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We consider measurement disturbance tradeoffs in quantum machine learning protocols which
seek to learn about quantum data. We study the simplest example of a binary classification task,
in the unsupervised regime. Specifically, we investigate how a classification of two qubits, that can
each be in one of two unknown states, affects our ability to perform a subsequent classification on
three qubits when a third is added. Surprisingly, we find a range of strategies in which a non-trivial
first classification does not affect the success rate of the second classification. There is, however,
a non-trivial measurement disturbance tradeoff between the success rate of the first and second
classifications, and we fully characterise this tradeoff analytically.

I. INTRODUCTION

The proliferation of huge datasets in modern science,
technology, and society in general has spurred rapid de-
velopments in machine learning; a powerful set of tech-
niques which seek to automate the drawing of inferences
from data. A recent theoretical development has been
to apply ideas from machine learning to the processing
of quantum data [1], both in a supervised setting [2–4]
and an unsupervised setting [5–7], for example, at the
output of a quantum communication, sensing, or pro-
cessing device. In the longer run, as quantum technolo-
gies develop further, such techniques may be expected
to find use in e.g. characterising quantum channels and
devices, including monitoring for malfunctions [6, 7]. In-
deed, in [6, 7], the problem of determining a quantum
change point is addressed. Here, the change point could
be the result of some unknown error in a quantum de-
vice outputting quantum data. We note that another
prominent line of research in quantum machine learning
is that of using quantum processing techniques to aid
and speed up machine learning when applied to classical
data [1]. We, however, only consider the task of learn-
ing about quantum data, which requires rather different
techniques.

Quantum data is fundamentally different to classical
data, and learning strategies are therefore subject to dif-
ferent, peculiarly quantum limitations, which are not yet
well explored. As an example, quantum data famously
cannot be cloned [8, 9], in stark contrast to the classical
case. In addition, it is not possible to extract information
about a quantum system without causing disturbance
[10]. Measurement strategies must therefore be carefully
chosen and generically (but not always) the globally opti-
mal strategy for any learning task involves waiting until
all data has been received and then performing a joint
measurement over all systems [5, 11–17].

Such considerations thus pose a problem unique to
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the quantum case: can we learn about a subset of data
without compromising performance on the dataset as a
whole? We might expect a measurement-disturbance
type tradeoff between performance on the subset and per-
formance on the whole dataset. In this paper we take the
first steps towards understanding this tradeoff, studying
the simplest case of unsupervised binary classification of
qubit states, with three samples. A binary classification
task is one in which the aim is to assign each sample
provided to one of two possible classes, as accurately as
possible. Unsupervised means that there is no labelled
training data provided, and the user or algorithm must
do as well as possible by comparing the data samples
to each other. We give analytically the precise tradeoff
between learning about the first two samples provided
and learning about all three samples. This case is sim-
ple enough to allow analytic results, while rich enough
to demonstrate the tradeoff. Surprisingly, for a range of
strategies on the first two qubits, it is possible to avoid
any reduction in performance on all three.
Our work is related to the problem of sequential ob-

servers extracting information about a system [18–21],
however, so far, the literature has mostly considered the
case in which sequential observers have access to the same
system. Here, in the learning scenario, we are interested
in how measurements on some part of a system (the first
two subsystems in the example considered here) affect
measurement on the whole. In addition, prior work has
considered the supervised learning case, in which a la-
belled training set is provided and used to induce a func-
tion to label test instances. Here it is known that in
the limit of many test instances, global measurements
over training and test data are not required for optimal
performance, and the training data may be measured in
advance without access to the test data [11]. The unsu-
pervised case is more complicated, as the algorithm seeks
to both learn from and classify each instance provided.
In the remainder of this paper we will introduce the

unsupervised binary classification problem, illustrate the
measurement disturbance effect in the learning scenario,
and quantify the tradeoff between learning about two
samples and learning about all three.
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II. BACKGROUND THEORY

We begin by noting the background theory and nota-
tion that will be used throughout this paper. First, as
was alluded to earlier, we will be classifying qubits. A
qubit |φ⟩ is an element of the two dimensional complex
Hilbert space C2 such that ⟨φ|φ⟩ = 1. It will be notation-
ally convenient to consider our qubits as spin- 12 particles.
With this in mind, we can define the computational basis
states of our qubits:

|0⟩ :=
∣∣∣∣s = 1

2
,ms =

1

2

〉
,

|1⟩ :=
∣∣∣∣s = 1

2
,ms = −1

2

〉
,

(1)

where s,ms denote the total spin and z-component of
total spin of the system respectively. Now, the classifi-
cation problem we will be considering is: given a num-
ber of qubits that can be in one of two unknown states
|φ0⟩, |φ1⟩, how well can we assign a label, |φ0⟩ or |φ1⟩,
to each of them? Being qubits, |φk⟩ can be visualised
as points on the Bloch sphere [22]. We can therefore
explicitly write them as

|φk⟩ = cos
θk
2
|0⟩+ eiϕk sin

θk
2
|1⟩, (2)

where k ∈ {0, 1}, and θk ∈ [0, π], ϕk ∈ [0, 2π) are the
polar coordinates of a point on the Bloch sphere.

We will later see that a quantum classification can
be formulated as a quantum measurement. A quantum
measurement is mathematically equivalent to a positive
operator-valued measure (POVM) [22]. We therefore de-
fine a measurement as a set of operators {π̂i}, called mea-
surement operators, that satisfy

π̂i ≥ 0 ∀i, (3a)∑
i

π̂i = Î, (3b)

where Î denotes the identity operator. If a measurement
{π̂i} is performed on a state ρ̂j and the measurement
outcome is k (considered a correct measurement outcome
if k = j), then the state ρ̂j is updated as follows [22, 23]:

ρ̂j →
√
π̂kρ̂j

√
π̂k

†

Tr(π̂kρ̂j)
. (4)

Although this is not the unique form of allowed update
rule for given π̂k, it is minimally disturbing and thus most
appropriate for our purposes [24]. When a measurement
{π̂i} on a set of states {ρ̂i} is performed, the probability
of success is

Psucc =
∑
i

piTr (π̂iρ̂i) , (5)

where pi is the probability the input state is prepared in
the state ρ̂i.

Finally, when considering multiple qubits, a basis that
will turn out to be useful is the Schur basis [25]. The
Schur basis states are denoted |s,ms⟩|ps⟩ where ps is
what we call the “path” degree of freedom. This basis is
a consequence of Schur-Weyl duality which says [25]

(
C2

)⊗2 ∼= (Q1 ⊗ P1)⊕ (Q0 ⊗ P0) (6)

for two qubits (i.e. two copies of the Hilbert space of a
qubit) and

(
C2

)⊗3 ∼= (Q 3
2
⊗ P 3

2
)⊕ (Q 1

2
⊗ P 1

2
) (7)

for three qubits. Here, Qs,Ps ⊂
(
C2

)⊗n are the sub-
spaces invariant under the action of the irreducible rep-
resentations (irreps) of SU(2) and S3 respectively. These
irreps of SU(2), S3, and therefore subspaces Qs,Ps re-
spectively, can be labelled by total spin s since we are
taking our qubits to be spin- 12 particles. With all this in
mind, {|s,ms⟩} is a basis for Qs and {|ps⟩} is a basis for
Ps. The reason we call |ps⟩ the path degree of freedom is
that there exists a basis of Ps which corresponds to the
different ways (or paths) by which a composite quantum
system’s state develops a spin-s component via the spin
addition of its constituent subsystems. This is the nat-
ural basis to work in for our problem because the states
|φk⟩ are completely unknown, so there is no preferred di-
rection. This means that the states are maximally mixed
within the subspaces Qs corresponding to the irreps of
SU(2), and all the information is contained within the
path degree of freedom: the Ps subspaces.

Explicitly, for two qubits, this basis relates to the com-
putational basis as follows:

Q1 ⊗ P1 : |1, 1⟩ = |00⟩,

|1, 0⟩ = 1√
2
(|01⟩+ |10⟩),

|1,−1⟩ = |11⟩,

Q0 ⊗ P0 : |0, 0⟩ = 1√
2
(|01⟩ − |10⟩)

(8)
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and for three qubits:

Q 3
2
⊗ P 3

2
:

∣∣∣∣32 , 32
〉

= |000⟩,∣∣∣∣32 , 12
〉

=
1√
3
(|100⟩+ |010⟩+ |001⟩),∣∣∣∣32 ,−1

2

〉
=

1√
3
(|011⟩+ |101⟩+ |011⟩),∣∣∣∣32 ,−3

2

〉
= |111⟩,

Q 1
2
⊗ P 1

2
:

∣∣∣∣12 , 12
〉
|1⟩ = 1√

6
(|100⟩+ |010⟩ − 2|001⟩),∣∣∣∣12 ,−1

2

〉
|1⟩ = 1√

6
(−|011⟩ − |101⟩+ 2|110⟩),∣∣∣∣12 , 12

〉
|0⟩ = 1√

2
(|100⟩ − |010⟩),∣∣∣∣12 ,−1

2

〉
|0⟩ = 1√

2
(|101⟩ − |011⟩).

(9)

Here, we’re using the abbreviation

|i1i2 · · · in⟩ := |i1⟩ ⊗ |i2⟩ ⊗ · · · ⊗ |in⟩ (10)

for ik ∈ {0, 1}. Note also that when dim(Ps) = 1 we
don’t include |ps⟩.

III. OPTIMAL CLASSIFICATION

We begin by considering the optimal classification of
two and three qubits separately. Part of the reason for
doing this explicitly is to introduce some of the ideas and
notation required for when we perform two sequential
classifications. These results were derived previously in
[5, 26].

A. Optimal classification of two qubits

The aim of a classification of two unknown qubits is
to determine whether these two qubits are the same as
or different from one another [5, 26]. That is, the aim
is to distinguish between |φ0⟩|φ0⟩, |φ0⟩|φ1⟩, |φ1⟩|φ0⟩ and
|φ1⟩|φ1⟩ (actually, we only distinguish between |φ0⟩|φ0⟩
and |φ0⟩|φ1⟩ as we will see). Let us begin by consid-
ering, mathematically, the form of the two-qubit states.
Since |φk⟩ are unknown qubits, to our knowledge, they
are equally likely to be located at any point on the Bloch
sphere. We therefore describe the two possible two-qubit
states as mixed states using density operators as follows:

ρ̂ij =

∫
|φi⟩|φj⟩⟨φi|⟨φj | dφ0dφ1, (11)

where i = 0, j ∈ {0, 1}, and the integral is with respect
to the Haar measure and over the entire Bloch sphere.
Note that we can always take i = 0. This is because,
when averaging over the Bloch sphere, all information
about whether each qubit is |φ0⟩ or |φ1⟩ is lost and all

that remains is information about their relative positions
on the Bloch sphere. This means that ρ̂00 = ρ̂11 and
ρ̂01 = ρ̂10.
The explicit form of these two states, in the Schur basis

(Eq. (8)), can be shown to be (see Appendix A 1 for more
detail):

ρ̂00 =
1

3
(|1, 1⟩⟨1, 1|+ |1, 0⟩⟨1, 0|+ |1,−1⟩⟨1,−1|) ,

(12a)

ρ̂01 =
1

4

(
|1, 1⟩⟨1, 1|+ |1, 0⟩⟨1, 0|+ |1,−1⟩⟨1,−1|

+ |0, 0⟩⟨0, 0|
)
. (12b)

We can therefore observe that, here, a quantum classifi-
cation of two unknown qubits corresponds to a quantum
measurement (in general, a POVM) that distinguishes
between the two states ρ̂00, ρ̂01. The optimal measure-
ment to do this is made up of the projectors onto the
totally symmetric and anti-symmetric subspaces invari-
ant under SU(2) respectively:

P̂+ = |1, 1⟩⟨1, 1|+ |1, 0⟩⟨1, 0|+ |1,−1⟩⟨1,−1|, (13a)

P̂− = |0, 0⟩⟨0, 0|, (13b)

where P̂+ (P̂−) is the outcome associated with measur-
ing the state ρ̂00 (ρ̂01). Here we use the +/− subscripts
rather than 00/01 with the hope that this makes the no-
tation later in this paper less confusing to read. This
measurement can be motivated by realising that ρ̂00 and
ρ̂01 commute with one another, which means they have
a common set of eigenstates. So we take the optimal
measurement operators P̂+, P̂− to be the (sum of) pro-
jectors onto the eigenstates with the largest eigenvalues
of ρ̂00, ρ̂01 respectively. In other words, it is the Holevo-
Helstrom measurement for distinguishing between two
quantum states [27]. Using Eq. (5), the maximal prob-
ability of successfully classifying two equally-likely, un-
known qubits is calculated as follows:

Psucc =
1

2

(
Tr(P̂+ρ̂00) + Tr(P̂−ρ̂01)

)
, (14)

where the 1/2 comes from the two states ρ̂00, ρ̂01 being
equiprobable. This results in a success rate of

Psucc =
5

8
= 62.5%. (15)

B. Optimal classification of three qubits

Similarly to the two-qubit case, we begin by writing
down the possible three-qubit states. In general, we once
again express these states as

ρ̂ijk =

∫
|φi⟩|φj⟩|φk⟩⟨φi|⟨φj |⟨φk| dφ0dφ1, (16)

where i = 0, j, k ∈ {0, 1}. As shown in Appendix A2,
using the Schur basis (Eq. (9)),
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ρ̂000 =
1

4
Î 3

2
, (17a)

ρ̂001 =
1

6
Î 3

2
+

1

6
Î 1

2
⊗ |1⟩⟨1|, (17b)

ρ̂010 =
1

6
Î 3

2
+

1

24
Î 1

2
⊗

(
|1⟩ −

√
3|0⟩

)(
⟨1| −

√
3⟨0|

)
, (17c)

ρ̂011 =
1

6
Î 3

2
+

1

24
Î 1

2
⊗

(
|1⟩+

√
3|0⟩

)(
⟨1|+

√
3⟨0|

)
, (17d)

where Îs is the identity operator on the subspace Qs.
Note that Îs, Îs′ are orthogonal for s ̸= s′. The opti-
mal measurement that distinguishes the four states in
Eq. (17) is

π̂000 = Î 3
2
, (18a)

π̂001 =
2

3
Î 1

2
⊗ |1⟩⟨1|, (18b)

π̂010 =
1

6
Î 1

2
⊗

(
|1⟩ −

√
3|0⟩

)(
⟨1| −

√
3⟨0|

)
, (18c)

π̂011 =
1

6
Î 1

2
⊗

(
|1⟩+

√
3|0⟩

)(
⟨1|+

√
3⟨0|

)
. (18d)

To motivate this, notice that ρ̂001, ρ̂010, ρ̂011 have S3 per-
mutation symmetry in their qubits. We can therefore re-
quire the optimal measurement to distinguish these three
states to have this same symmetry. So, all we need to do
is construct π̂000, π̂001 to optimally distinguish between
ρ̂000, ρ̂001. From this, we can obtain π̂010, π̂011 via the
S3 symmetry mentioned. The construction of π̂000, π̂001
follows the same reasoning as that of two-qubit measure-
ment in Eq. (13) aside from the factor of 2/3 in π̂001 which
is required for completeness. Therefore, using this mea-
surement and Eq. (5), the maximal probability of success-
fully distinguishing the (equally likely) states in Eq. (17)
is

Psucc =
5

12
≈ 41.7%. (19)

IV. MEASUREMENT DISTURBANCE

We thus consider what happens when we perform the
optimal measurement (13) to classify two qubits, then
add a third qubit and perform an optimal measurement
on all three. In particular, we consider the case in which
the outcome of the two-qubit measurement is known, and
the measurement on all three is updated accordingly. Af-
ter the first measurement has been performed with out-
come P̂j , as discussed earlier with Eq. (4), the two qubit
states update as follows:

ρ̂0i → ρ̂j0i =

√
P̂j ρ̂0i

√
P̂j

†

Tr(P̂j ρ̂0i)
. (20)

Following this, we add a third qubit, however, it is con-
venient to instead think of the situation as beginning
with three qubits, and performing the measurement in
Eq. (13) on the first two. With this in mind, following a

measurement outcome of P̂k, the three qubit states are
found using

ρ̂k0ij =

(√
P̂k ⊗ 1̂

)
ρ̂0ij

(√
P̂k ⊗ 1̂

)†

Tr(P̂k ⊗ 1̂ρ̂0ij)
, (21)

where ρ̂0ij are the states in Eq. (17) and 1̂ denotes the
identity operator on a single qubit.

Explicitly, the states are as follows:

ρ̂+000 =
1

4
Î 3

2
, (22a)

ρ̂+001 =
1

6
Î 3

2
+

1

6
Î 1

2
⊗ |1⟩⟨1|, (22b)

ρ̂+01k =
2

9
Î 3

2
+

1

18
Î 1

2
⊗ |1⟩⟨1|, (22c)

ρ̂−000 = 0̂ = ρ̂−001, (22d)

ρ̂−01k =
1

2
Î 1

2
⊗ |0⟩⟨0| (22e)

for k = 0, 1. For each of the first measurement outcomes
P̂±, we can therefore find the optimal measurement to be
made up of the following projectors:

π̂+
000 = Î 3

2
, (23a)

π̂+
001 = Î 1

2⊗
1
2
, (23b)

π̂+
01k = 0̂, (23c)

π̂−
000 = Î 3

2
, (23d)

π̂−
001 = 0̂, (23e)

π̂−
01k =

1

2
Î 1

2⊗
1
2
, (23f)

where Î 1
2⊗

1
2
denotes the identity on the subspace Q 1

2
⊗

P 1
2
. These measurements can be motivated by the fact

that π̂±
i projects its corresponding state, ρ̂±i , onto the

components which are larger, or the same as, the same
components in all the other states.
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Now, the probability of a successful second measure-
ment is given by

P 2nd
succ =

∑
k∈{+,−}

∑
i,j∈{0,1}

P (ρ̂0ij)P (P̂k, π̂
k
0ij |ρ̂0ij),

=
∑
k

∑
i,j

P (π̂k
0ij |ρ̂k0ij)P (P̂k|ρ̂0ij)P (ρ̂0ij)

=
1

4

∑
k

∑
i,j

Tr

(̂
πk
0ij

(√
P̂k ⊗ 1̂

)
ρ̂0ij

(√
P̂k ⊗ 1̂

))
,

(24)

where P (ρ̂0ij) is the probability that the system is
prepared in the state ρ̂0ij (this is 1/4 for all i, j),

P (P̂k, π̂
k
0ij |ρ̂0ij) denotes the probability that the first

measurement outcome is k and the second is 0ij given
that the state was prepared in the state ρ̂0ij , and

P (π̂k
0ij |ρ̂k0ij) ≡ P (π̂k

0ij |ρ̂0ij , P̂k). We therefore find that
the probability of a successful second classification has
been affected by an optimal first classification and has
been reduced to the following value:

P 2nd
succ =

19

48
≈ 39.6%. (25)

Although this is a small reduction in the success rate of
the three-qubit measurement, it demonstrates the prin-
ciple of measurement disturbance caused by the interme-
diate classification.

V. WEAKENING THE INTERMEDIATE
MEASUREMENT

A. Weak two-qubit measurement

Our ultimate aim is to understand how a classification
on two qubits affects our ability to perform a subsequent
classification in general. So, instead of considering only
the optimal measurement on two qubits, we interpolate
between this and the weakest possible measurement: the
identity measurement. This weakened measurement can
be written as

π̂− = αP̂− + βÎ,

π̂+ = αP̂+ + (1− α− β)Î,
such that α ∈ [0, 1− β] and β ∈ [0, 1],

(26)

where the range of values α, β take come about due to the
positivity condition of POVMs, given in Eq. (3a), as well
as the convention we are adopting: we take the measure-
ment outcome π̂+ (π̂−) to correspond to the measurement
of the state ρ̂00 (ρ̂01). Note also that, by construction,
this POVM is complete, as required (Eq. (3b)). To re-
duce future work, note that we can change between the
two situations corresponding to different measurement
outcomes by performing the swaps:

α→ −α,
β → 1− β.

(27)

We conclude this subsection by noting that the prob-
ability of a successful two-qubit classification using the
POVM in Eq. (26) is given by

P 1st
succ =

1

2

(
1 +

α

4

)
, (28)

where the superscript is included in anticipation of the
second classification introduced in the next subsection.

B. Adding a third qubit

As before, after the first classification of two qubits
has been performed, a third qubit, either |φ0⟩ or |φ1⟩, is
added. In order to write down the resulting three-qubit
state, just as in the case of an optimal intermediate mea-
surement, it is convenient to think instead of the situation
as an undisturbed three-qubit state ρ̂0ij that is updated
by the intermediate measurement on the first two qubits
as

ρ̂±0ij =
(
√
π̂± ⊗ 1̂)ρ̂0ij(

√
π̂± ⊗ 1̂)

Tr(π̂± ⊗ 1̂ρ̂0ij)
. (29)

Explicitly, in the case when the measurement outcome
on the first two qubits is π̂−, using similar techniques as
those found in Eqs. (A13, A14) to find

√
π̂− ⊗ 1̂ in the

Schur basis, the states ρ̂−0ij can be shown to be
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ρ̂−000 =
1

4
Î 3

2
, (30a)

ρ̂−001 =
1

6
Î 3

2
+

1

6
Î 1

2
⊗ |1⟩⟨1|, (30b)

ρ̂−010 =
4β

6(α+ 4β)
Î 3

2
+

1

6(α+ 4β)
Î 1

2
⊗

(√
β|1⟩ −

√
3(α+ β)|0⟩

)(√
β⟨1| −

√
3(α+ β)⟨0|

)
, (30c)

ρ̂−011 =
4β

6(α+ 4β)
Î 3

2
+

1

6(α+ 4β)
Î 1

2
⊗

(√
β|1⟩+

√
3(α+ β)|0⟩

)(√
β⟨1|+

√
3(α+ β)⟨0|

)
(30d)

with probabilities (derived in Appendix B 1)

p−000 = p−001 =
2β

α+ 8β
, (31a)

p−010 = p−011 =
α+ 4β

2(α+ 8β)
. (31b)

To find ρ̂+0ij we can just perform the swaps in Eq. (27).
In order to achieve our aim of classifying the resulting

three-qubit system, we construct a measurement {π̂−
i }

that distinguishes between the states {ρ̂−i } above (for
additional detail, see Appendix B 2). To do this, first,
notice that the totally symmetric components (s = 3/2)
of ρ̂−001, ρ̂

−
01l are strictly less than that of ρ̂−000. Further,

ρ̂−000 has no s = 1
2 components. This motivates the fact

that the optimal way to distinguish ρ̂−000 from the other
states is to take

π̂−
000 = Î 3

2
(32)

while keeping the remaining measurement operators in
(Q 1

2
⊗ P 1

2
) ⊗ (Q 1

2
⊗ P 1

2
)∗, where V ∗ denotes the dual

space of V . Next, note that in the s = 1
2 subspaces,

ρ̂001, ρ̂010, ρ̂011 have a mirror symmetric form in their
path degree of freedom (spanned by |p 1

2
⟩ = |0⟩, |1⟩) as

p−010 = p−011 and the set is invariant under reflection about
|0⟩. Including π̂−

000 for completeness, the optimal mea-
surement to distinguish these three states is known [28]
and has the form

π̂−
000 = Î 3

2
, (33a)

π̂−
001 = (1− a2−)Î 1

2
⊗ |1⟩⟨1|, (33b)

π̂−
010 =

1

2
Î 1

2
⊗ (a−|1⟩ − |0⟩) (a−⟨1| − ⟨0|) , (33c)

π̂−
011 =

1

2
Î 1

2
⊗ (a−|1⟩+ |0⟩) (a−⟨1|+ ⟨0|) , (33d)

where a− ∈ [0, 1] to preserve positivity. A closed form
analytic expression for a− in terms of the prior probabil-
ities and overlaps of the states is given in [28], which we
use below. Once again, to obtain {π̂+

i }, we just perform
the swaps in Eq. (27).

To utilise [28] we first must define a prior probability
for the states ρ̂−001, ρ̂

−
01i when projected into the s = 1/2

subspace, and can then directly use the results of [28] to
find the optimal value of the parameter a−. Updating
the prior probabilities gives

p− =
3α+ 4β

6(α+ 2β)
, (34)

which is derived in Appendix B 2. Using the analytical
expression in [28] then gives (again more detail is given
in Appendix B 2):

a− =

{√
α+β
3β if α ∈ [0,min{1− β, 2β}],
1 if α ∈ (2β, 1− β] with 2β < 1− β

(35)
such that β ∈ [0, 1] as always. Note that the conditions
2β < 1 − β, β ∈ [0, 1] can be rewritten as β ∈

[
0, 13

)
.

Similarly, when the outcome of the first measurement is
π̂+, we arrive at

a+ =

√
1− α− β

3(1− β)
(36)

for all valid α, β. To achieve our aim and observe how the
success probability of the first and second measurements
compare to one another, we consider the two cases of
Eq. (35).

1. Case 1: α ∈ [0,min{1 − β, 2β}], β ∈ [0, 1]

Consider the first case in Eq. (35), that is, when

a− =

√
α+ β

3β
,

a+ =

√
1− α− β

3(1− β)
.

(37)

Using Eq. (24) with P̂± → π̂±, in this region, it is
straightforward, albeit requiring a little algebra, to show
that the probability of a successful second classification
stays constant at the optimal value for distinguishing
three undisturbed qubits:

P 2nd
succ =

5

12
(38)

for all α ∈ [0,min{1− β, 2β}], β ∈ [0, 1].
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2. Case 2: α ∈ (2β, 1 − β], β ∈
[
0, 1

3

)
Considering now the second case in Eq. (35), let a− =

1 and a+ be as written in Eq. (36). Once again, using

Eq. (24) with P̂± → π̂±, after a little algebra, we find

P 2nd
succ =

5

12
− β

12
− α

48
+

1

24

√
3β(α+ β). (39)

Now, we want P 2nd
succ to be its optimal value for each value

of P 1st
succ. Since P

1st
succ has the form given in Eq. (28) (linear

in α alone), to do this, we hold α constant, and maximise
P 2nd
succ with respect to β. This occurs when

β = −3α

2
or β =

α

2
. (40)

The first option only holds when α = 0 ̸∈ (2β, 1 −
β]. The second option corresponds to the boundary of
the two scenarios in Eq. (35) - that is, when α = 2β.
This tells us that for α > 2β, there are no stationary
points with respect to β, and we must therefore look to
the boundaries of β: β = 0 or β = 1 − α. However,
the optimal boundary can be shown to be β = 1 − α
when we notice that P 2nd

succ is monotonically increasing
with respect to β in the region α ∈ (2β, 1 − β], β ∈[
0, 13

]
. This can be shown using the fact that there are

no stationary points in this region, so it must therefore
be monotonically increasing or decreasing, along with the
fact there exists a point (e.g (α, β) = (5/6, 1/6)) in this

region such that
∂P 2nd

succ

∂β > 0. So, using β = 1 − α along

with Eq. (28), we find the optimal probability of success
in this region to be

P 2nd
succ =

1

12
+
P 1st
succ

2
+

1

24

√
3(5− 8P 1st

succ). (41)

We can re-express the boundaries in P 2nd
succ in terms of

P 1st
succ by noting that we’d like Eq. (38) to be the success

rate for as large a region as possible. This can be seen
by noting that Eq. (39) can be rewritten as

P 2nd
succ =

5

12
− 1

48

(√
α+ β −

√
3β

)2

(42)

and therefore is less than or equal to the optimal value
of 5/12. So, to make the region in which Eq. (38) is true
as large as possible, we must maximise min{2β, 1 − β}.
That is, when β = 1/3 and so α ∈

[
0, 13

]
. Therefore,

using Eq. (28), we take P 2nd
succ to be given by Eq. (38) when

P 1st
succ ∈

[
0, 7

12

]
, and by Eq. (41) when P 1st

succ ∈
(

7
12 ,

5
8

]
.

To gain some intuition as to how the three qubit states
and second measurement vary with the strength of the
first measurement, we can plot their s = 1

2 path compo-
nents - that is, their components when restricted to the
subspace P 1

2
. Further, since ρ̂±000, π̂

±
000 are left invariant

by the first measurement, no information is gained by
considering them, so we only need look at the remain-
ing states and measurement operators. FIG. 1 shows
how the states ρ̂−001, ρ̂

−
010, ρ̂

−
011 and measurement oper-

ators π̂−
001, π̂

−
010, π̂

−
011 compare to one another for vari-

ous values of α, β. Note the mirror symmetry of the
states and measurement operators in their |0⟩ compo-
nents as discussed earlier when constructing the optimal
measurement of the three-qubit states. Further, the ad-
justment of the second measurement compensates for the
disturbance caused by the first measurement in the re-
gion α ∈ [0,min{1− β, 2β}], β ∈ [0, 1].

VI. RESULTS

Summarising what we have found, the tradeoff between
the first and second classification is given by

P 2nd
succ =

{
5
12 if P 1st

succ ∈
[
0, 7

12

]
,

1
12 +

P 1st
succ

2 + 1
24

√
3(5− 8P 1st

succ) if P 1st
succ ∈

(
7
12 ,

5
8

]
.

(43)

A plot of this tradeoff can be seen in FIG. 2. Let’s note
some points of interest. Firstly, when we require the
second measurement to be optimal, the best first mea-
surement occurs when α = 2

3 and β = 1− α = 1
3 . Here,

P 1st
succ =

7

12
≈ 58.3%, (44a)

P 2nd
succ =

5

12
≈ 41.7%. (44b)

So the success rate of the first measurement, under the
requirement that P 2nd

succ is optimal, ranges from 1
2 to 7

12 .
It is worth reiterating that the transition from optimal
to sub-optimal second-measurement success rate occurs

at the boundary of the two cases in Eq. (43) or Eq. (35).
That is, given a first outcome of π̂−, when the second
measurement stops varying with respect to α, β as can
be seen in FIG. 1.
The next point to consider is when we optimise P 1st

succ.
Here α = 1 and β = 1− α = 0 which means that

P 1st
succ =

5

8
= 62.5%, (45a)

P 2nd
succ =

19

48
≈ 39.6%, (45b)

as was found in Sections IIIA and IV. This limited suc-
cess rate of the second measurement can perhaps be ex-
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• The success rate of the first and second measurements relate to one 
another in the following way:

AIM: given three qubits that are each in one of two unknown states 𝜑! , |𝜑"⟩, 
how is a classification of these qubits affected by an intermediate classification 
on the first two.
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ẑ = |0i
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Background theory and setup

• Qubits can be thought of as points on the surface 
of the Bloch sphere:

𝜑# = cos
𝜃#
2
0 + 𝑒#$! sin

𝜃#
2
1 .

• We will think of qubits as spin-half 
particles such that 0 ≔ 𝑠 = "
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, 𝑚 = "

%
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Background theory

Setup
• How do we describe the system of qubits that we’d like to classify?

• Qubits |𝜑#⟩ are unknown, so they are equally likely to be anywhere on the 
surface of the Bloch sphere. 

𝜌#& = ∫ |𝜑#⟩|𝜑&⟩⟨𝜑#|⟨𝜑&| 𝑑𝜑!𝑑𝜑".

𝜌#&' = ∫ |𝜑#⟩|𝜑&⟩|𝜑'⟩⟨𝜑#|⟨𝜑&| 𝜑' 𝑑𝜑!𝑑𝜑".

• For three qubits:

• So for two qubits, we write the system as the mixed state:

• Integrating, for two qubits, classification is the same as state discrimination 
of:

• For three qubits, classification is the same as state discrimination of:

𝜌!!! =
1
4
𝕀(
%
,

𝜌!!" =
1
6 𝕀(%

+
1
6 𝕀"%

⊗ |1⟩⟨1|,

𝜌!"! =
1
6
𝕀(
%
+
1
24
𝕀"
%
⊗ (|1⟩ − 3|0⟩)( 1 − 3 0 ),

𝜌!"" =
1
6
𝕀(
%
+
1
24
𝕀"
%
⊗ (|1⟩ + 3|0⟩)( 1 + 3 0 ).

Classification of first two qubits
• Optimal classification of first two qubits corresponds to the measurement:

𝜌!! =
1
3
𝕀",

𝜌!" =
1
4
𝕀" +

1
4
𝕀!.

• We want to vary the ability of the first classification. To do this, we weaken 
the above measurement:

𝜋) = 𝛼𝑃) + (1 − 𝛼 − 𝛽)𝕀,
𝜋* = 𝛼𝑃* + 𝛽𝕀.

Subsequent Classification of all three qubits
• After the classification on the first two qubits, the three qubit states are 

updated as follows:

𝜌#&' → 𝜌#&'
± =

𝜋±⊗1 𝜌#&' 𝜋±⊗1
𝑇𝑟(𝜋±⊗1𝜌#&')

• By symmetry arguments, since 𝜌!!#
± = 𝜌!!#, the measurement operator 

corresponding to an outcome of 000 remains constant:

𝜋!!!
± = 𝕀(

%
.

• The remaining states and optimal measurements vary w.r.t 𝛼, 𝛽. For 
example, if the first measurement outcome is −,

The tradeoff

• Using 𝑃,-..%/0 = ∑#,&∈ !," ∑±𝑃(𝜌!#&)(𝜋±, 𝜋!#&
± |𝜌!#&) , the success rate of the 

second classification can be found.
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• This can be plotted as follows:

Conclusion
We considered, and fully characterised a base case in the tradeoff between 
two sequential unsupervised quantum learning tasks. We found that a binary 
classification of a two-qubit subset of three unknown qubits causes a 
measurement disturbance which can degrade the performance of an optimal 
classifier on all three qubits. However, there is a large regime in which this 
performance remains unaffected.
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(a)

(d)(c)

(b)

FIG. 1: Plots showing the effect that a measurement on the first two qubits of a system, with outcome π̂− (for
various values of α, β), has on the three-qubit states and measurement operators {ρ̂−001, ρ̂−010, ρ̂−011} and

{π̂−
001, π̂

−
010, π̂

−
011} respectively. Note that the states and measurement operators vary with the strength of the 2-qubit

measurement until α = 2
3 , β = 1

3 (FIG. 1(c)), after which, while the states continue to change, the measurement
operators stay constant. FIG. 1(c) corresponds to the boundary between the constant and non-constant regions in

FIG. 2. Further, FIG. 1(a) corresponds to the case in which no measurement is performed on the first two qubits and
FIG. 1(d) to when the optimal measurement is performed on the first two qubits.

pected due to the fact the ρ−01k are parallel to one another
as can be seen in FIG. 1(d).

VII. CONCLUSION

To summarise, we considered a base case in the tradeoff
between two sequential unsupervised quantum learning
tasks. In particular, we looked at the situation in which
there were initially two qubits that could each be in one of
two unknown quantum states. Once a binary classifica-
tion of varying success rate, corresponding to a quantum
measurement of varying strength, had been performed,
a third qubit was added and the optimal classification
on all three qubits was then performed. We found that,
although a binary classification of two unknown qubits
causes measurement disturbance which can degrade the
performance of an optimal classifier on all three qubits,
there is a large regime in which the performance remains
unaffected. In this regime, the final measurement may be

adjusted to fully mitigate the disturbance caused by the
first measurement. That is, the success rate of the first
classification can range from that of a guess, P 1st

succ = 1/2
to P 1st

succ = 7/12 without causing the success rate of the
second classification to deviate from its optimal value of
P 2nd
succ = 5/12. When P 1st

succ is further improved, however,
P 2nd
succ decreases non-linearly to a success rate of 19/48 as
P 1st
succ increases to its optimal value of 5/8.

This work provides an indication that sequential un-
supervised classifications of quantum data can be per-
formed. Further, depending on the strength of an earlier
classification, a later classification’s ability need not be
compromised. Having said this, this work also highlights
that there are non-trivial tradeoffs between sequential
unsupervised quantum learning tasks which, although
small in this base case, may be more considerable in
more complicated scenarios. Here we have considered the
simplest possible example of a quantum learning task in
which a measurement disturbance tradeoff exists between
performance on a subset of the data provided and perfor-
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• Qubits can be thought of as points on the surface 
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𝜑# = cos
𝜃#
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• We will think of qubits as spin-half 
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Background theory

Setup
• How do we describe the system of qubits that we’d like to classify?

• Qubits |𝜑#⟩ are unknown, so they are equally likely to be anywhere on the 
surface of the Bloch sphere. 

𝜌#& = ∫ |𝜑#⟩|𝜑&⟩⟨𝜑#|⟨𝜑&| 𝑑𝜑!𝑑𝜑".

𝜌#&' = ∫ |𝜑#⟩|𝜑&⟩|𝜑'⟩⟨𝜑#|⟨𝜑&| 𝜑' 𝑑𝜑!𝑑𝜑".

• For three qubits:

• So for two qubits, we write the system as the mixed state:

• Integrating, for two qubits, classification is the same as state discrimination 
of:

• For three qubits, classification is the same as state discrimination of:

𝜌!!! =
1
4
𝕀(
%
,

𝜌!!" =
1
6 𝕀(%

+
1
6 𝕀"%

⊗ |1⟩⟨1|,

𝜌!"! =
1
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%
+
1
24
𝕀"
%
⊗ (|1⟩ − 3|0⟩)( 1 − 3 0 ),

𝜌!"" =
1
6
𝕀(
%
+
1
24
𝕀"
%
⊗ (|1⟩ + 3|0⟩)( 1 + 3 0 ).

Classification of first two qubits
• Optimal classification of first two qubits corresponds to the measurement:

𝜌!! =
1
3
𝕀",

𝜌!" =
1
4
𝕀" +

1
4
𝕀!.

• We want to vary the ability of the first classification. To do this, we weaken 
the above measurement:

𝜋) = 𝛼𝑃) + (1 − 𝛼 − 𝛽)𝕀,
𝜋* = 𝛼𝑃* + 𝛽𝕀.

Subsequent Classification of all three qubits
• After the classification on the first two qubits, the three qubit states are 

updated as follows:

𝜌#&' → 𝜌#&'
± =

𝜋±⊗1 𝜌#&' 𝜋±⊗1
𝑇𝑟(𝜋±⊗1𝜌#&')

• By symmetry arguments, since 𝜌!!#
± = 𝜌!!#, the measurement operator 

corresponding to an outcome of 000 remains constant:

𝜋!!!
± = 𝕀(

%
.

• The remaining states and optimal measurements vary w.r.t 𝛼, 𝛽. For 
example, if the first measurement outcome is −,

The tradeoff

• Using 𝑃,-..%/0 = ∑#,&∈ !," ∑±𝑃(𝜌!#&)(𝜋±, 𝜋!#&
± |𝜌!#&) , the success rate of the 

second classification can be found.
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Conclusion
We considered, and fully characterised a base case in the tradeoff between 
two sequential unsupervised quantum learning tasks. We found that a binary 
classification of a two-qubit subset of three unknown qubits causes a 
measurement disturbance which can degrade the performance of an optimal 
classifier on all three qubits. However, there is a large regime in which this 
performance remains unaffected.
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FIG. 2: Plot of the tradeoff between the success rates of the first binary classification of two qubits and the second
binary classification when a third qubit is added. The probability of success of the first (second) measurement is

denoted P 1st
succ (P 2nd

succ).

mance on the whole dataset. We have fully characterized
this tradeoff. This is a peculiarly quantum effect due to
fundamental features of quantum mechanics, which is not
present in classical machine learning.

This is just the first step in exploring this tradeoff in
learning tasks, and more work is required to fully under-
stand the limitations imposed by quantum mechanics on
sequential learning. For example the next natural step
would be to consider starting with n unknown qubits of
two types and, following a classification of them, adding
1 or more extra qubits to be subsequently classified. Fur-
ther, one could look at the case in which a larger number
of options of qubit (or d-dimensional qudit) to choose
between. Another path to take could be the supervised
analogue of the content of this paper, with labelled qubits
being given as a training set used to classify future ones.
In addition, there are a range of learning scenarios, in-
cluding partially or fully supervised learning, and rein-
forcement learning, in which similar effects may be ex-
plored. We leave these considerations for future work.
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Appendix A: Derivation of undisturbed states

Let us first derive the two-qubit states in Eq. (12). To
do this, we use some representation theory. For our pur-
poses, we define the representation (Qn,Q) of SU(2) such
that for any U ∈ SU(2),

Qn(U)|i1⟩ · · · |in⟩ := U⊗n|i1⟩ · · · |in⟩. (A1)

We also require the following representation of the sym-
metric group Sn:

P(σ)|i1⟩ · · · |in⟩ := |iσ−1(1)⟩ · · · |iσ−1(n)⟩ (A2)

such that σ ∈ Sn. For instance, for n = 3, σ = (123),

P((123))|i1i2i3⟩ = |i3i1i2⟩. (A3)
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1. Two-qubit states

Beginning with ρ̂00, using the SU(2) invariance of the
Haar measure, notice that

Q2(U)ρ̂00Q
†
2(U) = Q2(U)

(∫
|φ0φ0⟩⟨φ0φ0|dφ0

)
Q†

2(U)

=

∫
|φ0φ0⟩⟨φ0φ0|dφ0 = ρ̂00.

(A4)

So, by Schur’s Lemma, there exist bases, for example the
Schur basis given in Eq. (8), such that

ρ̂00 = α1Î1 ⊕ α0Î0. (A5)

Recalling Eq. (6), note that the subscripts reference the
total spin of the subspaces.

However, notice that for any qubit |φ0⟩ = a|0⟩+ b|1⟩,
|φ0φ0⟩ = a2|00⟩+ ab (|01⟩+ |10⟩) + b2|11⟩. (A6)

So, comparing with Eq. (8), |φ0φ0⟩ lives entirely in
Q1 ⊗ P1. This implies that α0 = 0 and therefore, by
the normalisation of ρ̂00,

ρ̂00 =
1

3
Î1

=
1

3
(|1, 1⟩⟨1, 1|+ |1, 0⟩⟨1, 0|+ |1,−1⟩⟨1,−1|) .

(A7)

Next, for ρ̂01, notice that with a slight abuse of nota-
tion,

ρ̂01 =

∫
|φ0φ1⟩⟨φ0φ1|dφ0dφ1

=

∫
|φ0⟩⟨φ0| ⊗ |φ1⟩⟨φ1|dφ0dφ1

=

∫
|φ0⟩⟨φ0|dφ0 ⊗

∫
|φ1⟩⟨φ1|dφ1

=
1

4
1̂⊗ 1̂

(A8)

where the last equality is obtained by the invariance of∫
|φi⟩⟨φi|dφi under Q1(SU(2)) (or, more physically, due

to each of the integrals describing a maximally mixed
qubit) and the 1/4 is required for normalisation. There-
fore, ρ̂01 is proportional to the identity on

(
C2

)⊗2 and
hence, we can rewrite it as the identity in the Schur basis:

ρ̂01 =
1

4
Î1 ⊕ Î0

=
1

4

(
|1, 1⟩⟨1, 1|+ |1, 0⟩⟨1, 0|+ |1,−1⟩⟨1,−1|

+ |0, 0⟩⟨0, 0|
)
.

2. Three-qubit states

Similar arguments to the two-qubit case tell us that we
can write the following:

ρ̂000 = α 3
2
Î 3

2
⊕ α 1

2
Î 1

2
⊕ α′

1
2
Î 1

2
(A9)

due to its commutivity with all the elements of
Q3(SU(2)). To motivate the presence of two copies of
the Q 1

2
space implied here, recall that the addition of

three spin-half particles results in a system with two or-
thogonal spin-half components. To find α 1

2
, α′

1
2

, notice

that for all σ ∈ S3,

P(σ)ρ̂000P
†(σ) = ρ̂000. (A10)

This implies ρ̂000 lives entirely within (Q 3
2
⊗P 3

2
)⊗(Q 3

2
⊗

P 3
2
)∗, for if it didn’t, it would have a component within

(Q 1
2
⊗P 1

2
)⊗(Q 1

2
⊗P 1

2
)∗ and would therefore not be acted

on trivially by P(S3) since the irrep that P 1
2
is invariant

under is not trivial. It therefore follows that α 1
2
, α′

1
2

= 0

and

ρ̂000 =
1

4
Î 3

2
, (A11)

where, again, 1/4 is the normalisation constant.
Now, for ρ̂001, using a similar technique to ρ̂01,

ρ̂001 =

∫
|φ0φ0φ1⟩⟨φ0φ0φ1|dφ0dφ1

=

∫
|φ0φ0⟩⟨φ0φ0|dφ0 ⊗

∫
|φ1⟩⟨φ1|dφ1

=
1

2
ρ̂00 ⊗ 1̂

=
1

6
(|1, 1⟩⟨1, 1|+ |1, 0⟩⟨1, 0|+ |1,−1⟩⟨1,−1|)

⊗
(∣∣∣∣12 , 12

〉〈
1

2
,
1

2

∣∣∣∣+ ∣∣∣∣12 ,−1

2

〉〈
1

2
,−1

2

∣∣∣∣) ,
(A12)

where the prefactors are determined using similar ideas
to before. In order to rewrite this in the Schur basis of
(Q 3

2
⊗ P 3

2
)⊗ (Q 1

2
⊗ P 1

2
), we use the following [25]:

|s,m⟩|p⟩ ⊗
∣∣∣∣12 ,±1

2

〉
→

√
s±m+ 1

2s+ 1

∣∣∣∣s+ 1

2
,m± 1

2

〉
|p, 0⟩

∓
√
s∓m

2s+ 1

∣∣∣∣s− 1

2
,m± 1

2

〉
|p, 1⟩. (A13)

For our case, s = 1,m ∈ {1, 0,−1} and p has been omit-
ted since dimP1 = 1 = dimP0. Applying Eq. (A13) to
Eq. (A12), we obtain

ρ̂001 =
1

6

(
Î 3

2
+ Î 1

2
⊗ |1⟩⟨1|

)
, (A14)

where α = 1/6 was found by again requiring Tr(ρ̂001) =
1.
Finally, we can find ρ̂010, ρ̂011. Noting that,

ρ̂011 =

∫
|φ0φ1φ1⟩⟨φ0φ1φ1|dφ0dφ1

=

∫
|φ1φ0φ0⟩⟨φ1φ0φ0|dφ0dφ1 = ρ̂100,

(A15)
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to obtain ρ̂010, ρ̂011, notice that we just have to permute
the qubits in ρ̂001. To do this, first notice that Î 3

2
is

invariant under permutations of qubits since P(S3) acts
trivially on P 3

2
. Therefore, the only part of ρ̂001 affected

by permutations is Î 1
2
⊗ |1⟩⟨1|.

Intuitively, we can guess the form of ρ̂010, ρ̂011 by the
fact that,

· · · ρ̂001
(123)−−−→ ρ̂010

(123)−−−→ ρ̂011
(123)−−−→ ρ̂001 · · · , (A16)

where (123) ∈ S3 is a 3-cycle. Since permutations only
have an affect on the path components of the states, it
seems that ρ̂001, ρ̂010, ρ̂011 should be evenly distributed
in the 2-dimensional space P 1

2
. That is, since each state

can be accessed by repeated application of the permu-
tation (123), we’d expect each state be accessible by the
repeated application of some 2D-transformation (on P 1

2
).

In particular, since ρ̂001 is known, we might guess that
the remaining states could be found by rotating its P 1

2

component by 2π/3. This indeed results in the states
given in Eq. (17).

More explicitly, we can derive ρ̂010, ρ̂011 using the fol-
lowing three steps:

1. Rewrite ρ̂001 in the computational basis (using
Eq. (9)).

2. Permute the qubits |i1i2i3⟩ → |i2i3i1⟩ to obtain
ρ̂010 in the computational basis.

3. Rewrite the state in the Schur basis given in Eq. (9).

Appendix B: Derivation of updated states and
measurements

1. Updated prior probabilities

Assuming the outcome of the measurement on the
first two qubits is −, the probabilities of the dis-
turbed states ρ̂−000, ρ̂

−
001, ρ̂

−
010, ρ̂

−
011 occurring are given by

p−000, p
−
001, p

−
010, p

−
011 respectively, such that

p−0ij := P (ρ̂0ij |π̂− ⊗ 1). (B1)

Using Bayes’ theorem, this can be written as

p−0ij =
P (π̂− ⊗ 1|ρ̂0ij)P (ρ̂0ij)

P (π̂− ⊗ 1)

=
P (π̂−|ρ̂0i)
4P (π̂−)

, (B2)

where the second equality is obtained using the fact that
P (ρ̂0ij) = 1/4, and that the third qubit is acted on only
by the identity and therefore does not change any of the
probabilities.

So, by noting that

P (π̂−|ρ̂00) = Tr(π̂−ρ̂00) = β,

P (π̂−|ρ̂01) = Tr(π̂−ρ̂01) =
1

4
(α+ 4β),

(B3)

and therefore,

P (π̂−) = P (π̂−|ρ̂00)P (ρ̂00) + P (π̂−|ρ̂01)P (ρ̂01)

=
1

8
(α+ 8β), (B4)

we find that

p−000 = p−001 =
2β

α+ 8β
, (B5a)

p−010 = p−011 =
α+ 4β

2(α+ 8β)
. (B5b)

2. Second measurement

Again, assuming the outcome of the first classification
was −, recall that distinguishing ρ̂−000 from the other
states is done optimally by letting π̂−

000 be the projec-
tor onto the s = 3/2 space. This leads to the mea-
surement that best distinguishes ρ̂−001, ρ̂

−
010, ρ̂

−
011 being en-

tirely contained in the s = 1/2 space (Q 1
2
⊗P 1

2
)⊗ (Q 1

2
⊗

P 1
2
)∗. Further, since the Q 1

2
⊗Q∗

1
2

component of each of

ρ̂−001, ρ̂
−
010, ρ̂

−
011 is the identity, all the information about

how they differ is contained in P 1
2
⊗ P∗

1
2

. So we can

rephrase this as a state discrimination problem of the
following states:

|ψ−
001⟩ =

N−
001√
6
|1⟩, (B6a)

|ψ−
010⟩ =

N−
010√

6(α+ 4β)

(√
β|1⟩ −

√
3(α+ β)|0⟩

)
,

(B6b)

|ψ−
011⟩ =

N−
011√

6(α+ 4β)

(√
β|1⟩+

√
3(α+ β)|0⟩

)
, (B6c)

where N−
0ij are normalisation constants required so that

we can think of this as a mirror symmetric state discrim-
ination problem. Explicitly,

N−
001 =

√
6,

N−
010 =

√
6(α+ 4β)

4β + 3α
= N−

011.
(B7)

Now, in [28], the states to be discriminated are written
as

|ψ1⟩ = |1⟩, (B8a)

|ψ2⟩ = cos θ|1⟩ − sin θ|0⟩, (B8b)

|ψ3⟩ = cos θ|1⟩+ sin θ|0⟩, (B8c)

such that |ψ2,3⟩ happen with probability p2,3 = p and
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|ψ1⟩ with probability p1 = 1− 2p. So, we can let

cos θ =

√
β

4β + 3α
,

sin θ =

√
3(α+ β)

4β + 3α
,

(B9)

and q−010, q
−
011 = p−, q−001 = 1− 2p− where

q−0ij = P (ρ̂0ij |π̂−, s = 1/2) (B10)

is the probability of being in the state |ψ−
0ij⟩, and we

have added (with respect to [28]) a superscript to p to
distinguish the two outcomes of the intermediate mea-
surements.
So, using Eq. (B10), we can find p− = q−0ij . Using

Bayes’ theorem, we find that

p− =
P
(
π̂− ⊗ 1, s = 1

2

∣∣∣ρ̂0ij)P (ρ̂0ij)
P
(
π̂− ⊗ 1, s = 1

2

) . (B11)

Note that requiring s = 1/2 is equivalent to projecting
the state ρ̂0ij onto the s = 1/2 space (Q 1

2
⊗P 1

2
)⊗ (Q 1

2
⊗

P 1
2
)∗. Denoting this projector by P̂ 1

2
,

P

(̂
π− ⊗ 1, s =

1

2

∣∣∣ρ̂0ij)= P
(̂
π− ⊗ 1, P̂ 1

2

∣∣∣ρ̂0ij)= Tr
(
P̂ 1

2

(√
π̂− ⊗ 1

)
ρ̂0ij

(√
π̂− ⊗ 1

)
P̂ 1

2

)
. (B12)

The denominator can be found using

P

(̂
π− ⊗ 1, s =

1

2

)
=

∑
ij

P (π̂− ⊗ 1, P̂ 1
2
|ρ̂0ij)P (ρ̂0ij),

(B13)
from which it follows that

p− =
3α+ 4β

6(α+ 2β)
. (B14)

Now, according to [28], if

p ≥ 1

2 + cos θ(cos θ + sin θ)
, (B15)

a = 1. Else,

a =
p cos θ sin θ

1− p(2 + cos2 θ)
. (B16)

Substituting p− for p, a− for a and our expressions for
sin θ, cos θ given in Eq. (B9), this can be restated in the

following way: if

α ≥ 2β, (B17)

a− = 1. Else,

a− =

√
α+ β

3β
. (B18)

When coupled with the constraints on α, β given in
Eq. (26), we obtain

a− =

{√
α+β
3β if α ∈ [0,min{1− β, 2β}],
1 if α ∈ (2β, 1− β] with 2β < 1− β

(B19)
such that β ∈ [0, 1].

[1] V. Dunjko and H. J. Briegel, Machine learning & artificial
intelligence in the quantum domain: a review of recent
progress, Rep. Prog. Phys. 81, 074001 (2018).

[2] J. A. Bergou and M. Hillery, Universal programmable
quantum state discriminator that is optimal for unam-
biguously distinguishing between unknown states, Phys.
Rev. Lett. 94, 160501 (2005).
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