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Abstract—Robotic deformable-object manipulation is a chal-
lenge in the robotic industry because deformable objects have
complicated and various object states. Predicting those object
states and updating manipulation planning is time-consuming
and computationally expensive. In this paper, we propose learning
known configurations of garments to allow a robot to recognise
garment states and choose a pre-designed manipulation plan for
garment flattening.

Index Terms—pattern recognition; robot vision; depth images;
deformable objects

I. INTRODUCTION

Robots have been widely applied in many aspects of life,
for example in robotic assistance for humans, life-threatening
rescue, and manufacturing. Among these applications, robotic
deformable object manipulation plays a critical part. Au-
tonomous garment laundry and sorting, soft-object manipula-
tion in life-threatening rescue and manufacturing, and robotic
threading in the textile industry require an efficient and robust
robotic deformable-object manipulation strategy.

However, robotic manipulation of deformable objects re-
mains an open problem in robotics because deformable objects
can take unpredictable object states (crumpled, stretched,
or bent configurations). That is, their states frequently vary
when they are being manipulated and can not be predicted
precisely and timely. Deformable objects are easily slipped
from robots and take a long time to be manipulated because
of their properties. Therefore, current research efforts focus on
reducing object-state or robotic action-state complexity.

Current approaches that reduce deformable object complex-
ity for robotic manipulation can be divided into two categories:
those that propose to find simplified models to represent object
states or action states first [[1]-[6]], and those that rely on
model-free reinforcement learning solutions where the agent
learns to model the object while interacting with it [[7]-[9].
When deformable object models are simplified, it is possible
to reduce the computational costs, making it possible to predict
the object states of manipulated deformable objects close to
real-time. An efficient prediction of future object states enables
a robot to update its manipulation plan on-the-fly, which is crit-
ical to manipulating deformable objects in a real-time setting.
However, current research is geared towards simple geometries
such as ropes, towels or cube-shaped objects. When a rein-
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forcement learning solution is used, data-driven reinforcement
learning agent learns manipulation policies using a reward-
based mechanism. Robots are rewarded if their manipulation
policies produce actions that contribute to a step closer to
the object’s goal state. However, most of the reinforcement
learning approaches rely on simulated environments of which
the physics of deformable objects are simplified.

In this paper, we propose taking advantage of gravity to
model and learn the known configurations of deformable
objects (garments in this paper), which can be later used
to choose a pre-designed manipulation plan based on the
recognised known configurations to flatten these objects. Our
approach does not need to find simplified models that provide
good representations of object states for deformable objects.
Similarly, our approach does not require manual action la-
belling compared to reinforcement-learning approaches. In this
paper, we focus on recognising the known configurations of
garments and develop a pipeline to flatten garments, see Figure

In summary, our main contributions in this paper are
two-fold: we propose learning the known configurations of
garments, which is the foundation for a full pipeline of an
effective robotic garment flattening pipeline. Compared with
state-of-art, our approach has a higher accuracy (89% versus
73% in [5]], [6]) and we captured a known configurations
database which comprises RGB and depth images of garments

We introduce the related work in section [lI} and our method-
ology in section Our experiment results are in section
and a discussion in section |V} Finally, we conclude this paper
and suggest future work in section

II. RELATED WORK

Research on robotic deformable-object manipulation is di-
vided into two categories: model-based approaches and model-
free approaches. Model-based approaches focus on engineer-
ing methods, simplifying models representing object and ac-
tion states or applying dynamics modelling rather than state-
space modelling. On the other hand, model-free approaches
concentrate on devising data-driven methods mainly relating
to reinforcement or imitation learning. Robots learn to manip-
ulate deformable objects by applying manipulation policies,
usually trained on simulated environments.



The main two approaches of models-based approaches are
object-state modelling and action-state modelling. Lin et al.
[10] have proposed to use finite element methods (FEM) to
model the dynamics of bottles, where they defined a ‘liftability
> test. A bottle can only be lifted if its deformation passes the
‘liftability’ test, so the bottle can be stably manipulated with-
out slipping from the robot’s gripper. A mass-spring system
has been applied in [4] to grasp deformable objects using a
multi-fingered robotic hand. The Nvidia PhysX simulator has
also been utilised in [11]] to teach a robot for assisted human
dressing. Miller et al. [12] have proposed a robotic laundry
folding approach by introducing a quasi-static cloth model that
represents states of garments and an algorithm that outputs
a motion planning based on a 2D cloth polygon generated
from the quasi-static cloth model and a desired sequence of
folds. Yamakawa et al. [13] have also proposed learning a
simplified model to represent the state space of ropes and
derive motion planning from the inverse dynamics of rope
states. McConachie et al. [[14] have suggested learning reduced
state spaces by using a classifier to bias a planner away from
state-action pairs that are not feasible under general robotic
working environments.

The problem with model-based approaches is that due to
the high dimensionality of the deformable object and action
spaces, only objects with simple geometries (such as towels,
ropes, and sponges) can be modelled and manipulated. Objects
with complex geometries such as garments can not be used
in these approaches because modelling and manipulation are
time-consuming and computationally costly. An alternative to
simplify model representations is to convert unknown object
states to known object states. Li et al. [6] [S]] have proposed to
estimate the pose of hanging garments and apply manipulation
plans based on the recognised garments’ poses. Poses only
relate to grasping points rather than initial object states of gar-
ments, effectively converting garments from unknown object
states to known object states. But their approach requires re-
grasping and rotating garments to recognise the poses, adding
a time overhead for executing a garment manipulation task.

Data-driven approaches have been recently proposed,
namely imitation and reinforcement learning. That is, Pignat et
al. [7] have proposed to encode sensory information and motor
commands as a joint distribution in a hidden semi-Markov
model, of which parameters are learned from a set of human
demonstrations. Each model set represents a sensorimotor pat-
tern whose sequencing can produce complex behaviours. Bala-
guer et al. [9] have presented a combined approach of imitation
and reinforcement learning, where human demonstrations are
used to reduce the search space of the reinforcement learning
agent and allow the solution to converge quickly. Tsumine
et al. [15] have proposed a deep reinforcement learning for
robotic cloth manipulation with a smooth policy update. Their
networks combine the nature of smooth policy updates in
value-function-based reinforcement learning with automatic
feature extraction from high-dimensional observations in deep
neural networks to enhance the sample efficiency and learning
stability with fewer samples. Twardon et al. propose restricting

robotic action-space modelling to the actions that are safe for
robotic hands and arms, garments and the head when a robot is
trained to put a knit cap on a Styrofoam head. A direct policy-
search algorithm finds appropriate trajectories in the restricted
action space in order to enable the robotic knit-cap operation.
Their approach has demonstrated an effective manipulation
planning under a restricted action space. McConachie et al.
[16] have proposed formulating a deformable object manipu-
lation task as a multi-armed bandit problem, with each arm
representing a model of the deformable object. Matas et al.
[17] use a tailored version of the deep deterministic policy
gradients (DDPG [18]]) for deformable object manipulation,
where they have learned a policy from simulation data while
testing the policy on real data. The limitation of imitation and
reinforcement learning approaches is that they need several
training iterations to learn tasks. Matas et al. [17]] trained a
robot to fold a towel and drape a piece of cloth through a
hanger by reinforcement learning. The robot is trained in a
simulated environment for around 250 iterations. Training such
a robot in real environments is difficult because some actions
need to be validated in a simulated environment. Hazardous
actions (actions that may harm robots or human beings) are
easy to handle in simulated environments but need to be
avoided in real environments.

III. METHODOLOGY

As described in section [l state-of-art approaches conduct
manipulations on tables or platforms, where deformable ob-
jects have complicated and various configurations (or object
states) and result in computationally costly updates to find a
manipulation plan. In contrast, we consider taking advantage
of gravity to control the variety of object configurations and
reduce the complexity of deformable object configurations.

In this paper, we start by assuming that garments of the
same categories (e.g. jeans, towels, tshirts, etc.) lying on
a table have different configurations. If the garments are
grasped from similar grasping points, they will have similar
configurations when the robot picks them up, which we call
known configurations in this paper. For example two towels
have different crumpled configurations on a table (i.e. starting
configurations), but they have similar known configurations
after a robot grasps them. These known configurations only
depend on the grasping points because of gravity. That is,
we convert complex starting configurations to simple known
configurations from which the robot can follow pre-defined
manipulation plans to flatten them. Recognising the known
configurations of garments is crucial for the robotic garment
flattening pipeline shown in Figure

After the garment’s known configuration is obtained after
grasping them from the table, we find the second grasping
points based on how gravity effect on the garment. For exam-
ple, as shown in Figure [I] step 1 in the manipulation routine
box, the second grasping point is the lowest point of the towel.
Different known configurations have different locations of the
second grasping points, so recognising the garment’s known
configurations are critical to localise the second grasping point.



After the robot finds the second grasping point, the next step
(step two in Figure[I)) is to find the third grasping point, which
is the opposing ending corner of the towel. Then, the robot
stretches the towel from the two grasping points in step three
in Figure[I] Because of the stretching and gravity, the towel is
in flattened state; therefore, the final step consists of placing
the towel on the table by sliding it on the edge of the table
(shown in steps four and five in Figure [I).

To recognise garment’s known configurations, we propose
to use an off-the-shelf deep neural network (named KCNet in
this paper) based on ResNet-18 [19]. KCNet is mathematically
expressed as: O = F(C(I)), where O is the output of
the KCNet, which is the recognised known configurations
(represented as classification class), I is the input image that
captures known configurations, C are convolutional layers (a
ResNet-18 [[19]), and F' are fully connected layers. We use a
negative log-likelihood loss (NLLLoss) to train this network:
L(0) = S, (yi log go,s + (1 — yi) log(1 — go,5)), where 6 is
the weight parameters of the network, y; is the ground truth
probability that the ith data point is positive, and gy ; is the
predicted probability that the ith data point is positive. Figure[l]
shows how KCNet works in the known configurations pipeline.

As stated in section a known configuration highly
depends on the grasping points, therefore we label known con-
figurations in terms to its corresponding grasp points. Known
configurations should be recognisable by KCNet, so they
should be distinguishable from each other. Therefore, a known
configuration represents all grasping points in a segmented
area of a garment, rather than a single grasping point. We
proposed to discritise garments into different segments and
define a grasping point to represent one segment. Our exper-
iments found that dividing a garment into ten segments can
provide the most known configurations that are recognisable.
In each segment, we locate its corresponding grasping point
as the centre of the area.

State-of-art focuses on real-time policy updating in robotic
deformable object manipulation. A robot will update its ma-
nipulation plan after observing a new object state. The updates
are computationally intensive and time-consuming. In contrast,
we propose designing manipulation plans in advance to avoid
updating the manipulation plan to speed up the task execution.

A manipulation plan comprises sequences of 6D poses and
the the robot’s gripper state (i.e. open or close). As described
in section our manipulation strategy include finding the
second and third grasping points, stretching to flatten garments
and lifting garments down to the table. Our manipulation plan
design is thus based on these strategy and ensures that each
step requires the least actions. We defined these sequences in
CSV files to transfer manipulation commands to the robot after
a known configuration is recognised.

IV. EXPERIMENTS AND RESULTS
A. Experimental Methodology

Our known configurations pipeline consists of three stages:
the robot recognises the known configuration of a grasped
garment, based on the recognised known configuration, the

robot chooses a pre-defined manipulation plan, and then the
robot flattens the garment.

To recognise garments’ known configurations, we captured
a novel dataset comprising depth and RGB images of garments
from five categories: jeans, shirts, sweaters, towels and tshirts.
There are four garment instances in each category, and as
described in section[[TI} each garment instance has ten grasping
segments represented by ten grasping positions. We collected
100 images for each position, where each image captures the
known configuration of a garment grasped from a specific
position. We captured a total of 19,269 depth and RGB images,
respectively, with a resolution of 256 x 256 pixels. Figure [2]
shows examples of images in this dataset. For each garment
category, we pre-defined 10 manipulation plans for each the
10 segments as described in section Therefore, we have
50 manipulation plans.

With this dataset, we trained a KCNet which is a classifica-
tion network that consists of a pre-trained ResNet 18 structure
and a fully connected network. The detailed implementation
of KCNet can be found at https://liduanatglasgow.github.io/
known_configurations/. The learning rate is set to 10~ and
we allow it to decay during the training with a step scheduler
(a decay factor of 0.1 and a step size of 8).

We have implemented a k-fold cross-validation approach (k-
fold CVA) to train and test KCNet, rather than the traditional
approach of train-validate-test splits. The k value in our
experiment is set to four, which means that our database is
split into four groups for the k-fold CVA training and testing
sessions. There are four garment instances in a group. Three
groups are assigned as training groups for each session and
one group as a testing group. We ensured that the garment
instances in the testing group were ‘unseen’ by KCNet. We
iterate the testing group to include all garment instances in a
category, and we averaged the classification accuracies as the
classification accuracy for the network.

The robot in this experiment is a Baxter dual-arm robot with
a table at the front to place the garments. We use a computer
with Ubuntu 16.04 and an NVIDIA 1080 Ti GPU to train
the KCNet. The robot is controlled by the Robot Operating
System, and an Xtion camera captures the images. In section
we demonstrate an example of a five-step manipulation
plan based on the recognised known configurations of a
towel for flattening the towel. We will improve pre-designed
manipulation plans in our future research.

B. KCNet Validation Results and Manipulation Demonstration

We compared the performance of KCNets trained on RGB,
depth and RGBD images. Table [I] shows our results for each
category in each k-fold cross-validation described in section
Table [ shows classification accuracies that represent the
percentages of known configurations recognised by the KCNet.

We found that training a KCNet on depth images (89%)
outperforms a KCNet on RGB images (73%). Depth images
capture structural and physical characteristics of garments (as
found in [20]]), and therefore, enables a KCNet to recognise
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Known Configurations Pipeline: a towel with a crumpled configuration (starting configuration) is grasped by a robot from a grasping point (the

first grasping point as described in Section m, giving rise to a known configuration. The known configuration is recognised, and a pre-designed five-step
manipulation plan (described in section [lII) can be chosen based on the recognised known configuration. The robot manipulates the towel with the chosen

manipulation plan.

Fig. 2. Database Examples: There are five garment categories in our database: jeans, shirts, sweaters, towels and tshirts. Our database contains masked depth
and RGB images of four garment instances in each category, which have five categories (Top: original images, Bottom: masked depth images).

the known configurations of unseen garment instances. The
RGB images capture texture characteristics that depend on
the lighting condition and shadows which hinders the ability
of KCNet to predict known configurations. Meanwhile, We can
observe an increase from 73% to 78.5% for the KCNet trained
on RGBD images but still a significant gap behind the KCNet
trained only on depth images (89.0%). Depth information
facilitates a KCNet to recognise the known configurations
of unseen garments, while RGB information may affect the
effectiveness of depth information.

Based on this ablation study, we chose the KCNet trained
on the depth images to conduct the manipulation experiments.
Figure [3] shows an example of manipulations in our experi-
ments. As described in section [[TI] the robot firstly recognises
the known configurations of the garments, then chooses a ma-
nipulation plan based on the recognised known configurations,
and finally flattens the garments with the chosen manipulation
plan. We can observe that the towel shown in Figure [3] are
correctly flattened from its crumpled configuration. A robotic
manipulation example can be found on our project website
https://liduanatglasgow.github.io/known_configurations/.

V. DISCUSSION

redIn our experiments, we proposed a robotic garment
manipulation by recognising garments’ known configurations
and choosing a pre-designed manipulation plans to flatten

garments. This paper introduces the first part of this pipeline:
how to recognise the ‘known configurations’ of garments.
The known configurations can be recognised because we
took advantage of gravity and reduced deformable objects’
complexity. Various and complicated initial configurations
are converted into simple known configurations by taking
advantage of gravity after the robot has grasped the garment.

VI. CONCLUSION AND FUTURE WORK

We proposed an effective robotic garment flattening ap-
proach by recognising the known configurations of garments
and choosing a pre-designed manipulation plan to flatten them.
Our approach also features training KCNets on depth images
of real garments, resulting in higher recognition accuracy
compared with previous work [6].

In our experiments, however, a robot can only recognise
the known configurations of the garments with shapes from
the five categories, while it is unable to recognise those of the
garments with an unknown category. Our future work aims to
devise a continual learning framework so that a robot learns
unknown shapes when it deals with those shapes. Additionally,
we believe that a robot can benefit from prior knowledge
of shapes [21] or physics properties [20] of garments to
recognise known configurations, so we propose learning that
prior knowledge during the robot’s grasping garments and
improving recognition accuracy on known configurations.
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TABLE I

K-FOLD CROSS VALIDATION EXPERIMENT RESULTS:

COMPARISON BETWEEN DEPTH, RGB AND RGBD IMAGES (UNIT: %)

Depth 1 2 3 4 RGB 1 2 3 4 RGBD 1 2 3 4
towel 944 | 96.4 | 93.1 | 86.2 towel 67.0 | 559 | 74.1 | 64.5 towel 71.8 | 79.7 | 852 | 76.7
tshirt 86.8 | 87.2 | 96.3 | 94.7 tshirt 70.8 | 71.2 | 72.1 | 76.9 tshirt 746 | 683 | 84.4 | 839
shirt 782 | 803 | 759 | 925 shirt 879 | 584 | 754 | 914 shirt 879 | 584 | 68.8 | 91.9

sweater | 78.4 | 854 | 87.0 | 86.2 sweater | 54.6 | 42.0 | 68.1 | 85.2 sweater | 52.7 | 51.6 | 74.7 | 77.0
jean 99.3 | 95.8 | 953 | 99.1 jean 764 | 87.8 | 87.0 | 98.8 jean 87.5 |1 92.0 | 97.2 | 99.5

average | 87.0 | 89.0 | 89.0 | 92.0 average | 73.0 | 62.0 | 75.0 | 83.0 || average | 76.0 | 70.0 | 82.0 | 86.0

AVERAGE: 89.0 AVERAGE: 73.0 AVERAGE: 78.5

Recognition of its
known configuration

Conduct five-step manipulation plan

Fig. 3. An Example of Manipulations: an example are demonstrated: firstly, the robot grasps the towel from the table to recognise its known configurations.
Then a manipulation plan is chosen. Finally, the robot flattens the towel with the chosen manipulation plan.
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