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1 | INTRODUCTION

The space of stability conditions on a triangulated category D was introduced by Bridgeland in
[6], following work of Douglas on I1-stability in string theory [11]. Bridgeland shows that the set of
these stability conditions is a complex manifold Stab(D) [6], equipped with a local isomorphism

7. Stab(D) - Hom(K(D), C).

The stability manifold Stab(D) is fully understood in the case when D is the derived category
of coherent sheaves on a smooth projective curve (see [6] for the elliptic curve, [24] for curves
of positive genus, and [3, 28] for the projective line). In the case of an elliptic curve, the stability
manifold acquires a mirror-symmetric significance, in fact, it can be expressed as a C*-bundle
over the modular curve [8].
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In this paper, we show that a similar interpretation is possible for quotients of elliptic curves
by a group of automorphisms. We work on surfaces and describe the stability manifold for D
a certain triangulated category on a local model of an elliptic quotient. The main result of this
paper is Theorem 1.2, which expresses Stab(D) as a covering space of a subset of Hom(K (D), C)
determined by the data of the quotient. Theorem 1.2 represents an extension of previous results
in two directions: on the one hand, it is an analog of the work of Bridgeland and Thomas on
Kleinian singularities [9, 33] in the context of simple elliptic singularities. At the same time, it
extends Ikeda’s result [18] on arbitrary root systems of symmetric Kac-Moody Lie algebras to the
case of elliptic root systems.

Summary of the results

Let X be the orbifold quotient of an elliptic curve E by a group of group automorphisms of E.
The orbifold X is a weighted projective line of genus 0 in the sense of Geigle and Lenzing [12].
We consider its local model; in other words, we embed X as the zero section in the total space
of its cotangent bundle Y := Tot(wy), and let D be the triangulated subcategory of DP(Coh(Y))
generated by sheaves supported on X.

Studying D, rather than D?(X), has two main advantages: the elliptic root system associated
with X is more evident, and one can use the McKay correspondence to compare the local orbifold
to a smooth surface. From this point of view, local orbifold elliptic quotients represent an analog
of Kleinian singularities.

The space Hom(K(D), C) can be given a representation-theoretic interpretation as follows. The
bilinear Euler form y : K(D) X K(D) — Z defined as

o)

X(E,F) := ) (~1) dim: Hom(E, F[i])
i=0

is symmetric since D is a K3-category, and K(D) is identified with the root lattice of an elliptic root
system R, whose bilinear form matches the Euler form. This premise is similar to Bridgeland’s in
[9], with the difference that y is only negative semindefinite here. We denote by a := —[0,] and
b:= Zizzo[w?i] the two classes generating its radical.

The Weyl group W on Hom(K (D), C) acts on the region

E :={Z € Hom(K(D),C) | Z(a) = 1,Im Z(b) > 0},

which coincides with the Tits cone of the affine root system R, = R/Za (Lemma 3.9). Let
D be a fundamental domain for the action of W on E. We exhibit a region U in the stability
manifold which is homeomorphic to D (Proposition 4.18) and lift the action of W using a
group Br(D) of auto-equivalences of D, generated by spherical twists (as defined by Seidel and
Thomas [31]).

A key step in the construction of U is the McKay correspondence [10]: it gives an equivalence
of categories between D?(Y) and the minimal resolution Y’ of the coarse space of Y. In turn,
this induces an equivalence between D and the triangulated category D’ generated by sheaves
supported on the pull-back of the zero section to Y’. We define a heart of a bounded t-structure
A C D as the inverse image of Coh(Y’) n D’ C D'. Then, we use the relation between coherent
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sheaves on Y and perverse sheaves on Y’ (see [5, 37]) to explicitly describe Ay, classify its objects
(Proposition 4.17), and finally define U as the region of Stab(D) containing conditions (Z, .A)
with Z € D. Denote by Stab’(D)) the connected component of Stab(D) containing U.

We will often restrict our attention to the locus of normalized stability conditions

Stab,(D) :={o = (Z,P) € Stab" (D) | Z(a) = 1}

rather than the full Stab’(D), and we let StabL(D) be the connected component of Stab,, (D) con-
taining U. Normalization is a natural approach, effective in the study of threefold singularities
(see, for example, [34]) and fitting with the representation-theoretic definition of E. Moreover,
every stability condition in Stab'(D) is obtained from Stab, (D) using the natural C-action (see
Remark 4.21).
‘We show in Proposition 4.20 that the condition
Z(b)

is automatic for all stability conditions in Stab’(D) (and hence in StabZ(D)), and therefore 7
maps Stabzl (D) to E. The proof requires to understand wall-crossing for some specific classes in
K (D), which we do in Section 5. Our wall-crossing result can be viewed as a local analog of the
classification of indecomposable sheaves on X by Lenzing and Meltzer [23, Theorem 4.6]:

Theorem 1.1 (= 5.4). Let a be a root in the elliptic root lattice K(D), and let o € Stab’(D) be generic
with respect to a. Then, there exists a o-stable object E of class a. The object E is rigid if  is a real

root, and it varies in a family if « is imaginary.

The image of Stab:g(D) is the set of regular orbits of W in E, denoted Xreg (Proposition 6.7).

Moreover, the action of Br(D) preserves Stabjl(D), and U is a fundamental domain for this action.
This leads to the main result of this paper (analogous to [9, Theorem 1.1] and [18, Theorem 1.1]):

Theorem 1.2 (= 6.10). There is a covering map
7 ¢ Stab (D) = Xyeg/W,
and the group Br(D) acts as group of deck transformations.

Let Aut'(D) c Aut(D) be the subgroup of auto-equivalences preserving the component
Stab;(D). Write Auti (D) for the quotient of Aut’(D) by the subgroup of autoequivalences which
act trivially on Stab;(D). We also show, in analogy with [9, Corollary 1.4]:

Corollary 1.3 (= 6.11). There is an isomorphism

Aut! (D) ~ Br(D) x Aut(D),

where Aut(T) acts on Br(D) by permuting the generators.
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Observe that, unlike in [9], the shift functor does not belong to Aut'(D), since it does not
preserve Stab/ (D).

Remarks and further problems

Remark 1.4 (Representation theory). From the point of view of representation theory, the cat-
egories D discussed here are equivalent to the CY-2 completions of Ringel’s canonical algebras
(see [32]).

Remark 1.5 (Mirror symmetry). Theorem 1.2 can be interpreted as an instance of the same
principle outlined in [8] for elliptic curves.

The general automorphism group of an elliptic curve E is Z/2Z, generated by the involution
t. Over the field of complex numbers, there are only two possibilities for special automorphism

groups, namely Z /47 and Z /6Z. These give rise to three possible quotients: P§,3,3’ [P}L 42 and Pé,3,2’

whose mirror partners are the simple elliptic singularities Eél’l), Egl’l), and Eél’l) [22, 27]. To these
singularities, Saito associates a universal unfolding space and an elliptic root system [29]. If X is
one of these quotients, a hyperbolic extension of X, /W is the universal unfolding of the mirror
elliptic singularity. Thus, Theorem 1.2 details the relation between the unfolding spaces and the
stability manifold and gives a partial answer to [32, Conjecture 1.3].

The automorphism group of a general elliptic curve E is generated by its involution t. Theo-
rems 1.1 and 1.2 hold for X = [E/t], however, a mirror-symmetric interpretation seems less clear
in this case.

Asin [7, 9], we expect the following properties.

Conjecture 1.6.

(i) The space Stab(D) is connected, so that Stab(D) = Stab'(D).
(ii) The space Stab,,(D) is simply connected. This would also show that the Artin group Gy, ~
m (Xreg /W) (see Proposition 3.14) is isomorphic to Br(D).

See [18] and references therein for progress on Conjecture 1.6 in related frameworks.

Structure of the paper

Section 2 contains preliminaries on Bridgeland stability conditions, and Section 3 recalls the main
aspects of the theory of elliptic root systems. In Section 4, we introduce the triangulated category D
(4.2), construct the heart Ay (4.3), classify its objects (4.4) and use it to construct U (4.5). Section 5
contains our wall-crossing result, and in Section 6 we prove the main result.

Conventions

We work over the field C of complex numbers. All abelian and triangulated categories are assumed
to be C-linear. Given a graph I', we write |I'| to denote the set of its vertices.
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2 | STABILITY CONDITIONS

Stability conditions on triangulated categories were first introduced by Bridgeland and were
inspired by work of Douglas on string theory (see [6] and references therein). We recall here
the definition and basic properties of stability conditions and the stability manifold. We refer the
interested reader to the seminal work of Bridgeland [6, 7] and to the surveys [16, 25].

In what follows, T is a triangulated category, with Grothendieck group K(T).

Definition 2.1. A slicing of T is a collection P = {P(¢)}4cr of full additive subcategories of T
satisfying the following properties.

(1) Hom(P(¢,), P(¢,)) = 0 for ¢; < ¢,.
(ii) For all E €T, there are real numbers ¢; > ... > ¢,,, objects E; € T and a collection of
triangles

(=)

Il
&
~
s
~
S
~
~

T
3
R
~

uy]
3

I

uy]

where A; € P(¢;).
(iii) P(P)[1] =P($ + D).

The extremes ¢; and ¢,, are denoted ¢*(E) and ¢~ (E), respectively. Given a slicing P, for
a < B € R we denote by P((«, 8)) the extension closure of the subcategories {P(¢) : ¢ € («, 8)}
(similar definitions work for other intervals in R).

Definition 2.2. A stability condition on T is a pair ¢ = (Z, P) where:

(i) Pisaslicing of T;
(ii) Z: K(T) — C is an additive homomorphism called the central charge;

and they satisfy the following properties.

(1) For any non-zero E € P(¢),

Z([E]) € R, - €.
(2) (Support property) Fix any norm ||-|| on K(T). Then we require

o [ 1ZAEDI

Given a stability condition o = (Z, P), we will refer to P((0, 1]) as to the heart associated to
o. In fact, P((a, ¢ + 1]) is always the heart of a bounded ¢-structure for all @ € R, and it is an
abelian category.

IfE € P((a, 0 + 1]) for some a € R, then we say that E has phase ¢ if Z([E]) € R, - %, for
¢ € (a, a + 1]. The non-zero objects of P(¢) are said to be o-semistable of phase ¢, and the simple
objects of P(¢) are said to be o-stable.
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For the general theory about bounded ¢-structures, we refer the reader to [4], here we only recall
the following lemma, which will be useful in what follows.

Lemma 2.3. Let A, B C T be hearts of bounded t-structures on a triangulated category T. If A C B,
then A = B.

Proof. This is [25, Example 5.6]. [l

Remark 2.4 [6, Proposition 5.3]. To construct stability conditions it is often convenient to use an
alternative definition. In fact, sometimes we will write a stability condition as a pair o = (Z, A),
where A is the heart of a bounded ¢-structure and Z is a stability function satisfying Harder-
Narasimhan and support property. A stability functionisalinear map Z : K(.A) — Csuch thatany
non-zero E € A satisfies Z([E]) € R, - ¢/ with ¢ € (0, 1]. Then one defines ¢ to be the phase of
E, and declares E to be o-(semi)stable if for all non-zero subobjects F € A of E, $(F) < (L)$(E).
We say that Z satisfies the HN property if for every E € A there is a unique filtration

0=E0CE1C...CEn_1CEn=E

such that the quotients E;/E;_; are o-semistable of phases ¢; = ¢(E;/E;_;), ¢1 > ¢, > ... > ¢,,.
The support property is the same as in Definition 2.2. To recover a slicing as in Definition 2.2,
set P(¢) to be the category of o-semistable objects of phase ¢ for ¢ € (0,1], and declare P(¢) =
P(¢+n)foralln € 7.

The following proposition is a useful tool to check the Harder-Narasimhan property:
Proposition 2.5 [25, Proposition 4.10]. Suppose A is an abelian category, and Z : K(A) - Cisa

stability function. If:

(i) the category A is Noetherian; and
(ii) the image of Im Z is discrete in R,

then Z has the Harder-Narasimhan property.

2.1 | The stability manifold

Let Stab(T) denote the set of stability conditions on T. In [6, Section 6], Bridgeland shows that the
function

f(o,7) = sup {|¢7(E) — ¢S (B, ¢, (E) — ¢, (E)I} @
0£EET

determines a generalized metric on Stab(T) which makes it into a topological space. Moreover,
the central charge map 7 : Stab(T) - Hom(K(T), C) given by (Z, P) — Z is a local homeomor-
phism, and it makes Stab(T) into a complex manifold of dimension rk(K(T))[6, Theorem 1.2]. The
following lemma which will be useful later:

Lemma2.6 [6, Lemma 6.4]. Leto, T € Stab(T) be stability conditionswith 7(c) = n(z). If f(0,7) <
1, theno =1.
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Next, we recall two group actions on Stab(T). The additive group C acts as follows: for z =
X +iy € C,define z - (Z,P) = (Z',P"), with

' _ -z ’ _ Yy
2=z, P@=P(¢+2) @

The group of auto-equivalences Aut(T) also acts on Stab(D): for ® € Aut(D) and 0 = (Z,P) €
Stab(D), define @ - (Z, P) = (Z', P’) as the stability condition with

Z'(E) := Z(® Y(E)) and P'(¢) := ®P(¢). )

2.2 | Torsion pairs and tilts of abelian categories

Next, we recall the definition of a tilt of an abelian category .4, which is a technique to produce
new abelian subcategories of DP(A). Indeed, the tilt of a heart of a bounded t-structure is a new
heart in D?(A4) [13].

Definition 2.7. Let A be an abelian category. A torsion pair for A is a pair of full subcategories
(T, F) such that:

(i) Hom(7,F) = 0;
(ii) for any E € A, there exists a short exact sequence

0->T—>E—-F->0
whereT €7 and F € F.

Given a torsion pair (7, F) on an abelian category .4, we define Al = (F[1], T) to be the exten-
sion closure of F[1] and 7', that is, smallest full subcategory of D?(A) containing F[1] and 7 closed
under extensions. A" is called the tilt of A along the torsion pair (7, 7). Sometimes we will also
refer to A*[—1] = (F, T[—1]) as to the tilt, but no confusion should arise.

3 | ELLIPTIC ROOT SYSTEMS

In this section, we introduce elliptic root systems and recall some of their properties. Elliptic root
systems were introduced by Saito [29, 30], in our exposition we draw also from [32] and [19].

Definition 3.1 [29, Definition 1]. Let F be a real vector space of rank [ + 2, equipped with a
positive semidefinite symmetric bilinear form I : F X F — F, whose radical rad I has rank 2. An
elliptic root system associated to (F,I) is a subset R C F of non-isotropic elements such that:

(1) the additive group generated by R, denoted Q(R), is a full sublattice of F. That is, the
embedding Q(R) C F induces an isomorphism Q(R)y ~ F;
(2) the form I takes integer values on R X R;
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(3) for all « in R, the reflection

w,(x) =x—I(x,a)a for x e F

satisfies w,(R) = R;
(4) if R = R, UR, with R; L R,, then either R, or R, is empty.

The subgroup W of Aut(F, I) generated by the w,, for & € R is called the Weyl group of the root
system R. The lattice rad I n Q(R) is full in the two-dimensional vector space rad I. A marking of
R is the choice of a 1-dimensional subspace G C radI, and (R, G) is called a marked elliptic root
system.

To a marked elliptic root system, we can associate an affine root system R, and a finite root
system R of rank [ by considering the quotients

F,:=F/G R, :=R/RNG

F;:=F/radl R; :=R/RNradl

and the bilinear forms induced on F; and F, by I.
Now fix a marked root system (R, G), with generators a, b for radI N Q(R) and G = Ra.

Proposition 3.2 [19, Corollary 2.3]. The root system R is given by
R={ay+mb+nala; €Rp,m,n € Z}.

Definition 3.3 [19, §2.3]. The elements of R are also called the real roots of R. We define the set
A;,, of imaginary roots of R as

A, ={mb+na|m,nez\{0}}

3.1 | The Dynkin graph

To a marked elliptic affine root system (R, G), one can associate a diagram TrG called the Dynkin
diagram of (R, G) (see [29, §5]). In general, the vertices of I'y ; are in bijection with a root basis of
R (defined as in [29, §3.4]), and two vertices «, 8 € |T'g ;| are connected following the rule:

a B

o 0 if I(at, ) = 0;
6o— o if I(ar, ) = —1;
o======o if I(a, B) = 2.

The results of this section hold for all elliptic root systems (classified in [29, Table 1]).

Notation 3.4. In the rest of this work, we will only need diagrams I of the following specific
shape (called an octopus in [32]):
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(0 0)

(La;-1) 1.1) // \\(r D (r.a,-1)
(0,1)
1) (r-1,1)
(2,(12—1)/ \(r—l,a,l—l)

(o] [¢]

We assume from now on that elliptic diagrams have the octopus shape, and adopt the labelling
shown above for the vertices of I. We denote by «; ;) the root of R corresponding to the vertex

(@ )

The marking of an octopus-shaped elliptic root system is generated by the class a 1= o) —
%(o0)- Erasing the (0,0) vertex and all adjacent edges in the above diagrams yields the Dynkin
diagram T, associated with R,, so we have |I',;| = [T \ {(0,0)}. Then {%}ue|ra| give a root basis
for R,. Let b be the imaginary root of the affine system R, (b is a positive linear combination of
the {o },¢r) . see [20, Chapter 5]). Then, (a, b) is a basis for rad I.

Example 3.5. Our main interest is in elliptic root systems arising from quotients of elliptic curves
by automorphism groups (see Section 4.2). They are the root systems of type D‘(‘Ll), Eél’l), Egl’l)

(1,1)
ES

and , whose diagrams are all octopus-shaped:

\ 1l /
1l

1,1 1

D4

o o o
o o o
/ I /
1
1,1) 1
2 oo I
\ I
o o o
o o o o
/ I /
1
1,1) 1
2 ° |
\ I
o o o o
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[e] [e] o o [e] [e]

Vi
Y/

Erasing the (0,0) vertex and all adjacent edges in the above diagrams yields the Dynkin diagrams
of affine root systems of type D,, E¢, E,, and Ej, respectively.

(1,1)
Es o

3.2 | The Weyl group

Since a € rad I, W preserves the marking G C F. Then, the projection p: F — F/G induces a
homomorphism p, : W — W, to the affine Weyl group associated with R,. Denote by T the
kernel of p,.

Lemma 3.6 [29, (1.15)]. The subgroup of W generated by {w% | v € |T,|}is isomorphic to W, so
the sequence

0-T-W->W,—>1 4)
splits into a semi-direct product W =T X W ,.
Next we give an explicit description of T. To do so, we introduce the following elements of W:

Definition 3.7. For each vertex of ', define elements of W:

@ Yo += w“(o,l)wa(o,o);

. -1 . .
(2) T P We ) M0, Warg T (0.1) fori=1,...,r;

. 1 . _ . .
3) T,y *= Wag i j-DWa T o1 fori=1,..,r,j=2,..,a; - 1;

Lemma 3.8 [32, Theorem 3.5]. For v € |T,|, let a, be the corresponding root and r, the
corresponding element from Definition 3.7. For all 8 € F, we have

ro(B) =B —I(B,a,)a.
Moreover, there is a group homomorphism

?: QR > W

ml)
2 maye []

vET,| vET,|

with kernel generated by b. The group T is isomorphic to the lattice p(Q(R,)) ~ Q(R f), and ¢ induces
the inclusion T — W of the exact sequence (4).
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3.3 | Tits cone, regular set, and fundamental domain

We follow [30] and define

H :={x € Hom(radI,C) | x(a) = 1,Im x(b) > 0};
6)
E :={x € Hom(F,C) | x(a) = 1,Im x(b) > 0}.

The Weyl group W acts on E by (gx)(B) := x(¢g~'p) for x € Eand g € W. This action preserves
X|rad > SO it respects the restriction map s : E — H.

With the goal of describing a fundamental domain for the action of W on E, we will
identify E with the complexified Tits cone of R, (see [20, §3.12] for basic facts about Tits
cones).

Recall that to the affine root system R, is associated the Weyl alcove

Ag :={h € QR | h(a,) >0 forv € |T,|}

and the (real) Tits cone Tr(R,), defined as the topological interior of

Te®,) = | wAg.

wew,

The complexified Tits cone associated to R, is

T(R,) :={h € QR | Imh € TR(R,)}.

Lemma 3.9. There is an isomorphism of complex manifolds between E and T(R,), equivariant with
respect to the action of W .

Proof. Consider the inclusion Q(R,) C Q(R) mapping a + Za € R, to a« € Q(R). This induces a
restriction map ¢ : Hom(Q(R), C) - Hom(Q(R,), C).
The complexified Tits cone can be equivalently described as

T(R,) = {h € QR,)¢ | Imh(b) > 0}

(this is [18, Lemma 2.12]). Then, it is clear that ¢ is a holomorphic map sending E bijectively
onto T(R,). Moreover, the action of W, on T(R,) coincides with that on E through W, C W as in
Lemma 3.6. |

In order to describe the action of T on E (see Lemma 3.6), it will be convenient to emphasize a
complex structure on E, := s~!(7) induced by t € H. In fact, 7 defines an isomorphism rad I ~ C
by

ua+vb - u+vr.
Next, identify E, with the relative tangent space of 7z over . This is a complexification

V ®g C where V := (F/rad )"
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The bilinear form I induces an isomorphism I* : V' S Vvi=F /rad I, and in turn an isomorphism
of complex vector spaces

TQ®I: (F/radl) Qg radl ~V Q C.
We write

E.~V&1TV. (6)
Then we have:

Lemma 3.10.

(i) W acts preserving fibers E, above a pointint € H;
(ii) Under the identification (6), the group T acts as a finite index subgroup of the real translation
lattice Q(Ry) C V. In particular, T acts freely on E.

Proof. The first statement is straightforward, since 7 is determined by the restriction of x € E to
rad I, which is W-invariant. The second statement follows immediately from Lemma 3.8 and the
fact that x(a) = 1forall x € E. O

We can finally describe the regular set for the action of W on E:

Proposition 3.11. The action of W on E is properly discontinuous. Moreover, the space of regular
orbits of W is

Xreg 1= E\ UgerHgs
where H,, C E is the reflection hyperplane defined by the equation x(a) = 0.

Proof. The first statement is [30, (3.5)]. The second follows from the description of the regular set
of T(R,) ([20, Proposition 31.12]), combined with Lemma 3.9 and the fact that T acts freely on E
(Lemma 3.10). O

We think of X, and E as naturally sitting in Hom(F, C).
Denote by A C T(R,) the complexified Weyl alcove

A:={heTRy | Imh e Ag}.
We think of A as embedded in E via Lemma 3.9, and write A, for the intersection of A with E,.
Let B’ be a hypercube in V which contains the origin and is a fundamental domain for the
action of T on V, and define B, :={h € E, ~ V. | Re(h) € B'}.
Proposition 3.12. A fundamental domain for the action of W on E; is the intersection

D, := A, NB,.

A fundamental domain for the action of W on Eis D := U,y D, ~ D\/_—1 XH C Xieg-
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Proof. As a consequence of Proposition 3.11, it is enough to show that for every Z € E, there exists
an element w € W such that w - Z € D,. Using the complex structure given in (6), we may write
every Z € E, as Re Z + 7 Im Z. The closed alcove Ay is a fundamental domain for the action of
W, on Tr(R,) [20, Proposition 3.12], so there exists an element w’ € W, such thatw’ - Z € A,. By
definition of B_, there is an element r € T such thatr - (w’ - Z) € B, and Imr - (w’ - Z) = Im(w’ -
Z),sor-(w'-Z) € D,.

The statement about E follows, since every w € W preserves the fibers E, by Lemma 3.10. []

3.4 | Boundary of D and fundamental group

Next, we describe the boundary of D in X, in terms of walls for the action of W. For vertices
v € ||, we define walls W, , C D for the Weyl alcove

W, i={Z € X,e,ND | Z(a,) € Ry, Im Z(at,,) > 0 for v # w € |T, |},
W,_ :={Z € X,e;,ND | Z(a,) € Reg, Im Z(ax,,) > 0 for v # w € [T, }.

For verticesu € |T’ f |, write Y; N for the faces of the fundamental hypercube B’, and let
Yoo i= (0¥, ® TV)] ND C Xyeg.

Then, the boundary of D in X, is contained in the union of the walls W, , and Y,, , asv,u vary.
Next, we describe the fundamental group of X, /W.

Definition 3.13. Let R be an elliptic root system. The Artin group Gy, associated with the Weyl
group W is the group generated by {g,, i, | v € |T',|} with relations

Go9u = 9ugo if I(ay, @) = 0;
Go9udo = JuGodu I I(ay, @) = =1;
h,h, = h,h, forall u,v € |T,[;
Gohy = hyg, if I(ay, a,) = 0;
Gohugo = hyhy if I, @) = —1.
Proposition 3.14. Suppose R is an elliptic root system. Then, the fundamental group of X ., /W is
71 (Xreg/ W, %) = Gy
The generator g, of Gy, is given by the path connecting * and w, (+) passing through W, . just
once. The generator h,, of Gy, is given by the path connecting * and r,(x) which is constant in the

imaginary part.

Proof. By Lemma 3.9, the set Xieg coincides with the regular subset of the complexified Tits cone
Treg(Ry)- It is shown in [38] that 771 (T e, (R, ) /W) = Gy,. O
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4 | TRIANGULATED CATEGORIES ASSOCIATED TO LOCAL
ELLIPTIC QUOTIENTS

We consider orbifold curves obtained from a quotient of an elliptic curve by a finite subgroup of its
automorphism groups. Every elliptic quotient has P! as coarse moduli space and orbifold points p;
with stabilizers u, . Up to permuting the points p;, there are only four possibilities, namely: Pé,z,z,z
(here, r = 4 and a; = 2 for all i), Pé,“, IP}L 4, and I]J’éj,z. We denote them, respectively, X,, X3, X,
and Xj.

Each X, is realized as a quotient of an elliptic curve E; by a cyclic group u, of group
automorphisms:

Xy = [Ex/pi]-

From now on, we fix k and denote X :=X;, E :=E;, and u := 4. Let Y := Tot(wy) =
[Tot(wy)/ 1] be the total space of the cotangent orbifold bundle of X. We have a commutative
diagram

E —— Tot(wg)

X —’> Y
where the vertical arrows are quotients by u and the horizontal ones are inclusions via the
zero section.

Recall that a triangulated category T is called a K3-category if the functor [2] is a Serre functor,
that is, if for any two objects E, F € T there is a natural isomorphism

Hom'(E, F) 5 Hom'(F, E[2])*.

Let D denote the full triangulated subcategory of coherent sheaves supported on the zero
section of Y. Then we have:

Lemma4.1. D isa K3-category. In particular, the Euler form is symmetric. Moreover, forany E, F €
DP(X), one has

Hom,(1,E, t,.F) = Hom} (E, F) @ Hom} (F, E)*[-2].
In particular, (1 .E,t,.F) = xx(E,F) + xx(F,E).
Proof. This follows from [21, Lemma 4.4]. O
Lemma 4.2. The map t induces an isomorphism of abelian groups K(X) ~ K(D).
Proof. Let X, be the nth order neighborhood of X in Y. Denote by B be the abelian category of
sheaves supported on X. Then any F € Bis an O -module for some n. Therefore, F is obtained

as a successive extension of Oy-modules, and the map

L, 1 K(X) = K(B) = K(D)

8518017 SUOULLIOD 3AIE1D 3ot [dde 8y} Aq psuenob a1 sajole YO ‘8N J0'Sa|n1 1o Aeiq1T 3UIIUO A8|IM UO (SUOTHPUOD-PUR-SWLSYWI0 A8 | 1M AReq Ul Uo//SdiL) SUORIPUOD Pue SWwLe | 84} 88S *[2202/TT/TT] uo Aiqiauliuo A8|im ‘Mobselo JO AiseAIUN AQ #E9ZT'SWII/ZTTT 0T/I0p/L0D"A8| I AReiq1jeul|u0'd0SyIeWpUO //SAY WO papeojumod ‘€ ‘2202 ‘0SLL69vT



2282 | ROTA

is surjective. Let 7 : Y — X denote the projection to the zero section. Since Rizr, = 0 fori > 0, the
functor

7, . B — Coh(X)

is exact. The induced map on K-groups is the inverse of ¢,. O

4.1 | Exceptional and spherical objects

An object S € D is called spherical if Hom'(S,S) ~ C @ C[—2]. Suppose S € D is a spherical
object. Given an object G € D, we define ®4(G) to be the cone of the evaluation morphism

Hom'(S,G) ® S — G — @4(G).

Similarly, @< (G) is a shift of the cone of the coevaluation map

®:(G) » G — Hom'(G,S)" ®S.

The operations &g, @ define auto-equivalences of D, called spherical twists [31].
Spherical twists act on K(D) via reflections: if S is a spherical object, and [G] € K(D), we have

ws([G]) = [¢5(G)] = [G] = x(S, G)[S]. (M

Lemma 4.3. Let S be a spherical object of D. Then:
(1) (I)S(DE =~ ldD and @E(I)S >~ ldD,
(i) @g(S) =~ S[-1];
(iii) for any spherical object S’ such that Hom*(S’,S) ~ C[—1], there is an isomorphism
(I)S@S/(S) ~ S,.

Proof. These properties follow from [31, Proposition 2.10, Lemma 2.11 and Proposition 2.13]. []

Next, we construct spherical objects (and auto-equivalences) of D. We do so starting from an
exceptional collection of D?(X):

Definition 4.4. Let T be a triangulated category. An object E € T is exceptional if
Hom'(E, E) = C[0].
An exceptional collection is a sequence of exceptional objects Ey, ..., E,, such that Hom*(E;, E;) = 0

for i > j. We say that an exceptional collection is full if it generates T, that is, T is the smallest
triangulated category containing {E,, .., E,; }.
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The category Coh(X) admits exceptional simple sheaves (see, for example, [12]), described as
follows. Identify Coh(X) with the category of u-equivariant sheaves on E, and denote by p; € E
the points with non-trivial stabilizer Mg, Let x°, ..., %1 be the irreducible representations of M-
The equivariant skyscraper sheaves O, ® x’ (with j € {0,...,a; — 1}) are exceptional objects of
Coh(X).

Moreover, D?(X) admits several full exceptional collections [26]. We will use the following one:

. -1 1
Fi= (0, ®x",...0, ®1,
-1 1

0, ®x%,.,0, ®x'

ceny

a,—1 1
O, ®x"...0, ® 1,

0,0(1)).
Exceptional objects in Coh(X) give rise to spherical objects in D:
Proposition 4.5. Suppose E € DP(X) is exceptional, then 1,E is a sperical object in D.
Proof. This is [31, Proposition 3.15]. O

By Proposition 4.5, pushing forward the objects of FF, we obtain a set of spherical objects:

. a;—1 1 ,a,—1 1 a,—1 1
II:= {tll B Y PSP S ,...,t,,,L*O,L*O(l)}, (8)

where tij =400, ® x’). We define the subgroup of Aut(D) generated by spherical twists across
objects of IT:

Br(D) := (®g € Aut(D) | S € I).

4.2 | The root system associated to D

In this section, we use the spherical objects in IT to construct an elliptic root system associated
with (K(D)a, 1)-

Proposition 4.6. The set R :={{®(S)] € K(D) | S € I1,® € Br(D)} satisfies the axioms of an
extended root system associated to (K(D)g, xp) (See Definition 3.1). Moreover:

(i) define classes
a:=-[0,] and b :=[1,(Ox ® wy ® @3)].

Then (a,b) is a basis of rad I and a is a marking for R;
(ii) the Weyl group W is generated by {wg | S € I1} (defined in (7));
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(iii) the root systems arising from an elliptic orbifold quotient are precisely the ones described in
Example 3.5. The vertices (0,0),(0,1) correspond to [t,Ox(1)], [t,Ox], respectively, and (i, j) to
[t/1 (fori # 0).

Proof. The axioms of an elliptic root system for (K(D)g, xp) are verified in [26]. Observe that the
radical rad I has rank 2, and the classes a, b are invariant under twists by wy, so a,b € radI by
Lemma 4.7 below. O

Lemma 4.7. IfN € D?(X) satisfies N ® wy =~ N, then [t,.N] € rad xp.
Proof. The classes [1,E] for E € D?(X) generate K(D), and we have
XN, LE) = xx(N,E) + xx(E,N) = xx(N,E) — xx(N @ wy,E) = 0
by Lemma 4.1. ]

In analogy with Notation 3.4, and in virtue of Proposition 4.6(iii), we write
S = tO0x
S0 = :0x(1) ©)

S(i’j) ::tij fori=1,..,randj=1,...,aq;, -1

for the objects of 1.

Let I" denote the diagram corresponding to R, and recall that the definitions of the underlying
affine and finite Dynkin diagrams T, and Iy (see Section 3.1). In analogy with Definition 3.7, we
introduce the following elements of Br(D):

Definition 4.8. For each vertex of I';, define elements of Br(D) inductively as follows.
M Py = Ps, Psg)
. -1 _
(2) P(l,l) .= (D(t})p(o’l)@(tll)p(o,l) fOI' 1= 1, I %
®3) puj = ID([l{-)p(i,j_l)(b([{)p(_i,lj__l) fori=1,..,r,j=2,..,a; — 1.
By Proposition 4.6(ii), the assignment ®¢ — wg defines a surjective homomorphism

q: Br(D) » W.

It follows from the definitions and from the fact that q is a homomorphism that g maps the
elements p, to the elementsr, € T < W forallv € |T'|.

4.3 | Perverse sheaves and a heartin D
In this section, we construct the heart of a bounded t-structure of D, denoted Ay, associated with

the root system R. To do so, we consider the minimal resolution Y’ of 1_/, the coarse moduli variety
of the orbifold Y = Tot(wy), and use the McKay correspondence [10].
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As a variety, Y has singularities of type Ay, at p;. Then, the minimal resolution is f:Y Y,
with Rf, Oy, = Oy and exceptional locus the union of a chain of rational curves

a;—1
Ci = Uci,j j=1,..,ri—1
j=1

above every point p;. We write X’ := X U (U;, ;Ci,;) for the union of the exceptional curves with
the strict transform of X.
The derived McKay correspondence of [10] states that there is an equivalence

¥ D(Y') - D(Y),

which in turn induces an equivalence between D and the full triangulated subcategory D’ of
sheaves supported on X’. More precisely, Y’ can be realized as a moduli space of sheaves of Y as
follows.

Definition 4.9. A p-equivariant quotient sheaf Or,,) > F is a u-cluster if H O(F) is isomorphic
to the regular representation of u as a C[u]-module. We regard F as an element of Coh(Y).

Let u-Hilb(Y') be the scheme parameterizing u-clusters on Y. Then, u-Hilb(Y) is a crepant res-
olution of Y [10], and the equivalence W is the Fourier-Mukai transform with kernel the universal
family on u-Hilb(Y) X Y. Therefore, we may pick Y’ := u-Hilb(Y).

The inverse image of Coh(Y) under W is the abelian category of perverse sheaves on Y’, which
is obtained from Coh(Y’) with the tilt below (we follow the notation of [5] and [37]). Let C be the
abelian subcategory of D(Y”) consisting of sheaves E such that Rf,E = 0, and define a torsion
pair:

7] :={T € Coh(Y") | R'f,T =0}

(10)
F) :={F € Coh(Y") | f,F = 0and Hom(C,F) = 0}.

We denote by Per(Y") the tilt of Coh(Y”) along the pair (10), that is, Per(Y”) := (F;[1], 7). This
results in a diagram whose horizontal arrows are equivalences:

Per(Y') ———3% Coh(Y)

tiltg @ilt

Coh(Y') —=% W(Coh(Y")).

Denote by B and B’ the intersections of Coh(Y) and Coh(Y”), respectively, with D and D’.
Observe that (7] N D', Fj N D') is a torsion pair of /3’: we denote by Per(X’) the corresponding
tilt. Define Ay := W(53'). Then, restricting the above diagram to D’ and D yields

Per(X') — B

tiltg @ilt

B —X % A,
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In particular, the equivalence ¥ maps the simple objects of Per(X’) into simple sheaves in of
B:

Oc, (~1) — tl;

Oc, (€M) — 1
and moreover Oy, — Oy [37, Section 3.5].
Remark 4.10. The category Per(Y”) is usually called the category of 0-perverse sheaves. Its dual
category of (-1)-perverse sheaves is used in [5] and [35], and the two are compared in [37, Sec-
tion 3.5]. Our choice of ¥, and therefore of the perversity of Per(Y"), has the advantage of mapping
skyscraper sheaves to clusters.
Lemma 4.11. Ay is Noetherian.
Proof. This is straightforward, because B’ is Noetherian. O

To classify objects of Ay we will describe it explicitly as a tilt of B. Define F’ to be the full

additive subcategory of B’ generated as the extension closure of subsheaves of the normal bundles
Oc,(Cy):

F'=(F|FC0O(C)e B fori=1,..,r)

and 7' to be its left orthogonal in B’. Denote by F (respectively, 7) the subcategories W(F')
(respectively, ¥(7")) of Ag.

Lemma 4.12. (7', F') is a torsion pair in B'.

Proof. We follow an argument similar to [36, Lemma 3.2]. We need to show that every sheaf E € B’
fits in a short exact sequence

T—->E->F

withT € T',F € F'.IfE € T', we are done. Otherwise, Hom(E, F) # 0, so there exists F; € F’
fitting in a short exact sequence

M, - E->F,.
If Hom(M,, F") # 0, repeat this process, and obtain

M, - M, - F,.
By iterating this, we get a chain of inclusions

wCMyCM_,C..CM, CE
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with quotients in 7’. Then, the chain must terminate by Lemma 4.13. This means that there exists
n for which Hom(M,,, F’) = 0. Let F be the cokernel of the inclusion M,, C E, then the sequence

M,—->E—-F
is the desired one. O
Lemma 4.13 (see [36, Lemma 3.1]). If there is a series of inclusions in B', say
wCM,CM;_,C..CM,
whose quotients lie in F’, then the sequence must eventually stabilize.

Proof. We follow an argument similar to [36, Lemma 3.1]. First, we may assume that all the
quotients F), := M, /M, are supported on one curve C := C;. Moreover:

Claim. We may assume that for all k, the quotients F, are torsion free sheaves L, C O-(C), such
that L, has connected support D, C C. [l

Indeed, by definition of 7/, every F) admits a surjection to some L, C Oy(C). By restricting
L, to one of the connected components D, of its support, we may assume that L, has connected
support. So we have quotients

Fk > Lk’

which define exact sequences

O—>M]({1)—>Mk—>Lk—>0.
The quotient F]({D of Mi,; — Ml(cl) fits into an exact sequence
EY > F =L,

where ch; (FI({D ) = ch; (F}) — ch; (L) is a positive linear combination ) a j [C;. j] with coefficients
strictly smaller than those of ch, (F},). We can then repeat this process for the map M, ,; — M]({D
until we get a finite chain of inclusions

(n) M
My CM, " C..CM,~ CM;
satisfying the statement of the claim.
We proceed to show that the sequence of inclusions must terminate with an induction on the
length [ of the chain of rational curves C.

In order to see this, apply the functor Hom(—, @O-(C)) to the short exact sequence
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For L, =0(C), one computes ext'(O-(C),O-(C)) =0, hence Hom(M;,O-(C)) >
Hom(M; ., Oc(C)).
IfL;, € Oc(C), one has

Ext*(Ly, O-(C)) ~ Hom(O(C),L;) = 0, 12)

and obtains

hom(M,, O(C)) — hom(M; ., O-(C)) = .
XL, Oc(O)) + (ext' (M, Op(0)) — ext! (M 41, Oc(C))).

Observe that y (L, O-(C)) = —(D;).C > 0 by Hirzebruch-Riemann-Roch, and that
ext! (M, Oc(C)) — ext! (M1, 0c(C)) > 0

because of (12).

If I=1, we must have D, =C and —D, - -C =2. This shows that if L, #0, then
Hom(M;, O-(C)) > Hom(M,, ;, O-(C)), whence the chain of subobjects must terminate.

If I > 1, the only way the sequence does not terminate is that all L, satisfy D, - C = 0. This is
only possible if no D, contains the terminal curves of the chain, C; and C}, in their support. In
other words, Ly C O¢c(C)cr = Oc/(C") where C’ = Ui.;lzC j is ashorter chain. Then, we can repeat
the argument above applying the functor Hom(—, O(C")) to the sequences (11). Eventually, the
problem is reduced to the case [ = 1, and the process must terminate. O

Proposition 4.14. We have ' = F;. Therefore,
Ag =(T,F) and B=(F[1],T).

Proof. Suppose E € F’. We may assume that E is supported on just one curve C = C;. Moreover,
E is a repeated extension of subsheaves of O-(C), so we may induce on the number of its factors
and reduce to the case where E is a subsheaf of O-(C).

It follows from left exactness of f, that f E = 0. Now suppose U € C.ComposingamapU — E
with the inclusion E C O(C) yields an element of Hom,, (U, O-(C)). U must be supported on C
since f : Y’ — Y is an isomorphism off C. Therefore, we have isomorphisms

Homy, (U, O¢(C)) ~ Hom(U, Oc(C)) ~ Ext/ (O, U)* = H'(C,U)* =0 (14)

since U € C. We conclude Hom(U,E) = 0forallU € C,and E € Fé.
Conversely, suppose E € F/, and assume E & F’. Then there is a short exact sequence

G—->E->H

with H € 7/ and G € 7' since (7', F’) is a torsion pair by Lemma 4.12. Moreover, G € F, because
E € F}. Then G € 7' n F; satisfies:

* Hom(G,F') =0;

8518017 SUOULLIOD 3AIE1D 3ot [dde 8y} Aq psuenob a1 sajole YO ‘8N J0'Sa|n1 1o Aeiq1T 3UIIUO A8|IM UO (SUOTHPUOD-PUR-SWLSYWI0 A8 | 1M AReq Ul Uo//SdiL) SUORIPUOD Pue SWwLe | 84} 88S *[2202/TT/TT] uo Aiqiauliuo A8|im ‘Mobselo JO AiseAIUN AQ #E9ZT'SWII/ZTTT 0T/I0p/L0D"A8| I AReiq1jeul|u0'd0SyIeWpUO //SAY WO papeojumod ‘€ ‘2202 ‘0SLL69vT



THE STABILITY MANIFOLD OF LOCAL ORBIFOLD ELLIPTIC QUOTIENTS 2289

s f,.G=0;
* Hom(C,G) = 0.

We must have R!f,G # 0, otherwise Rf .G = 0 and G € C. Therefore, H(C, G) # 0. Arguing as
in (14) we get Homy/ (G, O(C)) # 0, contradicting Hom(G, F’) = 0. We conclude that G = 0, and
therefore E € F'.

4.4 | Classification of objects in A,

Next, we classify of objects in A . The strategy is to explicitly compute the image under ¥ of objects
of B’, which are obtained as finite, repeated extensions of torsion sheaves and line bundles on each
component of X’. We start describing sheaves in F’: these are precisely all elements of 3’ whose
image is a shift of a sheafin Ap.

Given a subchain of rational curves D C C, there exists a maximal subsheaf L, C O-(C)
supported on D.

Lemma 4.15. Fix C =C;, let D C C be a subchain of rational curves, and let L, as above.

Write Cy , ...,Cy, for the irreducible components of D (with (d,,...,d;) consecutive elements of

{1,...,r; = 1}). Then Ly, is obtained from Oc, (—2) with repeated extensions by the sheaves Oc, (-1),
1 i

with i = d,, ..., d,. In particular, there is a short exact sequence
Lp = Ly = O, (15)
wheret € Cy and L}, is obtained by repeated extensions of O, (=1), withi = d, ..., d,.

Proof. Proceed by induction on the length [ of the chain D.If | = 1and D = C,, one readily verifies
that L, ~ O, (—2). Suppose then that [ > 1. Then, observe that L, restricts to Cy to a line bundle
of degree —1, because either d; < r; — 1, and then sections of L, must vanish at the intersection
Cg4, N Cy 4y Orbecaused; = r; —1,and O (C) has degree —1 on C, _;. The kernel of this restriction

is exactly the maximal subsheaf of O¢(C) supported on D — Cy . In other words, L, fits in a short
exact sequence

LD__Cdl - LD e Ocdl(—l)

so by induction Lj, has the asserted structure.
For the second statement, fix a point ¢t € Cd1 away from the intersections, and consider the
cokernel

(e): (9Cd1 (=2) > Lp > Rp.

From the sequence

Ocdl (—2) - Ocdl (—1) e Ot

one sees that Ext!(R,,, (9Cd1 (=2)) ~ Ext}(Rp, (9Cd1 (—1))becauset ¢ SuppRj. Pushing forward the

extension class (¢) to Ext'(Rp, O y (—1)) produces an object L]’J as in the statement. O
1
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Lemma 4.16. Suppose an object T € Ay, is supported on an orbifold point p;. Then T is obtained
by repeated extensions of the following objects.
(i) ] with j # 0.
(ii) clusters supported at p;.
(ili) N[—1]where N is the proper quotient of a cluster.

Proof. This is equivalent to classifying sheaves of B’ supported on C := C;. First, we consider
sheaves in 7/. A sheaf in 7’ is an extension of subsheaves L C O-(C) with connected support.
Any such inclusion must factor through an inclusion L C Lj,, where L, is as in Lemma 4.15 and
the cokernel Ly, /L is torsion. We have that ¥(L)[1] and W(L,)[1] are sheaves on X, so applying
the McKay functor to

L—Ly— Lp/L,
we obtain a short exact sequence of sheaves in :
M - W(D)[1] - ¥(Lp)[1],

where M is obtained by repeated extensions of clusters. Now we claim that ¥(Lp)[1] is a proper
quotient of a cluster. In fact, apply ¥ to the exact sequence (15) of Lemma 4.15: ¥(O,) is a cluster,
and lP(L;)) is asheaf obtained by repeated extensions of tij ,Jj # 0. Thisyields a short exact sequence
in B

0 - ¥(Lp) - WO, - ¥(Lp)[1] - 0,

which exhibits W(Lj)[1] as the quotient of a cluster. This exhausts part (iii).

Now, consider a sheaf B € 7'. The torsion part B,,, of B is obtained by repeated extensions
of points, so ¥(B,,,) is as in part (ii). We may then assume that B is torsion free with connected
support. If B is supported on a single irreducible component C;, then B is a sum of line bundles
of the form O, (k). Since Hom(B, F') = 0, we must have k > —2. Then ¥(B) is obtained as an
extension of tl.j by clusters. If B is supported on more than one irreducible component, suppose
that C; is a terminal component of the support of B and consider the restriction of B to C;. Then
there is an exact sequence

B'—>B - By,

where B’ is supported on a shorter chain. B|cj is supported on one irreducible curve, so it is as
above. If B’ € T’, we repeat this procedure. Otherwise, B’ fits in a short exact sequence of sheaves

B// - BI > F

with B” € 7’/ and F € F’. Sheaves in F' are classified above, so we can assume that B’ € 7’ and
conclude by induction on the length of the supporting chain. O

As a consequence of the results in this section, we obtain the following description of objects
in Ag:
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Proposition 4.17. Objects in Ay are obtained by repeated extensions from:
(i) line bundles on X;

(ii) skyscraper sheaves O, forq € X — U{p;};
(iii) objects supported on the functions p;, classified in Lemma 4.16.

4.5 | The fundamental region and normalization

Recall the notation introduced in Section 3 and the identification K(D)g ~ F. In this section,
we use the heart Ay to construct a region U in Stab(D) which is a homeomorphic lift via
m: Stab(D) —» Hom(F,C) of the fundamental domain D described in Proposition 3.12. Then,
following [9], we introduce normalized stability conditions.

Proposition 4.18. For every point Z in the fundamental domain D C E there exists a unique stability
condition (Z, Ag) € Stab(D). In fact, the inverse image U := 7~'(D) maps homeomorphically to D
under the central charge map.

Proof. Pick Z € D, C D C E. The class of every object in Ay is a positive linear combination of
classes of objects listed in Proposition 4.17. Then, the definition of D, shows that Z(Az) C H, in
other words, Z is a stability function on Ay. Since Ay is Noetherian (Lemma 4.11), and the image of
Im Z is discrete by construction, then Z has the Harder-Narasimhan property by Proposition 2.5.

Again by Proposition 4.17, we see that the image of Z is discrete, so the support property is
automatically satisfied. Then, the map 7;; is a homeomorphism. O

‘We observe right away the following Lemma:
Lemma 4.19. Let o € U. Then, all tij , j # 0, and all line bundles O (d) are o-stable.
Proof. Let S be one of the objects in Pi (see (8)) or a sheaf Ox(d). A short exact sequence
K—-S->Q (16)
in Ay corresponds under the McKay functor to a short exact sequence of sheaves on the resolution
K -9 (S) - Q.

On the other hand, ¥~'S is either an object of the form Ocij(_l) or a line bundle on X. In either

case, the only quotients of ¥~1(S) are obtained by repeated extensions of skyscraper sheaves, so
Q € Ay is semistable of phase 1. Therefore S is o-stable. O

Let Stab”(D) be the connected component of Stab(D) containing U. In addition to the full sta-
bility manifold Stab(D), we will often restrict our attention to the locus of normalized stability

conditions

Stab, (D) := {o = (Z,P) € Stab"(D) | Z(a) = 1}. 17)
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By construction, U C Stab, (D), so we also define Stabl'l(D) C Stab’(D) as the connected com-
ponent of Stab, (D) containing U. We use 7 to denote the restriction of the central charge map to
any of these regions of Stab(D). As it turns out, we have

Proposition 4.20. All stability conditions in Stab'(D) (and hence in Stab:l(D)) satisfy the
additional condition
Z(b)

The proof of Proposition 4.20 uses our wall-crossing result (Theorem 5.4) and is given in
Section 5.3. An immediate consequence of Proposition 4.20 is that 7 maps StabL(D) in EC
Hom(K (D), C). This is used in Section 6.

Remark 4.21. Normalization is a very natural choice in this context: it already appears in the case
of Kleinian singularities [9] and it fits well with Saito’s definitions of E and H (see (5)), which
include the condition Z(a) = 1.

Moreover, as is the case in [34] and, for example, in [14], normalizing preserves information
about the whole component Stab’(D). Indeed, Stab’(D) is the orbit of Stab;(D) under the C-
action, and it is a C*-bundle over the normalized locus Stab,,(D): these statements are proven in
Section 5.4 using results from Section 5.

5 | WALL-CROSSING IN D

In this section, we apply the wall-crossing methods of [2] and [1] to the K3-category D. First, we
produce stable objects for a certain stability condition in Stab’(D). We then analyze wall crossing
for spherical and radical classes, obtaining Theorem 5.4. From it, we obtain a proof of Proposi-
tion 4.20 and of the claims of Remark 4.21. The results of this section hold if one works with
normalized stability conditions with the same arguments, so we do not repeat them. The notation
is as above.

5.1 | Stability conditions on Coh(X) and B

Geigle and Lenzing define slope-stability on a weighted projective line in [12, Section 5]. Define a
stability condition 7}, := (Z,, Coh(X)) € Stab(X) with

Zy = —deg+irk,

where deg(O0), ® x7) is defined to be — for all orbifold points p; and all j =0,...,a; — 1. Then,

slope- stablhty is equlvalent to 1' stablhty onX.Wesaythataroota € RUA;, is posztive ifZ,(ax) €
H U R_o. Results about 7| stablhty are summarized in [23]:

Theorem 5.1 [23, Theorem 4.6]. Let X be as above, « € RU A,;,,,. Then:

(i) there exists an indecomposable sheaf F of class a if and only if a is a positive root;
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(ii) thesheaf'F is unique up to isomorphism if a is a real root, and varies in a one-parameter family
if o is imaginary;
(iii) an indecomposable sheafis Té—semistable, and it is Té—stable if and only if a is primitive.

By Lemma 4.2, we can regard Z;, as a map defined on K(D), and define a stability condition
7, € Stab(D) as (Z,, B). By construction, 7, lies in the boundary of a fundamental chamber in
Stab’(D) (for example, because Im Zo(tl.j ) = 0 for all i, j).

We say that an object E € D is semi-rigid if ext! (E, E) = 2. Then we have:

Proposition 5.2. Let « € RU A;,, be a positive root. If a is a real root, there exist a 7y-semistable
spherical sheaf in B of class a. If « is imaginary, there is a one-parameter family of semi-rigid t,-
semistable sheaves in B of class a. If a is primitive, the same statement holds with stability instead
of semistability.

Proof. By Theorem 5.1, there exists a T(’)-semistable sheaf E' on X of class a. Let E : = (,(E’) be the
indecomposable sheaf in B obtained by pushing forward E’. The sheaf E is 7,-semistable: since
E is supported on X, then so must be every subsheaf S C E. This implies that S = ¢, S’ for some
S’ € Coh(X). Then, S destabilizes E if and only if S” destabilizes E’.

Next, we show that E is spherical if « is a real root. Deformations of E’ are governed by
the group Ext; (E’,E’), so Theorem 5.1 implies that Ext} (E’, E') = 0, hence Exty,(E,E) = 0 by
Lemma 4.1. On the other hand, since « is real, one must have y(a, a) = 2, so E is spherical. Simi-
larly, one argues that E is semi-rigid if « is imaginary. The claim about stability follows again from
Theorem 5.1. O

5.2 | Wall-crossing in Stab(D)
The lattice K(D) can be equipped with the Mukai pairing
V,w) :=—y(v,w).

The pairing has a rank 2 radical rad y generated by a and b, and it induces a negative definite
pairing on K(D)/ rad y, since the Euler form on K(D)/ rad y coincides with the Cartan matrix of
the root system R s which is positive definite.

Since K(D) is negative semidefinite, the class v of a stable object can only satisfy v2 = 0 or
v? = —2. In the first case, v belongs to rad y, and we call it a radical class. Classes with vi=-2
are called spherical classes.

First, note that since K(D) is a discrete lattice, we have a finiteness result for walls:

Proposition 5.3 [1, Proposition 3.3]. Let D be a triangulated category such that K(D) is a lattice
of finite rank. Let Stab™ (D) C Stab(D) be a connected component of its space of stability conditions.
Fix a primitive class v € K(D), and an arbitrary set S C D of objects of class v. Then there exists a
collection of walls W;?V with w € K(D), with the following properties.

(a) Every wall W‘SN is a closed submanifold with boundary of real codimension one.
(b) The collection W;?v is locally finite (that is, every compact subset K C Stab*(D) intersects only a
finite number of walls).
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(c) For every stability condition (Z,P) € va, there exists a phase ¢ and an inclusion F,, — E,, in
P(¢) with [F,,] = w and some E,, € S.

(d) If C c Stab*(D) is a connected component of the complement owaeK(D)va, and o,,0, €C,
then an object E,, € S is o,-stable if and only if it is o,-stable.

Recall that o € Stab(D) is said to be generic with respect to v € K(D) if o does not lie on any
of the walls of the wall-and-chamber decomposition associated to v. The goal of this section is to
prove the following Theorem:

Theorem 5.4. Let a € R C K(D) be a positive root. Let ¢ € Stab’ (D) be generic with respect to a.
Then, there exists a o-stable object E of class a. The object E is rigid if « is a real root, and it varies in
a family if a is imaginary.

We will make use of the following well-known property of K3-categories.

Lemma 5.5 [17, Proposition 2.9]. Let o € Stab(D).

(i) IfE € D is spherical, then all of its o-stable factors are spherical.
(ii) IfE € D is semi-rigid, then all of its o-stable factors are spherical, except for possibly one semi-
rigid factor.

Before moving forward, we recall a construction from [2]. Fix a primitive class v € K(D), let S
be the set of objects of D of class v, and let W = W‘SN be a wall of the wall-and-chamber decom-
position of Stab(D) associated to v. Then we can associate to W the rank 2 lattice Hy, C K(D):

HW={weK(D)lIm%=Oforallo=(Z,P)GW}. (18)

The rank of Hy, is at least 2 because it contains at least v and the linearly independent class
w destabilizing at W. If it had rank bigger than 2, the definition (18) would imply that W has
codimension higher than 1.

Forany o = (Z,P) € W,letC, C Hy, ® R be the cone spanned by classes c satisfying

Z
c¢2> -2 and Imﬁ > 0.
Z(v)

We will refer to C, as to the cone of o-effective classes in Hy,.

5.21 | Wall-crossing for spherical classes

Lemma 5.6. Let v be a primitive spherical class in K(D), and W be a wall for v. Then Hy, is a
primitive lattice of rank two generated by v and a spherical class w. It is negative definite (with
respect to the restriction of the Mukai pairing). Moreover, there are only three possibilities for the
intersection form, and:

(i) if (v,w) = 0, then Hy, contains no spherical classes except for +v and +w;
(i) if (v,w) = —1, the only spherical classes in Hy, are +v, W, and (v — w);
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(iii) if (v,w) = 1, the only spherical classes in Hy, are +v, +w, and +(vV + W).

Proof. We have that v € Hy, has v? < 0 and w must be a spherical class by Lemma. 5.5. So both v
and w project to non-zero vectors in K(D)/ rad y. The intersection matrix of Hy;, can be computed
on K(D)/ rad y, where the Mukai pairing coincides with the opposite of the Cartan intersection
matrix, so it is negative definite.

The signature of the form implies that the determinant of the intersection form be positive,
which rules out all values of (v, w) except for 0 and +1. The spherical classes are the integer
solutions of

-2 = (xv + yw)? = —2x? — 2y 4+ 2(v, W)xy

in these three cases. O

Let W be a wall for v. Then, we denote by o, a stability condition which only lies on the wall
W, and consider a path in Stab(D) passing through ¢, and connecting c* and ¢, two stability
conditions lying in adjacent chambers.
Lemma 5.7. For W as above, suppose that there exists an indecomposable o -semistable spherical
object E of class v. Then there is a ot -stable spherical object Et of class v. Likewise, there exist a
o~ -stable object E~ of class v.
Proof. By Lemma 5.5, the Jordan-Hdlder factors of E are spherical objects. In other words, v can be
written as a sum of spherical classes in C;, . If E is -stable, there is nothing to prove. Otherwise,
Lemma 5.6 shows that, up to the sign of w, E has a Jordan-Holder filtration

B—>E — A,

where B, A have class w and v — w, respectively. Observe that Ext'(A4, B) = Ext!(B, A) # 0 since
E is indecomposable, and denote by E’ the non-trivial extension

A—E - B.
If ¢pe(V—wW) > ¢+ (W) set Et = E. If ¢+ (Vv —W) < ¢ (W), set EY = E’. In any case, E*
satisfies the assumptions of [2, Lemma 9.3], and hence is o*-stable. O
5.2.2 | Wall-crossing for radical classes

Lemma 5.8. Let v be a primitive radical class in K(D), and W be a wall for v. Then Hy, contains
a spherical class w and the intersection matrix of Hyy is

0 O

0o —2/°
Proof. Another generator of Hy,, w, is either radical or semi-rigid by Lemma 5.5. If it is semi-
rigid, (w, w) = 0, so the intersection form is zero on Hy, and Hy, contains no spherical classes.
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Then every o,-semistable object E of class v must be stable on W, because it can only have one
Jordan-Holder factor, so W is not a wall. The only other possibility is that w is spherical and the
intersection form is as claimed. [l

Lemma 5.9. For W as above, suppose that there exists an indecomposable o -semistable semi-rigid
object E of class v. Then there is a o*-stable semi-rigid object E* of class v. Likewise, there exist a
o~ -stable semi-rigid object E~ of class v.

Proof. The proof is analogous to that of Lemma 5.7. If E is o-stable, there is nothing to prove,
otherwise it must have at least a spherical stable factor. Then one can writev = a + bwitha € C;
spherical, and b € C, . By Lemma 5.8, the only spherical classes in H are of the form +w + nv
with n € Z; then b has to be spherical as well, and there is only one integer N such thata :=
w + Nvandb := —w + (1 — N)v are both o,-effective. Moreover, a and b cannot be expressed as
the sum of other effective spherical classes. This implies that the Jordan-Hdélder filtration of E is

€. B-—>E- A

Since E is indecomposable, (¢) # 0 in Ext!(A, B) ~ Ext!(B, A), and we can conclude as in
Lemma 5.7. |

Proof of Theorem 5.4. Suppose first that v is a spherical class. Proposition 5.2 shows that up to a
sign there exists a 7,-semistable sheaf E of class v which is spherical and indecomposable. Since
Stab’(D) is connected and Ty € Stab’(D), there is a path y of stability conditions in Stab’(D)
connecting 7y and o.

Observe that the objects ET produced in Lemma 5.7 are in turn indecomposable, because they
are stable with respect to some stability condition. Then, we can repeatedly apply Lemma 5.7
and conclude.

A similar argument, where one uses Lemma 5.9 instead of Lemma 5.7, works for radical
classes. O

5.3 | Proof of Proposition 4.20
Now we prove that every stability condition in Stab’(D) (and hence in Stab;(D)) satisfies

: Z(b)

It suffices to show that there does not exist a stability condition o, = (Z, A,) in Stab’ (D) for
which Im % =0.
Suppose such o existed. Acting with C, we may assume that Zy(a), Z,(b) € R. Assume

moreover that Z,, takes values in Q. Then, choose x,y € Z coprime such that
xZy(a) +yZy(b) =0 (19)

and v := xa + yb is a positive radical vector. Thus, v is a primitive radical vector with Z,(v) = 0.
This implies that there exists a neighborhood V c Stab’(D) of 0, such that no o € V' admits
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semistable objects of class v, since semistability is a closed condition. But this contradicts
Theorem 5.4.

If Z, takes values in R, there may be no integer solutions to (19), but for every € > 0 there are
integers x, y such that

[xZy(a) +yZy(b)| <€

and v = xa + yb is a primitive radical vector. Choosing € < 1, the support property implies that
there exists a neighborhood V' C Stab’(D) of ¢, such that no o € V admits semistable objects of
class v, and we conclude in the same way.

5.4 | Action of C and the orbit of normalized conditions

Recall the C-action on Stab(Z?) defined in equation (2) and denote by K the orbit of Stab;(D).
Here, we show that X = Stab"(D).

Itisstraightforward tosee K C Stab’(D), since K is connected and intersects Stab’ (D). To prove
the other, fixt € Stab'(D). By definition, there exists a path y : [0,1] — Stab'(D) such that Yo=T
andy; € U. We will use y to define z, € C and a modified path y’, taking values in Stabjl(D), such
that y(’) = z, - 7, which shows 7 € K.

For every t € [0,1], y, = (Z,,P;) admits a semistable object E, of class a: this is true if y, is
generic by Theorem 5.4, and hence for all ¢ since semistability is a closed condition. Then define
¢, :=Z,(E,) € C* for all t. We can chose E, in a way that { : ¢ — ¢, is continuous, hence a path
in C*: since E|, is y(0)-semiststable, then it is semistable in an interval [0, t;] with 0 < ¢; < 1, and
hence we can pick E, = E, for all ¢ € [0, ¢;]. Since y(¢;) is at a wall for a, by Lemma 5.9 there
exists E; which is y(¢)-semistable for t € [¢1,t,], witht; <t, < 1.SetE, = E, fort; <t < t,. Since
Z; (Ey) = Z, (E,), the function { is continuous at t,. We can iterate this process since walls for a
are finite by Proposition 5.3.

Since y; € Stab;(D), we have {; =1, so the principal value z := Log¢ defines a continuous
function z : [0,1] — C such that z; = 0. We can finally define the path

y': [0,1] — Stab (D)
t =z, -y(0).

By construction, every stability condition y’(¢) is normalized, and 7/1 =y, € U. Then y(’) =2z
TE Stabjl(D), and 7, € K.

If 7 € Stab, (D), the complex number z, has the form z, = i2zk for some k € Z, and acting
with z, is the same as acting with [2k] € Aut(D): in other words, the connected components of
Stab,, (D) are even shifts of Stabl'l (D). Arguing as above one sees that Stab’(D) is a C*-bundle over
Stab, (D).

6 | STABILITY CONDITIONS ON D

In this section, we study the action of Br(D) on Stab(D) and show that it preserves Stab;(D).
Then, we describe the image of StabL(D) in Hom(K(D),C) and show ﬂ(StabL(D)) = Xreg
(Proposition 6.7). Finally, we prove our main results in Section 6.2.

8518017 SUOULLIOD 3AIE1D 3ot [dde 8y} Aq psuenob a1 sajole YO ‘8N J0'Sa|n1 1o Aeiq1T 3UIIUO A8|IM UO (SUOTHPUOD-PUR-SWLSYWI0 A8 | 1M AReq Ul Uo//SdiL) SUORIPUOD Pue SWwLe | 84} 88S *[2202/TT/TT] uo Aiqiauliuo A8|im ‘Mobselo JO AiseAIUN AQ #E9ZT'SWII/ZTTT 0T/I0p/L0D"A8| I AReiq1jeul|u0'd0SyIeWpUO //SAY WO papeojumod ‘€ ‘2202 ‘0SLL69vT



2298 | ROTA

6.1 | Group actions and the image of the central charge map

The group of auto-equivalences of D acts on Stab(D) as in equation (3). The following discus-
sion shows that the auto-equivalences in Br(D) preserve Stabjl(D). It follows that the central
charge map is equivariant with respect to the actions of Br(D) and W on Stabjl(D) and
Hom(F, C), respectively.

Recall from Section 3.4 that the boundary of D (defined as a fundamental domain of W in
Hom(F, C))is contained in the union of Y, , walls W, , asu, v vary in the vertices of |T 7l and |T',],
respectively. Denote by Y, ,, W, . the inverse images of Y, ., W, , to U (we use Proposition 4.18
here).

u,x>

Lemma 6.1. Let g = (Z, A) be a point in the boundary of U. Then ¢ lies in the union of W, ., Y, ,.

Proof. This follows from the description of the boundary of D in Section 3.4: the only other
possibility is that Im Z(b) = 0, but this is excluded by Proposition 4.20. O

Recall the notation of equation (9), and let v € |T|:

Lemma 6.2. Let o = (Z, A) be a point in the boundary of U contained in a unique wall among the
functions WU, +- Then there is an element T € Br(D) such that T - ¢ also lies in the boundary of U.
More precisely, we may pick T = ®g ifoc € W, ,and T = <I>§U1 ifoew,_.

Proof. Suppose o € W, _. Set S :=S,. Let V be a small neighborhood of ¢ € Stab(D), and
consider the open subset

Vt={c' =", A)eV | ImZ(S) < 0k

Arguing as in [9, Lemma 3.5], we claim that we can choose V small enough so that CDEI vt cu,
hence @gla lies in the closure of U. Thus, we need to show that for sufficiently small V' the heart
of all o/ € V't is equal to @¢(Ag) C D. By Lemma 2.3, it suffices to show that ®¢(M) lies in the
heart of any o’ € V*, for all the objects M listed in Proposition 4.17.

‘We verify this on a case by case basis: assume first that S = tl.], j # 0. Then:

Case 1. Suppose L is a line bundle on X. Then L is locally of the form O((k/a;)p;) for some
k € {0, ..., a;}, and one computes

C[-1]ifk = j

Hom'(t],L) = 4 C[-2]if k +i = j

0 otherwise.
If Homl(tl.j ,L) # 0, then there is a non-split short exact sequence in Ay
L—®gL—t.
1

It follows that ®¢L lies in the heart of o and its semistable factors have phases in (0,1). Choosing
V small enough ensures that this is the case for all ¢’ € V' too.
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If Homz(tl.j ,L) # 0, then ®¢L fits in a triangle
L — @gL — t][-1],

which implies that ®¢L lies in .A’, because so do L and tl.j [—1].

If Hom'(tij ,L) =0, then ®¢L = L and the same argument applies.
Case 2. The same argument applies to ® N (O,) = O forall g # p;, and to all sheaves supported

away from p;; _ .

Case 3. The only possibilities for ®gt¥, k # j,0 are that Hom"(¢/,t¥) = 0 or Hom"(t/,tf) =
C[—1]. Both are analogous to the case of a line bundle above. Consider ®4(S) = S[—1]. Since S
is o-stable of phase 1, we may assume by shrinking V' that S is ¢’-stable with phase at most 2.
Moreover, S must have phase bigger than 1in ¢/, so S[—1] lies in the heart of ¢’. Similarly, one
sees that dgt)[-1] € A’

Case 4. If M is a cluster supported at p;, then M has a non-split composition series with factors
the tij forj =0,...,a; — 1, where t? is the last factor. Then, ®¢M has a non-split composition series
with all factors in A’ but the last one in .A’[1], and Z/(®gM) = —Z'(a) = —1,s0 P4(M) € A'.

Case 5. It remains to show the claim for N[—1] where N is the proper quotient of a cluster M,
with kernel K. Write the triangle

M[-1] - N[-1] - K (20)

and apply ®g. By the discussion above, ®5(K) € A’ since K is obtained by repeated extensions of
functions tij with j > 0, and ®4(M)[—1] is stable of phase 0. Then ®;(N)[—1] € A’, because the
triangle (20) does not split.

Similar computations show that ®g(M) € A" for all M € Ay and S = Ox. A symmetric
argument settles the casec € W, .. O

Lemma 6.3. Let 0 = (Z, A) be a point in the boundary of U contained in a unique wall among the
Y, .. Then thereis an element T € Br(D) such that To also lies in the boundary of U. More precisely,
wemay pick T =p, ifc €Y, ,andT =p' ifc €Y, _.

Proof. If o € Yu, +» observe that we can choose a small neighborhood V of ¢ in Stab(D) so that
every 7 € V has heart Ay. Consider the open subset

Vi={t=(Z',A) eV |t ¢ UL

For 7 € V', we then have that p'Z’ = p; ' Re Z' + iIm Z’ belongs to D. Then, it is enough to
show p,(Ag) = Ay to conclude p, 7 € U, so that p,,o lies in the closure of U.

Using Proposition 4.17, one sees that P_(1) only contains objects whose class is a multiple of a.
Since p,, preserves the imaginary part of Z’ and fixes the class a, we have P,(1) = P,(1). Then,
the only possibility is that for u € |I'|, one has p,(Ag) = Ag[2n], for some integer n. We prove
that n must be 0. One readily checks

Po.1(Ox(1) = P, Po, 1)(Ox(1)) = Py, (Ox(D[-1]) = Ox(-1)
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using Lemma 4.3. This implies p(Ag) = Ag. Now one has
Pi1(Ox(=1)) = q’(til)P(0,1)q’(zi1)P(_Oh)(@)((—l))
= q)(til)Poq)(til)(Ox(l))
~ ‘D(tg)q’oxq’ox(l)‘p(;})(Ox(l)) (21)
~ qn(til)%x(t})
~ O,

by repeatedly applying Lemma 4.3. For p; ;), j > 1, we claim p(; ;(Ox) =~ Oy. This is a conse-
quence of the fact that Oy (d) is orthogonal to tl.] for d =0,—1, all i and all j > 1. Indeed, one
computes

P2(Ox) = P20, P20 1) (Ox)
= @(2)P i) P(i2) (Ox (=1)
~ @201y (Ox (~1)) (22)
= @1)(Oy)
~ Oy,

and proves the same claim for j > 2 inductively. This concludes the proof in the case o € Yi, 4
The case o € Y, _ is similar. O

Proposition 6.4. Foranyo € StabL(D), there is an autoequivalence ® € Br(D) such that ® - g €
U.

Proof. Same as the proof of [18, Proposition 4.13]. O

Let 77! (X,e,)" be the connected component of 77(X,,,) containing U. Since it is a subset of
Stab;(D), we have:

Corollary 6.5. Forany o € ﬂ‘l(Xreg)T, there is an auto-equivalence ® € Br(D) such that ® - ¢ €
U.

Lemma 6.6. The image of  : Stab;(D) — Hom(F, C) contains X;g.

Proof. StabL(D) contains the orbit of U under Br(D). Since the action of Br(D) lifts that of W on
Hom(F, C), the orbit of U under the action of Br(D) is mapped to Xreg C Hom(F, C). O

The next goal of our discussion is to prove the following:
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Proposition 6.7. The projection = maps Stabj'l(D) onto X, S0 that n(Stabj;(D)) = Xreg-

Proof. By Lemma 6.6, it is sufficient to show that ﬂ(Stab;(D)) C Xieg> OF, equivalently, that
Stab;(D) C ﬂ_l(Xreg)"'. To show this, it is enough to check that Stab:l(D) contains no bound-
ary points of ﬂ_l(Xreg)"'. Any such boundary point o = (Z, P) is projected to Z € 0X,,. From the
definition of X, in Proposition 3.11, either Z vanishes on a ray in R, ((R), or Im Z(b) = 0.

In the latter case, Proposition 4.20 ensures that o & Stabl'l (D). Then, suppose « is a positive root

such that Z(a) = 0.If o € StabL(D), by Proposition 6.4 there is an element ® € Br(D), such that
®-0=(Z',P') €U, and [®|a = § € II. Then we have Z’(8) = 0. However, by Lemma 4.19, for
all B € II there are objects of class 8 which are semistable for all stability conditions in U, hence
® - g violates the support property, and therefore o ¢ StabZ(D). O

Proposition 6.8. The action of Br(D) on Stabl'l(D) is free and properly discontinuous.

Proof. First, we check that the action of Br(D) is free. By Corollary 6.5, it is enough to show this
for o € U. Assume then that ¢ = ®c for some ® € Br(D) and o € U. We have Z(®(-)) = Z(-),
hence [®] = id on K(D). So [®(S,,,)] = [S,,,] for all m. Up to isomorphism, S,, is the only object in
Ay in its class (this is readily observed translating Ay to ¥~!(Ay)), hence ®(S,,) ~ S,, for all m.
Then @ ~ id in Br(D) by Lemma 6.9.

To show that the action of Br(D) is properly discontinuous, it is enough to exhibit, for every
non-trivial ® € Br(D) and every ¢ € U, a neighborhood V of ¢ such that ®(V)nV =§. If
[®] # id, the existence of V follows from Proposition 3.11. If [®] = id, then it is a consequence
of Lemma 2.6. O

Lemma 6.9. Suppose ® € Br(D) satisfies ®(S) ~ S forall S € II. Then ® ~ id.

Proof. We consider ® as an element of Aut(D?(Tot(wy))), and we study the equivalent problem
of showing that

O =9 lodo¥

is the identity on Aut(D?(Y")), where Y’ denotes the crepant resolution of Tot(wy), under the
assumption that elements of ¥~'I1I are fixed (recall the notation of Section 4).

First, observe that for p € Y’ \ X’, we have ®(0),) = O, because all S € II are supported on X
and hence orthogonal to ©0,. If p € X C X ', applying @ to the short exact sequence

; I
0-1i,0x(-1)—>i,0x > 0,0
one obtains a non-zero map ®(f) of pure one-dimensional sheaves, fitting in a triangle

. o(f)
i,Ox(-1) — i,Ox > @(OP).

This implies that H _ltlD(Op) = 0 and ®(O),) is a skyscraper supported at a point of X.
Now let {p} = X N C; . Then the skyscraper supported at p must be fixed by @', because it
admits a restriction map Oc, (1) - O, and @' fixes O, (-1) = W't!. Let M, denote the
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cluster corresponding to p. Then @ fixes M, because @' fixes O,. Moreover, M, has a unique
composition series by the tij , which are all fixed by ® except possibly t?. Then ® must also fix t?
fori=1,..,r. 4

Then, since every cluster has a composition series which factors the simple sheaves tij and @
fixes the tij for all j =0,...,a; — 1, it must also send any cluster to a cluster. In other words, ®’
sends skyscraper sheaves of points on any exceptional curve C; to skyscraper sheaves.

One can then apply [15, Corollary 5.23], which implies that there exists an automorphism ¢ of Y’
such that ®'(0,) ~ Oy and @' ~ (— ® L)og, for some line bundle £ on Y’. The automorphism
¢ is the identity, because it is the identity on the dense open complement of X’. The Picard group
of Tot(wy ) is isomorphic to Pic (X) (S Z{C; ;1) hence the only line bundle fixing the p-1(S) with
S € Il is the trivial one. Then, ® ~ id as we wished to prove. O

6.2 | Proof of main results
Denote by 77 the composition of the maps Stab;(D) 5 Xreg = Xreg/W. Then we have:
Theorem 6.10. The map
7@ Stab] (D) = Xpeg/W

is a covering map, and the group Br(D) acts as group of deck transformations.
Proof. We only need to show that the quotient of Stabl(D) by Br(D) coincides with X, /W. Equiv-
alently, for every pair of stability conditions o}, o, satisfying 7(c,) = 7(0,), we need to exhibit an
element ® € Br(D) such that o, = @ - 0,.

By Corollary 6.5, it is enough to show this when o; € U. Moreover, there exists ® € Br(D) such
that o) := @ - 0, lies in U. Then we have

n(c}) = [@] - 7(03) = [®] - 7(0y)

in D. Since U and D are homeomorphic, this implies [®] = id and ¢/, = 0. O

Let Aut’ (D) c Aut(D) be the subgroup of auto-equivalences which preserve the component
Stab) (D). Write Autl (D) for the quotient of Aut’(D) by the subgroup of auto-equivalences which
act trivially on Stab, (D).
Corollary 6.11. There is an isomorphism

Aut!(D) ~ Br(D) X Aut(T),

Where Aut(T') acts on Br(D) by permuting the generators.
Proof. The argument is the same as [9, Corollary 1.4]. Observe that unlike in [9], the shift

auto-equivalence does not belong to Aut'(D), since it maps Stab;(D) to a different connected
component in Stab, (D) if it is an even shift or outside Stab, (D) if it is odd. O

8518017 SUOULLIOD 3AIE1D 3ot [dde 8y} Aq psuenob a1 sajole YO ‘8N J0'Sa|n1 1o Aeiq1T 3UIIUO A8|IM UO (SUOTHPUOD-PUR-SWLSYWI0 A8 | 1M AReq Ul Uo//SdiL) SUORIPUOD Pue SWwLe | 84} 88S *[2202/TT/TT] uo Aiqiauliuo A8|im ‘Mobselo JO AiseAIUN AQ #E9ZT'SWII/ZTTT 0T/I0p/L0D"A8| I AReiq1jeul|u0'd0SyIeWpUO //SAY WO papeojumod ‘€ ‘2202 ‘0SLL69vT



THE STABILITY MANIFOLD OF LOCAL ORBIFOLD ELLIPTIC QUOTIENTS | 2303

ACKNOWLEDGEMENTS

I wish to thank my doctoral advisor, Aaron Bertram, for his guidance and enthusiasm in suggest-
ing this problem. I am grateful to Bronson Lim and Huachen Chen for our fruitful discussions, and
to Arend Bayer for his helpful comments on a preliminary version of this work. I thank Michael
Wemyss for his advice, and also for his help with Lemma 6.9. The author was partially supported
by NSF-FRG grant DMS 1663813 and by EPSRC grant EP/R034826/1.

JOURNAL INFORMATION

The Journal of the London Mathematical Society is wholly owned and managed by the London
Mathematical Society, a not-for-profit Charity registered with the UK Charity Commission.
All surplus income from its publishing programme is used to support mathematicians and
mathematics research in the form of research grants, conference grants, prizes, initiatives for
early career researchers and the promotion of mathematics.

REFERENCES

1. A. Bayer and E. Macri, The space of stability conditions on the local projective plane, Duke Math. J. 160 (2011),
no. 2, 263-322. MR 2852118.
2. A.Bayer and E. Macri, MMP for moduli of sheaves on K3s via wall-crossing: nef and movable cones, Lagrangian
fibrations, Invent. Math. 198 (2014), no. 3, 505-590. MR 3279532.
3. A. Bertram, S. Marcus, and J. Wang, The stability manifolds of P! and local P, Hodge theory and classical
algebraic geometry, Contemp. Math., vol. 647, Amer. Math. Soc., Providence, R.I., 2015, pp. 1-17. MR 3444996.
4. A. A. Beilinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I
(Luminy, 1981), Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5-171. MR 751966.
5. T. Bridgeland, Flops and derived categories, Invent. Math. 147 (2002), no. 3, 613-632. MR 1893007.
6. T. Bridgeland, Stability conditions on triangulated categories, Ann. of Math. (2) 166 (2007), no. 2, 317-345. MR
2373143.
7. T. Bridgeland, Stability conditions on K3 surfaces, Duke Math. J. 141 (2008), no. 2, 241-291. MR 2376815.
8. T. Bridgeland, Spaces of stability conditions, Algebraic geometry—Seattle 2005. Part 1, Proc. Sympos. Pure
Math., vol. 80, Amer. Math. Soc., Providence, R.I., 2009, pp. 1-21. MR 2483930.
9. T. Bridgeland, Stability conditions and Kleinian singularities, Int. Math. Res. Not. IMRN (2009), no. 21, 4142—
4157. MR 2549952.
10. T.Bridgeland, A.King, and M. Reid, The McKay correspondence as an equivalence of derived categories, J. Amer.
Math. Soc. 14 (2001), no. 3, 535-554. MR 1824990.
11. M. R. Douglas, Dirichlet branes, homological mirror symmetry, and stability, Proceedings of the International
Congress of Mathematicians, Vol. ITI (Beijing, 2002), Higher Ed. Press, Beijing, 2002, pp. 395-408. MR 1957548.
12. W. Geigle and H. Lenzing, A class of weighted projective curves arising in representation theory of finite-
dimensional algebras, Singularities, representation of algebras, and vector bundles (Lambrecht, 1985), Lecture
Notes in Math., vol. 1273, Springer, Berlin, 1987, pp. 265-297. MR 915180.
13. D. Happel, L. Reiten, and S. O. Smale, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math.
Soc. 120 (1996), no. 575, viii+88. MR 1327209.
14. Y. Hirano and M. Wemyss, Stability conditions for 3-fold flops. Preprint, arXiv:1907.09742, (2019)..
15. D. Huybrechts, Fourier-Mukai transforms in algebraic geometry, Oxford Mathematical Monographs, The
Clarendon Press, Oxford Univ. Press, Oxford, 2006. MR 2244106.
16. D. Huybrechts, Introduction to stability conditions, Moduli spaces, London Math. Soc. Lecture Note Ser., vol.
411, Cambridge Univ. Press, Cambridge, 2014, pp. 179-229. MR 3221296.
17. D. Huybrechts, E. Macri, and P. Stellari, Stability conditions for generic K3 categories, Compos. Math. 144
(2008), no. 1, 134-162. MR 2388559.
18. A. Ikeda, Stability conditions for preprojective algebras and root systems of Kac-Moody Lie algebras. Preprint,
arXiv:1402.1392, (2014).

8518017 SUOULLIOD 3AIE1D 3ot [dde 8y} Aq psuenob a1 sajole YO ‘8N J0'Sa|n1 1o Aeiq1T 3UIIUO A8|IM UO (SUOTHPUOD-PUR-SWLSYWI0 A8 | 1M AReq Ul Uo//SdiL) SUORIPUOD Pue SWwLe | 84} 88S *[2202/TT/TT] uo Aiqiauliuo A8|im ‘Mobselo JO AiseAIUN AQ #E9ZT'SWII/ZTTT 0T/I0p/L0D"A8| I AReiq1jeul|u0'd0SyIeWpUO //SAY WO papeojumod ‘€ ‘2202 ‘0SLL69vT



2304

ROTA

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

32.

33.

34.

35.
36.

37.

38.

K. Iohara and H. Yamada, Double loop algebras and elliptic root systems, Ann. Mat. Pura Appl. (4) 196 (2017),
no. 2, 743-771. MR 3624973.

V. G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge Univ. Press, Cambridge, 1990. MR 1104219.

B. Keller, Deformed Calabi-Yau completions, J. reine angew. Math. 654 (2011), 125-180. (With an appendix by
Michel Van den Bergh.) MR 2795754.

M. Krawitz and Y. Shen, Landau-Ginzburg/Calabi-Yau correspondence of all genera for elliptic orbifold P*.
Preprint, arXiv:1106.6270, (2011).

H. Lenzing and H. Meltzer, Sheaves on a weighted projective line of genus one, and representations of a tubular
algebra [MR1206953 (94d:16019)], Representations of algebras (Ottawa, ON, 1992), CMS Conf. Proc., vol. 14,
Amer. Math. Soc., Providence, R.I., 1993, pp. 313-337. MR 1265294.

E. Macri, Stability conditions on curves, Math. Res. Lett. 14 (2007), no. 4, 657-672. MR 2335991.

E. Macri and B. Schmidt, Lectures on Bridgeland stability, Moduli of curves, Lect. Notes Unione Mat. Ital., vol.
21, Springer, Cham, 2017, pp. 139-211. MR 3729077.

H. Meltzer, Exceptional sequences for canonical algebras, Arch. Math. (Basel) 64 (1995), no. 4, 304-312. MR
1318999.

T. Milanov and Y. Ruan, Gromov-Witten theory of elliptic orbifold P! and quasi-modular forms. Preprint,
arXiv:1106.2321, (2011).

S. Okada, Stability manifold of P, I. Algebraic Geom. 15 (2006), no. 3, 487-505. MR 2219846.

K. Saito, Extended affine root systems. I. Coxeter transformations, Publ. Res. Inst. Math. Sci. 21 (1985), no. 1,
75-179. MR 780892.

K. Saito, Extended affine root systems. II. Flat invariants, Publ. Res. Inst. Math. Sci. 26 (1990), no. 1, 15-78. MR
1053908.

P. Seidel and R. Thomas, Braid group actions on derived categories of coherent sheaves, Duke Math. J. 108 (2001),
no. 1, 37-108. MR 1831820.

Y. Shiraishi, A. Takahashi, and K. Wada, On Weyl groups and Artin groups associated to orbifold projective lines,
J. Algebra 453 (2016), 249-290. MR 3465355.

R. P. Thomas, Stability conditions and the braid group, Comm. Anal. Geom. 14 (2006), no. 1, 135-161. MR
2230573.

Y. Toda, Stability conditions and crepant small resolutions, Trans. Amer. Math. Soc. 360 (2008), no. 11, 6149-6178.
MR 2425708.

Y. Toda, Stability conditions and extremal contractions, Math. Ann. 357 (2013), no. 2, 631-685. MR 3096520.

R. Tramel and B. Xia, Bridgeland stability conditions on surfaces with curves of negative self-intersection.
Preprint, arXiv:1702.06252, (2017).

M. Van den Bergh, Three-dimensional flops and noncommutative rings, Duke Math. J. 122 (2004), no. 3, 423—
455. MR 2057015.

H. van der Lek, Extended Artin groups, Singularities, Part 2 (Arcata, Calif., 1981), Proc. Sympos. Pure Math.,
vol. 40, Amer. Math. Soc., Providence, R.I., 1983, pp. 117-121. MR 713240.

8518017 SUOULLIOD 3AIE1D 3ot [dde 8y} Aq psuenob a1 sajole YO ‘8N J0'Sa|n1 1o Aeiq1T 3UIIUO A8|IM UO (SUOTHPUOD-PUR-SWLSYWI0 A8 | 1M AReq Ul Uo//SdiL) SUORIPUOD Pue SWwLe | 84} 88S *[2202/TT/TT] uo Aiqiauliuo A8|im ‘Mobselo JO AiseAIUN AQ #E9ZT'SWII/ZTTT 0T/I0p/L0D"A8| I AReiq1jeul|u0'd0SyIeWpUO //SAY WO papeojumod ‘€ ‘2202 ‘0SLL69vT



	The stability manifold of local orbifold elliptic quotients
	Abstract
	1 | INTRODUCTION
	Summary of the results
	Remarks and further problems
	Structure of the paper
	Conventions

	2 | STABILITY CONDITIONS
	2.1 | The stability manifold
	2.2 | Torsion pairs and tilts of abelian categories

	3 | ELLIPTIC ROOT SYSTEMS
	3.1 | The Dynkin graph
	3.2 | The Weyl group
	3.3 | Tits cone, regular set, and fundamental domain
	3.4 | Boundary of and fundamental group

	4 | TRIANGULATED CATEGORIES ASSOCIATED TO LOCAL ELLIPTIC QUOTIENTS
	4.1 | Exceptional and spherical objects
	4.2 | The root system associated to 
	4.3 | Perverse sheaves and a heart in 
	4.4 | Classification of objects in 
	4.5 | The fundamental region and normalization

	5 | WALL-CROSSING IN 
	5.1 | Stability conditions on and 
	5.2 | Wall-crossing in 
	5.2.1 | Wall-crossing for spherical classes
	5.2.2 | Wall-crossing for radical classes

	5.3 | Proof of Proposition 4.20
	5.4 | Action of and the orbit of normalized conditions

	6 | STABILITY CONDITIONS ON 
	6.1 | Group actions and the image of the central charge map
	6.2 | Proof of main results

	ACKNOWLEDGEMENTS
	JOURNAL INFORMATION
	REFERENCES


