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Reducing fuel cost and enhancing the resource utilization rate in energy economic load 

dispatch problem 

 

Abstract 

This study contributes for solving the economic load dispatch (ELD) problem to reduce the 

energy waste caused by thermal generation units and promotes cleaner and sustainable 

production in the power industry. Electricity is produced by thermal power plants; however, 

thermal power generation involves low economic benefits and high pollution levels, which 

hinders cleaner and sustainable production in the power industry. An improved manta ray 

foraging optimization (IMRFO) algorithm is developed for solving the ELD problem and 

realizing the cleaner and economic goal of the thermal units. The characteristics of the novel 

method present that: (1) Sine and cosine adaptations were introduced in the manta ray 

foraging optimization algorithm to enhance its adaptive ability; (2) a nonlinear convergence 

factor was presented to enhance the convergence speed; and (3) a differential evolution 

algorithm was introduced in the original algorithm to enhance robustness. Three typical ELD 

test systems were selected to prove the feasibility of the IMRFO-based solution method. The 

results indicated that IMRFO algorithm obtained the most competitive scheduling strategy 

compared with the existing methods. Improving the economy of power system operation is 

beneficial to realize cleaner and sustainable power production. 

 

Keywords: Resource utilization; manta ray foraging optimization algorithm; economic load 

dispatch; algorithm improvement; energy conservation  

 
 

Nomenclature NPZe The number of prohibited operation 
areas 

Fe Cost function PL
e,j The first prohibited operation area 

Fc Total fuel cost PU
e,j The maximum prohibited operating 

area 
m The number of generator 

units 
Pl

e Lower output bounds 

Pe Output power Pu
e Upper output bounds 

αe, βe and 
ϒe 

Fuel cost coefficients xd
k Location of the kth individual 

Pe,min Minimum output power xd
best Current optimal position 

δe and εe Cost coefficients a Weight coefficient 
B1, B2 and 
B3 

Transmission loss coefficients L The maximum values of iterations 

Ploss System transmission loss l The current values of iterations 
Pload Load demand xd

rand Random location 
Pe,min Lower bounds Ubd Upper limit 
Pe,max Upper bounds Lbd Lower limit 
Pe

0 The output before the 
change 

r1  Random values between [0, 1] 

DRe Ramp-down rate r2 Random values between [0, 1] 
URe Ramp-up rate C  Cosine adaptation 
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S Sine adaptation w Nonlinear convergence factor 
wmin Lower limit of w wmax Upper limit of w 
Z*

e,t A newly created individual Zbest,t Optimal value at the tth generation 
D Scaling factor R Crossover probability 
f(Z*

e,t)  Fitness function f(Ze,t) Fitness function 

 
 
 
Reducing fuel cost and enhancing the resource utilization rate in energy economic load 
dispatch problem 
 

1. Introduction 

Energy demand has driven the sustained economic, especially for electricity resource 

efficiency. Electricity is supplied to consumers from production plants through the power 

system, although the current situation involves insufficient development of the energy 

storage equipment (Chen et al., 2019; Kalt et al., 2021; Sun et al., 2022). Energy exhibits 

disadvantage of an insufficient conversion rate, a high production cost and an unstable 

capacity; consequently, the main force of power generation remains thermal power. 

However, thermal power plants generate many pollutants during power generation (Roy et 

al., 2021). Dey et al (2021) and Nasir et al. (2021) thought that the traditional generation 

mode is inconsistent with the current social background of energy conservation and 

environmental protection. To achieve cleaner and sustainable power production, it is 

necessary to improve the economics of power system dispatch strategies and reduce 

polluting gas emissions. The aim of economic load dispatch (ELD) is to reasonably allocate 

the generating power of the units, reduce the operating costs of the power system, improve 

environmental benefits and obtain cleaner and sustainable electricity. 

Nevertheless, the ELD problem is an optimization problem with multiple constraints (Liu 

et al., 2021). The ELD optimization goal is to reduce generator units’ fuel cost, and the 

constraints include the generation power constraint, power balance constraint, and 

prohibited operating areas. The aim of this study is to propose IMRFO-based solution 

approach to address the energy ELD problem, reduce the fuel cost and increase the resource 

utilization rate. Deng et al. (2021) and Agrawal et al. (2021) argued that intelligent algorithms 

with excellent optimization capabilities are not limited by the problem dimension, and are 

suitable for solving nonlinear and nondifferentiable problems. In the literature, Liu et al. 

(2021) demonstrated that the complex constraints make the ELD problem become into a 

nonconvex, discontinuous, multidimensional, and nondifferentiable constraint problem, 

which increases the solving complexity. Hassan et al. (2021) and Velasquez et al. (2021) 

argued that there exist two ways to address ELD problems, specifically, by using 

mathematical optimization methods or intelligent algorithms. The mathematical solution 

methods, including the gradient method, lambda iteration method, and quadratic 

programming method, ignore the valve point effect pertaining to the conversion of complex 

nonconvex cost functions into smooth cost functions.  

Moreover, mathematical methods exhibit inferior convergence and easily fall into the 

local optimal solution. In addition, Deb et al. (2021) and Guo et al. (2021) indicated that 

mathematical methods involve considerable amounts of calculation as the ELD problem 
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dimension increases. The calculation accuracy is low because mathematical methods use an 

approximate optimization model to solve the none differentiable problem. Hence, 

mathematical optimization methods can not address the ELD problem in large power 

systems, so this study employs the intelligent algorithm-based solution strategy to solve the 

ELD problem considering different constraints. Many studies have adopted heuristic 

algorithms, such as particle swarm optimization (Gholamghasemi et al., 2019) and genetic 

algorithm (Li et al., 2019) to address the ELD problem. However, classical intelligent 

algorithms have many parameters that need to be adjusted. Agrawal et al. (2021) indicated 

that randomness of adjustable parameters affected the optimization effect of the algorithms, 

thereby causing the classic intelligent algorithms less controllable. Hence, variants of 

heuristic algorithms with superior performance have been devised to solve the ELD problems 

(Li et al., 2021). In particular, power systems with different scales are applied to prove the 

effectiveness of the proposed IMRFO-based approach, and the proposed algorithm is 

compared with state-of-the-art methods. 

Manta ray foraging optimization (MRFO) algorithm is widely used in various engineering 

fields due to its powerful optimization performance (Houssein et al., 2021; Zhao et al., 2020). 

However, when solving high-dimensional problems, the MRFO algorithm is easy to fall into a 

local optimal solution, which causes the MRFO algorithm to fail to obtain the optimal 

solution when solving the ELD problems. Fu et al. (2020) and Deb et al. (2021) believed that 

the ELD problem includes complex equality and inequality constraints, which belongs to a 

multi-constrained, high-dimensional and non-convex optimization problem. The ELD 

problem has higher requirements for the algorithm solving ability. This study proposes an 

improved manta ray foraging optimization (IMRFO) approach for solving the ELD problems. 

The adaptive strategy was introduced in the MRFO algorithm and the IMFO algorithm was 

combined with the differential evolution (DE) algorithm, which improves the effects of the 

IMRFO-based approach.  

The contributions of this study are as follows: (1) The IMRFO algorithm with high 

optimization ability and convergence speed is proposed; (2) the IMRFO-based method 

efficiently solves the ELD problem; (3) the IMRFO-based approach reduces the fuel cost of 

the generator units, which improves the economics of the power system; and (4) cleaner and 

sustainable power is obtained by improving the economy of power system dispatching 

strategy. The remaining sections are structured as follows. Section 2 presents the literature 

review. Section 3 constructs the mathematical model of the ELD. Section 4 introduces the 

IMRFO. Section 5 describes the verification of the IMRFO-based solution strategy using three 

ELD-type cases. Section 6 highlights the conclusions and limitations. 

 

2. Literature review 

The existing studies for addressing the ELD problems have focused on two ways. The 

first type of approaches involves mathematical programming methods, such as the lambda 

iterative method, quadratic programming method, gradient method (D'Angelo and Palmieri, 

2021), linear programming method (Li et al., 2021), and Lagrange relaxation method. 

Shouman et al. (2021) and Dey et al. (2021) argued that mathematical methods involve 

considerable amounts of calculations due to the constraints of the generator units and 

increasing scale of power systems when addressing the ELD problem, and the quality of the 
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solutions cannot be guaranteed. For solving complex ELD problems, the mathematical 

programming methods are difficult to converge to the optimal solution, and it is easy to fall 

into the local extreme solution, which reduces the applicability of this method. The second 

type of methods emerged with the advent of intelligent algorithms. Compared with 

mathematical programming methods, artificial intelligence algorithms have stronger 

applicability, better solution effects, and are the most widely used. At present, various 

intelligent algorithms have been developed, such as archimedes optimization algorithm 

(Hashim et al., 2021), Levy flight distribution algorithm, henry gas solubility optimization 

algorithm. In addition, intelligent algorithms with different convergence characteristics are 

applied in different fields. For instance, Houssein et al. (2021) presented an improved 

Archimedes optimization algorithm to identify PEM fuel cell parameters; Deb et al. (2021) 

developed turbulent flow of water optimization algorithm to solve ELD problem; and 

Houssein et al. (2021) used MRFO algorithm for electrocardiogram arrhythmia classification. 

Additionally, Lyu et al. (2021) indicated that intelligent algorithms with a high 

optimization ability are not restricted by the function dimension of the target and are 

suitable for solving the large-scale ELD problems. Various algorithms have yielded notable 

results for solving ELD problem, such as PSO (Gaing, 2003), gray wolf optimization algorithms 

(Anter et al., 2019), and sine and cosine algorithms (Altay and Alatas, 2021). However, 

intelligent algorithms cannot guarantee the optimization effect when solving the ELD 

problem under various constraints involving equality and inequality constraints. Hence, 

verifying the performance of the proposed approaches in addressing the ELD problem with 

different constraints is necessary. 

The first type of ELD problems focuses on the output and input nonlinearities of the 

generator units. Al-Bahrani et al. (2021) and Zare et al. (2021) highlighted that the valve point 

effect causes the input and output nonlinearities of the generator units. Notably, Lu et al. 

(2010) proposed an improved differential evolution-based approach to solve the ELD 

problem considering the valve point effect. The improved differential evolution (DE) 

algorithm exhibits superior global search capabilities, and its effectiveness has been proven 

by applying it to process a problem with 10 power generation units. However, Lu et al. (2010) 

ignored that the complexity of a 10-unit system is small, therefore, the applicability of the 

presented algorithm needs to be further studied. In addition, Al-betar et al. (2016) presented 

a naturally updated harmony search algorithm that considers the output and input 

nonlinearities of the generator units. Xiong and Shi (2018) proposed a hybrid approach that 

combines a biogeography-based and brainstorm-based optimization strategy to solve such 

ELD problems, however, Xiong and Shi (2018) ignored that the hybrid method has complex 

structure and high computational cost. 

The second type of ELD problem focuses on the ramp rate constraint of the generator 

units and transmission loss of the power system. Fu et al. (2020) argued that such ELD 

problems place high requirements on the output power change of the generator units; 

moreover, the transmission loss of the power system obtained by the intelligent algorithms 

needs to be as low as possible. For instance, Gholamghasemi et al. (2019) proposed an 

improved PSO-based strategy to solve such ELD problems. The convergence ability of the 

PSO-based strategy was enhanced using a phasor angle to modify the control parameters of 

the original algorithm, but Gholamghasemi et al. (2019) ignored that PSO-based strategy 
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cannot effectively get rid of local extremums. In addition, Takeang and Aurasopon (2019) 

combined the lambda iteration method with a simulated annealing algorithm to present a 

hybrid strategy for solving ELD. The quality of the solution obtained by the hybrid method is 

higher, but Takeang and Aurasopon (2019) lacked to analyze the high complexity of the 

hybrid strategy. 

The third type of ELD problem considers equality constraints, inequality constraints and 

other factors. Li et al. (2019) indicated that such ELD problems bring a higher challenge for 

the optimization ability of intelligent algorithms as well as their ability to jump out of the 

local optimal solution. For instance, Pothiya et al. (2008) presented a tabu search-based 

approach to address the ELD problem. This approach exhibits satisfactory convergence effect 

when solving different ELD problem types, but ignores the quality of the optimal solution. To 

improve the quality of solution, Barati and Sadeghi (2018) presented a hybrid approach on 

the basis of modified PSO and GA to address ELD. The hybrid algorithm achieves enhanced 

results when applied to small power systems, however, an inferior convergence occurs in the 

case of medium power systems. In addition, Subathra et al. (2015) presented a novel hybrid 

approach that combines the sequential quadratic programming (SQP) technology and 

cross-entropy algorithm (CE). This novel approach effectively addresses complex ELD 

problems involving equality and inequality constraints, but Subathra et al. (2015) lacked to 

improve the convergence stability of the hybrid approach. To prevent the DE algorithm from 

converging prematurely, Niu and Irwin (2014) proposed a DE-based variant through clonal 

selection, which uses the clonal selection algorithm as a global search method. However, Niu 

and Irwin (2014) ignored that clonal selection has limited improvement on the quality of 

solution for ELD. 

The energy industry uses various algorithms to address different types of ELD problems. 

However, the solution effects of the algorithms change due to the various constraints and 

objective functions considered in the ELD model. To solve different types of ELD problems, 

this study proposes a novel intelligent algorithm-based solution strategy (Chen et al., 2019; 

Kalt et al., 2021; Sun et al., 2022). Zhao et al. (2020) proposed the Manta ray foraging 

optimization algorithm (MRFO) with a simple principle and few control parameters, which is 

suitable for solving multi-constraint optimization problems. However, the MRFO algorithm 

involves the limitations of a slow convergence speed and inferior optimization ability. To 

solve these limits, Hassan et al. (2021) developed a hybrid approach that combined MRFO 

algorithm with Gradient-based optimizer (GBO). In this approach, GBO algorithm is employed 

to improve the ability of MRFO algorithm to avoid local extremums. However, Hassan et al. 

(2021) ignored to balance the local exploitation and global search capabilities of the MRFO 

algorithm. Therefore, improving the solving ability of MRFO algorithm needs to be further 

studied. The adaptive strategy has better performance to balance the local exploitation and 

global search performance of the MRFO algorithm. In addition, the performance of the 

MRFO algorithm to avoid the local extremes is strengthened using the mutation and 

crossover strategies of the DE algorithm. Hence, to obtain high quality solutions considering 

different constraints, the IMRFO-based approach is proposed by incorporating an adaptive 

strategy, nonlinear convergence factor and DE algorithm. The convergence speed and the 

ability of avoiding local extremums are enhanced using the abovementioned concepts to 

ensure that the IMRFO-based strategy obtains the optimal solution for ELD with different 
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constraints. In addition, different scale testing systems are considered to prove the 

IMRFO-based approach. 

 

3. Economic load dispatch model 

ELD solution belongs to a multi-constraint optimization process. The minimum fuel cost 

of the generator units is identified while meeting the system load requirements and 

constraints of the generator units. In addition, the operating constraints of the generator 

units include the equality and inequality constraints. 

3.1 Objective function 

The defined ELD model is as follows: 

2

1 1

( ) ( )
m m

c e e e e e e e

e e

F F P P P  
= =

= = + +                       (1) 

where Fe is the cost function of the eth generator unit, Fc represents the total fuel cost, m 

represents the number of generator units, and Pe represents the output power of the eth 

generator unit. αe, βe and ϒe are the fuel cost coefficients. 

The sudden opening and closing of the intake valve results in a valve point effect when 

the generator unit is operating. This phenomenon makes the cost curves of the generator 

units nonlinear, so the equation of the objective function is modified as follows: 

2

,min

1 1

( ) ( sin( ( )) )
m m

c e e e e e e e e e e e

e e

F F P P P P P    
= =

= = + + + −              (2) 

where Pe,min is the minimum output power. δe and εe are the cost coefficients. 

Equation (2) indicates that αe, βe and ϒe form a smooth quadratic function. Moreover, δe 

and εe form a nonconvex sine function. 

3.2 Equation constraint 

The power balance constraint is the equality constraint, which ensures that the total 

output matches the load demand and transmission loss.  

m

1

e load loss

e

P P P
=

= +                               (3) 

1 2 3

1 1 1

m m m

L e f e

e f e

P P B P B P B
= = =

= + +                            (4) 

where B1, B2 and B3 are transmission loss coefficients; Ploss(MW) indicates the system 

transmission loss; Pf(MW) is the output of the fth generator unit; and Pload(MW) is the load 

demand. 

3.3 Inequality constraints 

(1) Generation power constraint 

The output of the generator unit must lie between its upper and lower bounds. The 

generation power constraint is defined as follows: 

,min ,maxe e eP P P                               (5) 

where Pe,min and Pe,max represent the lower and upper bounds of the eth generator unit. 
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(2) Ramp rate limit 

Change in the generator output power is limited by the ramp rate constraint, shown in 
Eq. (6): 

0 0

,min ,maxmax( , ) min( , )e e e e e e eP P DR P P P UR−   +                (6) 

where Pe
0 is the output before the change. DRe and URe indicate the ramp-down and 

ramp-up rate constraints. 

(3) Prohibited operation areas 

The prohibited operating areas, which are caused by the vibration of the unit bearings 

or related equipment, is defined as follows: 

,1

, 1 ,

, e

l L

e e e

U L

j e j e e j

U u

e NPZ e e

P P P

P P P P

P P P

−

  


  


 

                          (7) 

where NPZe represents the number of prohibited operation areas, PL
e,j (MW) represents the 

first prohibited operation area, and PU
e,j (MW) represents the maximum (j-1)th prohibited 

operating area. Pl
e and Pu

e represent the lower and upper output bounds. 

4. MRFO and MRFO-based variant 

4.1 MRFO 

Zhao et al. (2020) imitated the manta ray's foraging behavior in nature to develop the 

MRFO algorithm that was used to solve the optimization problems in engineering. In addition, 

Zhao et al. (2020) found that the MRFO algorithm has better solution performance compared 

with the existing well-known optimization algorithms. Therefore, in this study, MRFO 

algorithm was employed to solve ELD problem. The MRFO algorithm follows the following 

principles: 

(1) The MRFO is driven by three manta rays’ foraging strategies: cyclone foraging, chain 
foraging and somersault foraging. 

(2) The update of each individual is determined by the previous individual and current 
optimal individual in the chain foraging strategy. 

(3) The update of each individual is jointly determined by the previous individual and 
reference individual in the whirlwind foraging strategy. The reference individual selects 
the current optimal value or random locations in the search space. 

(4) Manta ray individuals perform adaptive search under somersault foraging strategy. 

A. Chain foraging 

The location of the current individual in chain foraging is described by the previous 

individual and current optimal individual. The equations of chain foraging are as follows. 

1

( ) ( ( ) ( )) ( ( ) ( ))
( 1)

( ) ( ( ) ( )) ( ( ) ( ))

d d d d d

k best k best kd

k d d d d d

k k k best k

x m r x m x m a x m x m
x m

x m r x m x m a x m x m−

 +  − +  −
+ = 

+  − +  −
          (8) 

2 log( )a r r=                            (9) 

where xd
k(m) is the location of the kth individual at time m and dimension d, xd

k(m+1) is the 

next position of the kth individual, r is randomly distributed between [0, 1], a is a weight 

coefficient, and xd
best(m) is the current optimal position. 

B. Cyclone foraging 
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The position of manta rays performing cyclone foraging is updated in two ways. One 

approach is to implement cyclone foraging operations. The position of a manta ray individual 

is determined by the positions of the current optimal individual and previous individual. The 

other approach involves exploring the search space. In this process, the position of a manta 

ray individual is determined by a random position and the previous individual position. When 

the manta ray individual performs cyclone foraging, the position equation is expressed as 

follows: 

1

( ( )) ( ( ) ( ))
( 1)

( ( )) ( ( ) ( ))

d d d d d

best best k c best kd

k d d d d d

best k k c best k

x r x x m x m x m
x m

x r x x m x m x m



−

 +  − +  −
+ = 

+  − +  −
             (10) 

1

12 sin(2 )
L l

r
L

c e r 
− +

=                           (11) 

where βc is the weight coefficient. L and l denote the maximum and current values of 

iterations. 

When the manta ray individual explores the search space, the mathematical model is 

formulated as follows: 

( )d d d d

randx Lb r Ub Lb= +  −                        (12) 

1

( ( )) ( ( ))
( 1)

( ( )) ( ( ))

d d d d d

rand rand k c rand kd

k d d d d d

rand k k c rand k

x r x x m x x m
x m

x r x x m x x m



−

 +  − +  −
+ = 

+  − +  −
               (13) 

where xd
rand represents the random location; Ubd and Lbd represent the upper and lower 

limits of the d-dimensional search space. 

C. Somersault foraging 

In somersault foraging, manta ray individuals use the current optimal position as a 

reference to update their positions, as follows: 

1 2( 1) ( ) ( ( ))d d d d

k k best kx m x m S r x r x m+ = +   −                  (14) 

where S(S=2) determines the range of the manta ray's somersault foraging. r1 and r2 are 

random values between [0, 1]. 

 

4.2 IMRFO algorithm 

A. Adaptive strategy-based somersault foraging  

The somersault foraging of the MRFO algorithm is the key during the iterative process, 

and the optimal value obtained by the MRFO depends largely on the somersault foraging 

process, but this strategy does not guarantee the ability to balance the globally searching and 

locally developing of the MRFO algorithm. To better balances the global converging and local 

searching abilities in the iteration, the sine and cosine adaptive strategies are introduced to 

the MRFO algorithm. In addition, the search ability of the population deteriorates when the 

current optimal individual used as a reference falls into the local optimal solution during the 

somersault process. Through the sine and cosine adaptive strategies, the optimal individual 

can adaptively update its position in the iterative process, thereby avoiding local extremum 

solutions. 

The improved somersault foraging strategy is defined as follows: 
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2 3( 1) ( ) ) ( ( ))d d d d

i i best ix t x t C S rand r x r x t+ = + + +   − （            (15) 

cos(( (1) 0.5) )C rand = −                           (16) 

sin(( (1) 0.5) )S rand = −                           (17) 

where t indicates the current value of iterations; C and S are the cosine and sine adaptations. 

r3 and r4 are randomly distributed between [0, 1]. 

As depicted in equation (15), parameters C and S expand the search range of the manta 

rays. Through the sine and cosine adaptive strategies, the IMRFO algorithm exhibits a 

stronger ability of local development and global optimization in the iterative process as well 

as a better performance to avoid local extremes. 

B. Nonlinear convergence factor-based cyclone foraging 

A nonlinear convergence factor is introduced in the MRFO cyclone foraging to increase 

the convergence speed. The equation for the IMRFO cyclone foraging is as follows. 

1

( ( ( )) ( ( )))
( 1)

( ( ( )) ( ( )))

d d d d d

rand rand k c rand kd

k d d d d d

rand k k c rand k

w x r x x m x x m
x m

w x r x x m x x m



−

  +  − +  −
+ = 

 +  − +  −
            (18) 

min max min( ) sin( ) 1
2

T
w w w w

t
 = + −   + +                 (19) 

where wmin(wmin=0.2) and wmax(wmax=0.7) are the lower limit and upper limit of the nonlinear 

convergence factor w. 

The nonlinear convergence factor affects the convergence rate of the MRFO algorithm 

population. The value range of w is set as [0.2, 0.7] according to the existing studies (Li et al., 

2021). The convergence ability of the population is dynamically adjusted by changing the 

value of the convergence factor, thereby accelerating the convergence speed of the 

algorithm. As indicated in equation (19), w is gradually reduced, which is conducive to the 

local search. The convergence speed of the IMRFO algorithm in the iterative process is 

increased by introducing the nonlinear convergence factor, and the locally developing 

capability is strengthened. The value of the nonlinear convergence coefficient can be 

adjusted according to the actual problems. 

 

C. Differential Evolutionary Algorithm 

Additionally, most individuals in the population will approach the global optimal 

individual in the iteration, which decreases the diversity of the population. In addition, in the 

iterative process of the MRFO algorithm, most individuals in the population will approach the 

global optimal location, which further makes the population diversity worse. The individual 

positions are disturbed to ensure the diversity and robustness in the iterative process of the 

IMRFO algorithm by introducing the crossover, mutation, and selection strategies.  

A. Mutation  

For the eth individual Ze,t at the tth generation, the mutation vector Ve,t is used to 

generate a new individual. The mutation vector is defined as follows: 

, , , 1, 2,*( ) *( )e t best t e t r t r tV D Z Z D Z Z= − + −                    (20) 
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*

e, , ,t e t e tZ V Z= +                              (21) 

where Z*
e,t is a newly created individual. r1 and r2 are randomly distributed between the 

maximum population number and 1. Zbest,t is the optimal value at the tth generation. D is the 

scaling factor, with a value range of [0, 1]. 

B. Crossover  

In the crossover operation, the newly generated variable is binomially crossed with the 

original variable to expand the population. The crossover operation is expressed as follows: 

*

,

, ,

,

, ( [0,1] ) ( )

,

e t e rand

e k t

e t

Z if rand R or k k
o

Z else

  =
= 


                (22) 

where R represents the crossover probability, with a value range of [0, 1]. rande is randomly 

distributed between [0, 1]. 

C. Selection  

According to the calculation result of the fitness function, the variable with the highest 

fitness is selected for retention. The selection operation is expressed as follows: 

* *

, , ,

, 1

,

, ( ) ( )

,

e t e t e t

e t

e t

Z if f Z f Z
Z

Z else
+

 
= 


                     (23) 

where f(Z*
e,t) and f(Ze,t) are fitness functions. 

The IMRFO pseudocode is presented in Table 1, and Figure 1 presents the optimization 

process. 

Table 1. IMRFO Pseudo code 

Improved Manta ray foraging optimization  

Set the population size P, and related parameters. 

t=0; Initialize the population and calculate the fitness values. 

While (t<I) 

For i=1 To P 

If rand<0.5 Then // Cyclone foraging 

   If t/I<rand  

    The mechanism of manta rays to explore the search space using Eq. (18). 

   Else 

    Manta rays for cyclone foraging operation using Eq. (10). 

   End if 

  Else // Chain foraging 

     Manta rays perform chain foraging operation using Eq. (8). 

 End if     

End for 

Calculate the fitness values of the current population and update the optimal 

individual xbest. 

// Somersault foraging 

For i=1 To P 

The manta rays perform somersault foraging operation using Eq. (15). 

End for 
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Updated fitness values for manta ray populations. 

Perform mutation operation on the obtained optimal value using Eq. (20). 

Perform crossover operation on the results obtained by the mutation operation 

using Eq. (22). 

Perform selection operation on the results obtained by the crossover operation 

using Eq. (23). 

Updated fitness values for manta ray populations. 

t=t+1 

End while 

Output the optimal value. 

Start

Enter the parameters 
about IMRFO and ELD

Rand<0.5?

t/T<rand?

Exploring the search 
space by Eq.(9)

Cyclone foraging 
operation by Eq.(3)

Chain foraging 
operation by Eq.(1)

Smoersault foraging 
operation by Eq.(6)

t>T?

End

Start iteration

Calculate fitness and 
update optimal values

Evaluate new solutions and 
update global optimal values

Y

N

Y
N

Y

N

Mutation and Cross operation to obtain 
new individuals by Eq.(24) and Eq.(26)

Select operation to get the 
best individual by Eq.(27)

 

Figure 1. IMRFO optimization process 

4.3. Convergence performance verification of the IMRFO 
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The convergence performance of the IMRFO algorithm was proved employing five 

benchmark functions. The five benchmark functions are listed in Table 2. Additionally, this 

study compared the IMRFO technique with the state-of-the-art heuristic algorithms, such as 

MRFO, PSO, tunicate swarm algorithm (TSA) (Kaur et al., 2020), sailfish optimizer (SFO) 

(Shadravan et al., 2019) and Harris hawk optimization (HHO) (Heidari et al., 2019). The 

population numbers and iterations of the six algorithms are set as 30 and 500. To obtain 

more objective convergence results, each optimization algorithm is implemented 30 times 

for each benchmark function. The average running time (ta), minimum value, maximum value, 

average value and standard deviation (std) obtained by each algorithm in the 30 runs are 

counted. The statistical results are summarized in Table 3. 

Table 2. CEC 2005 benchmark functions 

No Equations Dimension Range Optimum 

1  1 max ,1l lF k l n=    30 [-100,100] 0 

2 
1

2 2 2

2 1

1

[100 ( ) ( 1) ]
n

l l l

l

F k k k
−

+

=

=  − + −  30 [-10,10] 0 

3 
4

3

1

[0,1]
n

l

l

F lk random
=

= +  30 [-1.28,1.28] 0 

4 4

1

- ( sin( ))
n

l l

l

F k k
=

=   30 [-500,500] -12569.48 

5 

30
2

5 1

1

1
2 2 2

1

(10sin ( ) ( , 10,100, 4)

( 1) (1 10sin ( 1)) ( 1) )

l

l

n

l l n

l

F k u k
n

k k k






=

−

=

= + +

− + + + −





K

 30 [-50,50] 0 

6 2

6

1

n

l

l

F k
=

=  30 [-100, 100] 0 

7 7

1 1

nn

l l

l l

F k k
= =

= +   30 [-10, 10] 0 

8 
2

8

1

[ 10 10cos(2 )]
n

l l

l

F k k
=

= + −  30 
[-5.12, 

5.12] 
0 

9 
2

9

1 1

1
cos( ) 1

4000

nn
l

l

l l

k
F k

l= =

= − +   30 [-600, 600] 0 

Table 3. Statistics of convergence performance test results 

F Algorithm Minimum Maximum Average std ta /s 

F1 

PSO 0.04 0.31 0.16 0.08 0.06 

TSA 1.00E-02 2.29 0.27 0.43 0.12 

MRFO 5.11E-214 1.22E-195 4.08E-197 0 0.16 

SFO 1.77E-08 7.11E-06 1.49E-06 1.54E-06 0.31 

HHO 6.02E-57 8.31E-48 3.00E-49 1.51E-48 0.13 

IMRFO 0 0 0 0 0.45 

F2 

PSO 18.68 166.97 44.33 34.19 0.06 

TSA 26.34 28.88 28.32 0.81 0.12 

MRFO 15.47 18.69 17.4 0.74 0.17 

SFO 1.90E-03 0.16 3.80E-02 4.08E-02 0.33 
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HHO 9.88E-06 9.72E-02 0.01 1.84E-02 0.19 

IMRFO 1.15E-10 0.03E-06 6.29E-08 1.91E-07 0.48 

F3 

PSO 0.07 0.54 0.23 0.13 0.09 

TSA 3.40E-03 1.72E-02 9.90E-03 3.60E-03 0.17 

MRFO 1.21E-06 2.34E-04 4.16E-05 4.36E-05 0.25 

SFO 2.67E-05 1.70E-03 4.84E-04 4.09E-04 0.41 

HHO 3.73E-06 8.25E-04 1.77E-04 1.77E-04 0.27 

IMRFO 6.80E-07 8.84E-05 3.15E-05 2.60E-05 0.60 

F4 

PSO -118.36 -107.14 -115.12 3.22 0.07 

TSA -4.50E+03 7.11E+03 -6.05E+03 622.20 0.12 

MRFO -9.88E+03 -7.25E+03 -8.58E+03 648.33 0.16 

SFO -3.03E+03 -4.62E+03 -3.74E+03 332.21 0.35 

HHO -1.25E+04 -1.25E+04 -1.25E+04 0.76 0.19 

IMRFO -1.25E+04 -1.25E+04 -1.25E+03 0 0.47 

F5 

PSO 9E-16 0.1 0.01 0.03 0.18 

TSA 1.18 15.33 7.87 3.72 0.29 

MRFO 7.52E-14 4.56E-11 3.38E-11 8.13E-12 0.48 

SFO 1.54E-09 0.21 1.43E-02 4.36E-02 0.62 

HHO 8.19E-09 7.21E-05 8.21E-06 1.59E-05 0.59 

IMRFO 1.62E-32 1.59E-29 8.88E-31 3.05E-30 0.98 

Continued Table 3. Statistics of convergence performance test results 

F Algorithm Minimum Maximum Average std ta /s 

F6 

PSO 493.53 2.82E+03 1.69E+03 633.13 0.05 
TSA 5.46E-24 1.84E-20 1.63E-21 3.48E-21 0.10 

MRFO 0 0 0 0 0.15 
SFO 6.73E-14 7.18E-10 8.05E-11 1.75E-10 0.34 
HHO 6.05e-109 1.58e-88 5.27E-90 2.88E-89 0.11 

IMRFO 0 0 0 0 0.46 

F7 

PSO 15.89 60.52 29.68 9.58 0.06 
TSA 2.81E-15 4.69E-13 9.93E-14 1.12E-13 0.10 

MRFO 1.05E-217 1.83E-206 1.12E-207 0 0.17 
SFO 4.22E-07 1.10E-04 4.01E-05 3.24E-05 0.31 
HHO 1.17E-62 7.59E-49 2.92E-50 1.39E-49 0.11 

IMRFO 0 0 0 0 0.43 

F8 

PSO 63.98 162.18 116.03 27.32 0.06 
TSA 109.07 329.67 186.71 47.50 0.11 

MRFO 0 0 0 0 0.16 
SFO 1.14E-09 3.31E-06 4.08E-07 7.43E-07 0.34 
HHO 0 0 0 0 0.17 

IMRFO 0 0 0 0 0.42 

F9 

PSO 5.51 25.04 16.05 5.58 0.07 
TSA 1.31 13.30 3.19 7.13 0.29 

MRFO 0 0 0 0 0.18 
SFO 7.21E-15 9.19E-11 9.66E-12 1.98E-11 0.34 
HHO 0 0 0 0 0.19 
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IMRFO 0 0 0 0 0.48 

 
Table 3 showed that the convergence results of the MRFO and IMRFO algorithms were 

smaller than the results of the PSO and GOA algorithms for the unimodal benchmark 
function F1. The maximum value of IMRFO was smaller than that of MRFO. The four statistical 
indicators of IMRFO were the smallest for the unimodal test functions F2 and F3, which 
proved that IMRFO outperformed the other algorithms in terms of the robustness and 
optimization ability. 

IMRFO converged to the optimal value zero for the multimodal benchmark function F4, 
and the standard deviation was zero, which showed the strong global convergence 
performance of IMRFO. In addition, the IMRFO algorithm obtained the best statistical results 
for multimodal function F5. For benchmark functions F6 to F9, IMRFO algorithm optimized the 
global optimal value 0, which further showed strong convergence performance. As for the 
average running time, PSO algorithm consumed the shortest running time. Additionally, the 
average running time required by the MRFO and HHO algorithms was similar. The running 
time of the IMRFO algorithm increased almost doubled compared with the MRFO algorithm. 
This was because the mutation, crossover, and selection operations in the DE algorithm 
increase the computational cost to some extent. However, the computing power of current 
computers has been greatly improved with the development of science and technology, so 
the increased computing cost will hardly affect computing equipment. 

In addition, the IMRFO algorithm was compared with the state-of-the-art variants of 
meta-heuristic algorithms, such as SDWPSO (Bai et al., 2021), ASSA (Salgotra et al., 2021), 
and ITSA (Li et al., 2021). Bai et al. (2021) tested the SDWPSO algorithm in 30-dimension. For 
benchmark functions F1 to F3, the average convergence values of SDWPSO algorithm were 
5.56E-180, 2.89, and 2.15E-03, and the std values were 0, 3.17E-02, and 1.83E-03. Salgotra et 
al. (2021) verified the proposed ASSA algorithm using CEC 2005 benchmark functions, and 
testing demission was 30. For F6 and F8, the average value of ASSA algorithm converged to 
2.09E-98 and 0. The std values were 8.39E-98 and 0. Generally, the lower the test dimension 
is, the better the convergence value of the algorithm is and the shorter the running time of 
the algorithm is. Li et al. (2021) tested the ITSA algorithm in 10-dimension. For benchmark 
function F6, the average value of ITSA algorithm converged to 4.81E-229, the average running 
time was 0.49s. For benchmark function F7, and the average value of ITSA algorithm 
converged to 7.40E-127, the std was 3.19E-123, and the average running time was 0.49s. For 
benchmark function F8, and the average value of ITSA algorithm converged to 9.51, the std 
was 5.52, and the average running time was 0.49s. For benchmark function F9, and the 
average value of ITSA algorithm converged to 1.67E-12, the std was 1.27E-12, and the 
average running time was 0.51s. The comparison results revealed that the statistical results 
of IMRFO were more competitive than the state-of-the-art variants of meta-heuristic 
algorithms. 

The sine cosine adaptive strategies enhance the local search and global exploration 
performance of IMRFO during the convergence process, and the nonlinear convergence 
factor increases IMRFO’s convergence speed. Moreover, the population diversity of the 
IMRFO algorithm in the iterative process is maintained through its combination with the 
differential mutation algorithm, and the algorithm gets rid of the local extremes in the late 
iteration. Therefore, the improved IMRFO algorithm obtains the most competitive 
convergence results for unimodal and multimodal test functions. 
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5. Case studies 

 

Existing studies usually use representative 6-unit (Kaboli and Alqallaf, 2019), 13-unit (Cai 

et al., 2012; Xu et al., 2019) and 15-unit (Pothiya and Kongprawechnon, 2008; Xu et al., 2019) 

test systems to verify the effectiveness and advancement of the proposed method. Therefore, 

in this section, the 6-unit, 13-unit and 15-unit test systems are employed to prove the 

feasibility of the IMRFO-based solution method, and compares the solution results with the 

existing methods. 

Three ELD case types are used to prove the effectiveness of IMRFO. In each ELD case, 

the three algorithms run independently 50 times. The maximum, minimum and average 

values of the fuel cost are considered. In addition, the results obtained by the IMRFO 

algorithm are compared with those of the PSO and MRFO algorithms. Table 4 lists the 

parameter settings for IMRFO, MRFO and PSO according to the existing studies. 

Table 4. Algorithm parameters 

Algorithms Parameters 

IMRFO (Zhao et al., 2020) P=100, I=1000, F=0.5, R=0.8 

MRFO (Zhao et al., 2020) P=100, I=1000, S=2 

PSO (Bai et al., 2021) P=100, I=1000, A1=1, A2=1.318, w=0.5 

Table 4 revealed that the population was set as 100, and the maximum value of 

iterations for the three algorithms was set as 1000. In IMRFO, the scaling factor F and 

crossover probability R were set as 0.5 and 0.8. The somersault factor S in the MRFO was 2; 

in PSO, acceleration factors A1 and A2 were 1 and 1.318. The inertia weight w was 0.5. 

5.1 Case1- ELD model considering generator input and output nonlinearities 

This case involves a power system, for which the input and output nonlinearities of the 

generator set are considered. The power system contains 13 generator units. Table 5 lists the 

test system parameters. The other parameters have been reported by Xu et al. (2019). The 

total power demand of the power system is 2520 MW. Several state-of-the-art algorithms are 

considered as comparison methods, such as GA (Cai et al., 2012), CPSO (Cai et al., 2012), 

GWO (Xu et al., 2019), NGWO (Xu et al., 2019), SA (Victoire and Jeyakumar, 2004), and 

PSO-SQP (Victoire and Jeyakumar, 2004). Table 6 lists the optimal solution for Case 1. 

Table 5. Generator units data of Case 1 

Unit αe βe ϒe δe εe Pe.min Pe.max 

1 2.80e-04 8.10 550.00 300.00 3.50e-02 0.00 680.00 

2 5.60e-04 8.10 309.00 200.00 4.20e-02 0.00 360.00 

3 3.24e-03 8.10 307.00 200.00 4.20e-02 0.00 360.00 

4 3.24e-03 7.74 240.00 150.00 6.30e-02 60.00 180.00 

5 3.24e-03 7.74 240.00 150.00 6.30e-02 60.00 180.00 

6 3.24e-03 7.74 240.00 150.00 6.30e-02 60.00 180.00 

7 3.24e-03 7.74 240.00 150.00 6.30e-02 60.00 180.00 

8 3.24e-03 7.74 240.00 150.00 6.30e-02 60.00 180.00 

9 3.24e-03 7.74 240.00 150.00 6.30e-02 60.00 180.00 

10 2.84e-03 8.60 126.00 100.00 8.40e-02 40.00 120.00 
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11 2.84e-03 8.60 126.00 100.00 8.40e-02 40.00 120.00 

12 2.84e-03 8.60 126.00 100.00 8.40e-02 55.00 120.00 

13 2.84e-03 8.60 126.00 100.00 8.40e-02 55.00 120.00 

Table 6. The results of different algorithms of Case 1 

Unit 
FCASO 

-SQP 
GA 

PSO 

-SQP 
GWO CPSO NGWO MRFO IMRFO 

1 628.30 627.05 628.32 647.56 628.32 631.00 628.23 628.32 

2 299.79 359.40 299.05 306.40 299.83 297.94 299.29 299.20 

3 299.19 358.95 298.97 309.61 299.17 299.93 299.31 299.20 

4 159.73 158.93 159.47 175.14 159.7 157.93 157.85 159.73 

5 159.73 159.73 159.14 66.88 159.64 159.64 159.68 159.73 

6 159.73 159.68 159.27 162.75 159.67 159.23 158.88 159.73 

7 159.73 159.53 159.54 174.31 159.64 159.76 159.16 159.73 

8 159.73 159.89 158.85 61.23 159.65 159.66 158.7 159.73 

9 159.73 110.15 159.78 175.14 159.78 159.43 159.62 159.73 

10 109.07 77.27 110.96 116.76 112.46 76.88 114.89 77.40 

11 77.84 75.00 75.00 116.76 74.00 79.50 77.24 77.40 

12 55.00 60.00 60.00 99.92 56.50 86.80 91.87 87.68 

13 92.43 55.41 91.64 108.56 91.64 94.19 55.29 92.40 

Total Power 
Generation 

 (MW) 
2520.00 2520.00 2520.00 2520.83 2520.00 2520.21 2520.00 2520.00 

Optimizatio
n error 
(MW) 

0 0 0 0.83 0 0.21 0 0 

Fuel Cost 
 (%/h) 

24970.9

1 
24418.99 24261.05 24231.18 

24211.5

6 

24185.4

5 
24191.82 

24169.9

1 

Table 6 presents the fuel costs obtained by the different algorithms. The solution result 

of ELD is related to the convergence performance of the algorithm. The convergence 

performance of different algorithms is different, and the obtained ELD solution results are 

also different. Therefore, there is a certain error in the solution results of each algorithm. 

Table 6 showed that, limited by the solution performance, the scheduling schemes obtained 

by the GWO and NGWO algorithms deviate from the load demand. The fuel cost obtained by 

the IMRFO algorithm was the most competitive under the power balance constraint than the 

state-of-the-art algorithms. The fuel cost obtained by IMRFO was 24169.91 ($/h), which was 

significantly lower than that obtained using the other algorithms. In Case 1, the IMRFO 

algorithm exhibits a strong convergence performance and obtains the optimal solution for 

ELD. Table 7 presents the ratio of the optimal values of PSO, MRFO and IMRFO for Case 1. 

Table 7. Ratio of optimal values of PSO, MRFO and IMRFO in Case 1 

Load demand (MW) 
The Ratios of the optimal Fuel Cost 

PSO MRFO IMRFO 

2520 1 0.9942 0.9933 
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The smaller the value of the optimal fuel ratio is, the better the economy of the 

scheduling method obtained by the algorithm is. The ratio of the optimal fuel cost of the PSO, 

MRFO and IMRFO algorithms was 1: 0.9942: 0.9933, indicating that the optimal fuel cost 

obtained by IMRFO was the most competitive. Due to the large scale of the power system, 

even a small reduction in the fuel cost may bring notable economic benefits for the power 

system. Table 7 shows that IMRFO more effectively solves ELD problems than PSO and MRFO. 

Table 8 shows the statistical results in 50 experimental runs. 

Table 8. Statistical results of multiple algorithms in Case 1 

Algorithm 
Fuel cost ($/h) 

Minimum Average Maximum 

FCASO-SQP 24190.63 - - 

GA 24418.99 - - 

PSO-SQP 24261.05 - - 

GWO 24231.18 24442.08 32942 

CPSO 24211.56 - - 

NGWO 24185.45 24366.12 - 

MRFO 24172.04 24335.72 24728.75 

IMRFO 24169.91 24330.79 24620.09 

In the 50 tests, IMRFO’s statistical results were superior to those of MRFO, presenting 

that the convergence ability of IMRFO was enhanced. The sine and cosine adaptive strategies 

enhance the adaptive capability of the IMRFO algorithm, which makes the IMRFO algorithm 

more suitably balance the local mining and global exploration capabilities during the iterative 

process. The PSO, MRFO and IMRFO convergence curves are shown in Figure 2.  

 
Figure 2. IMRFO, MRFO, and PSO convergence curves in Case 1 

Figure 2 revealed that the convergence curve of IMRFO was smoother than that of PSO 

and MRFO. The convergence curve of MRFO exhibited the lowest convergence speed. The 

PSO converged after 280 generations; however, the convergence accuracy was low. IMRFO 

exhibited the highest convergence speed than the MRFO and PSO algorithms, and the 

iterative curve starts to converge after approximately 230 generations. This phenomenon 
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occurs because the nonlinear convergence factor improves the convergence speed of the 

IMRFO algorithm, enabling the IMRFO algorithm to promptly converge to the optimal value. 

The distribution of the results obtained using IMRFO in 50 experimental runs is shown in 

Figure 3. The fuel cost obtained by IMRFO fluctuates between 24160.00($/h) and 

24700.00($/h). The small fluctuation range highlights that the IMRFO algorithm exhibits a 

strong robustness. In Case 1, the IMRFO algorithm can obtain a satisfactory solution of the 

ELD problem. 

 
Figure 3. Distribution of results obtained by IMRFO for Case 1 

 

5.2 Case 2- ELD model considering the ramp rate constraint and transmission loss 

In Case 2, the ELD model’s constraint conditions consider the slope rate constraint and 

transmission loss in the objective function. Compared with that in Case 1, the constructed 

ELD model in Case 2 is more complicated and necessitates a higher solving performance of 

the algorithm. The test system in Case 2 contains six generation sets. Table 9 lists the 

parameters of the test system, and Table 10 presents the transmission loss matrices of the 

test system. The parameters of the test system have been detailed in the literature (Kaboli 

and Alqallaf, 2019). The total power demand of the test system in Case 2 is 1263 MW. In Case 

2, GA, PSO (Gaing, 2003), SA (Victoire and Jeyakumar, 2004), GWO, and GWO II (Xu et al., 

2019) are used as comparison algorithms. 

Table 9. Generator units data of Case 2 

Unit αe βe ϒe URe DRe 

1 240.00 7.00 7.00e-03 80.00 120.00 

2 200.00 10.00 9.50e-03 50.00 90.00 

3 220.00 8.50 9.00e-03 65.00 100.00 

4 200.00. 11.00 9.00e-03 50.00 90.00 

5 220.00 10.50 8.00e-03 50.00 90.00 

6 190.00 12.00 7.50e-03 50.00 90.00 
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Table 10. Transmission loss matrices of Case 2 

B1 

1.70e-03 1.20e-03 7.00e-04 -1.00e-04 -5.00e-04 -2.00e-04 

1.20e-03 1.40e-03 9.00e-04 1.00e-04 -6.00e-04 -1.00e-04 

7.00e-04 9.00e-04 3.10e-03 0.00 -1.00e-03 -6.00e-04 

-1.00e-04 1.00e-04 0.00 2.40e-03 -6.00e-04 -8.00e-04 

-5.00e-04 -6.00e-04 -1.00e-03 -6.00e-04 1.29e-02 -2.00e-04 

-2.00e-04 -1.00e-04 -6.00e-04 -8.00e-04 -2.00e-04 1.50e-03 

B2 -0.39 -0.13 0.70 0.06 0.22 -0.66 

B3 5.60e-03 

 

Table 11. The results of different algorithms of Case 2 

Unit GA PSO SA GWO NPSO GWOⅡ MRFO IMRFO 

1 474.81 447.50 478.13 446.63 447.47 446.91 449.86 447.79 

2 178.64 173.32 163.02 171.77 173.10 172.10 173.51 173.31 

3 262.21 263.47 261.71 264.67 262.68 263.89 261.68 263.45 

4 134.28 139.06 125.77 141.34 139.42 139.82 139.15 139.05 

5 151.90 165.48 153.71 166.54 165.30 164.40 166.20 165.46 

6 74.18 87.13 93.80 85.00 87.98 88.82 85.49 87.12 

Total Power 

Generation 

(MW) 

1276.03 1276.01 1276.13 1276.32 1275.96 1276.02 1275.89 1275.88 

Loss (MW) 13.02 12.96 13.13 13.31 12.95 13.01 12.96 12.95 

Optimization 

error (MW) 
0.01 0.05 0 0.01 0.01 0.01 0.07 0.07 

Fuel Cost 

(%/h) 
15459.00 15450.00 15461.10 15450.07 15450.00 15449.96 15449.55 15,448.98 

For case 2, the optimization error of the SA algorithm is the smallest, but the economy 

of the scheduling strategy is the worst. The optimization error of the IMRFO algorithm is 

0.07MW, and the economy of the resulting dispatch strategy is the most competitive. The 

fuel cost of IMRFO was 15448.9827($/h) that was smaller than the fuel cost obtained by the 

state-of-the-art methods. 

The ratio of the optimal fuel cost through the PSO, MRFO and IMRFO algorithms is 

presented in Table 12. 

Table 12. Ratio of optimal values of PSO, MRFO and IMRFO in Case 2 

Load demand (MW) The Ratios of the optimal Fuel Cost 

1263 
PSO MRFO IMRFO 

1 1 0.9990 

The rate of optimal fuel cost reflects the economy of the scheduling method obtained 

by the algorithm, and the smaller the value is, the more significant the effect of reducing the 

fuel cost of the power system is. Table 12 showed the optimal fuel cost obtained by different 
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algorithms. Although the consideration of the ramp rate constraint and transmission loss 

increased the difficulty of solving the ELD model, the IMRFO algorithm yielded a satisfactory 

solution. The optimal fuel cost obtained in Case 2, as indicated in Table 12, clarified that the 

MRFO and IMRFO algorithms exhibited a superior solving ability for the ELD model 

considering slope rate constraints and transmission loss, and both algorithms achieved 

satisfactory solutions. The optimal fuel cost ratios of PSO, MRFO and IMRFO are 1:1:0.9990. 

The optimal fuel cost obtained by IMRFO was 0.10% smaller than that obtained by PSO. 

Compared with that obtained using the PSO algorithm, the solution obtained by IMRFO was 

more economical. The statistical results of each algorithm in 50 experimental runs are 

presented in Table 13. 

Table 13. Statistical results of existing algorithms in Example 2 

Algorithms 
Fuel cost ($/h) 

Minimum Average Maximum 

GA 15524.00 15469.00 15459.00 

PSO 15450.00 15454.00 15492.00 

SA 15461.00 15488.98 15545.50 

GWO 15450.07 15453.41 15487.14 

NPSO 15450.00 15452.00 15454.00 

GWOⅡ 15449.96 15450.48 15452.41 

MRFO 15449.44 15449.48 15449.60 

IMRFO 15448.98 15448.98 15448.98 

The statistical results of the IMRFO algorithm demonstrated its strong convergence 

ability and robustness compared with the existing methods. In Case 2, the minimum fuel cost 

was obtained in 50 runs, which was indicative of strong solution ability. The sine and cosine 

adaptive strategies render the IMRFO algorithm more likely to get rid of local extreme 

solution when solving a more complex ELD problem, and thus, the algorithm converges to a 

higher quality solution. 

Figure 4 presented the convergence curves of the PSO, MRFO and IMRFO algorithms. 

The iterative curve of the IMRFO algorithm declined more rapidly than that of the PSO and 

MRFO algorithms. The iterative curves of MRFO and PSO converged to the best solution after 

the 300th and 200th generations. The iterative curves of IMRFO promptly converged to the 

best solution after the 100th generation and exhibited the highest convergence speed. The 

IMRFO algorithm considerably enhanced the convergence speed of the MRFO algorithm 

because the nonlinear convergence factor increased IMRFO’s convergence speed of during 

the iterative process. 
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Figure 4. IMRFO, MRFO, and PSO Convergence curves in Case 2 

 

Figure 5. Distribution of results obtained by IMRFO and MRFO in Case 2 

The distribution of the fuel cost obtained by the IMRFO and MRFO algorithms in 50 

experimental runs is presented in Figure 5. The fluctuation range of the fuel cost obtained 

using the IMRFO algorithm in 50 runs was small, indicating that the algorithm exhibits a high 

robustness. The best fuel cost results obtained by the MRFO algorithm in 50 runs showed 

quite differences, and the fuel cost curve fluctuated considerably, indicating the poor 

robustness of the algorithm. 

5.3 Case 3- ELD model considering the inequality and equality constraints of the generating 

units 

Case 3 involves a medium power system containing 15 generator units. The inequality 

and equality constraints of the generator unit are considered. Table 14 lists the test system 

parameters in Case 3 (Xu et al., 2019). The total power demand of the test system is 2630 

MW. Compared with those in Cases 1 and 2, the ELD model in Case 3 involves the maximum 

number of constraints, largest system scale, and highest complexity. Therefore, Case 3 can 

effectively test the solving performance of the IMRFO-based approach. In addition, the 
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state-of-the-art methods are employed as comparison algorithms, such as GA (Gaing, 2003), 

PSO (Gaing, 2003), SA (Pothiya and Kongprawechnon, 2008), TS (Pothiya and 

Kongprawechnon, 2008), NGWO (Xu et al., 2019), and SGA (Kuo, 2008). Table 15 lists the fuel 

costs obtained by different algorithms. 

Table 14. Generator units data of Case 3 

Unit P0
2600.e URe DRe Pe.min Pe.max Prohibited Areas 

1 400 80 120 150 455 -- 

2 300 80 120 150 455 
[185,255]; [305,355]; 

[420,450] 

3 105 130 130 20 130 -- 

4 100 130 130 20 130 -- 

5 90 80 120 150 470 
[180,200]; [305,335]; 

[390,420] 

6 400 80 120 135 460 
[230,255]; [365,395]; 

[430,455] 

7 350 80 120 135 465 -- 

8 95 65 100 60 300 -- 

9 105 60 100 25 162 -- 

10 110 60 100 25 160 -- 

11 60 80 80 20 80 -- 

12 40 80 80 20 80 [30,40]; [55,65] 

13 30 80 80 25 85 -- 

14 20 55 55 15 55 -- 

15 20 55 55 15 55 -- 

Table 15. The running results for Case 3 

Unit GA PSO SA TS NGWO SGA MRFO IMRFO 

1 415.31 439.12 453.66 453.54 455.00 455.00 455.00 455.00 

2 359.72 407.97 377.61 371.98 380.00 380.00 380.00 380.00 

3 104.43 119.63 120.37 129.78 130.00 130.00 130.00 130.00 

4 74.99 129.99 126.27 129.34 130.00 130.00 130.00 130.00 

5 380.28 151.07 165.3 169.59 160.54 170.00 170.00 170.00 

6 426.79 459.99 459.25 457.99 460.00 460.00 460.00 460.00 

7 341.32 425.56 422.86 426.89 430.00 430.00 430.00 430.00 

8 124.79 98.57 126.40 95.17 84.19 106.25 60.32 60.48 

9 133.14 113.49 54.47 76.84 57.78 25.00 69.48 69.43 

10 89.26 101.11 149.09 133.5 146.78 160.00 154.04 160.00 

11 60.06 33.91 77.96 68.31 80.00 80.00 80.00 80.00 

12 50.00 79.96 73.95 79.68 80.00 80.00 80.00 80.00 

13 38.77 25.00 25.00 28.31 32.75 25.00 26.79 25.05 

14 41.94 41.41 16.06 17.77 17.30 15.00 15.00 15.00 

15 22.64 35.61 15.02 22.84 15.48 15.00 18.94 15.02 

Total Power 
Generation 

2668.40 2662.40 2663.29 2661.53 2660.54 2661.30 2659.60 2660.04 
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(MW) 

Ploss 
(MW) 

38.28 32.43 33.27 31.41 30.01 31.26 29.60 30.04 

Optimizati
on error 

(MW) 
0.12 0.03 0.02 0.12 0.53 0.04 0 0 

Fuel Cost 
($/h) 

33113.

00 

32858.

00 

32786.

00 

32762.

00 

32712.

00 

32711.

00 

32702.

40 

32697.

92 

For case 3, the optimization error of the IMRFO algorithm and the MRFO algorithm is 

the smallest. In addition, the IMRFO algorithm achieved the lowest fuel cost, with a value of 

32697.93 ($/h), indicating that the economics of the scheduling strategy obtained by IMRFO 

are the most competitive. Because the ELD model in Case 3 is more complicated, the 

algorithms easily fall into local extremes during the solution process, thereby reducing the 

accuracy of the algorithms. However, even in Case 3, the IMRFO algorithm exhibited a high 

solution performance and obtained the most competitive solution. This phenomenon occurs 

because the IMRFO algorithm has stronger local search and global optimization capabilities. 

Moreover, the mutation strategy ensures the diversity of the IMRFO algorithm and prevents 

the IMRFO algorithm from falling into a local extremum prematurely, thereby enabling the 

IMRFO algorithm to yield a superior solution for ELD. Table 16 presents the optimal fuel cost 

ratios of PSO, MRFO and IMRFO. 

Table 16. Ratio of optimal values of PSO, MRFO and IMRFO in Case 3 

Load demand (MW) 
The Ratios of the optimal Fuel Cost 

PSO MRFO IMRFO 

2630 1 0.9952 0.9951 

As revealed in Table 16, the optimal fuel cost ratios of PSO, MRFO and IMRFO were 

1:0.9952:0.9951, which indicated that the optimal fuel cost calculated by IMRFO was 0.49% 

smaller than that of PSO. The IMRFO algorithm reduces the fuel cost and enhances the 

economic benefits for the power system to a certain extent. Compared with cases 1 and 2, 

the ELD model in case 3 is more complex and more difficult to solve. However, for case 3, the 

IMRFO algorithm can still obtain the lowest fuel cost, which shows the effectiveness and 

advancement of the IMRFO algorithm for solving ELD problems. The maximum, minimum 

and average values of each algorithm in the 50 experiment runs are shown in Table 17. 

Table 17. Statistical results of multiple algorithms in Case 3 

Method 
Fuel cost ($/h) 

Minimum Average Maximum 

GA 33113.00 33228.00 33337.00 

PSO 32858.00 33039.00 33331.00 

SA 32786.00 32869.00 33029.00 

TS 32762.00 32822.00 32942.00 

NGWO 32830.00 32752.00 32712.00 

SGA 32711.00 32802.00 33005.00 

MRFO 32698.00 32744.00 32831.00 
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IMRFO 32697.06 32697.28 32700.29 

Table 17 presented that although Case 3 was a complex ELD problem involving 15 

generator sets, the IMRFO algorithm obtained the optimal solution. The IMRFO algorithm 

reduced the fuel cost of the generator sets in Case 3 to 32697.28$/h, which was significantly 

lower than the fuel costs obtained by other approaches, and enhanced the economics of the 

generator sets. In addition, the maximum, average, and minimum fuel costs obtained by the 

IMRFO-based approach were similar, indicating that the algorithm exhibits a stable solution 

performance and high robustness. Case 3 further verified the effectiveness of the 

IMRFO-based approach for solving complex ELD problems. Figure 6 shows the convergence 

curves of the PSO, MRFO and IMRFO algorithms. 

 
Figure 6. IMRFO, MRFO, and PSO convergence curves in Case 3 

The convergence curve of the IMRFO algorithm revealed in Figure 6 was smoother than 

that of the PSO and MRFO algorithms. The curves of the MRFO, PSO and IMRFO algorithms 

converged to the optimal value after 850, 400, and 350 generations. The IMRFO algorithm 

converged to the best solution with a higher speed, however, the MRFO-based approach 

converged to the best solution in later iterations. The IMRFO algorithm exhibited a higher 

convergence speed than the MRFO algorithm. For more complex ELD problems, the 

nonlinear convergence factor and adaptive strategy make the IMRFO algorithm converge to 

the best solution with a higher speed and exhibit a higher solution accuracy. Figure 7 shows 

the distribution of the fuel cost obtained by the IMRFO and MRFO algorithms in 50 

experimental runs. 
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Figure 7. Distribution of results obtained by IMRFO and MRFO in Case 3 

Figure 7 revealed that the fuel cost curve obtained by the IMRFO algorithm did not 

exhibit notable fluctuations, indicating that the IMRFO obtained similar solutions in 50 tests, 

thereby exhibiting a high solution stability and robustness of the IMRFO algorithm. However, 

the fuel cost curve obtained using the MRFO algorithm fluctuated sharply, indicating that the 

solutions obtained by the MRFO algorithm were different in 50 runs, indicating the low 

solution stability and robustness. 

6. Concluding remarks 

This study contributes in proposing the IMRFO-based approach for solving the ELD since 

the ELD model contains complex objective functions and constraints. Intelligent 

algorithm-based solution strategy has developed into an effective way to solve the ELD 

problem due to its discontinuous and nondifferentiable nature. However, the high complexity 

of the ELD problems brings challenges to the intelligent algorithm-based solution strategy, 

and makes algorithms easily fall into local optimal solutions, thereby reducing the solving 

effect. In addition, it is necessary to improve the economy of dispatching strategy in order to 

achieve cleaner and sustainable power production. Hence, this study presents the 

IMRFO-based approach to solve the ELD problem, and three cases are applied to prove the 

effectiveness of the proposed approach. The obtained conclusions are as follows: 

• IMRFO-based solution approach is proposed for solving the ELD problems with different 

constraints. 

• The economic benefits of the power system are effectively improved by reasonably 

distributing generator units’ output. 

• The fuel costs calculated using IMRFO-based strategy are 24169.91($/h), 15448.98($/h) 

and 32697.92($/h) for the three cases containing 13, 6 and 15 generator units. 

• High-quality solutions of the ELD problems efficiently increases the economic benefits of 

the power system and reduces the energy waste. 

The IMRFO-based solution approach contributes in reasonably allocating the generator 

output, reducing the fuel costs, and enhancing the economic benefits of power systems. 

However, this study involves the following limitations. First, when the ELD model contains 

multiple constraints and objective functions, the complexity of the model increases, and the 
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algorithm's solving ability is required to be high. Therefore, the ability of IMRFO algorithm to 

avoid extreme local value solution needs to be further strengthened to improve the effect of 

IMRFO algorithm in solving complex ELD problems. Second, the adaptability of the solution 

algorithm is different for power systems of different scales. If the scalability of the solution 

algorithm is poor, accurate results cannot be obtained. Hence, the scalability of the proposed 

solution approach should be further enhanced to adapt to different scale power systems. 

Third, when constructing the ELD model, the pollutant gas emission objective function is not 

considered, so the constructed ELD model cannot reflect the environmental protection of the 

power system. Future research will focus on resolving the above limitations.  
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