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Optically addressable spins are a promising platform for quantum information science due to their
combination of a long-lived qubit with a spin-optical interface for external qubit control and readout. The
ability to chemically synthesize such systems—to generate optically addressable molecular spins—offers a
modular qubit architecture which can be transported across different environments and atomistically
tailored for targeted applications through bottom-up design and synthesis. Here, we demonstrate how the
spin coherence in such optically addressable molecular qubits can be controlled through engineering their
host environment. By inserting chromium (IV)-based molecular qubits into a nonisostructural host matrix,
we generate noise-insensitive clock transitions, through a transverse zero-field splitting, that are not present
when using an isostructural host. This host-matrix engineering leads to spin-coherence times of more than
10 μs for optically addressable molecular spin qubits in a nuclear and electron-spin-rich environment. We
model the dependence of spin coherence on transverse zero-field splitting from first principles and
experimentally verify the theoretical predictions with four distinct molecular systems. Finally, we explore
how to further enhance optical-spin interfaces in molecular qubits by investigating the key parameters of
optical linewidth and spin-lattice relaxation time. Our results demonstrate the ability to test qubit structure-
function relationships through a tunable molecular platform and highlight opportunities for using
molecular qubits for nanoscale quantum sensing in noisy environments.
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I. INTRODUCTION

Quantum information science offers the potential to
revolutionize computational, sensing, and networking capa-
bilities [1–5]. Innovations in these areas depend, in part, on
optimization of the quantum bit, or qubit, the fundamental
unit of quantum informationprocessing, and its environment.
Solid-state color centers (such as the nitrogen-vacancy center
in diamond) offer a well-developed qubit platform with a

robust spin-optical interface for single-qubit initialization
and readout [3,6–8] and microwave-frequency spin transi-
tions for coherent control. Introducing these properties into
tunable and portable molecular systems combines the key
properties of solid-state color centers with opportunities for
optimization through bottom-up engineering of both the
qubit and its environment [9,10]. These optically addressable
molecular spin systems, or “molecular color centers,” pro-
vide Angstrom-scale precision and tunability of the local
qubit environment [11–15], offering targeted design for
applications such as nanoscale quantum sensing [16–18].
Additionally, the ground-state spin hosted in a molecule
comprises a portable qubit of <1 nm3 size, such that these
systems can be integrated into various host matrices and
hybrid material architectures [19–21].
Altering the symmetry or strain environment of solid-

state color centers has been shown to significantly enhance
qubit properties [22–25]. The portability of molecular

*These authors contributed equally to this work.
†danna@mit.edu
‡awsch@uchicago.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 12, 031028 (2022)
Featured in Physics

2160-3308=22=12(3)=031028(8) 031028-1 Published by the American Physical Society

https://orcid.org/0000-0002-1156-7243
https://orcid.org/0000-0001-6269-9054
https://orcid.org/0000-0003-1566-6932
https://orcid.org/0000-0003-0434-4575
https://orcid.org/0000-0002-8001-5290
https://orcid.org/0000-0002-2579-8835
https://orcid.org/0000-0002-8591-2687
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.12.031028&domain=pdf&date_stamp=2022-08-18
https://doi.org/10.1103/PhysRevX.12.031028
https://doi.org/10.1103/PhysRevX.12.031028
https://doi.org/10.1103/PhysRevX.12.031028
https://doi.org/10.1103/PhysRevX.12.031028
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


qubits opens up a versatile platform to achieve such
enhancements by modifying a qubit’s electronic structure
through host-matrix tuning, without altering the chemical
composition of the qubit itself. In particular, the sensitivity
of the ground-state spin to its local environment suggests
that the crystallographic symmetry of the host matrix can
be used to induce “clock transitions” which are first-order
insensitive to magnetic-field noise and, hence, enhance
spin coherence, even in noisy—e.g., nuclear spin-rich—
environments. As demonstrated in molecular qubits without
a spin-optical interface [26–28] and solid-state spin systems
[29–31], such transitions can enhance spin coherence,
reducing the need for isotopic control of the nuclear spin
environment (e.g., deuteration [32]) or high qubit dilution to
prolong coherence.
Here, we create clock transitions in optically addressable

molecular spin qubits through host-matrix-induced sym-
metry control. We use the chromium-based molecular color
center—CrðIVÞðo-tolylÞ4, 1-Cr [Fig. 1(a)]—to demon-
strate the impact of the host environment on the ground-
state spin structure. The crystallographic symmetry of 1-Cr

and its isostructural, diamagnetic host SnðIVÞðo-tolylÞ4,
1-Sn, yields ground-state spin transitions that are first-
order sensitive to magnetic-field fluctuations [13]. In
contrast, and as we outline below, inserting 1-Cr into a
nonisostructural, lower-symmetry host matrix—SnðIVÞ
ð4-fluoro-2-methylphenylÞ4, 2-Sn [Fig. 1(b)]—induces
clock transitions as a result of the creation of a significant
transverse zero-field splitting. These host-induced clock
transitions significantly enhance the spin coherence of
1-Cr in 2-Sn (which we refer to as 2) compared to
1-Cr in the isostructural 1-Sn host (which we refer to as 1).
We model this behavior from first principles using general-
ized cluster-correlation expansion methods and further
experimentally demonstrate enhanced optical contrast and
spin-lattice relaxation times for these host-matrix engineered
molecular color centers. Remarkably, the host modification
to achieve this coherence enhancement comprises inter-
change of just one hydrogen atom on the host ligands with
a fluorine atom. In fact, the nuclear spin densities of1-Sn and
2-Sn are 51.7 and 46.9 N=nm3, where N is the number of
nuclear spin-bearing atoms (see Supplemental Material for
further details [33]). Thus, the coherence enhancement arises
primarily from symmetry control by the host—without
requiring control of the nuclear spin bath—offering a path-
way for coherence-protected quantum sensing (e.g., of
electric fields and strain) in intrinsically noisy environments
(e.g., biological systems), all within a versatile molecular
platform.

II. RESULTS AND DISCUSSION

A. Host-guest control of molecular color centers

We recently demonstrated optical addressability of
molecular spin qubits comprising a chromium (Cr4þ) ion
coordinated by organic ligands in a pseudotetrahedral
geometry such as 1-Cr in Fig. 1(a) [13]. The symmetry
and tetravalent oxidation state of 1-Cr leads to a spin-triplet
(S ¼ 1) ground state, while the strong field organic ligands
generate a suitable energy level structure for optical-spin
initialization and readout. As a result, the ground state can
be optically initialized and read out using spin-selective
excitation to the spin-singlet (S ¼ 0) excited state, com-
bined with photoluminescence (PL) detection, analogous to
solid-state color centers [see Fig. 1(c)] [34,35]. Specifically,
resonantly exciting these molecular spin qubits with a
narrow-linewidth laser initializes the ground state through
optical pumping: Selective excitation of a spin sublevel
[e.g., j0i in Fig. 1(c)], combined with excited-state decay,
transfers population to the other spin sublevels [e.g., j�i in
Fig. 1(c)]. Similarly, the same selective excitation enables
optical-spin readout through the resulting PL: Spin sub-
levels resonant with the laser are excited and give rise to
PL, while the detuned spin sublevels are only weakly
excited and, therefore, give rise to weak (ideally vanishing)
PL. Combined with microwave control of the ground-state
spin, these properties therefore provide a qubit which can

FIG. 1. Host-matrix engineering of optically addressable
molecular qubits. (a) Molecular structure of 1-Cr (determined
from single-crystal x-ray diffraction) with laser excitation and
emission outlined. Hydrogen atoms are omitted for clarity.
(b) Single-crystal packing diagram of 1-Cr in its isostructural
host, 1-Sn (red, left), and nonisostructural host, 2-Sn (blue,
right), showing only positions of metal centers. The cell volumes
for the representations of 1-Sn and 2-Sn are 9 and 10 nm3,
respectively. Below each cell, we show the molecular structures
of the tin host, with hydrogen atoms omitted for clarity. The
resulting ground-state spin structures (bottom) show the clock
transition (E > 0) induced in 2. (c) Energy level diagram of
chromium molecular color centers, highlighting resonant exci-
tation to, and photoluminescence (PL) from, the S ¼ 0 excited
state, and zero-field splitting of the ground-state spin sublevels.
(d) PL and photoluminescence excitation (PLE) spectra of 2
at 4 K.
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be initialized, coherently controlled, and read out in a
fashion which is compatible with single-spin detection.
For 1, the axial zero-field splitting is D ¼ 3.63 GHz,

which splits the m ¼ 0 sublevel, j0i, from the m ¼ �1
sublevels, j � 1i [Fig. 1(b)]. In the tetragonally symmetric
crystal environment of 1, the Cr4þ site contains a fourfold
improper rotational axis (S4) that enforces the transverse
zero-field splitting E to be ≃0, resulting in spin transitions
that are first-order sensitive to magnetic fields [Fig. 1(b)].
However, if jEj > 0, the degeneracy of the zero-field states
is broken: The j � 1i states hybridize to form the non-
degenerate levels j�i ¼ ð1=p2Þðj þ 1i � j − 1iÞ, which
have no first-order magnetic moment. Therefore, systems
with jEj > 0 exhibit transitions which are first-order
insensitive to magnetic fields around B ¼ 0 [Fig. 1(b)],
where B is an external magnetic field. To achieve jEj > 0
with 1-Cr, we introduce 1-Cr into a nonisostructural host
matrix, 2-Sn [Fig. 1(b)], that contains no threefold (or
higher) rotational axes such that E is no longer symmetry
constrained to zero. In fact, the metal centers in 2-Sn do not
contain any symmetry elements, such that the point group
of the tin site is C1 (see Supplemental Material [33] for
further discussion of the structure of 2-Sn and 1-Cr
incorporation sites). Here, we investigate the influence of
this broken symmetry on the resulting spin structure and
coherence times of this system.
1-Cr is synthesized as described previously [36] and

diluted in either 1-Sn [37] or 2-Sn to form dilute single
crystals of 1 and 2, respectively, with approximately
0.5%–1% 1-Cr (see Supplemental Material [33] for further
details of the sample preparation). These single crystals
are used in all subsequent experiments. Individual crystals
of 1 and 2 are mounted on a microwave coplanar wave-
guide inside an optical cryostat at approximately 4 K (see
Supplemental Material for further details [33]). We first
determine the optical structure of 2 through PL measure-
ments: Upon off-resonant excitation (785 nm), we measure
PL from the spin-singlet excited state to the spin-triplet
ground state [Fig. 1(d)]. Similar to 1, the spectrum of 2
shows a zero-phonon line (ZPL) at 1016 nm (compared to
1025 nm for 1 [13]) and a resolved phonon sideband.
Figure 1(d) shows the photoluminescence excitation (PLE)
spectrum taken by sweeping a narrow-linewidth laser
across this ZPL and detecting photons from the phonon
sideband, from which we extract an inhomogeneous broad-
ening of ≃50 GHz (full width half maximum). For all
following experiments, we address a subensemble of
molecules from this inhomogeneous distribution by excit-
ing at the ZPL maximum with a narrow-line laser and
detect the emitted photons from the phonon sideband.

B. Host-matrix-induced clock transitions
in a molecular color center

We then determine the ground-state zero-field split-
ting parameters of 2 through continuous-wave optically

detected magnetic resonance (cw ODMR). Under continu-
ous optical excitation, applying a microwave frequency on
resonance with a transition between spin sublevels of 2
increases the PL due to the mixing of the “bright” and
“dark” spin sublevels, i.e., the sublevels which are resonant
with and detuned from the laser, respectively. Figure 2(a)
shows the cw ODMR spectrum as a function of both the
magnetic field and microwave frequency, from which we
extract D ¼ 5.55 GHz and E ¼ 1.85 GHz. Importantly,
compared to 1—in which E ¼ 0—the use of a lower-
symmetry host matrix in 2 generates a significant transverse
zero-field splitting, despite the minor modification—i.e.,
single-site fluorination—to the host-matrix ligands. In
fact, 2 displays the largest possible transverse zero-field
splitting for its axial zero-field parameter, i.e., jEj ¼ jDj=3,
highlighting the significant symmetry breaking afforded
by the host matrix. We note that, in this system where
jEj ¼ jDj=3, two of the spin transitions are degenerate at
zero field, so we observe two resonances—at D − E ¼ 2E
and Dþ E. This degeneracy is lifted under an applied
magnetic field. We further note that, since the signs of D
and E are not determined in our experiments and do not
influence our results, we takeD,E > 0 for concreteness. The
field-frequency ODMR map [Fig. 2(a)] highlights the
insensitivity of the spin transitions to magnetic field:
To first order, the energies of the j0i, j−i, and jþi sublevels
do not shift with increasing field, in contrast to the linear
Zeeman shift exhibited for E ¼ 0 in 1.

FIG. 2. Host-matrix engineered clock transitions in 2. (a) Con-
tinuous-wave optically detected magnetic resonance performed
on a single crystal of 2 as a function of the magnetic field
and microwave frequency overlaid with simulated spin transi-
tion frequencies (dashed lines). The ODMR spectrum yields
D ¼ 5.55 GHz and E ¼ 1.85 GHz. (b) Calculated spin-sublevel
energies as a function of the magnetic field highlighting their
magnetic-field insensitivity. (c) Pulsed ODMR at zero magnetic
field demonstrating an optical contrast of approximately 40%.
Inset: pulsed ODMR sequence comprising optical initialization
(init), microwave, and optical readout (read) pulses.
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C. Host-matrix enhanced spin coherence

We now illustrate how this behavior significantly enhan-
ces the spin coherence (T2) in 2 compared to 1. As a
prerequisite for optically detected spin-coherence mea-
surements, we perform pulsed ODMR by applying the
pulse sequence outlined in Fig. 2(c). A laser pulse initi-
alizes the subensemble of spins, which are then rotated by a
microwave π pulse before being read out through the PL
with a second laser pulse. (π-pulse lengths are determined
from Rabi oscillation measurements—see Supplemental
Material [33].) Figure 2(c) shows the pulsed ODMR
spectrum as a function of the microwave frequency at
B ¼ 0 for the (doubly degenerate) low-frequency transi-
tions (at D − E ¼ 2E ¼ 3.7 GHz). We find an ODMR
contrast of 40% (defined such that the maximum possible
contrast is 100%; see Supplemental Material [33]), which is
approximately an order of magnitude improvement from
our previous demonstration of pulsed ODMR with 1. To
measure the spin coherence of 2, we replace the microwave
π pulse in the pulsed ODMR sequence with a Hahn echo—
i.e., π=2 − τ − π − τ sequence, where 2τ is the free-evo-
lution time—followed by an additional π=2 pulse to project
coherences onto populations for optical readout [Fig. 3(b)].
At zero magnetic field, we measure a ground-state spin-
coherence time T2 ¼ 10.6� 0.2 μs, despite the nuclear
spin-rich environment and the relatively high Cr concen-
tration (approximately 1%, ≃1–2 × 1019Cr4þ=cm3). (For
further details on the role of the transition degeneracy in
these experiments, see Supplemental Material [33].)
In contrast, we measure a significantly shorter T2 ¼
2.0� 0.1 μs for 1 at zero magnetic field, indicating the
effectiveness of the clock transition in 2 for enhancing spin
coherence.
To further understand the dependence of zero-field

spin coherence on the transverse zero-field splitting, we
investigate two other molecular systems: CrðIVÞð2; 3-
dimethylphenylÞ4 diluted in Snð2; 3-dimethylphenylÞ4 (3)

and CrðIVÞð2; 4-dimethylphenylÞ4 diluted in Snð2; 4-
dimethylphenylÞ4 (4). The additional methyl group on
the ligands of these compounds induces lower-symmetry
crystal packing than 1, and, consequently, E ≃ 0.5 GHz in
both cases [13], providing additional test beds of the role of
the transverse zero-field splitting in enhancing spin coher-
ence, here from tuning the qubit rather than the host matrix.
Figure 3(c) plots the zero-field coherence time for 1, 2,
and 3, showing that T2 increases with increasing E (see
Supplemental Material [33] for a discussion of the role ofD
on T2). 4 shows a similar T2 as 3 due to its very similar E
value (see Supplemental Material [33]). Generally, these
four systems highlight paths to engineer even longer
coherence times through independently optimizing both
the host matrix and the chemical composition of the qubit.
To further understand the spin coherence of these

molecular color centers interacting with their nuclear spin
bath, we use first-principles generalized cluster correlation
expansion (gCCE) calculations with Monte Carlo bath state
sampling using the PyCCE package [38]. Starting from the
crystal structure for these compounds, we calculate the
electron-nuclear hyperfine couplings of the Cr-containing
molecule using density functional theory (DFT) with the
SCAN functional. Using DFT-computed spin densities, we
calculate the interactions between the Cr center and nuclear
spins in the host matrix and use point dipole-dipole
interactions between nuclear spins [33]. The calculated
zero-field T2 as a function of transverse zero-field splitting
E shows good agreement with the experimental values
[Fig. 3(c)]. Since the calculations consider only the nuclear
spin bath, they highlight that Cr electronic spins or electric-
field- or strain-induced noise are not a major limitation on
the coherence in our experiments [33]. Interestingly, the
calculations also allow us to determine the distance at
which nuclear spins play a significant role in determining
the coherence. By varying the number of nearest-neighbor
molecules included in the calculations, we find that T2

FIG. 3. Host and chemical tuning of transverse zero-field splitting to enhance coherence. (a) Molecular structures of the host matrix
for 1, 2, and 3 with their simulated spin energy levels as a function of the magnetic field. (b) Hahn-echo traces for single crystals of 1, 2,
and 3 at zero magnetic field. (c) Zero-field spin coherence as a function of the transverse zero-field splitting along with the theoretical
dependence calculated from first-principles gCCE methods (using the large D limit; see Supplemental Material). (d) Experimental and
calculated T2 as a function of the magnetic field.
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converges when 3–4 nearest neighbors are included,
corresponding to a radius of approximately 1.5 nm around
the Cr center (see Supplemental Material for further
details [33]).
To the best of our knowledge, the behavior of ground-

state electronic spin coherence in the low magnetic field
regime (from 0 to approximately 100 mT) is largely
unexplored in molecular systems, but, as demonstrated
in solid-state color centers, is an important domain for
applications in quantum information science [39,40]. To
explore this regime in molecular color centers, we measure
T2 as a function of the magnetic field for 1, 2, and 3. In each
case, T2 decreases with increasing magnetic field between
0 and 30 mT [Fig. 3(d)]. The good agreement between the
experimental data and the gCCE calculations indicates that
this behavior arises from the magnetic-field-dependent
dynamics of the nuclear spin bath, combined with moving
away from the clock transitions of 2 and 3. A similar drop
in T2 with field due to nuclear spin bath dynamics—albeit
at a lower field scale—has been studied in the nitrogen-
vacancy center in diamond (which has E ¼ 0) [41]. In this
case, T2 drops with magnetic field to a minimum at
approximately 0.1 mT due to nuclear spin bath dynamics,
before recovering at approximately 10 mT, when the
nuclear Zeeman splitting dominates over the electron-
nuclear and nuclear-nuclear spin interactions [41]. Our
observations in molecular color centers can be assigned to a
similar mechanism—albeit with a larger characteristic field
scale due to the stronger spin interactions [42]—combined
with the increased noise sensitivity for 2 and 3 as they shift
from their zero-field clock transitions. Because of the
higher field scale involved for these molecular color
centers, we see only a reduction in T2 in the measured
field range. We note, however, that electron spin resonance
measurements performed on 1 at higher magnetic fields
(≃400 mT) yield T2 ≃ 2.5 μs [15], consistent with the
theoretical prediction of a high-field recovery in T2 [41]
(see Supplemental Material for further details [33]).

D. Key parameters to optimize molecular
spin-optical interfaces

Having shown how host-matrix engineering can enhance
the coherence of molecular color centers, we now explore
additional key properties of 2. The optical linewidth is a
crucial parameter in these molecular systems: It determines
the readout and initialization fidelity by setting the spin
selectivity of the excitation. Quantifying this linewidth is,
therefore, an important step to further optimize molecular
color centers. To measure the homogeneous optical line-
width (i.e., that of the subensemble of spins probed under
resonant excitation), we perform a two-laser-tone experi-
ment. We apply a fixed laser tone, at frequency fL, along
with a second laser tone, detuned byΔfL, which we sweep.
When the difference in laser frequencies, ΔfL, matches the
spin transition frequencies, the second laser tone excites

population that is shelved in other (dark) spin sublevels,
thus increasing the PL. Similarly, when ΔfL ¼ 0, the PL is
lower than for a finite detuning, since the population is
already shelved in the dark sublevels by the first laser tone.
The linewidths of these spectral peaks and holes enable us
to determine the homogeneous optical linewidth of the
subensemble—which determines the spin-optical contrast
—from the inhomogeneously broadened ensemble (Fig. 4).
To mitigate the slope in the PL traces [Fig. 4(c)] caused by
the inhomogeneous broadening, we use a differential
ODMR measurement: We apply a fixed microwave drive
fMW at the frequency of one of the spin transitions and
measure the ODMR signal as we sweep ΔfL. From a fit to
these measurements, we extract an optical linewidth of
≃3 GHz for 2 [Fig. 4(d)—see Supplemental Material for
further details [33]]. Importantly, since this is comparable
to the zero-field splitting parameters, this indicates promise
for significantly improving molecular spin-optical interfa-
ces by lowering linewidths. Future work will focus on
understanding the electron-phonon and electron-electron
dephasing mechanisms contributing to this linewidth
(i.e., optical coherence) [43]. We note that similar spin-
flip, intraconfigurational optical transitions in coordination
compounds exhibit homogeneous linewidths on the order
of 10–100 MHz [44,45], suggesting avenues for future
improvements through, e.g., lower temperatures, selective
deuteration [46], or reduced Cr4þ concentration.
We next measure the resulting optical contrast of 2—

which provides a lower bound on the spin polarization—by
applying an optical pulse (2 ms long) and measuring the
emitted photons during this pulse, followed by a wait time
much greater than the spin-lattice relaxation time for
ground-state equilibration before the next repetition of

FIG. 4. Extracting the homogeneous optical linewidth for 2.
(a) ODMR showing the relevant microwave transitions
(B ∼ 70 mT). (b) Schematic of the two-color experiments showing
a fixed laser tone fL, along with a sideband detuned byΔfL, which
is swept. (c) PL as a function ofΔfL with and without a microwave
drive (fMW;2 ≃ 4.6 GHz). (d) ODMR as a function of ΔfL for
applied microwave tones at fMW;2 and fMW;3 (≃8.3 GHz) with fits
yielding a homogeneous optical linewidth of ≃3 GHz.
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the experiment. Over the course of the optical pulse, the
PL decreases as spins are optically pumped from the
probed bright spin sublevel to the dark spin sublevels.
The difference in PL at the beginning and the end of the
pulse provides a lower bound on the spin polarization of
65% [Fig. 5(a)]. This is a marked improvement on 1, where
we previously observed a contrast of 14% [13]. We then
measure the spin-lattice relaxation time T1 of the ground-
state spin by applying an optical initialization pulse,
followed by a variable relaxation time T, before measuring
the relaxation of the spins through a readout pulse during
which we collect the PL. By varying the relaxation time,
we measure T1 ¼ 1.21� 0.02 ms [Fig. 5(b)], a fivefold
improvement compared to our previous measurements of 1.
The enhanced optical contrast and T1 of 2 suggests either

improved thermalization and/or crystal quality relative to 1.
For example, measuring T1 as a function of the temperature
for 2 shows that T1 drops by more than a factor of 4
between 4 and 7 K (see Supplemental Material [33]),
highlighting the dramatic influence of temperature on T1.
Thus, a fivefold enhancement of T1 for 2 relative to 1 could
result from a decrease in effective temperature at the
sample of a few Kelvin. Similarly, a reduction in local
temperature should reduce the optical linewidths [47], thus
improving the contrast. Additionally, the increased jDj of 2
can improve the spin selectivity of resonant optical exci-
tation. Thus, improving sample thermalization and modi-
fying jDj to larger, yet still measurable, values offer clear
routes to optical contrast approaching 100% for molecular
color centers. Overall, these measurements show how key
molecular qubit properties can be engineered through host-
matrix control.

III. CONCLUSION

This work demonstrates how symmetry engineering
through atomistic host-matrix control of a molecular spin
qubit can significantly enhance both spin-coherence and

spin-optical interfaces. Through host-based symmetry con-
trol, we have demonstrated spin-coherence times exceeding
10 μs for optically addressable molecular spins in a nuclear
and electron spin-rich environment. These results combine
the advantages of noise-protected coherence with optical
qubit initialization, coherent control, and readout in a
versatile molecular architecture. By exploring the influence
of the host matrix on optical contrast, homogeneous optical
linewidths, and spin-lattice relaxation times, our results
highlight further directions to improve molecular spin-
optical interfaces, e.g., by using lower temperatures to limit
thermal vibrations and engineering vibrational modes
through isotope control and modification of the chemical
makeup of the host matrix or qubit. The ability to transport
molecular qubits between different environments, and tune
these hosts with atomic-level precision, highlights exciting
opportunities for further control over a range of qubit
properties, e.g., spin-orbit coupling [48], as well as inte-
gration with photonic or phononic devices [49,50]. In
particular, the enhanced coherence demonstrated at zero
magnetic field could be used to sense electric fields, strain,
or temperature at the nanoscale while retaining insensitivity
to magnetic-field noise.
Our results demonstrate the promise of rapidly advancing

molecular color centers through an iterative feedback loop of
bottom-up design, targeted chemical synthesis, qubit meas-
urement, and accurate first-principles calculations. For
example, our results point to even longer coherence times
using E values of approximately 10 GHz, which should be
synthetically achievable [51]. Such E values would enable
accessible ground-state spin control while further enhancing
optical contrast through increased ground-state spin split-
tings. Overall, the flexibility ofmolecular color center design
combined with the application of accurate theoretical and
computational tools offers promise for optimizing spin-
optical interfaces, for applications ranging from nanoscale
quantum sensing to long-distance entanglement distribution.

The data underlying this paper are available at [52].
Crystallographic data for 2-Sn (CCDC code: 2189798) can
be obtained free of charge [53].
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