕𝐴. This can be visualised by plotting the variation
of 𝜆𝑐𝑟 with 𝑚 for various values of ℎ̄ in Figs. 7a and 7b. The critical
wavenumber (corresponding to the minima of these curves) is constant
with ℎ̄ for the annular plate (𝐵∕𝐴 = 1.5, 2) subjected to IFOC boundary
condition as discussed in previous section. However, the 𝑚𝑐𝑟 increases

̄
with the ℎ for fixed 𝐵∕𝐴 using ICOF boundary condition. This suggest
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Table 3
Dependence of the critical value of growth factor (𝜆𝑐𝑟) on plate thickness (ℎ̄), radius ratio (𝐵∕𝐴), and critical wavenumber
(𝑚𝑐𝑟). The lowest value of 𝜆𝑐𝑟 is obtained for the annular plate with aspect ratio 𝐵∕𝐴 = 1.1, 1.5, 2 at various plate thickness ℎ̄
subjected to IFOC and ICOF boundary conditions. The preferred bifurcation solution for ICOF boundary condition is obtained
using 𝑅-𝛩-𝑍 perturbation. For IFOC boundary condition, 𝑅-𝛩-𝑍 and 𝛩-𝑍 perturbation are preferred for 𝐵∕𝐴 = 1.1 and
𝐵∕𝐴 = 1.5, 2, respectively.
ℎ̄ 𝐵∕𝐴 = 1.1 𝐵∕𝐴 = 1.5 𝐵∕𝐴 = 2

𝜆𝑐𝑟
(IFOC)

𝜆𝑐𝑟
(ICOF)

𝜆𝑐𝑟
(IFOC)

𝜆𝑐𝑟
(ICOF)

𝜆𝑐𝑟
(IFOC)

𝜆𝑐𝑟
(ICOF)

0.03 1.1127
(𝑚𝑐𝑟 = 20)
(𝑅-𝛩-𝑍)

1.1327
(𝑚𝑐𝑟 = 23)
(𝑅-𝛩-𝑍)

1.0074
(𝑚𝑐𝑟 = 4)
(𝛩-𝑍)

1.0386
(𝑚𝑐𝑟 = 6)
(𝑅-𝛩-𝑍)

1.0007
(𝑚𝑐𝑟 = 2)
(𝛩-𝑍)

1.0306
(𝑚𝑐𝑟 = 4)
(𝑅-𝛩-𝑍)

0.05 1.1547
(𝑚𝑐𝑟 = 21)
(𝑅-𝛩-𝑍)

1.1680
(𝑚𝑐𝑟 = 26)
(𝑅-𝛩-𝑍)

1.0191
(𝑚𝑐𝑟 = 4)
(𝛩-𝑍)

1.0816
(𝑚𝑐𝑟 = 6)
(𝑅-𝛩-𝑍)

1.0019
(𝑚𝑐𝑟 = 2)
(𝛩-𝑍)

1.0681
(𝑚𝑐𝑟 = 4)
(𝑅-𝛩-𝑍)

0.1 1.1793
(𝑚𝑐𝑟 = 22)
(𝑅-𝛩-𝑍)

1.1850
(𝑚𝑐𝑟 = 30)
(𝑅-𝛩-𝑍)

1.0551
(𝑚𝑐𝑟 = 4)
(𝛩-𝑍)

1.1493
(𝑚𝑐𝑟 = 7)
(𝑅-𝛩-𝑍)

1.0063
(𝑚𝑐𝑟 = 2)
(𝛩-𝑍)

1.1387
(𝑚𝑐𝑟 = 5)
(𝑅-𝛩-𝑍)

0.15 1.1843
(𝑚𝑐𝑟 = 23)
(𝑅-𝛩-𝑍)

1.1879
(𝑚𝑐𝑟 = 32)
(𝑅-𝛩-𝑍)

1.0814
(𝑚𝑐𝑟 = 4)
(𝛩-𝑍)

1.1690
(𝑚𝑐𝑟 = 9)
(𝑅-𝛩-𝑍)

1.0113
(𝑚𝑐𝑟 = 2)
(𝛩-𝑍)

1.1624
(𝑚𝑐𝑟 = 6)
(𝑅-𝛩-𝑍)

0.2 1.1860
(𝑚𝑐𝑟 = 23)
(𝑅-𝛩-𝑍)

1.1888
(𝑚𝑐𝑟 = 48)
(𝑅-𝛩-𝑍)

1.0962
(𝑚𝑐𝑟 = 4)
(𝛩-𝑍)

1.1727
(𝑚𝑐𝑟 = 14)
(𝑅-𝛩-𝑍)

1.0155
(𝑚𝑐𝑟 = 2)
(𝛩-𝑍)

1.1705
(𝑚𝑐𝑟 = 6)
(𝑅-𝛩-𝑍)
b
f
c
a
t

that a preferred bifurcation solution (satisfying the ICOF boundary
conditions with 𝑅-𝛩-𝑍 perturbation) consist of more wrinkles in hoop
direction for thicker plates at high value of 𝜆𝑐𝑟. The contour plots with
normalised displacement demonstrate the number of wrinkles in the
circumferential direction at the bifurcation point. For the plate with
𝐵∕𝐴 = 1.5 and ℎ̄ = 0.2 subjected to IFOC boundary condition, the
critical wavenumber (𝑚𝑐𝑟) is 4 and does not change with the thickness.
Whereas, for the plate of 𝐵∕𝐴 = 1.5, ℎ̄ = 0.05 subjected to ICOF
boundary condition, the 𝑚𝑐𝑟 is 6 and for the plate with ℎ̄ = 0.2, the
𝑚𝑐𝑟 is 14 which shows the increase in number of wrinkles with ℎ̄. This
is due to the expansion of the unconstrained outer boundary 𝑏 > 𝐵
(considering ICOF) with the increase of thickness under growth stretch
(𝜆 > 1). The deformed configuration results in a larger circumference
which can accommodate more number of wrinkles in the buckled
configuration.

Fig. 7c shows the variation of transverse amplitude of the mode
shape along the radius of the plate for different thickness at same radius
ratio 𝐵∕𝐴 = 1.5. In the case of IFOC, the mode shape variation remains
the same for all plate thickness considered. In the case of ICOF, for thin
plates (𝑚𝑐𝑟 = 6), the radial extent of wrinkles is considerable i.e., the
amplitude variation along the radius is more, whereas for thick plates
the amplitude variation is localised at the unconstrained outer edge (as
shown in Fig. 7b). Thus, in the case of ICOF, the boundary layer effects
are observed to be significant for thick plates when compared to thin
plates.

Next, we investigate the effect of compressive stress on the wrinkle
formation along the boundaries of annular plate. Figs. 7d and 7e shows
the variation of normalised maximum stress (𝐏̃max∕𝐶0) with the plate
radius ratio at different plate thickness values (ℎ̄ = 0.03, 0.1) for
IFOC and ICOF boundary conditions, respectively. The blue and red
curves represents the dimensionless radial stress (𝑃rad∕𝐶0 = 𝑃𝑅𝑅) and
circumferential stress (𝑃hoop∕𝐶0 = 𝑃𝛩𝛩), respectively. The variation
of maximum stress with aspect ratio shows the similar behaviour for
IFOC and ICOF case however, we observe that for IFOC condition,
both the 𝑃𝑅𝑅 and 𝑃𝛩𝛩 are compressive which promotes the bifurcation
where as for ICOF boundary condition, 𝑃𝛩𝛩 is compressive and 𝑃𝑅𝑅
s tensile that delays the bifurcation (Mathematical expressions for
tresses are detailed in the supplementary document). Here, we plot
he maximum stress value to show the dependence of stresses on the
eometry of plate. Considering ICOF condition, for a fixed value of
∕𝐴, the value of critical growth stretch increases with the increase
10

f

of thickness (due to increased bending stiffness), as shown in Table 3
which yields high compressive stresses as shown in Figs. 7d and 7e
which results in more number of wrinkles. Whereas, the converse
behaviour of stress is observed with respect to increase in the radius
ratio of the annular plate for a fixed value of plate thickness that is
the critical stretch value and compressive stresses decrease with the
increase in radius ratio suggesting less wrinkles. For plates with low
𝐵∕𝐴 value, both the compressive stress and boundary layer effects
govern the wrinkle formation. For plates with high 𝐵∕𝐴 value, only the
compressive stress governs the wrinkle formation. Thus, the combined
effect of compressive stresses and boundary layer effects govern the
number of wrinkles and their localisation along the boundaries of the
thick plate. Also, the results show that the magnitude of 𝜆𝑐𝑟 and 𝑚𝑐𝑟
is higher for the bifurcation solution associated with ICOF case when
compared to IFOC. For the same geometric parameters 𝐵∕𝐴 = 1.5 and
ℎ̄ = 0.1, the value of 𝜆𝑐𝑟 associated with IFOC condition is 1.0551 at
𝑚𝑐𝑟 = 4 and ICOF condition is 𝜆𝑐𝑟 = 1.1493 at 𝑚𝑐𝑟 = 7.

5.5.1. Comparison with computational results for growing annulus
We have discussed in Section 3.2 that current plate theory estimates

pre-buckling results for circular ring and annular shell. Now, to test the
accuracy of numerical framework, we compare the bifurcation solution
of the annular plate using current theory with the computational results
for a nearly incompressible (Poisson ratio = 0.495) neo-Hookean grow-
ing annulus provided by Groh [65] using the finite element method.
He used a seven-parameter quadrilateral shell element to analyse the
growth-induced instability in thin growing shell by implementing the
numerical continuation algorithm. In his work, the isotropic planar
growth tensor is given as 𝐆 = diag(1 + 𝜆𝑔 , 1 + 𝜆𝑔 , 1). The prescribed
boundary condition were pinned inner edge and free outer edge. He
reported the critical value of growth function and wavenumber for
growing annulus as 𝜆𝑔𝑐𝑟 = 0.137×10−5 and 𝑚𝑐𝑟 = 3, respectively. For the
same parameters, radius ratio (𝐵∕𝐴 = 2), shell thickness (2ℎ = 0.001 →
2ℎ̄ = 0.0005), and the boundary conditions which are 𝑈 (𝐴∗) = 𝑉 (𝐴∗) =
𝑊 (𝐴∗) = 𝑊 ′′(𝐴∗) = 0 (corresponding to simply supported inner
oundary) and 𝑈 ′(1) = 𝑉 ′(1) = 𝑊 ′′(1) = 𝑊 ′′′(1) = 0 (corresponding to
ree outer boundary), the current incompressible plate theory yields the
ritical wavenumber 𝑚𝑐𝑟 = 3 with 𝜆𝑔𝑐𝑟 = 0.152 × 10−5. The two results
re relatively close to each other with a small deviation arising due
o the non satisfaction of incompressibility constraint in Groh [65]’s

ormulation.
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Fig. 7. (a) and (b) Dependence of the critical growth factor 𝜆𝑐𝑟 on the wavenumber 𝑚 for an annular plate with aspect ratio 𝐵∕𝐴 = 1.5 subjected to IFOC (𝛩-𝑍 perturbation) and
ICOF (𝑅-𝛩-𝑍 perturbation) boundary conditions, respectively. For each plate thickness value ℎ̄, the red marks highlights the critical value of wavenumber (𝑚𝑐𝑟) corresponding to
the lowest value of 𝜆𝑐𝑟 on the solution curve. Normalised 2-D displacement contours at bifurcation for the IFOC boundary condition is plotted at ℎ̄ = 0.2, 𝑚𝑐𝑟 = 4, 𝜆𝑐𝑟 = 1.0962.
Similar contours for the ICOF boundary condition are plotted at 𝑚𝑐𝑟 = 6, 𝜆𝑐𝑟 = 1.0816 and 𝑚𝑐𝑟 = 14, 𝜆𝑐𝑟 = 1.1727 for ℎ̄ = 0.05 and ℎ̄ = 0.2, respectively. (c) Variation of the transverse
amplitude of the mode shapes with the radius of the plate corresponding to the highlighted marks in (a) and (b). For thick plate subjected to ICOF condition (ℎ̄ = 0.2, 𝑚𝑐𝑟 = 14),
the radial extent of wrinkles is small suggesting that the wrinkles are more localised towards the outer unconstrained boundary of the plate. (d) and (e) Variation of normalised
maximum stress components (|𝐏̃max|∕𝐶0) with plate aspect ratio and thickness for IFOC and ICOF case, respectively. The blue and red curve represents the radial (𝑃𝑅𝑅) and hoop
(𝑃𝛩𝛩) stress distribution. The filled and unfilled markers represents the maximum stress at ℎ̄ = 0.03 and ℎ̄ = 0.1, respectively.
6. Conclusion

In this work, we have investigated the wrinkling phenomena in
growing hyperelastic annular plates using a finite-strain asymptotic
plate theory. A 3-D plate equilibrium system is reduced to 2-D plate
governing system by adopting series expansion along the thickness
direction. A homogeneous isotropic growth function is considered as
a control parameter in inducing the circumferential instability in an
incompressible neo-Hookean annular plate. To validate the 2-D plate
11
framework, we compared the numerical pre-buckling solution for a
very thin annular plate with the analytical pre-buckling solution of
circular ring. Both the analytical and numerical results are in good
agreement. We carried out linear bifurcation analysis with asymmetric
(i.e., along 𝑅-𝛩-𝑍 and 𝛩-𝑍 direction) as well as axisymmetric pertur-
bations (i.e., along 𝑅-𝑍 direction) for two cases of boundary conditions
(IFOC and ICOF). The numerical solution of resulting system of ODEs
in each case is solved using the compound matrix method. The critical
value of growth factor (𝜆 ) and the associated wavenumber (𝑚 )
𝑐𝑟 𝑐𝑟
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is evaluated for each type of perturbation and boundary conditions.
We observe that the bifurcation solution corresponding to asymmetric
perturbation is preferred for both boundary conditions as it has a
lower value of 𝜆𝑐𝑟 when compared to the axisymmetric perturbation.
The bifurcation solutions associated with IFOC and ICOF boundary
conditions exhibit a similar behaviour for variation of 𝜆𝑐𝑟 (at 𝑚𝑐𝑟) with
𝐵∕𝐴 and ℎ̄. However, the magnitude of 𝜆𝑐𝑟 is lower for the case of
IFOC when compared to ICOF due to the presence of compressive radial
and circumferential stresses which promotes wrinkling. In addition, for
ICOF case, we find that for a fixed value of 𝐵∕𝐴, the deformed radius
and 𝜆𝑐𝑟 increases with plate thickness resulting in higher compressive
stress in circumferential direction which further results in more number
of localised wrinkles along the outer circumference of the thicker plate.
To test the accuracy of obtained results for annular plate, we compare
the bifurcation solution obtained for incompressible annular plate with
the existing bifurcation solution for slightly incompressible shell ob-
tained using finite element approach. Both the bifurcation results are
close to each other showing the consistency of current plate theory.

Furthermore, we have restricted our study to determine the critical
value of growth factor responsible for the onset of wrinkling, however
a post-bifurcation analysis may provide insights on the evolution of
wrinkle deformation with growth. This is currently being investigated
and our findings will be reported in a suitable forum at a later stage.
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Appendix A. Expression for Piola stress and unknown variables

The series expansion of deformation gradient (𝐅), elastic deforma-
tion (𝐀), inverse transpose of Growth tensor (𝐆−𝑇 ) and Piola Kirchhoff
(𝐏) tensor are given by

𝐅 =
2
∑

𝑛=0

𝑍𝑛

𝑛!
𝐅(𝑛)(𝜁 ) + 𝑂(𝑍3), 𝐀 =

2
∑

𝑛=0

𝑍𝑛

𝑛!
𝐀(𝑛)(𝜁 ) + 𝑂(𝑍3),

𝐆−𝑇 =
2
∑

𝑛=0

𝑍𝑛

𝑛!
𝐆̄𝑛(𝜁 ) + 𝑂(𝑍3), 𝐏 =

2
∑

𝑛=0

𝑍𝑛

𝑛!
𝐏(𝑛)(𝜁 ) + 𝑂(𝑍3).

(A.1)

For an incompressible neo-Hookean material elastic strain energy func-
tion is 𝜙0(𝐀) = 𝐶0[tr(𝐀𝑇𝐀)−3] and the associated Piola Kirchhoff stress
is given as, 𝐏 = 𝐽𝐺

[

2𝐶0[𝐀] − 𝑝𝐀−𝑇 ]𝐆−𝑇 . Then, the first term in right
side of the expression for 𝐏 in (A.1) is obtained as

𝐏(0) = 𝐽𝐺
[

2𝐶0𝐀(0) − 𝑝𝐀(0)−𝑇
]

𝐆̄(0). (A.2)

By using bottom traction condition, 𝐏(0)𝐤 = 𝟎 and substituting the
expression for 𝐀(0) (see (2.6)) in (A.2) we obtain

2𝐶 ∇𝐱(0)𝐆̄(0)𝑇 𝐆̂(0)𝐤 + 2𝐶 𝐽 |𝐆̄(0)𝐤|
2
𝐱(1) − 𝑝(0)𝐅(𝟎)∗𝐤 = 𝟎, (A.3)
12

0 0 𝐺 |

|

|

|

where 𝐽 (0) = 𝐽𝐺||𝑍=0, 𝐆̂(0) = 𝐽 (0)𝐆̄(0), and 𝐅(𝟎)∗ = Cofac(𝐅(0)). In this
work, we use ∇𝐱(0)∗ in place of 𝐅(𝟎)∗𝐤 which is given as

∇𝐱(0)∗ = 𝑟(0)

𝑅

[

𝜕𝜃(0)

𝜕𝑅
𝜕𝑧(0)

𝜕𝛩
− 𝜕𝜃(0)

𝜕𝛩
𝜕𝑧(0)

𝜕𝑅

]

𝐞1

+ 1
𝑅

[

𝜕𝑟(0)

𝜕𝛩
𝜕𝑧(0)

𝜕𝑅
− 𝜕𝑟(0)

𝜕𝑅
𝜕𝑧(0)

𝜕𝛩

]

𝐞2

+ 𝑟(0)

𝑅

[

𝜕𝑟(0)

𝜕𝑅
𝜕𝜃(0)

𝜕𝛩
− 𝜕𝜃(0)

𝜕𝑅
𝜕𝑟(0)

𝜕𝛩

]

𝐤. (A.4)

Using incompressibility constraint det(𝐀) = 1, we obtain det(𝐅(0)) =
det(𝐆̄(0)−𝑇 ) which result in

𝐱(1) ⋅ ∇𝐱(0)∗ = det
(

𝐆̄(0)−𝑇
)

, (A.5)

where det(𝐅(0)) =
[

𝑟(1)𝐞1 + 𝑟(0)𝜃(1)𝐞2 + 𝑧(1)𝐞3
]

⋅ 𝐅(𝟎)∗𝐤 = 𝐱(1) ⋅∇𝐱(0)∗ . Using

A.3) we obtain the explicit expression for 𝐱(1)

(1) =
−2𝐶0∇𝐱(0)𝐆̄(0)𝑇 𝐆̂(0)𝐤 + 𝑝(0)∇𝐱(0)∗

2𝐶0𝐽𝐺 |

|

𝐆̄(0)𝐤|
|

2
. (A.6)

o obtain the explicit expression for 𝑝(0) we substitute (A.6) into (A.5)
hich yields

(0) =
2𝐶0𝐽𝐺

|

|

|

𝐆̄(0)𝐤||
|

2

det𝐆̄(0)𝑇 |

|

∇𝐱(0)∗ |
|

2
+
[

2𝐶0∇𝐱(0)𝐆̄(0)𝑇 𝐆̂(0)𝐤
]

⋅
∇𝐱(0)∗

|

|

∇𝐱(0)∗ |
|

2
. (A.7)

Using Eq. (A.7), we obtain the expression for 𝑝(0) which is

𝑝(0) =
2𝐶0𝜆4

|

|

|

∇𝐱(0)∗||
|

2
, (A.8)

here ∇𝐱(0)∗ = 𝛥𝑥11𝐞1+𝛥𝑥22𝐞2+𝛥𝑥33𝐤 is given by (A.4). On substituting
(0) in (A.6) we obtain explicit expressions for 𝑟(1), 𝜃(1), and 𝑧(1) as

(1) =
𝑝(0)𝛥𝑥11
2𝐶0𝜆2

, 𝜃(1) =
𝑝(0)𝛥𝑥22
2𝐶0𝜆2𝑟(0)

, and 𝑧(1) =
𝑝(0)𝛥𝑥33
2𝐶0𝜆2

. (A.9)

ppendix B. Supplementary data

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.ijmecsci.2022.107481.

eferences

[1] Li B, Cao Y-P, Feng X-Q, Gao H. Mechanics of morphological instabilities and
surface wrinkling in soft materials: a review. Soft Matter 2012;8(21):5728–45.

[2] Dai H-H, Liu Y. Critical thickness ratio for buckled and wrinkled fruits and
vegetables. Europhys Lett 2014;108(4):44003.

[3] Coen E, Rolland-Lagan A-G, Matthews M, Bangham JA, Prusinkiewicz P. The
genetics of geometry. Proc Natl Acad Sci 2004;101(14):4728–35.

[4] Ambrosi D, Ateshian GA, Arruda EM, Cowin S, Dumais J, Goriely A, et
al. Perspectives on biological growth and remodeling. J Mech Phys Solids
2011;59(4):863–83.

[5] Wiggs BR, Hrousis CA, Drazen JM, Kamm RD. On the mechanism of mucosal
folding in normal and asthmatic airways. J Appl Physiol 1997;83(6):1814–21.

[6] Raybaud C, Widjaja E. Development and dysgenesis of the cerebral cortex:
malformations of cortical development. Neuroimag. Clin. 2011;21(3):483–543.

[7] Cerda E. Mechanics of scars. J Biomech 2005;38(8):1598–603.
[8] Nassar D, Letavernier E, Baud L, Aractingi S, Khosrotehrani K. Calpain activity

is essential in skin wound healing and contributes to scar formation. PLoS One
2012;7(5):e37084.

[9] Ben Amar M, Goriely A. Growth and instability in elastic tissues. J Mech Phys
Solids 2005;53(10):2284–319.

[10] Liang H, Mahadevan L. Growth, geometry, and mechanics of a blooming lily.
Proc Natl Acad Sci 2011;108(14):5516–21.

[11] Cao Y, Jiang Y, Li B, Feng X. Biomechanical modeling of surface wrinkling of
soft tissues with growth-dependent mechanical properties. Acta Mech Solida Sin
2012;25(5):483–92.

[12] Budday S, Steinmann P, Kuhl E. The role of mechanics during brain development.
J Mech Phys Solids 2014;72:75–92.

[13] Balbi V, Ciarletta P. Morpho-elasticity of intestinal villi. J R Soc Interface
2013;10(82):20130109.

https://doi.org/10.1016/j.ijmecsci.2022.107481
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb1
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb1
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb1
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb2
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb2
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb2
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb3
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb3
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb3
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb4
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb4
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb4
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb4
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb4
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb5
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb5
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb5
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb6
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb6
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb6
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb7
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb8
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb8
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb8
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb8
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb8
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb9
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb9
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb9
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb10
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb10
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb10
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb11
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb11
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb11
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb11
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb11
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb12
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb12
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb12
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb13
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb13
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb13


International Journal of Mechanical Sciences 229 (2022) 107481S. Mehta et al.
[14] Limbert G, Kuhl E. On skin microrelief and the emergence of expression
micro-wrinkles. Soft Matter 2018;14(8):1292–300.

[15] Ionov L. Biomimetic hydrogel-based actuating systems. Adv Funct Mater
2013;23(36):4555–70.

[16] Cao Y, Hutchinson JW. From wrinkles to creases in elastomers: the instability
and imperfection-sensitivity of wrinkling. Proc R Soc A 2012;468(2137):94–115.

[17] Kempaiah R, Nie Z. From nature to synthetic systems: shape transformation in
soft materials. J. Mater. Chem. B 2014;2(17):2357–68.

[18] Khang D-Y, Rogers JA, Lee HH. Mechanical buckling: mechanics, metrology, and
stretchable electronics. Adv Funct Mater 2009;19(10):1526–36.

[19] Terwagne D, Brojan M, Reis PM. Smart morphable surfaces for aerodynamic drag
control. Adv Mater 2014;26(38):6608–11.

[20] Rogers JA, Someya T, Huang Y. Materials and mechanics for stretchable
electronics. Science 2010;327(5973):1603–7.

[21] Stein-Montalvo L, Costa P, Pezzulla M, Holmes DP. Buckling of geometrically
confined shells. Soft Matter 2019;15(6):1215–22.

[22] Kuhl E. Growing matter: a review of growth in living systems. J Mech Behav
Biomed Mater 2014;29:529–43.

[23] Goriely A. The mathematics and mechanics of biological growth, vol. 45.
Springer; 2017.

[24] Rodriguez EK, Hoger A, McCulloch AD. Stress-dependent finite growth in soft
elastic tissues. J Biomech 1994;27(4):455–67.

[25] Du Y, Lü C, Chen W, Destrade M. Modified multiplicative decomposition model
for tissue growth: beyond the initial stress-free state. J Mech Phys Solids
2018;118:133–51.

[26] Du Y, Lü C, Destrade M, Chen W. Influence of initial residual stress on growth
and pattern creation for a layered aorta. Sci Rep 2019;9(1):1–9.

[27] Garikipati K, Arruda EM, Grosh K, Narayanan H, Calve S. A continuum treatment
of growth in biological tissue: the coupling of mass transport and mechanics. J
Mech Phys Solids 2004;52(7):1595–625.

[28] Goriely A, Ben Amar M. On the definition and modeling of incremental,
cumulative, and continuous growth laws in morphoelasticity. Biomech Model
Mechanobiol 2007;6(5):289–96.

[29] Goriely A, Ben Amar M. Differential growth and instability in elastic shells. Phys
Rev Lett 2005;94(19):198103.

[30] Moulton D, Goriely A. Circumferential buckling instability of a growing
cylindrical tube. J Mech Phys Solids 2011;59(3):525–37.

[31] Wu M, Ben Amar M. Growth and remodelling for profound circular wounds in
skin. Biomech Model Mechanobiol 2015;14(2):357–70.

[32] Liu Y, Zhang Z, Devillanova G, Cai Z. Surface instabilities in graded tubular
tissues induced by volumetric growth. Int J Non-Linear Mech 2020;127:103612.

[33] Liu R-C, Liu Y, Cai Z. Influence of the growth gradient on surface wrinkling
and pattern transition in growing tubular tissues. Proc R Soc Lond Ser A
2021;477(2254):20210441.

[34] Li B, Xu G-K, Feng X-Q. Tissue–growth model for the swelling analysis of
core–shell hydrogels. Soft Mater. 2013;11(2):117–24.

[35] Papastavrou A, Steinmann P, Kuhl E. On the mechanics of continua with
boundary energies and growing surfaces. J Mech Phys Solids 2013;61(6):1446–
63.

[36] Swain D, Gupta A. Interfacial growth during closure of a cutaneous wound: stress
generation and wrinkle formation. Soft Matter 2015;11(32):6499–508.

[37] Swain D, Gupta A. Mechanics of cutaneous wound rupture. J Biomech
2016;49(15):3722–30.

[38] Jia F, Pearce SP, Goriely A. Curvature delays growth-induced wrinkling. Phys
Rev E 2018;98(3):033003.

[39] Wang T, Yang Y, Fu C, Liu F, Wang K, Xu F. Wrinkling and smoothing of a soft
shell. J Mech Phys Solids 2020;134:103738.

[40] Coman CD, Haughton D. Localized wrinkling instabilities in radially stretched
annular thin films. Acta Mech 2006;185(3):179–200.

[41] Coman CD, Matthews MT, Bassom AP. Asymptotic phenomena in pressurized
thin films. Proc R Soc A 2015;471(2182):20150471.

[42] Li B, Huang S-Q, Feng X-Q. Buckling and postbuckling of a compressed thin film
bonded on a soft elastic layer: a three-dimensional analysis. Arch Appl Mech
2010;80(2):175–88.

[43] Mihai LA, Goriely A. A plate theory for nematic liquid crystalline solids. J Mech
Phys Solids 2020;144:104101.

[44] Dervaux J, Ciarletta P, Ben Amar M. Morphogenesis of thin hyperelastic plates: a
constitutive theory of biological growth in the Föppl–von Kármán limit. J Mech
Phys Solids 2009;57(3):458–71.

[45] Efrati E, Sharon E, Kupferman R. Elastic theory of unconstrained non-Euclidean
plates. J Mech Phys Solids 2009;57(4):762–75.

[46] Pezzulla M, Smith GP, Nardinocchi P, Holmes DP. Geometry and mechanics of
thin growing bilayers. Soft Matter 2016;12(19):4435–42.

[47] Dias MA, Hanna JA, Santangelo CD. Programmed buckling by controlled lateral
swelling in a thin elastic sheet. Phys Rev E 2011;84(3):036603.

[48] Jones GW, Mahadevan L. Optimal control of plates using incompatible strains.
Nonlinearity 2015;28(9):3153.
13
[49] Holmes DP. Elasticity and stability of shape-shifting structures. Curr. Opin.
Colloid Interface Sci. 2019;40:118–37.

[50] Mora T, Boudaoud A. Buckling of swelling gels. Euro. Phys. J. E
2006;20(2):119–24.

[51] Kienzler R. On consistent plate theories. Arch Appl Mech 2002;72(4):229–47.
[52] Dai H-H, Song Z. On a consistent finite-strain plate theory based on

three-dimensional energy principle. Proc R Soc A 2014;470(2171):20140494.
[53] Wang J, Song Z, Dai H-H. On a consistent finite-strain plate theory for

incompressible hyperelastic materials. Int J Solids Struct 2016;78:101–9.
[54] Wang J, Steigmann D, Wang F-F, Dai H-H. On a consistent finite-strain plate

theory of growth. J Mech Phys Solids 2018;111:184–214.
[55] Wang J, Wang Q, Dai H-H, Du P, Chen D. Shape-programming of hypere-

lastic plates through differential growth: an analytical approach. Soft Matter
2019;15(11):2391–9.

[56] Du P, Dai H-H, Wang J, Wang Q. Analytical study on growth-induced bend-
ing deformations of multi-layered hyperelastic plates. Int J Non-Linear Mech
2020;119:103370.

[57] Wang J, Li Z, Jin Z. A theoretical scheme for shape-programming of
thin hyperelastic plates through differential growth. Math Mech Solids
2022;10812865221089694.

[58] Chen X, Dai H-H. Stress-free configurations induced by a family of locally
incompatible growth functions. J Mech Phys Solids 2020;137:103834.

[59] Liu Y, Ma W, Dai H-H. On a consistent finite-strain plate model of nematic liquid
crystal elastomers. J Mech Phys Solids 2020;145:104169.

[60] Mehta S, Raju G, Saxena P. Growth induced instabilities in a circular hyperelastic
plate. Int J Solids Struct 2021;226:111026.

[61] Vandiver R, Goriely A. Differential growth and residual stress in cylindrical
elastic structures. Phil Trans R Soc A 2009;367(1902):3607–30.

[62] Saez P. On the theories and numerics of continuum models for adaptation
processes in biological tissues. Arch Comput Methods Eng 2016;23(2):301–22.

[63] Dortdivanlioglu B, Javili A, Linder C. Computational aspects of morphological
instabilities using isogeometric analysis. Comput Methods Appl Mech Engrg
2017;316:261–79.

[64] Zheng Y, Wang J, Ye H, Liu Y, Zhang H. A solid-shell based finite element
model for thin-walled soft structures with a growing mass. Int J Solids Struct
2019;163:87–101.

[65] Groh RM. A morphoelastic stability framework for post-critical pattern for-
mation in growing thin biomaterials. Comput Methods Appl Mech Engrg
2022;394:114839.

[66] Kadapa C, Li Z, Hossain M, Wang J. On the advantages of mixed formulation and
higher-order elements for computational morphoelasticity. J Mech Phys Solids
2021;148:104289.

[67] Liang H, Mahadevan L. The shape of a long leaf. Proc Natl Acad Sci
2009;106(52):22049–54.

[68] Steele CR. Shell stability related to pattern formation in plants. J Appl Mech
2000;67(2):237–47.

[69] Flynn C, McCormack BA. A simplified model of scar contraction. J Biomech
2008;41(7):1582–9.

[70] Tallinen T, Biggins JS. Mechanics of invagination and folding: Hy-
bridized instabilities when one soft tissue grows on another. Phys Rev E
2015;92(2):022720.

[71] Jin L, Cai S, Suo Z. Creases in soft tissues generated by growth. Europhys Lett
2011;95(6):64002.

[72] Wang Q, Zhao X. A three-dimensional phase diagram of growth-induced surface
instabilities. Sci Rep 2015;5(1):1–10.

[73] Yang P, Fang Y, Yuan Y, Meng S, Nan Z, Xu H, et al. A perturbation force
based approach to creasing instability in soft materials under general loading
conditions. J Mech Phys Solids 2021;151:104401.

[74] Huang C, Wang Z, Quinn D, Suresh S, Hsia KJ. Differential growth and shape
formation in plant organs. Proc Natl Acad Sci 2018;115(49):12359–64.

[75] Li Z, Wang Q, Du P, Kadapa C, Hossain M, Wang J. Analytical study on growth-
induced axisymmetric deformations and shape-control of circular hyperelastic
plates. Internat J Engrg Sci 2022;170:103594.

[76] Wang F-F, Steigmann DJ, Dai H-H. On a uniformly-valid asymptotic plate theory.
Int J Non-Linear Mech 2019;112:117–25.

[77] Yu X, Fu Y, Dai H-H. A refined dynamic finite-strain shell theory for incompress-
ible hyperelastic materials: equations and two-dimensional shell virtual work
principle. Proc R Soc Lond Ser A Math Phys Eng Sci 2020;476(2237):20200031.

[78] Bowden L, Byrne H, Maini P, Moulton D. A morphoelastic model for dermal
wound closure. Biomech Model Mechanobiol 2016;15(3):663–81.

[79] Liu Z, Swaddiwudhipong S, Hong W. Pattern formation in plants via instability
theory of hydrogels. Soft Matter 2013;9(2):577–87.

[80] Liu Y, Zhang H, Zheng Y, Zhang S, Chen B. A nonlinear finite element model
for the stress analysis of soft solids with a growing mass. Int J Solids Struct
2014;51(17):2964–78.

[81] Dervaux J, Ben Amar M. Localized growth of layered tissues. IMA J Appl Math
2010;75(4):571–80.

http://refhub.elsevier.com/S0020-7403(22)00382-4/sb14
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb14
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb14
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb15
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb15
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb15
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb16
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb16
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb16
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb17
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb17
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb17
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb18
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb18
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb18
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb19
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb19
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb19
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb20
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb20
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb20
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb21
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb21
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb21
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb22
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb22
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb22
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb23
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb23
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb23
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb24
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb24
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb24
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb25
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb25
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb25
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb25
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb25
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb26
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb26
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb26
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb27
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb27
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb27
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb27
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb27
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb28
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb28
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb28
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb28
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb28
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb29
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb29
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb29
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb30
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb30
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb30
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb31
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb31
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb31
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb32
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb32
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb32
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb33
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb33
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb33
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb33
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb33
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb34
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb34
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb34
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb35
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb35
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb35
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb35
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb35
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb36
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb36
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb36
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb37
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb37
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb37
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb38
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb38
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb38
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb39
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb39
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb39
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb40
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb40
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb40
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb41
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb41
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb41
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb42
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb42
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb42
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb42
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb42
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb43
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb43
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb43
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb44
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb44
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb44
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb44
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb44
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb45
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb45
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb45
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb46
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb46
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb46
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb47
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb47
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb47
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb48
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb48
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb48
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb49
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb49
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb49
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb50
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb50
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb50
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb51
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb52
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb52
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb52
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb53
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb53
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb53
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb54
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb54
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb54
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb55
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb55
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb55
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb55
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb55
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb56
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb56
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb56
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb56
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb56
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb57
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb57
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb57
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb57
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb57
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb58
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb58
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb58
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb59
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb59
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb59
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb60
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb60
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb60
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb61
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb61
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb61
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb62
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb62
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb62
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb63
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb63
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb63
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb63
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb63
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb64
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb64
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb64
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb64
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb64
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb65
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb65
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb65
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb65
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb65
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb66
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb66
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb66
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb66
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb66
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb67
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb67
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb67
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb68
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb68
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb68
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb69
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb69
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb69
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb70
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb70
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb70
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb70
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb70
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb71
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb71
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb71
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb72
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb72
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb72
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb73
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb73
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb73
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb73
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb73
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb74
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb74
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb74
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb75
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb75
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb75
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb75
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb75
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb76
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb76
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb76
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb77
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb77
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb77
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb77
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb77
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb78
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb78
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb78
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb79
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb79
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb79
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb80
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb80
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb80
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb80
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb80
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb81
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb81
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb81


International Journal of Mechanical Sciences 229 (2022) 107481S. Mehta et al.
[82] Haughton D, Orr A. On the eversion of compressible elastic cylinders. Int J Solids
Struct 1997;34(15):1893–914.

[83] Haughton D, Ogden R. Bifurcation of inflated circular cylinders of elastic material
under axial loading—II. Exact theory for thick-walled tubes. J Mech Phys Solids
1979;27(5–6):489–512.

[84] Saxena P. Finite deformations and incremental axisymmetric motions of a
magnetoelastic tube. Math Mech Solids 2018;23(6):950–83.
14
[85] Mehta S, Raju G, Kumar S, Saxena P. Instabilities in a compressible hyperelastic
cylindrical channel due to internal pressure and external constraints. 2021, arXiv
preprint arXiv:2107.01375.

[86] D’Errico J. Fminsearchbnd, fminsearchcon , MATLAB central file ex-
change. 2021, https://www.mathworks.com/matlabcentral/fileexchange/8277-
fminsearchbnd-fminsearchcon.

http://refhub.elsevier.com/S0020-7403(22)00382-4/sb82
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb82
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb82
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb83
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb83
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb83
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb83
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb83
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb84
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb84
http://refhub.elsevier.com/S0020-7403(22)00382-4/sb84
http://arxiv.org/abs/2107.01375
https://www.mathworks.com/matlabcentral/fileexchange/8277-fminsearchbnd-fminsearchcon
https://www.mathworks.com/matlabcentral/fileexchange/8277-fminsearchbnd-fminsearchcon
https://www.mathworks.com/matlabcentral/fileexchange/8277-fminsearchbnd-fminsearchcon

	Wrinkling as a mechanical instability in growing annular hyperelastic plates
	Introduction
	Organisation of this manuscript
	Notation

	Governing equation with variational principle
	Two-dimensional plate model

	Growth-induced deformation in annular plates
	Pre-buckling solution 
	Case 1: Constrained outer boundary and unconstrained inner boundary
	Case 2: Constrained inner boundary and unconstrained outer boundary
	Numerical pre-buckling solution 

	Constrained growth of a circular ring

	Linear bifurcation analysis
	Perturbation along radial, circumferential and thickness direction
	Perturbation along radial and thickness direction
	Perturbation along circumferential and thickness direction


	Results
	Growth-induced instability in a rectangular plate
	Results for annular plate 
	Numerical bifurcation analysis of growing annular plate
	Bifurcation solution for a plate with clamped outer edge condition

	Comparison between axisymmetric and asymmetric bifurcation
	Influence of boundary condition on the buckling solution
	Comparison with computational results for growing annulus


	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A. Expression for Piola stress and unknown variables
	Appendix B. Supplementary data
	References


