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Abstract
We study the stability manifold of local models of orb-
ifold quotients of elliptic curves. In particular, we show
that a region of the stability manifold is a covering space
of the regular set of the Tits cone of the associated ellip-
tic root system. The construction requires an explicit
description of the McKay correspondence (Bridgeland,
King, and Reid, J. Amer. Math. Soc. 14 (2001), no. 3,
535–554) for 𝐴𝑁 surface singularities and a study of
wall-crossing phenomena.
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1 INTRODUCTION

The space of stability conditions on a triangulated category  was introduced by Bridgeland in
[6], following work of Douglas onΠ-stability in string theory [11]. Bridgeland shows that the set of
these stability conditions is a complex manifold Stab() [6], equipped with a local isomorphism

𝜋∶ Stab() → Hom(𝐾(), ℂ).

The stability manifold Stab() is fully understood in the case when  is the derived category
of coherent sheaves on a smooth projective curve (see [6] for the elliptic curve, [24] for curves
of positive genus, and [3, 28] for the projective line). In the case of an elliptic curve, the stability
manifold acquires a mirror-symmetric significance, in fact, it can be expressed as a ℂ∗-bundle
over the modular curve [8].

© 2022 The Authors. Journal of the LondonMathematical Society is copyright © LondonMathematical Society. This is an open access article
under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided
the original work is properly cited.
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THE STABILITY MANIFOLD OF LOCAL ORBIFOLD ELLIPTIC QUOTIENTS 2269

In this paper, we show that a similar interpretation is possible for quotients of elliptic curves
by a group of automorphisms. We work on surfaces and describe the stability manifold for 
a certain triangulated category on a local model of an elliptic quotient. The main result of this
paper is Theorem 1.2, which expresses Stab() as a covering space of a subset of Hom(𝐾(), ℂ)
determined by the data of the quotient. Theorem 1.2 represents an extension of previous results
in two directions: on the one hand, it is an analog of the work of Bridgeland and Thomas on
Kleinian singularities [9, 33] in the context of simple elliptic singularities. At the same time, it
extends Ikeda’s result [18] on arbitrary root systems of symmetric Kac–Moody Lie algebras to the
case of elliptic root systems.

Summary of the results

Let 𝑋 be the orbifold quotient of an elliptic curve 𝐸 by a group of group automorphisms of 𝐸.
The orbifold 𝑋 is a weighted projective line of genus 0 in the sense of Geigle and Lenzing [12].
We consider its local model; in other words, we embed 𝑋 as the zero section in the total space
of its cotangent bundle 𝑌 ∶= Tot(𝜔𝑋), and let  be the triangulated subcategory of 𝐷𝑏(Coh(𝑌))
generated by sheaves supported on 𝑋.
Studying , rather than 𝐷𝑏(𝑋), has two main advantages: the elliptic root system associated

with𝑋 is more evident, and one can use the McKay correspondence to compare the local orbifold
to a smooth surface. From this point of view, local orbifold elliptic quotients represent an analog
of Kleinian singularities.
The spaceHom(𝐾(), ℂ) can be given a representation-theoretic interpretation as follows. The

bilinear Euler form 𝜒∶ 𝐾() × 𝐾() → ℤ defined as

𝜒(𝐸, 𝐹) ∶=

∞∑
𝑖=0

(−1)𝑖 dimℂ Hom(𝐸, 𝐹[𝑖])

is symmetric since is a K3-category, and𝐾() is identified with the root lattice of an elliptic root
system 𝑅, whose bilinear form matches the Euler form. This premise is similar to Bridgeland’s in
[9], with the difference that 𝜒 is only negative semindefinite here. We denote by 𝑎 ∶= −[𝑥] and
𝑏 ∶=

∑2
𝑖=0[𝜔

⊗𝑖
𝑋
] the two classes generating its radical.

The Weyl group𝑊 on Hom(𝐾(), ℂ) acts on the region

𝔼 ∶= {𝑍 ∈ Hom(𝐾(), ℂ) | 𝑍(𝑎) = 1, Im𝑍(𝑏) > 0},
which coincides with the Tits cone of the affine root system 𝑅𝑎 = 𝑅∕ℤ𝑎 (Lemma 3.9). Let
𝐷 be a fundamental domain for the action of 𝑊 on 𝔼. We exhibit a region 𝑈 in the stability
manifold which is homeomorphic to 𝐷 (Proposition 4.18) and lift the action of 𝑊 using a
group Br() of auto-equivalences of , generated by spherical twists (as defined by Seidel and
Thomas [31]).
A key step in the construction of 𝑈 is the McKay correspondence [10]: it gives an equivalence

of categories between 𝐷𝑏(𝑌) and the minimal resolution 𝑌′ of the coarse space of 𝑌. In turn,
this induces an equivalence between  and the triangulated category ′ generated by sheaves
supported on the pull-back of the zero section to 𝑌′. We define a heart of a bounded t-structure
𝑅 ⊂  as the inverse image of Coh(𝑌′) ∩′ ⊂ ′. Then, we use the relation between coherent
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2270 ROTA

sheaves on 𝑌 and perverse sheaves on 𝑌′ (see [5, 37]) to explicitly describe𝑅, classify its objects
(Proposition 4.17), and finally define 𝑈 as the region of Stab() containing conditions (𝑍,𝑅)

with 𝑍 ∈ 𝐷. Denote by Stab†()) the connected component of Stab() containing 𝑈.
We will often restrict our attention to the locus of normalized stability conditions

Stab𝑛() ∶= {𝜎 = (𝑍,) ∈ Stab
†() | 𝑍(𝑎) = 1}

rather than the full Stab†(), and we let Stab†𝑛() be the connected component of Stab𝑛() con-
taining 𝑈. Normalization is a natural approach, effective in the study of threefold singularities
(see, for example, [34]) and fitting with the representation-theoretic definition of 𝔼. Moreover,
every stability condition in Stab†() is obtained from Stab𝑛() using the natural ℂ-action (see
Remark 4.21).
We show in Proposition 4.20 that the condition

(∗)∶ Im
𝑍(𝑏)

𝑍(𝑎)
> 0

is automatic for all stability conditions in Stab†() (and hence in Stab†𝑛()), and therefore 𝜋
maps Stab†𝑛() to 𝔼. The proof requires to understand wall-crossing for some specific classes in
𝐾(), which we do in Section 5. Our wall-crossing result can be viewed as a local analog of the
classification of indecomposable sheaves on 𝑋 by Lenzing and Meltzer [23, Theorem 4.6]:

Theorem 1.1 (= 5.4). Let 𝛼 be a root in the elliptic root lattice𝐾(), and let 𝜎 ∈ Stab†() be generic
with respect to 𝛼. Then, there exists a 𝜎-stable object 𝐸 of class 𝛼. The object 𝐸 is rigid if 𝛼 is a real
root, and it varies in a family if 𝛼 is imaginary.

The image of Stab†𝑛() is the set of regular orbits of 𝑊 in 𝔼, denoted 𝖷reg (Proposition 6.7).
Moreover, the action of Br() preserves Stab†𝑛(), and𝑈 is a fundamental domain for this action.
This leads to the main result of this paper (analogous to [9, Theorem 1.1] and [18, Theorem 1.1]):

Theorem 1.2 (= 6.10). There is a covering map

�̄� ∶ Stab†𝑛() → 𝖷reg∕𝑊,

and the group Br() acts as group of deck transformations.

Let Aut†() ⊂ Aut() be the subgroup of auto-equivalences preserving the component
Stab†𝑛(). Write Aut†∗() for the quotient of Aut†() by the subgroup of autoequivalences which
act trivially on Stab†𝑛(). We also show, in analogy with [9, Corollary 1.4]:

Corollary 1.3 (= 6.11). There is an isomorphism

Aut†∗() ≃ Br()⋊ Aut(Γ),

where 𝐴𝑢𝑡(Γ) acts on Br() by permuting the generators.

 14697750, 2022, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12634 by U

niversity O
f G

lasgow
, W

iley O
nline L

ibrary on [11/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



THE STABILITY MANIFOLD OF LOCAL ORBIFOLD ELLIPTIC QUOTIENTS 2271

Observe that, unlike in [9], the shift functor does not belong to Aut†(), since it does not
preserve Stab†𝑛().

Remarks and further problems

Remark 1.4 (Representation theory). From the point of view of representation theory, the cat-
egories  discussed here are equivalent to the CY-2 completions of Ringel’s canonical algebras
(see [32]).

Remark 1.5 (Mirror symmetry). Theorem 1.2 can be interpreted as an instance of the same
principle outlined in [8] for elliptic curves.
The general automorphism group of an elliptic curve 𝐸 is ℤ∕2ℤ, generated by the involution

𝜄. Over the field of complex numbers, there are only two possibilities for special automorphism
groups, namelyℤ∕4ℤ andℤ∕6ℤ. These give rise to three possible quotients:ℙ1

3,3,3
,ℙ1
4,4,2

andℙ1
6,3,2

,
whose mirror partners are the simple elliptic singularities 𝐸(1,1)

6
, 𝐸(1,1)7 , and 𝐸(1,1)

8
[22, 27]. To these

singularities, Saito associates a universal unfolding space and an elliptic root system [29]. If 𝑋 is
one of these quotients, a hyperbolic extension of 𝖷reg∕𝑊 is the universal unfolding of the mirror
elliptic singularity. Thus, Theorem 1.2 details the relation between the unfolding spaces and the
stability manifold and gives a partial answer to [32, Conjecture 1.3].
The automorphism group of a general elliptic curve 𝐸 is generated by its involution 𝜄. Theo-

rems 1.1 and 1.2 hold for 𝑋 = [𝐸∕𝜄], however, a mirror-symmetric interpretation seems less clear
in this case.

As in [7, 9], we expect the following properties.

Conjecture 1.6.

(i) The space Stab() is connected, so that Stab() = Stab†().
(ii) The space Stab𝑛() is simply connected. This would also show that the Artin group 𝐺𝑊 ≃

𝜋1(𝖷reg∕𝑊) (see Proposition 3.14) is isomorphic to Br().

See [18] and references therein for progress on Conjecture 1.6 in related frameworks.

Structure of the paper

Section 2 contains preliminaries on Bridgeland stability conditions, and Section 3 recalls themain
aspects of the theory of elliptic root systems. In Section 4,we introduce the triangulated category
(4.2), construct the heart𝑅 (4.3), classify its objects (4.4) and use it to construct𝑈 (4.5). Section 5
contains our wall-crossing result, and in Section 6 we prove the main result.

Conventions

Wework over the fieldℂ of complex numbers. All abelian and triangulated categories are assumed
to be ℂ-linear. Given a graph Γ, we write |Γ| to denote the set of its vertices.
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2272 ROTA

2 STABILITY CONDITIONS

Stability conditions on triangulated categories were first introduced by Bridgeland and were
inspired by work of Douglas on string theory (see [6] and references therein). We recall here
the definition and basic properties of stability conditions and the stability manifold. We refer the
interested reader to the seminal work of Bridgeland [6, 7] and to the surveys [16, 25].
In what follows, 𝕋 is a triangulated category, with Grothendieck group 𝐾(𝕋).

Definition 2.1. A slicing of 𝕋 is a collection  = {(𝜙)}𝜙∈ℝ of full additive subcategories of 𝕋
satisfying the following properties.

(i) Hom((𝜙1),(𝜙2)) = 0 for 𝜙1 < 𝜙2.
(ii) For all 𝐸 ∈ 𝕋, there are real numbers 𝜙1 > … > 𝜙𝑚, objects 𝐸𝑖 ∈ 𝕋 and a collection of

triangles

where 𝐴𝑖 ∈ (𝜙𝑖).
(iii) (𝜙)[1] = (𝜙 + 1).

The extremes 𝜙1 and 𝜙𝑚 are denoted 𝜙+(𝐸) and 𝜙−(𝐸), respectively. Given a slicing  , for
𝛼 ⩽ 𝛽 ∈ ℝ we denote by ((𝛼, 𝛽)) the extension closure of the subcategories {(𝜙) ∶ 𝜙 ∈ (𝛼, 𝛽)}
(similar definitions work for other intervals in ℝ).

Definition 2.2. A stability condition on 𝕋 is a pair 𝜎 = (𝑍,) where:

(i)  is a slicing of 𝕋;
(ii) 𝑍∶ 𝐾(𝕋) → ℂ is an additive homomorphism called the central charge;

and they satisfy the following properties.

(1) For any non-zero 𝐸 ∈ (𝜙),

𝑍([𝐸]) ∈ ℝ>0 ⋅ 𝑒
𝑖𝜋𝜙.

(2) (Support property) Fix any norm ‖⋅‖ on 𝐾(𝕋). Then we require
inf

{|𝑍([𝐸])|‖[𝐸]‖ ∶ 0 ≠ 𝐸 ∈ (𝜙), 𝜙 ∈ ℝ

}
> 0.

Given a stability condition 𝜎 = (𝑍,), we will refer to ((0, 1]) as to the heart associated to
𝜎. In fact, ((𝛼, 𝛼 + 1]) is always the heart of a bounded 𝑡-structure for all 𝛼 ∈ ℝ, and it is an
abelian category.
If 𝐸 ∈ ((𝛼, 𝛼 + 1]) for some 𝛼 ∈ ℝ, then we say that 𝐸 has phase 𝜙 if 𝑍([𝐸]) ∈ ℝ>0 ⋅ 𝑒𝑖𝜋𝜙, for

𝜙 ∈ (𝛼, 𝛼 + 1]. The non-zero objects of (𝜙) are said to be 𝜎-semistable of phase 𝜙, and the simple
objects of (𝜙) are said to be 𝜎-stable.

 14697750, 2022, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12634 by U

niversity O
f G

lasgow
, W

iley O
nline L

ibrary on [11/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



THE STABILITY MANIFOLD OF LOCAL ORBIFOLD ELLIPTIC QUOTIENTS 2273

For the general theory about bounded 𝑡-structures, we refer the reader to [4], herewe only recall
the following lemma, which will be useful in what follows.

Lemma 2.3. Let, ⊂ 𝕋 be hearts of bounded t-structures on a triangulated category 𝕋. If ⊂ ,
then = .

Proof. This is [25, Example 5.6]. □

Remark 2.4 [6, Proposition 5.3]. To construct stability conditions it is often convenient to use an
alternative definition. In fact, sometimes we will write a stability condition as a pair 𝜎 = (𝑍,),
where  is the heart of a bounded 𝑡-structure and 𝑍 is a stability function satisfying Harder–
Narasimhan and support property. A stability function is a linearmap𝑍∶ 𝐾() → ℂ such that any
non-zero𝐸 ∈  satisfies𝑍([𝐸]) ∈ ℝ>0 ⋅ 𝑒𝑖𝜋𝜙 with 𝜙 ∈ (0, 1]. Then one defines 𝜙 to be the phase of
𝐸, and declares 𝐸 to be 𝜎-(semi)stable if for all non-zero subobjects 𝐹 ∈  of 𝐸, 𝜙(𝐹) < (⩽)𝜙(𝐸).
We say that 𝑍 satisfies the HN property if for every 𝐸 ∈  there is a unique filtration

0 = 𝐸0 ⊂ 𝐸1 ⊂ … ⊂ 𝐸𝑛−1 ⊂ 𝐸𝑛 = 𝐸

such that the quotients 𝐸𝑖∕𝐸𝑖−1 are 𝜎-semistable of phases 𝜙𝑖 = 𝜙(𝐸𝑖∕𝐸𝑖−1), 𝜙1 > 𝜙2 > … > 𝜙𝑛.
The support property is the same as in Definition 2.2. To recover a slicing as in Definition 2.2,
set (𝜙) to be the category of 𝜎-semistable objects of phase 𝜙 for 𝜙 ∈ (0, 1], and declare (𝜙) =
(𝜙 + 𝑛) for all 𝑛 ∈ ℤ.

The following proposition is a useful tool to check the Harder–Narasimhan property:

Proposition 2.5 [25, Proposition 4.10]. Suppose is an abelian category, and 𝑍∶ 𝐾() → ℂ is a
stability function. If:

(i) the category is Noetherian; and
(ii) the image of Im𝑍 is discrete in ℝ,

then 𝑍 has the Harder–Narasimhan property.

2.1 The stability manifold

Let Stab(𝕋) denote the set of stability conditions on 𝕋. In [6, Section 6], Bridgeland shows that the
function

𝑓(𝜎, 𝜏) = sup
0≠𝐸∈𝕋

{|𝜙+𝜎 (𝐸) − 𝜙+𝜏 (𝐸)|, |𝜙−𝜎 (𝐸) − 𝜙−𝜏 (𝐸)|} (1)

determines a generalized metric on Stab(𝕋) which makes it into a topological space. Moreover,
the central charge map 𝜋∶ Stab(𝕋) → Hom(𝐾(𝕋), ℂ) given by (𝑍,) ↦ 𝑍 is a local homeomor-
phism, and it makes Stab(𝕋) into a complexmanifold of dimension rk(𝐾(𝕋))[6, Theorem 1.2]. The
following lemma which will be useful later:

Lemma2.6 [6, Lemma 6.4]. Let𝜎, 𝜏 ∈ Stab(𝕋) be stability conditionswith𝜋(𝜎) = 𝜋(𝜏). If𝑓(𝜎, 𝜏) <
1, then 𝜎 = 𝜏.
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2274 ROTA

Next, we recall two group actions on Stab(𝕋). The additive group ℂ acts as follows: for 𝑧 =
𝑥 + 𝑖𝑦 ∈ ℂ, define 𝑧 ⋅ (𝑍,) = (𝑍′, ′), with

𝑍′(−) = 𝑒−𝑧𝑍(−),  ′(𝜙) = 

(
𝜙 +

𝑦

𝜋

)
. (2)

The group of auto-equivalences Aut(𝕋) also acts on Stab(): for Φ ∈ Aut() and 𝜎 = (𝑍,) ∈
Stab(), define Φ ⋅ (𝑍,) = (𝑍′, ′) as the stability condition with

𝑍′(𝐸) ∶= 𝑍(Φ−1(𝐸)) and  ′(𝜙) ∶= Φ(𝜙). (3)

2.2 Torsion pairs and tilts of abelian categories

Next, we recall the definition of a tilt of an abelian category , which is a technique to produce
new abelian subcategories of 𝐷𝑏(). Indeed, the tilt of a heart of a bounded t-structure is a new
heart in 𝐷𝑏() [13].

Definition 2.7. Let  be an abelian category. A torsion pair for  is a pair of full subcategories
( ,) such that:

(i) Hom( ,) = 0;
(ii) for any 𝐸 ∈ , there exists a short exact sequence

0 → 𝑇 → 𝐸 → 𝐹 → 0

where 𝑇 ∈  and 𝐹 ∈  .

Given a torsion pair ( ,) on an abelian category, we define♯ = ⟨[1],  ⟩ to be the exten-
sion closure of[1] and  , that is, smallest full subcategory of𝐷𝑏() containing[1] and  closed
under extensions.♯ is called the tilt of along the torsion pair ( ,). Sometimes we will also
refer to♯[−1] = ⟨ ,  [−1]⟩ as to the tilt, but no confusion should arise.
3 ELLIPTIC ROOT SYSTEMS

In this section, we introduce elliptic root systems and recall some of their properties. Elliptic root
systems were introduced by Saito [29, 30], in our exposition we draw also from [32] and [19].

Definition 3.1 [29, Definition 1]. Let 𝐹 be a real vector space of rank 𝑙 + 2, equipped with a
positive semidefinite symmetric bilinear form 𝐼 ∶ 𝐹 × 𝐹 → 𝐹, whose radical rad 𝐼 has rank 2. An
elliptic root system associated to (𝐹, 𝐼) is a subset 𝑅 ⊂ 𝐹 of non-isotropic elements such that:

(1) the additive group generated by 𝑅, denoted 𝑄(𝑅), is a full sublattice of 𝐹. That is, the
embedding 𝑄(𝑅) ⊂ 𝐹 induces an isomorphism 𝑄(𝑅)ℝ ≃ 𝐹;

(2) the form 𝐼 takes integer values on 𝑅 × 𝑅;
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THE STABILITY MANIFOLD OF LOCAL ORBIFOLD ELLIPTIC QUOTIENTS 2275

(3) for all 𝛼 in 𝑅, the reflection

𝑤𝛼(𝑥) = 𝑥 − 𝐼(𝑥, 𝛼)𝛼 for 𝑥 ∈ 𝐹

satisfies 𝑤𝛼(𝑅) = 𝑅;
(4) if 𝑅 = 𝑅1 ∪ 𝑅2 with 𝑅1 ⟂ 𝑅2, then either 𝑅1 or 𝑅2 is empty.

The subgroup𝑊 of Aut(𝐹, 𝐼) generated by the 𝑤𝛼 for 𝛼 ∈ 𝑅 is called theWeyl group of the root
system 𝑅. The lattice rad 𝐼 ∩ 𝑄(𝑅) is full in the two-dimensional vector space rad 𝐼. Amarking of
𝑅 is the choice of a 1-dimensional subspace 𝐺 ⊂ rad 𝐼, and (𝑅, 𝐺) is called a marked elliptic root
system.
To a marked elliptic root system, we can associate an affine root system 𝑅𝑎 and a finite root

system 𝑅𝑓 of rank 𝑙 by considering the quotients

𝐹𝑎 ∶= 𝐹∕𝐺 𝑅𝑎 ∶= 𝑅∕𝑅 ∩ 𝐺

𝐹𝑓 ∶= 𝐹∕ rad 𝐼 𝑅𝑓 ∶= 𝑅∕𝑅 ∩ rad 𝐼

and the bilinear forms induced on 𝐹𝑓 and 𝐹𝑎 by 𝐼.
Now fix a marked root system (𝑅, 𝐺), with generators 𝑎, 𝑏 for rad 𝐼 ∩ 𝑄(𝑅) and 𝐺 = ℝ𝑎.

Proposition 3.2 [19, Corollary 2.3]. The root system 𝑅 is given by

𝑅 = {𝛼𝑓 + 𝑚𝑏 + 𝑛𝑎 | 𝛼𝑓 ∈ 𝑅𝑓,𝑚, 𝑛 ∈ ℤ}.
Definition 3.3 [19, §2.3]. The elements of 𝑅 are also called the real roots of 𝑅. We define the set
Δ𝑖𝑚 of imaginary roots of 𝑅 as

Δ𝑖𝑚 = {𝑚𝑏 + 𝑛𝑎 | 𝑚, 𝑛 ∈ ℤ ⧵ {0}}.
3.1 The Dynkin graph

To a marked elliptic affine root system (𝑅, 𝐺), one can associate a diagram Γ𝑅,𝐺 called the Dynkin
diagram of (𝑅, 𝐺) (see [29, §5]). In general, the vertices of Γ𝑅,𝐺 are in bijection with a root basis of
𝑅 (defined as in [29, §3.4]), and two vertices 𝛼, 𝛽 ∈ |Γ𝑅,𝐺| are connected following the rule:

The results of this section hold for all elliptic root systems (classified in [29, Table 1]).

Notation 3.4. In the rest of this work, we will only need diagrams Γ of the following specific
shape (called an octopus in [32]):
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2276 ROTA

We assume from now on that elliptic diagrams have the octopus shape, and adopt the labelling
shown above for the vertices of Γ. We denote by 𝛼(𝑖,𝑗) the root of 𝑅 corresponding to the vertex
(𝑖, 𝑗).

The marking of an octopus-shaped elliptic root system is generated by the class 𝑎 ∶= 𝛼(0,1) −
𝛼(0,0). Erasing the (0,0) vertex and all adjacent edges in the above diagrams yields the Dynkin
diagram Γ𝑎 associated with 𝑅𝑎, so we have |Γ𝑎| = |Γ| ⧵ {(0, 0)}. Then {𝛼𝑣}𝑣∈|Γ𝑎| give a root basis
for 𝑅𝑎. Let 𝑏 be the imaginary root of the affine system 𝑅𝑎 (𝑏 is a positive linear combination of
the {𝛼𝑣}𝑣∈|Γ|𝑎 , see [20, Chapter 5]). Then, (𝑎, 𝑏) is a basis for rad 𝐼.
Example 3.5. Ourmain interest is in elliptic root systems arising from quotients of elliptic curves
by automorphism groups (see Section 4.2). They are the root systems of type 𝐷(1,1)

4
, 𝐸(1,1)

6
, 𝐸(1,1)7

and 𝐸(1,1)
8

, whose diagrams are all octopus-shaped:
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THE STABILITY MANIFOLD OF LOCAL ORBIFOLD ELLIPTIC QUOTIENTS 2277

Erasing the (0,0) vertex and all adjacent edges in the above diagrams yields the Dynkin diagrams
of affine root systems of type �̃�4, �̃�6, �̃�7, and �̃�8, respectively.

3.2 TheWeyl group

Since 𝑎 ∈ rad 𝐼, 𝑊 preserves the marking 𝐺 ⊂ 𝐹. Then, the projection 𝑝∶ 𝐹 → 𝐹∕𝐺 induces a
homomorphism 𝑝∗ ∶ 𝑊 → 𝑊𝑎 to the affine Weyl group associated with 𝑅𝑎. Denote by 𝑇 the
kernel of 𝑝∗.

Lemma 3.6 [29, (1.15)]. The subgroup of𝑊 generated by {𝑤𝛼𝑣 | 𝑣 ∈ |Γ𝑎|} is isomorphic to𝑊𝑎, so
the sequence

0 → 𝑇 → 𝑊 →𝑊𝑎 → 1 (4)

splits into a semi-direct product𝑊 = 𝑇 ⋊𝑊𝑎 .

Next we give an explicit description of 𝑇. To do so, we introduce the following elements of𝑊:

Definition 3.7. For each vertex of Γ𝑎, define elements of𝑊:

(1) 𝑟(0,1) ∶= 𝑤𝛼(0,1)𝑤𝛼(0,0) ;
(2) 𝑟(𝑖,1) ∶= 𝑤𝛼(𝑖,1) 𝑟(0,1)𝑤𝛼(𝑖,1) 𝑟

−1
(0,1)

for 𝑖 = 1, … , 𝑟;
(3) 𝑟(𝑖,𝑗) ∶= 𝑤𝛼(𝑖,𝑗) 𝑟(𝑖,𝑗−1)𝑤𝛼(𝑖,𝑗) 𝑟

−1
(𝑖,𝑗−1)

for 𝑖 = 1, … , 𝑟, 𝑗 = 2,… , 𝑎𝑖 − 1;

Lemma 3.8 [32, Theorem 3.5]. For 𝑣 ∈ |Γ𝑎|, let 𝛼𝑣 be the corresponding root and 𝑟𝑣 the
corresponding element from Definition 3.7. For all 𝛽 ∈ 𝐹, we have

𝑟𝑣(𝛽) = 𝛽 − 𝐼(𝛽, 𝛼𝑣)𝑎.

Moreover, there is a group homomorphism

𝜑∶ 𝑄(𝑅𝑎) → 𝑊∑
𝑣∈|Γ𝑎|

𝑚𝑣𝛼𝑣 ↦
∏
𝑣∈|Γ𝑎|

𝑟
𝑚𝑣
𝑣

with kernel generated by 𝑏. The group𝑇 is isomorphic to the lattice𝜑(𝑄(𝑅𝑎)) ≃ 𝑄(𝑅𝑓), and𝜑 induces
the inclusion 𝑇 → 𝑊 of the exact sequence (4).
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2278 ROTA

3.3 Tits cone, regular set, and fundamental domain

We follow [30] and define

ℍ ∶= {𝑥 ∈ Hom(rad 𝐼, ℂ) | 𝑥(𝑎) = 1, Im𝑥(𝑏) > 0};
𝔼 ∶= {𝑥 ∈ Hom(𝐹, ℂ) | 𝑥(𝑎) = 1, Im𝑥(𝑏) > 0}. (5)

TheWeyl group𝑊 acts on 𝔼 by (g𝑥)(𝛽) ∶= 𝑥(g−1𝛽) for 𝑥 ∈ 𝔼 and g ∈ 𝑊. This action preserves
𝑥| rad 𝐼 , so it respects the restriction map 𝑠 ∶ 𝔼 → ℍ.
With the goal of describing a fundamental domain for the action of 𝑊 on 𝔼, we will

identify 𝔼 with the complexified Tits cone of 𝑅𝑎 (see [20, §3.12] for basic facts about Tits
cones).
Recall that to the affine root system 𝑅𝑎 is associated the Weyl alcove

𝐴ℝ ∶= {ℎ ∈ 𝑄(𝑅𝑎)
∗
ℝ | ℎ(𝛼𝑣) > 0 for 𝑣 ∈ |Γ𝑎|}

and the (real) Tits cone 𝖳ℝ(𝑅𝑎), defined as the topological interior of

𝖳ℝ(𝑅𝑎) ∶=
⋃
𝑤∈𝑊𝑎

𝑤𝐴ℝ.

The complexified Tits cone associated to 𝑅𝑎 is

𝖳(𝑅𝑎) ∶= {ℎ ∈ 𝑄(𝑅𝑎)
∗
ℂ | Imℎ ∈ 𝖳ℝ(𝑅𝑎)}.

Lemma 3.9. There is an isomorphism of complexmanifolds between 𝔼 and 𝖳(𝑅𝑎), equivariant with
respect to the action of𝑊𝑎 .

Proof. Consider the inclusion 𝑄(𝑅𝑎) ⊂ 𝑄(𝑅) mapping 𝛼 + ℤ𝑎 ∈ 𝑅𝑎 to 𝛼 ∈ 𝑄(𝑅). This induces a
restriction map 𝜙∶ Hom(𝑄(𝑅), ℂ) → Hom(𝑄(𝑅𝑎), ℂ).
The complexified Tits cone can be equivalently described as

𝖳(𝑅𝑎) = {ℎ ∈ 𝑄(𝑅𝑎)
∗
ℂ | Imℎ(𝑏) > 0}

(this is [18, Lemma 2.12]). Then, it is clear that 𝜙 is a holomorphic map sending 𝔼 bijectively
onto 𝖳(𝑅𝑎). Moreover, the action of𝑊𝑎 on 𝖳(𝑅𝑎) coincides with that on 𝔼 through𝑊𝑎 ⊂ 𝑊 as in
Lemma 3.6. □

In order to describe the action of 𝑇 on 𝔼 (see Lemma 3.6), it will be convenient to emphasize a
complex structure on 𝔼𝜏 ∶= 𝑠−1(𝜏) induced by 𝜏 ∈ ℍ. In fact, 𝜏 defines an isomorphism rad 𝐼 ≃ ℂ
by

𝑢𝑎 + 𝑣𝑏 ↦ 𝑢 + 𝑣𝜏.

Next, identify 𝔼𝜏 with the relative tangent space of 𝜋 over 𝜏. This is a complexification

𝑉 ⊗ℝ ℂ where 𝑉 ∶= (𝐹∕ rad 𝐼)∗.
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THE STABILITY MANIFOLD OF LOCAL ORBIFOLD ELLIPTIC QUOTIENTS 2279

The bilinear form 𝐼 induces an isomorphism 𝐼∗ ∶ 𝑉
∼
�→ 𝑉∗ = 𝐹∕ rad 𝐼, and in turn an isomorphism

of complex vector spaces

𝜏 ⊗ 𝐼∶ (𝐹∕ rad 𝐼) ⊗ℝ rad 𝐼 ≃ 𝑉 ⊗ℝ ℂ.

We write

𝔼𝜏 ≃ 𝑉 ⊕ 𝜏𝑉. (6)

Then we have:

Lemma 3.10.

(i) 𝑊 acts preserving fibers 𝔼𝜏 above a point in 𝜏 ∈ ℍ;
(ii) Under the identification (6), the group 𝑇 acts as a finite index subgroup of the real translation

lattice 𝑄(𝑅𝑓) ⊂ 𝑉. In particular, 𝑇 acts freely on 𝔼.

Proof. The first statement is straightforward, since 𝜏 is determined by the restriction of 𝑥 ∈ 𝔼 to
rad 𝐼, which is𝑊-invariant. The second statement follows immediately from Lemma 3.8 and the
fact that 𝑥(𝑎) = 1 for all 𝑥 ∈ 𝔼. □

We can finally describe the regular set for the action of𝑊 on 𝔼:

Proposition 3.11. The action of𝑊 on 𝔼 is properly discontinuous. Moreover, the space of regular
orbits of𝑊 is

𝖷reg ∶= 𝔼 ⧵ ∪𝛼∈𝑅𝐻𝛼,

where𝐻𝛼 ⊂ 𝔼 is the reflection hyperplane defined by the equation 𝑥(𝛼) = 0.

Proof. The first statement is [30, (3.5)]. The second follows from the description of the regular set
of 𝖳(𝑅𝑎) ([20, Proposition 31.12]), combined with Lemma 3.9 and the fact that 𝑇 acts freely on 𝔼
(Lemma 3.10). □

We think of 𝖷reg and 𝔼 as naturally sitting in Hom(𝐹, ℂ).
Denote by 𝐴 ⊂ 𝖳(𝑅𝑎) the complexified Weyl alcove

𝐴 ∶= {ℎ ∈ 𝖳(𝑅𝑎) | Imℎ ∈ 𝐴ℝ}.
We think of 𝐴 as embedded in 𝔼 via Lemma 3.9, and write 𝐴𝜏 for the intersection of 𝐴 with 𝔼𝜏.
Let 𝐵′ be a hypercube in 𝑉 which contains the origin and is a fundamental domain for the

action of 𝑇 on 𝑉, and define 𝐵𝜏 ∶= {ℎ ∈ 𝔼𝜏 ≃ 𝑉ℂ | Re(ℎ) ∈ 𝐵′}.
Proposition 3.12. A fundamental domain for the action of𝑊 on 𝔼𝜏 is the intersection

𝐷𝜏 ∶= 𝐴𝜏 ∩ 𝐵𝜏.

A fundamental domain for the action of𝑊 on 𝔼 is 𝐷 ∶= ∪𝜏∈ℍ𝐷𝜏 ≃ 𝐷√−1 × ℍ ⊂ 𝖷reg.
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Proof. As a consequence of Proposition 3.11, it is enough to show that for every 𝑍 ∈ 𝔼𝜏 there exists
an element 𝑤 ∈ 𝑊 such that 𝑤 ⋅ 𝑍 ∈ 𝐷𝜏. Using the complex structure given in (6), we may write
every 𝑍 ∈ 𝔼𝜏 as Re𝑍 + 𝜏 Im𝑍. The closed alcove 𝐴ℝ is a fundamental domain for the action of
𝑊𝑎 on 𝖳ℝ(𝑅𝑎) [20, Proposition 3.12], so there exists an element𝑤′ ∈ 𝑊𝑎 such that𝑤′ ⋅ 𝑍 ∈ 𝐴𝜏. By
definition of 𝐵𝜏, there is an element 𝑟 ∈ 𝑇 such that 𝑟 ⋅ (𝑤′ ⋅ 𝑍) ∈ 𝐵𝜏 and Im 𝑟 ⋅ (𝑤′ ⋅ 𝑍) = Im(𝑤′ ⋅
𝑍), so 𝑟 ⋅ (𝑤′ ⋅ 𝑍) ∈ 𝐷𝜏.
The statement about 𝔼 follows, since every 𝑤 ∈ 𝑊 preserves the fibers 𝔼𝜏 by Lemma 3.10. □

3.4 Boundary of 𝑫 and fundamental group

Next, we describe the boundary of 𝐷 in 𝖷reg in terms of walls for the action of 𝑊. For vertices
𝑣 ∈ |Γ𝑎|, we define walls𝑊𝑣,± ⊂ 𝐷 for the Weyl alcove

𝑊𝑣,+ ∶= {𝑍 ∈ 𝖷reg ∩ 𝐷 | 𝑍(𝛼𝑣) ∈ ℝ>0, Im𝑍(𝛼𝑤) > 0 for 𝑣 ≠ 𝑤 ∈ |Γ𝑎|},
𝑊𝑣,− ∶= {𝑍 ∈ 𝖷reg ∩ 𝐷 | 𝑍(𝛼𝑣) ∈ ℝ<0, Im𝑍(𝛼𝑤) > 0 for 𝑣 ≠ 𝑤 ∈ |Γ𝑎|}.

For vertices 𝑢 ∈ |Γ𝑓|, write 𝑌′𝑢,± for the faces of the fundamental hypercube 𝐵′, and let
𝑌𝑢,± ∶=

[
∪𝜏(𝑌

′
𝑢,± ⊕ 𝜏𝑉)

]
∩ 𝐷 ⊂ 𝖷reg.

Then, the boundary of 𝐷 in 𝖷reg is contained in the union of the walls𝑊𝑣,± and 𝑌𝑢,± as 𝑣, 𝑢 vary.
Next, we describe the fundamental group of 𝖷reg∕𝑊.

Definition 3.13. Let 𝑅 be an elliptic root system. The Artin group 𝐺𝑊 associated with the Weyl
group𝑊 is the group generated by {g𝑣, ℎ𝑣 | 𝑣 ∈ |Γ𝑎|} with relations

g𝑣g𝑢 = g𝑢g𝑣 if 𝐼(𝛼𝑣, 𝛼𝑢) = 0;

g𝑣g𝑢g𝑣 = g𝑢g𝑣g𝑢 if 𝐼(𝛼𝑣, 𝛼𝑢) = −1;

ℎ𝑣ℎ𝑢 = ℎ𝑢ℎ𝑣 for all 𝑢, 𝑣 ∈ |Γ𝑎|;
g𝑣ℎ𝑢 = ℎ𝑢g𝑣 if 𝐼(𝛼𝑣, 𝛼𝑢) = 0;

g𝑣ℎ𝑢g𝑣 = ℎ𝑢ℎ𝑣 if 𝐼(𝛼𝑣, 𝛼𝑢) = −1.

Proposition 3.14. Suppose 𝑅 is an elliptic root system. Then, the fundamental group of 𝖷reg∕𝑊 is

𝜋1(𝖷reg∕𝑊, ∗) ≃ 𝐺𝑊.

The generator g𝑣 of 𝐺𝑊 is given by the path connecting ∗ and 𝑤𝛼𝑣(∗) passing through 𝑊𝑣,+ just
once. The generator ℎ𝑣 of 𝐺𝑊 is given by the path connecting ∗ and 𝑟𝑣(∗) which is constant in the
imaginary part.

Proof. By Lemma 3.9, the set 𝖷reg coincides with the regular subset of the complexified Tits cone
𝖳reg(𝑅𝑎). It is shown in [38] that 𝜋1(𝖳reg(𝑅𝑎)∕𝑊) ≃ 𝐺𝑊 . □
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4 TRIANGULATED CATEGORIES ASSOCIATED TO LOCAL
ELLIPTIC QUOTIENTS

We consider orbifold curves obtained from a quotient of an elliptic curve by a finite subgroup of its
automorphism groups. Every elliptic quotient hasℙ1 as coarsemoduli space and orbifold points𝑝𝑖
with stabilizers𝜇𝑎𝑖 . Up to permuting the points𝑝𝑖 , there are only four possibilities, namely:ℙ

1
2,2,2,2

(here, 𝑟 = 4 and 𝑎𝑖 = 2 for all 𝑖), ℙ13,3,3, ℙ
1
4,4,2

and ℙ1
6,3,2

. We denote them, respectively, 𝑋2, 𝑋3, 𝑋4
and 𝑋6.
Each 𝑋𝑘 is realized as a quotient of an elliptic curve 𝐸𝑘 by a cyclic group 𝜇𝑘 of group

automorphisms:

𝑋𝑘 =
[
𝐸𝑘
/
𝜇𝑘
]
.

From now on, we fix 𝑘 and denote 𝑋 ∶= 𝑋𝑘, 𝐸 ∶= 𝐸𝑘, and 𝜇 ∶= 𝜇𝑘. Let 𝑌 ∶= Tot(𝜔𝑋) =
[Tot(𝜔𝐸)∕𝜇] be the total space of the cotangent orbifold bundle of 𝑋. We have a commutative
diagram

where the vertical arrows are quotients by 𝜇 and the horizontal ones are inclusions via the
zero section.
Recall that a triangulated category 𝕋 is called a K3-category if the functor [2] is a Serre functor,

that is, if for any two objects 𝐸, 𝐹 ∈ 𝕋 there is a natural isomorphism

Hom∙(𝐸, 𝐹)
∼
�→ Hom∙(𝐹, 𝐸[2])∗.

Let  denote the full triangulated subcategory of coherent sheaves supported on the zero
section of 𝑌. Then we have:

Lemma 4.1.  is a K3-category. In particular, the Euler form is symmetric. Moreover, for any𝐸, 𝐹 ∈
𝐷𝑏(𝑋), one has

Hom∙

(𝜄∗𝐸, 𝜄∗𝐹) = Hom

∙
𝑋(𝐸, 𝐹) ⊕ Hom

∙
𝑋(𝐹, 𝐸)

∗[−2].

In particular, 𝜒(𝜄∗𝐸, 𝜄∗𝐹) = 𝜒𝑋(𝐸, 𝐹) + 𝜒𝑋(𝐹, 𝐸).

Proof. This follows from [21, Lemma 4.4]. □

Lemma 4.2. The map 𝜄 induces an isomorphism of abelian groups 𝐾(𝑋) ≃ 𝐾().

Proof. Let 𝑋𝑛 be the 𝑛th order neighborhood of 𝑋 in 𝑌. Denote by  be the abelian category of
sheaves supported on 𝑋. Then any 𝐹 ∈  is an 𝑋𝑛 -module for some 𝑛. Therefore, 𝐹 is obtained
as a successive extension of 𝑋-modules, and the map

𝜄∗ ∶ 𝐾(𝑋) → 𝐾() = 𝐾()
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2282 ROTA

is surjective. Let 𝜋∶ 𝑌 → 𝑋 denote the projection to the zero section. Since 𝑅𝑖𝜋∗ = 0 for 𝑖 > 0, the
functor

𝜋∗ ∶ → Coh(𝑋)

is exact. The induced map on 𝐾-groups is the inverse of 𝜄∗. □

4.1 Exceptional and spherical objects

An object 𝑆 ∈  is called spherical if Hom∙(𝑆, 𝑆) ≃ ℂ ⊕ ℂ[−2]. Suppose 𝑆 ∈  is a spherical
object. Given an object 𝐺 ∈ , we define Φ𝑆(𝐺) to be the cone of the evaluation morphism

Hom∙(𝑆, 𝐺) ⊗ 𝑆
𝑒𝑣
��→ 𝐺 → Φ𝑆(𝐺).

Similarly, Φ−
𝑆
(𝐺) is a shift of the cone of the coevaluation map

Φ−𝑆 (𝐺) → 𝐺
𝑒𝑣∗

���→ Hom∙(𝐺, 𝑆)∗ ⊗ 𝑆.

The operations Φ𝑆 , Φ−𝑆 define auto-equivalences of, called spherical twists [31].
Spherical twists act on𝐾() via reflections: if 𝑆 is a spherical object, and [𝐺] ∈ 𝐾(), we have

𝑤𝑆([𝐺]) ∶= [𝜙𝑆(𝐺)] = [𝐺] − 𝜒(𝑆, 𝐺)[𝑆]. (7)

Lemma 4.3. Let 𝑆 be a spherical object of. Then:

(i) Φ𝑆Φ−𝑆 ≃ id and Φ−
𝑆
Φ𝑆 ≃ id;

(ii) Φ𝑆(𝑆) ≃ 𝑆[−1];
(iii) for any spherical object 𝑆′ such thatHom∙(𝑆′, 𝑆) ≃ ℂ[−1], there is an isomorphism

Φ𝑆Φ𝑆′(𝑆) ≃ 𝑆
′.

Proof. These properties follow from [31, Proposition 2.10, Lemma 2.11 and Proposition 2.13]. □

Next, we construct spherical objects (and auto-equivalences) of . We do so starting from an
exceptional collection of 𝐷𝑏(𝑋):

Definition 4.4. Let 𝕋 be a triangulated category. An object 𝐸 ∈ 𝕋 is exceptional if

Hom∙(𝐸, 𝐸) = ℂ[0].

An exceptional collection is a sequence of exceptional objects𝐸1, … , 𝐸𝑛 such thatHom∙(𝐸𝑖, 𝐸𝑗) = 0
for 𝑖 > 𝑗. We say that an exceptional collection is full if it generates 𝕋, that is, 𝕋 is the smallest
triangulated category containing {𝐸1, .., 𝐸𝑛}.
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THE STABILITY MANIFOLD OF LOCAL ORBIFOLD ELLIPTIC QUOTIENTS 2283

The category Coh(𝑋) admits exceptional simple sheaves (see, for example, [12]), described as
follows. Identify Coh(𝑋) with the category of 𝜇-equivariant sheaves on 𝐸, and denote by 𝑝𝑖 ∈ 𝐸
the points with non-trivial stabilizer 𝜇𝑎𝑖 . Let𝜒

0, … , 𝜒𝑎𝑖−1 be the irreducible representations of 𝜇𝑎𝑖 .
The equivariant skyscraper sheaves 𝑝𝑖 ⊗ 𝜒

𝑗 (with 𝑗 ∈ {0, … , 𝑎𝑖 − 1}) are exceptional objects of
Coh(𝑋).
Moreover,𝐷𝑏(𝑋) admits several full exceptional collections [26].Wewill use the following one:

𝔽 ∶= (𝑝1 ⊗ 𝜒
𝑎1−1, … ,𝑝1 ⊗ 𝜒

1,

𝑝2 ⊗ 𝜒
𝑎2−1, … ,𝑝2 ⊗ 𝜒

1,

… ,

𝑝𝑟 ⊗ 𝜒
𝑎𝑟−1, … ,𝑝𝑟 ⊗ 𝜒

1,

,(1)).

Exceptional objects in Coh(𝑋) give rise to spherical objects in:

Proposition 4.5. Suppose 𝐸 ∈ 𝐷𝑏(𝑋) is exceptional, then 𝜄∗𝐸 is a sperical object in.

Proof. This is [31, Proposition 3.15]. □

By Proposition 4.5, pushing forward the objects of 𝔽, we obtain a set of spherical objects:

Π ∶=
{
𝑡
𝑎1−1
1

, … , 𝑡11, 𝑡
𝑎2−1
2

, … , 𝑡12, … , 𝑡
𝑎𝑟−1
𝑟 , … , 𝑡1𝑟 , 𝜄∗, 𝜄∗(1)

}
, (8)

where 𝑡𝑗
𝑖
∶= 𝜄∗(𝑝𝑖 ⊗ 𝜒

𝑗). We define the subgroup ofAut() generated by spherical twists across
objects of Π:

Br() ∶= ⟨Φ𝑆 ∈ Aut() ∣ 𝑆 ∈ Π⟩.
4.2 The root system associated to

In this section, we use the spherical objects in Π to construct an elliptic root system associated
with (𝐾()ℝ, 𝜒).

Proposition 4.6. The set 𝑅 ∶= {[Φ(𝑆)] ∈ 𝐾() | 𝑆 ∈ Π,Φ ∈ Br()} satisfies the axioms of an
extended root system associated to (𝐾()ℝ, 𝜒) (see Definition 3.1). Moreover:

(i) define classes

𝑎 ∶= −[𝑞] and 𝑏 ∶= [𝜄∗(𝑋 ⊕ 𝜔𝑋 ⊕ 𝜔
2
𝑋)].

Then (𝑎, 𝑏) is a basis of rad 𝐼 and 𝑎 is a marking for 𝑅;
(ii) the Weyl group𝑊 is generated by {𝑤𝑆 | 𝑆 ∈ Π} (defined in (7));
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2284 ROTA

(iii) the root systems arising from an elliptic orbifold quotient are precisely the ones described in
Example 3.5. The vertices (0,0),(0,1) correspond to [𝜄∗𝑋(1)], [𝜄∗𝑋], respectively, and (𝑖, 𝑗) to
[𝑡
𝑗
𝑖
] (for 𝑖 ≠ 0).

Proof. The axioms of an elliptic root system for (𝐾()ℝ, 𝜒) are verified in [26]. Observe that the
radical rad 𝐼 has rank 2, and the classes 𝑎, 𝑏 are invariant under twists by 𝜔𝑋 , so 𝑎, 𝑏 ∈ rad 𝐼 by
Lemma 4.7 below. □

Lemma 4.7. If𝑁 ∈ 𝐷𝑏(𝑋) satisfies𝑁 ⊗ 𝜔∗
𝑋
≃ 𝑁, then [𝜄∗𝑁] ∈ rad𝜒.

Proof. The classes [𝜄∗𝐸] for 𝐸 ∈ 𝐷𝑏(𝑋) generate 𝐾(), and we have

𝜒(𝜄∗𝑁, 𝜄∗𝐸) = 𝜒𝑋(𝑁, 𝐸) + 𝜒𝑋(𝐸,𝑁) = 𝜒𝑋(𝑁, 𝐸) − 𝜒𝑋(𝑁 ⊗ 𝜔
∗
𝑋, 𝐸) = 0

by Lemma 4.1. □

In analogy with Notation 3.4, and in virtue of Proposition 4.6(iii), we write

𝑆(0,1) ∶= 𝜄∗𝑋

𝑆(0,0) ∶= 𝜄∗𝑋(1)

𝑆(𝑖,𝑗) ∶= 𝑡
𝑗
𝑖
for 𝑖 = 1, … , 𝑟 and 𝑗 = 1,… , 𝑎𝑖 − 1

(9)

for the objects of Π.
Let Γ denote the diagram corresponding to 𝑅, and recall that the definitions of the underlying

affine and finite Dynkin diagrams Γ𝑎 and Γ𝑓 (see Section 3.1). In analogy with Definition 3.7, we
introduce the following elements of Br():

Definition 4.8. For each vertex of Γ𝑎, define elements of Br() inductively as follows.

(1) 𝜌(0,1) ∶= Φ𝑆(0,1)Φ𝑆(0,0) .
(2) 𝜌(𝑖,1) ∶= Φ(𝑡1

𝑖
)𝜌(0,1)Φ(𝑡1

𝑖
)𝜌
−1
(0,1)

for 𝑖 = 1, … , 𝑟.
(3) 𝜌(𝑖,𝑗) ∶= Φ(𝑡𝑗

𝑖
)
𝜌(𝑖,𝑗−1)Φ(𝑡𝑗

𝑖
)
𝜌−1
(𝑖,𝑗−1)

for 𝑖 = 1, … , 𝑟, 𝑗 = 2,… , 𝑎𝑖 − 1.

By Proposition 4.6(ii), the assignment Φ𝑆 ↦ 𝑤𝑆 defines a surjective homomorphism

𝑞∶ Br() ↠ 𝑊.

It follows from the definitions and from the fact that 𝑞 is a homomorphism that 𝑞 maps the
elements 𝜌𝑣 to the elements 𝑟𝑣 ∈ 𝑇 < 𝑊 for all 𝑣 ∈ |Γ𝑎|.
4.3 Perverse sheaves and a heart in

In this section, we construct the heart of a bounded t-structure of, denoted𝑅, associated with
the root system 𝑅. To do so, we consider the minimal resolution𝑌′ of𝑌, the coarse moduli variety
of the orbifold 𝑌 = Tot(𝜔𝑋), and use the McKay correspondence [10].
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THE STABILITY MANIFOLD OF LOCAL ORBIFOLD ELLIPTIC QUOTIENTS 2285

As a variety, 𝑌 has singularities of type 𝐴𝑎𝑖 at 𝑝𝑖 . Then, the minimal resolution is 𝑓 ∶ 𝑌
′ → 𝑌,

with 𝐑𝑓∗𝑌′ = 𝑌 and exceptional locus the union of a chain of rational curves

𝐶𝑖 ∶=

𝑎𝑖−1⋃
𝑗=1

𝐶𝑖,𝑗 𝑗 = 1, .., 𝑟𝑖 − 1

above every point 𝑝𝑖 . We write 𝑋′ ∶= 𝑋 ∪ (∪𝑖,𝑗𝐶𝑖,𝑗) for the union of the exceptional curves with
the strict transform of 𝑋.
The derived McKay correspondence of [10] states that there is an equivalence

Ψ∶ 𝐷(𝑌′) → 𝐷(𝑌),

which in turn induces an equivalence between  and the full triangulated subcategory ′ of
sheaves supported on 𝑋′. More precisely, 𝑌′ can be realized as a moduli space of sheaves of 𝑌 as
follows.

Definition 4.9. A 𝜇-equivariant quotient sheafTot(𝜔𝐸) ↠ 𝐹 is a 𝜇-cluster if𝐻0(𝐹) is isomorphic
to the regular representation of 𝜇 as a ℂ[𝜇]-module. We regard 𝐹 as an element of Coh(𝑌).

Let 𝜇-Hilb(𝑌) be the scheme parameterizing 𝜇-clusters on 𝑌. Then, 𝜇-Hilb(𝑌) is a crepant res-
olution of𝑌 [10], and the equivalenceΨ is the Fourier–Mukai transformwith kernel the universal
family on 𝜇-Hilb(𝑌) × 𝑌. Therefore, we may pick 𝑌′ ∶= 𝜇-Hilb(𝑌).
The inverse image of Coh(𝑌) under Ψ is the abelian category of perverse sheaves on 𝑌′, which

is obtained from Coh(𝑌′) with the tilt below (we follow the notation of [5] and [37]). Let  be the
abelian subcategory of 𝐷(𝑌′) consisting of sheaves 𝐸 such that 𝐑𝑓∗𝐸 = 0, and define a torsion
pair:

 ′0 ∶=
{
𝑇 ∈ Coh(𝑌′) | 𝐑1𝑓∗𝑇 = 0}

 ′0 ∶=
{
𝐹 ∈ Coh(𝑌′) | 𝑓∗𝐹 = 0 and Hom(, 𝐹) = 0}. (10)

We denote by Per(𝑌′) the tilt ofCoh(𝑌′) along the pair (10), that is, Per(𝑌′) ∶= ⟨ ′
0
[1],  ′

0
⟩. This

results in a diagram whose horizontal arrows are equivalences:

Denote by  and ′ the intersections of Coh(𝑌) and Coh(𝑌′), respectively, with  and ′.
Observe that ( ′

0
∩′, ′

0
∩′) is a torsion pair of ′: we denote by Per(𝑋′) the corresponding

tilt. Define𝑅 ∶= Ψ(
′). Then, restricting the above diagram to′ and yields
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In particular, the equivalence Ψ maps the simple objects of Per(𝑋′) into simple sheaves in of
:

𝐶𝑖,𝑗 (−1)⟼ 𝑡
𝑗
𝑖
;

𝐶𝑖 (𝐶𝑖)[1]⟼ 𝑡0𝑖

and moreover 𝑋′ ⟼ 𝑋 [37, Section 3.5].

Remark 4.10. The category Per(𝑌′) is usually called the category of 0-perverse sheaves. Its dual
category of (-1)-perverse sheaves is used in [5] and [35], and the two are compared in [37, Sec-
tion 3.5]. Our choice ofΨ, and therefore of the perversity of Per(𝑌′), has the advantage ofmapping
skyscraper sheaves to clusters.

Lemma 4.11. 𝑅 is Noetherian.

Proof. This is straightforward, because ′ is Noetherian. □

To classify objects of 𝑅 we will describe it explicitly as a tilt of . Define  ′ to be the full
additive subcategory of′ generated as the extension closure of subsheaves of the normal bundles
𝐶𝑖 (𝐶𝑖):

 ′ = ⟨𝐹 | 𝐹 ⊆ 𝐶𝑖 (𝐶𝑖) ∈ ′ for 𝑖 = 1, … , 𝑟⟩
and  ′ to be its left orthogonal in ′. Denote by  (respectively,  ) the subcategories Ψ( ′)
(respectively, Ψ( ′)) of𝑅.

Lemma 4.12. ( ′, ′) is a torsion pair in ′.

Proof. We follow an argument similar to [36, Lemma 3.2].Weneed to show that every sheaf𝐸 ∈ ′

fits in a short exact sequence

𝑇 → 𝐸 → 𝐹

with 𝑇 ∈  ′, 𝐹 ∈  ′. If 𝐸 ∈  ′, we are done. Otherwise, Hom(𝐸,) ≠ 0, so there exists 𝐹1 ∈  ′

fitting in a short exact sequence

𝑀1 → 𝐸 → 𝐹1.

If Hom(𝑀1, ′) ≠ 0, repeat this process, and obtain

𝑀2 → 𝑀1 → 𝐹2.

By iterating this, we get a chain of inclusions

… ⊂ 𝑀𝑘 ⊂ 𝑀𝑘−1 ⊂ … ⊂ 𝑀1 ⊂ 𝐸
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with quotients in ′. Then, the chainmust terminate by Lemma 4.13. This means that there exists
𝑛 for whichHom(𝑀𝑛, ′) = 0. Let 𝐹 be the cokernel of the inclusion𝑀𝑛 ⊂ 𝐸, then the sequence

𝑀𝑛 → 𝐸 → 𝐹

is the desired one. □

Lemma 4.13 (see [36, Lemma 3.1]). If there is a series of inclusions in ′, say

… ⊂ 𝑀𝑘 ⊂ 𝑀𝑘−1 ⊂ … ⊂ 𝑀0

whose quotients lie in  ′, then the sequence must eventually stabilize.

Proof. We follow an argument similar to [36, Lemma 3.1]. First, we may assume that all the
quotients 𝐹𝑘 ∶= 𝑀0∕𝑀𝑘 are supported on one curve 𝐶 ∶= 𝐶𝑖 . Moreover:

Claim. Wemay assume that for all 𝑘, the quotients 𝐹𝑘 are torsion free sheaves 𝐿𝑘 ⊂ 𝐶(𝐶), such
that 𝐿𝑘 has connected support 𝐷𝑘 ⊂ 𝐶. □

Indeed, by definition of  ′, every 𝐹𝑘 admits a surjection to some 𝐿𝑘 ⊂ 𝐶(𝐶). By restricting
𝐿𝑘 to one of the connected components 𝐷𝑘 of its support, we may assume that 𝐿𝑘 has connected
support. So we have quotients

𝐹𝑘 ↠ 𝐿𝑘,

which define exact sequences

0 → 𝑀(1)
𝑘
→ 𝑀𝑘 → 𝐿𝑘 → 0.

The quotient 𝐹(1)
𝑘

of𝑀𝑘+1 → 𝑀(1)
𝑘

fits into an exact sequence

𝐹(1)
𝑘
→ 𝐹𝑘 → 𝐿𝑘,

where ch1 (𝐹
(1)
𝑘
) = ch1 (𝐹𝑘) − ch1 (𝐿𝑘) is a positive linear combination

∑
𝑎𝑗[𝐶𝑖,𝑗]with coefficients

strictly smaller than those of ch1 (𝐹𝑘). We can then repeat this process for the map𝑀𝑘+1 → 𝑀(1)
𝑘

until we get a finite chain of inclusions

𝑀𝑘+1 ⊂ 𝑀
(𝑛)
𝑘
⊂ … ⊂ 𝑀(1)

𝑘
⊂ 𝑀𝑘

satisfying the statement of the claim.
We proceed to show that the sequence of inclusions must terminate with an induction on the

length 𝑙 of the chain of rational curves 𝐶.
In order to see this, apply the functor Hom(−,𝐶(𝐶)) to the short exact sequence

0 → 𝑀𝑘+1 → 𝑀𝑘 → 𝐿𝑘 → 0. (11)
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For 𝐿𝑘 = 𝐶(𝐶), one computes ext1(𝐶(𝐶),𝐶(𝐶)) = 0, hence Hom(𝑀𝑖,𝐶(𝐶)) >

Hom(𝑀𝑖+1,𝐶(𝐶)).
If 𝐿𝑘 ⊊ 𝐶(𝐶), one has

Ext2(𝐿𝑘,𝐶(𝐶)) ≃ Hom(𝐶(𝐶), 𝐿𝑘) = 0, (12)

and obtains

hom(𝑀𝑘,𝐶(𝐶)) − hom(𝑀𝑘+1,𝐶(𝐶)) =

𝜒(𝐿𝑘,𝐶(𝐶)) +
(
ext1(𝑀𝑘,𝐶(𝐶)) − ext

1(𝑀𝑘+1,𝐶(𝐶))
)
.

(13)

Observe that 𝜒(𝐿𝑘,𝐶(𝐶)) = −(𝐷𝑘).𝐶 ⩾ 0 by Hirzebruch–Riemann–Roch, and that

ext1(𝑀𝑘,𝐶(𝐶)) − ext
1(𝑀𝑘+1,𝐶(𝐶)) ⩾ 0

because of (12).
If 𝑙 = 1, we must have 𝐷𝑘 = 𝐶 and −𝐷𝑘 ⋅ 𝐶 = 2. This shows that if 𝐿𝑘 ≠ 0, then

Hom(𝑀𝑘,𝐶(𝐶)) > Hom(𝑀𝑘+1,𝐶(𝐶)), whence the chain of subobjects must terminate.
If 𝑙 > 1, the only way the sequence does not terminate is that all 𝐿𝑘 satisfy 𝐷𝑘 ⋅ 𝐶 = 0. This is

only possible if no 𝐷𝑘 contains the terminal curves of the chain, 𝐶1 and 𝐶𝑙, in their support. In
other words, 𝐿𝑘 ⊂ 𝐶(𝐶)|𝐶′ ≃ 𝐶′(𝐶

′)where 𝐶′ = ∪𝑙−1
𝑗=2
𝐶𝑗 is a shorter chain. Then, we can repeat

the argument above applying the functor Hom(−,𝐶′(𝐶′)) to the sequences (11). Eventually, the
problem is reduced to the case 𝑙 = 1, and the process must terminate. □

Proposition 4.14. We have  ′ =  ′
0
. Therefore,

𝑅 = ⟨ ,⟩ and  = ⟨[1],  ⟩.
Proof. Suppose 𝐸 ∈  ′. We may assume that 𝐸 is supported on just one curve 𝐶 = 𝐶𝑖 . Moreover,
𝐸 is a repeated extension of subsheaves of 𝐶(𝐶), so we may induce on the number of its factors
and reduce to the case where 𝐸 is a subsheaf of 𝐶(𝐶).
It follows from left exactness of𝑓∗ that𝑓∗𝐸 = 0. Now suppose𝑈 ∈ . Composing amap𝑈 → 𝐸

with the inclusion 𝐸 ⊂ 𝐶(𝐶) yields an element ofHom𝑌′(𝑈,𝐶(𝐶)).𝑈 must be supported on 𝐶
since 𝑓∶ 𝑌′ → 𝑌 is an isomorphism off 𝐶. Therefore, we have isomorphisms

Hom𝑌′(𝑈,𝐶(𝐶)) ≃ Hom𝐶(𝑈,𝐶(𝐶)) ≃ Ext
1
𝐶(𝐶,𝑈)

∗ = 𝐻1(𝐶,𝑈)∗ = 0 (14)

since 𝑈 ∈ . We conclude Hom(𝑈, 𝐸) = 0 for all 𝑈 ∈ , and 𝐸 ∈  ′
0
.

Conversely, suppose 𝐸 ∈  ′
0
, and assume 𝐸 ∉  ′. Then there is a short exact sequence

𝐺 → 𝐸 → 𝐻

with𝐻 ∈  ′ and𝐺 ∈  ′ since ( ′, ′) is a torsion pair by Lemma 4.12. Moreover,𝐺 ∈  ′
0
because

𝐸 ∈  ′
0
. Then 𝐺 ∈  ′ ∩  ′

0
satisfies:

∙ Hom(𝐺, ′) = 0;
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∙ 𝑓∗𝐺 = 0;
∙ Hom(, 𝐺) = 0.

We must have 𝐑1𝑓∗𝐺 ≠ 0, otherwise 𝐑𝑓∗𝐺 = 0 and 𝐺 ∈ . Therefore, 𝐻1(𝐶, 𝐺) ≠ 0. Arguing as
in (14) we getHom𝑌′(𝐺,𝐶(𝐶)) ≠ 0, contradictingHom(𝐺, ′) = 0. We conclude that𝐺 = 0, and
therefore 𝐸 ∈  ′.

4.4 Classification of objects in𝑹

Next,we classify of objects in𝑅. The strategy is to explicitly compute the image underΨ of objects
of′, which are obtained as finite, repeated extensions of torsion sheaves and line bundles on each
component of 𝑋′. We start describing sheaves in  ′: these are precisely all elements of ′ whose
image is a shift of a sheaf in𝑅.
Given a subchain of rational curves 𝐷 ⊆ 𝐶, there exists a maximal subsheaf 𝐿𝐷 ⊆ 𝐶(𝐶)

supported on 𝐷.

Lemma 4.15. Fix 𝐶 = 𝐶𝑖 , let 𝐷 ⊆ 𝐶 be a subchain of rational curves, and let 𝐿𝐷 as above.
Write 𝐶𝑑1, … , 𝐶𝑑𝑙 for the irreducible components of 𝐷 (with (𝑑1, … , 𝑑𝑙) consecutive elements of
{1, … , 𝑟𝑖 − 1}). Then 𝐿𝐷 is obtained from𝐶𝑑1

(−2)with repeated extensions by the sheaves𝐶𝑑𝑖 (−1),
with 𝑖 = 𝑑2, … , 𝑑𝑙 . In particular, there is a short exact sequence

𝐿𝐷 → 𝐿′𝐷 → 𝑡, (15)

where 𝑡 ∈ 𝐶𝑑1 and 𝐿
′
𝐷
is obtained by repeated extensions of 𝐶𝑑𝑖 (−1), with 𝑖 = 𝑑1, … , 𝑑𝑙 .

Proof. Proceed by induction on the length 𝑙 of the chain𝐷. If 𝑙 = 1 and𝐷 = 𝐶𝑑, one readily verifies
that 𝐿𝐷 ≃ 𝐶𝑑(−2). Suppose then that 𝑙 > 1. Then, observe that 𝐿𝐷 restricts to 𝐶𝑑𝑙 to a line bundle
of degree −1, because either 𝑑𝑙 < 𝑟𝑖 − 1, and then sections of 𝐿𝐷 must vanish at the intersection
𝐶𝑑𝑙 ∩ 𝐶𝑑𝑙+1 or because 𝑑𝑙 = 𝑟𝑖 − 1, and𝐶(𝐶)has degree−1 on𝐶𝑟𝑖−1. The kernel of this restriction
is exactly the maximal subsheaf of𝐶(𝐶) supported on 𝐷 − 𝐶𝑑𝑙 . In other words, 𝐿𝐷 fits in a short
exact sequence

𝐿
𝐷−𝐶𝑑𝑙

→ 𝐿𝐷 → 𝐶𝑑𝑙
(−1)

so by induction 𝐿𝐷 has the asserted structure.
For the second statement, fix a point 𝑡 ∈ 𝐶𝑑1 away from the intersections, and consider the

cokernel

(𝜖)∶ 𝐶𝑑1
(−2) → 𝐿𝐷 → 𝑅𝐷.

From the sequence

𝐶𝑑1
(−2) → 𝐶𝑑1

(−1) → 𝑡

one sees thatExt1(𝑅𝐷,𝐶𝑑1 (−2)) ≃ Ext
1(𝑅𝐷,𝐶𝑑1

(−1)) because 𝑡 ∉ Supp𝑅𝐷 . Pushing forward the
extension class (𝜖) to Ext1(𝑅𝐷,𝐶𝑑1 (−1)) produces an object 𝐿

′
𝐷
as in the statement. □
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Lemma 4.16. Suppose an object 𝑇 ∈ 𝑅 is supported on an orbifold point 𝑝𝑖 . Then 𝑇 is obtained
by repeated extensions of the following objects.

(i) 𝑡𝑗
𝑖
with 𝑗 ≠ 0.

(ii) clusters supported at 𝑝𝑖 .
(iii) 𝑁[−1] where𝑁 is the proper quotient of a cluster.

Proof. This is equivalent to classifying sheaves of ′ supported on 𝐶 ∶= 𝐶𝑖 . First, we consider
sheaves in  ′. A sheaf in  ′ is an extension of subsheaves 𝐿 ⊂ 𝐶(𝐶) with connected support.
Any such inclusion must factor through an inclusion 𝐿 ⊆ 𝐿𝐷 , where 𝐿𝐷 is as in Lemma 4.15 and
the cokernel 𝐿𝐷∕𝐿 is torsion. We have that Ψ(𝐿)[1] and Ψ(𝐿𝐷)[1] are sheaves on 𝑋, so applying
the McKay functor to

𝐿 → 𝐿𝐷 → 𝐿𝐷∕𝐿,

we obtain a short exact sequence of sheaves in :

𝑀 → Ψ(𝐿)[1] → Ψ(𝐿𝐷)[1],

where𝑀 is obtained by repeated extensions of clusters. Now we claim that Ψ(𝐿𝐷)[1] is a proper
quotient of a cluster. In fact, apply Ψ to the exact sequence (15) of Lemma 4.15: Ψ(𝑡) is a cluster,
andΨ(𝐿′

𝐷
) is a sheaf obtained by repeated extensions of 𝑡𝑗

𝑖
, 𝑗 ≠ 0. This yields a short exact sequence

in 

0 → Ψ(𝐿′𝐷) → Ψ(𝑡) → Ψ(𝐿𝐷)[1] → 0,

which exhibits Ψ(𝐿𝐷)[1] as the quotient of a cluster. This exhausts part (iii).
Now, consider a sheaf 𝐵 ∈  ′. The torsion part 𝐵𝑡𝑜𝑟 of 𝐵 is obtained by repeated extensions

of points, so Ψ(𝐵𝑡𝑜𝑟) is as in part (ii). We may then assume that 𝐵 is torsion free with connected
support. If 𝐵 is supported on a single irreducible component 𝐶𝑖 , then 𝐵 is a sum of line bundles
of the form 𝐶𝑖 (𝑘). Since Hom(𝐵,

′) = 0, we must have 𝑘 > −2. Then Ψ(𝐵) is obtained as an
extension of 𝑡𝑗

𝑖
by clusters. If 𝐵 is supported on more than one irreducible component, suppose

that 𝐶𝑗 is a terminal component of the support of 𝐵 and consider the restriction of 𝐵 to 𝐶𝑗 . Then
there is an exact sequence

𝐵′ → 𝐵 → 𝐵|𝐶𝑗 ,
where 𝐵′ is supported on a shorter chain. 𝐵|𝐶𝑗 is supported on one irreducible curve, so it is as
above. If𝐵′ ∈  ′, we repeat this procedure. Otherwise,𝐵′ fits in a short exact sequence of sheaves

𝐵′′ → 𝐵′ → 𝐹

with 𝐵′′ ∈  ′ and 𝐹 ∈  ′. Sheaves in  ′ are classified above, so we can assume that 𝐵′ ∈  ′ and
conclude by induction on the length of the supporting chain. □

As a consequence of the results in this section, we obtain the following description of objects
in𝑅:
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Proposition 4.17. Objects in𝑅 are obtained by repeated extensions from:

(i) line bundles on 𝑋;
(ii) skyscraper sheaves 𝑞 for 𝑞 ∈ 𝑋 − ∪{𝑝𝑖};
(iii) objects supported on the functions 𝑝𝑖 , classified in Lemma 4.16.

4.5 The fundamental region and normalization

Recall the notation introduced in Section 3 and the identification 𝐾()ℝ ≃ 𝐹. In this section,
we use the heart 𝑅 to construct a region 𝑈 in Stab() which is a homeomorphic lift via
𝜋∶ Stab() → Hom(𝐹, ℂ) of the fundamental domain 𝐷 described in Proposition 3.12. Then,
following [9], we introduce normalized stability conditions.

Proposition4.18. For every point𝑍 in the fundamental domain𝐷 ⊂ 𝔼 there exists a unique stability
condition (𝑍,𝑅) ∈ Stab(). In fact, the inverse image𝑈 ∶= 𝜋−1(𝐷)maps homeomorphically to𝐷
under the central charge map.

Proof. Pick 𝑍 ∈ 𝐷𝜏 ⊂ 𝐷 ⊂ 𝔼. The class of every object in 𝑅 is a positive linear combination of
classes of objects listed in Proposition 4.17. Then, the definition of 𝐷𝜏 shows that 𝑍(𝑅) ⊂ ℍ, in
otherwords,𝑍 is a stability function on𝑅. Since𝑅 isNoetherian (Lemma4.11), and the image of
Im𝑍 is discrete by construction, then 𝑍 has the Harder–Narasimhan property by Proposition 2.5.
Again by Proposition 4.17, we see that the image of 𝑍 is discrete, so the support property is

automatically satisfied. Then, the map 𝜋|𝑈 is a homeomorphism. □

We observe right away the following Lemma:

Lemma 4.19. Let 𝜎 ∈ 𝑈. Then, all 𝑡𝑗
𝑖
, 𝑗 ≠ 0, and all line bundles 𝑋(𝑑) are 𝜎-stable.

Proof. Let 𝑆 be one of the objects in 𝑃𝑖 (see (8)) or a sheaf 𝑋(𝑑). A short exact sequence

𝐾 → 𝑆 → 𝑄 (16)

in𝑅 corresponds under theMcKay functor to a short exact sequence of sheaves on the resolution

𝐾′ → Ψ−1(𝑆) → 𝑄′.

On the other hand, Ψ−1𝑆 is either an object of the form 𝐶𝑖,𝑗 (−1) or a line bundle on 𝑋. In either
case, the only quotients of Ψ−1(𝑆) are obtained by repeated extensions of skyscraper sheaves, so
𝑄 ∈ 𝑅 is semistable of phase 1. Therefore 𝑆 is 𝜎-stable. □

Let Stab†() be the connected component of Stab() containing 𝑈. In addition to the full sta-
bility manifold Stab(), we will often restrict our attention to the locus of normalized stability
conditions

Stab𝑛() ∶= {𝜎 = (𝑍,) ∈ Stab
†() | 𝑍(𝑎) = 1}. (17)
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By construction, 𝑈 ⊂ Stab𝑛(), so we also define Stab†𝑛() ⊂ Stab
†() as the connected com-

ponent of Stab𝑛() containing𝑈. We use 𝜋 to denote the restriction of the central charge map to
any of these regions of Stab(). As it turns out, we have

Proposition 4.20. All stability conditions in Stab†() (and hence in Stab†𝑛()) satisfy the
additional condition

(∗)∶ Im
𝑍(𝑏)

𝑍(𝑎)
> 0.

The proof of Proposition 4.20 uses our wall-crossing result (Theorem 5.4) and is given in
Section 5.3. An immediate consequence of Proposition 4.20 is that 𝜋 maps Stab†𝑛() in 𝔼 ⊂
Hom(𝐾(), ℂ). This is used in Section 6.

Remark 4.21. Normalization is a very natural choice in this context: it already appears in the case
of Kleinian singularities [9] and it fits well with Saito’s definitions of 𝔼 and ℍ (see (5)), which
include the condition 𝑍(𝑎) = 1.
Moreover, as is the case in [34] and, for example, in [14], normalizing preserves information

about the whole component Stab†(). Indeed, Stab†() is the orbit of Stab†𝑛() under the ℂ-
action, and it is a ℂ∗-bundle over the normalized locus Stab𝑛(): these statements are proven in
Section 5.4 using results from Section 5.

5 WALL-CROSSING IN

In this section, we apply the wall-crossing methods of [2] and [1] to the 𝐾3-category . First, we
produce stable objects for a certain stability condition in Stab†(). We then analyze wall crossing
for spherical and radical classes, obtaining Theorem 5.4. From it, we obtain a proof of Proposi-
tion 4.20 and of the claims of Remark 4.21. The results of this section hold if one works with
normalized stability conditions with the same arguments, so we do not repeat them. The notation
is as above.

5.1 Stability conditions on 𝐂𝐨𝐡(𝑿) and 

Geigle and Lenzing define slope-stability on a weighted projective line in [12, Section 5]. Define a
stability condition 𝜏′

0
∶= (𝑍0, Coh(𝑋)) ∈ Stab(𝑋) with

𝑍0 = −deg+𝑖 rk,

where deg(𝑝𝑖 ⊗ 𝜒
𝑗) is defined to be 1

𝑎𝑖
for all orbifold points 𝑝𝑖 and all 𝑗 = 0,… , 𝑎𝑖 − 1. Then,

slope-stability is equivalent to 𝜏′
0
-stability on𝑋.We say that a root𝛼 ∈ 𝑅 ∪ Δ𝑖𝑚 is positive if𝑍0(𝛼) ∈

ℍ ∪ ℝ<0. Results about 𝜏′0-stability are summarized in [23]:

Theorem 5.1 [23, Theorem 4.6]. Let 𝑋 be as above, 𝛼 ∈ 𝑅 ∪ Δ𝑖𝑚. Then:

(i) there exists an indecomposable sheaf 𝐹 of class 𝛼 if and only if 𝛼 is a positive root;
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(ii) the sheaf 𝐹 is unique up to isomorphism if 𝛼 is a real root, and varies in a one-parameter family
if 𝛼 is imaginary;

(iii) an indecomposable sheaf is 𝜏′
0
-semistable, and it is 𝜏′

0
-stable if and only if 𝛼 is primitive.

By Lemma 4.2, we can regard 𝑍0 as a map defined on 𝐾(), and define a stability condition
𝜏0 ∈ Stab() as (𝑍0,). By construction, 𝜏0 lies in the boundary of a fundamental chamber in
Stab†() (for example, because Im𝑍0(𝑡

𝑗
𝑖
) = 0 for all 𝑖, 𝑗).

We say that an object 𝐸 ∈  is semi-rigid if ext1(𝐸, 𝐸) = 2. Then we have:

Proposition 5.2. Let 𝛼 ∈ 𝑅 ∪ Δ𝑖𝑚 be a positive root. If 𝛼 is a real root, there exist a 𝜏0-semistable
spherical sheaf in  of class 𝛼. If 𝛼 is imaginary, there is a one-parameter family of semi-rigid 𝜏0-
semistable sheaves in  of class 𝛼. If 𝛼 is primitive, the same statement holds with stability instead
of semistability.

Proof. By Theorem 5.1, there exists a 𝜏′
0
-semistable sheaf 𝐸′ on𝑋 of class 𝛼. Let 𝐸 ∶= 𝜄∗(𝐸′) be the

indecomposable sheaf in  obtained by pushing forward 𝐸′. The sheaf 𝐸 is 𝜏0-semistable: since
𝐸 is supported on 𝑋, then so must be every subsheaf 𝑆 ⊂ 𝐸. This implies that 𝑆 = 𝜄∗𝑆′ for some
𝑆′ ∈ Coh(𝑋). Then, 𝑆 destabilizes 𝐸 if and only if 𝑆′ destabilizes 𝐸′.
Next, we show that 𝐸 is spherical if 𝛼 is a real root. Deformations of 𝐸′ are governed by

the group Ext1𝑋(𝐸
′, 𝐸′), so Theorem 5.1 implies that Ext1𝑋(𝐸

′, 𝐸′) = 0, hence Ext1

(𝐸, 𝐸) = 0 by

Lemma 4.1. On the other hand, since 𝛼 is real, one must have 𝜒(𝛼, 𝛼) = 2, so 𝐸 is spherical. Simi-
larly, one argues that 𝐸 is semi-rigid if 𝛼 is imaginary. The claim about stability follows again from
Theorem 5.1. □

5.2 Wall-crossing in 𝐒𝐭𝐚𝐛()

The lattice 𝐾() can be equipped with the Mukai pairing

(𝐯,𝐰) ∶= −𝜒(𝐯,𝐰).

The pairing has a rank 2 radical rad𝜒 generated by 𝑎 and 𝑏, and it induces a negative definite
pairing on 𝐾()∕ rad𝜒, since the Euler form on 𝐾()∕ rad𝜒 coincides with the Cartan matrix of
the root system 𝑅𝑓 , which is positive definite.
Since 𝐾() is negative semidefinite, the class 𝐯 of a stable object can only satisfy 𝐯2 = 0 or

𝐯2 = −2. In the first case, 𝐯 belongs to rad𝜒, and we call it a radical class. Classes with 𝐯2 = −2
are called spherical classes.
First, note that since 𝐾() is a discrete lattice, we have a finiteness result for walls:

Proposition 5.3 [1, Proposition 3.3]. Let  be a triangulated category such that 𝐾() is a lattice
of finite rank. Let Stab∗() ⊂ Stab() be a connected component of its space of stability conditions.
Fix a primitive class 𝐯 ∈ 𝐾(), and an arbitrary set 𝑆 ⊂ 𝐷 of objects of class 𝐯. Then there exists a
collection of walls𝑊𝑆

𝐰 with𝐰 ∈ 𝐾(), with the following properties.

(a) Every wall𝑊𝑆
𝐰 is a closed submanifold with boundary of real codimension one.

(b) The collection𝑊𝑆
𝐰 is locally finite (that is, every compact subset 𝐾 ⊂ Stab∗() intersects only a

finite number of walls).
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(c) For every stability condition (𝑍,) ∈ 𝑊𝑆
𝐰 , there exists a phase 𝜙 and an inclusion 𝐹𝐰 → 𝐸𝐯 in

(𝜙) with [𝐹𝐰] = 𝐰 and some 𝐸𝐯 ∈ 𝑆.
(d) If  ⊂ Stab∗() is a connected component of the complement of ∪𝐰∈𝐾()𝑊𝑆

𝐰 , and 𝜎1, 𝜎2 ∈ ,
then an object 𝐸𝐯 ∈ 𝑆 is 𝜎1-stable if and only if it is 𝜎2-stable.

Recall that 𝜎 ∈ Stab() is said to be generic with respect to 𝐯 ∈ 𝐾() if 𝜎 does not lie on any
of the walls of the wall-and-chamber decomposition associated to 𝐯. The goal of this section is to
prove the following Theorem:

Theorem 5.4. Let 𝛼 ∈ 𝑅 ⊂ 𝐾() be a positive root. Let 𝜎 ∈ Stab†() be generic with respect to 𝛼.
Then, there exists a 𝜎-stable object 𝐸 of class 𝛼. The object 𝐸 is rigid if 𝛼 is a real root, and it varies in
a family if 𝛼 is imaginary.

We will make use of the following well-known property of K3-categories.

Lemma 5.5 [17, Proposition 2.9]. Let 𝜎 ∈ Stab().

(i) If 𝐸 ∈  is spherical, then all of its 𝜎-stable factors are spherical.
(ii) If 𝐸 ∈  is semi-rigid, then all of its 𝜎-stable factors are spherical, except for possibly one semi-

rigid factor.

Before moving forward, we recall a construction from [2]. Fix a primitive class 𝐯 ∈ 𝐾(), let 𝑆
be the set of objects of  of class 𝐯, and let𝑊 = 𝑊𝑆

𝐰 be a wall of the wall-and-chamber decom-
position of Stab() associated to 𝐯. Then we can associate to𝑊 the rank 2 lattice𝐻𝑊 ⊂ 𝐾():

𝐻𝑊 =

{
𝐰 ∈ 𝐾() ∣ Im

𝑍(𝐯)

𝑍(𝐰)
= 0 for all 𝜎 = (𝑍,) ∈ 𝑊

}
. (18)

The rank of 𝐻𝑊 is at least 2 because it contains at least 𝐯 and the linearly independent class
𝐰 destabilizing at 𝑊. If it had rank bigger than 2, the definition (18) would imply that 𝑊 has
codimension higher than 1.
For any 𝜎 = (𝑍,) ∈ 𝑊, let 𝐶𝜎 ⊂ 𝐻𝑊 ⊗ℝ be the cone spanned by classes 𝐜 satisfying

𝐜2 ⩾ −2 and Im
𝑍(𝐜)

𝑍(𝐯)
> 0.

We will refer to 𝐶𝜎 as to the cone of 𝜎-effective classes in𝐻𝑊 .

5.2.1 Wall-crossing for spherical classes

Lemma 5.6. Let 𝐯 be a primitive spherical class in 𝐾(), and 𝑊 be a wall for 𝐯. Then 𝐻𝑊 is a
primitive lattice of rank two generated by 𝐯 and a spherical class 𝐰. It is negative definite (with
respect to the restriction of the Mukai pairing). Moreover, there are only three possibilities for the
intersection form, and:

(i) if (𝐯,𝐰) = 0, then𝐻𝑊 contains no spherical classes except for ±𝐯 and ±𝐰;
(ii) if (𝐯,𝐰) = −1, the only spherical classes in𝐻𝑊 are ±𝐯, ±𝐰, and ±(𝐯 −𝐰);
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THE STABILITY MANIFOLD OF LOCAL ORBIFOLD ELLIPTIC QUOTIENTS 2295

(iii) if (𝐯,𝐰) = 1, the only spherical classes in𝐻𝑊 are ±𝐯, ±𝐰, and ±(𝐯 +𝐰).

Proof. We have that 𝐯 ∈ 𝐻𝑊 has 𝐯2 < 0 and𝐰must be a spherical class by Lemma. 5.5. So both 𝐯
and𝐰 project to non-zero vectors in𝐾()∕ rad𝜒. The intersectionmatrix of𝐻𝑊 can be computed
on 𝐾()∕ rad𝜒, where the Mukai pairing coincides with the opposite of the Cartan intersection
matrix, so it is negative definite.
The signature of the form implies that the determinant of the intersection form be positive,

which rules out all values of (𝐯,𝐰) except for 0 and ±1. The spherical classes are the integer
solutions of

−2 = (𝑥𝐯 + 𝑦𝐰)2 = −2𝑥2 − 2𝑦2 + 2(𝐯,𝐰)𝑥𝑦

in these three cases. □

Let𝑊 be a wall for 𝐯. Then, we denote by 𝜎0 a stability condition which only lies on the wall
𝑊, and consider a path in Stab() passing through 𝜎0 and connecting 𝜎+ and 𝜎−, two stability
conditions lying in adjacent chambers.

Lemma 5.7. For𝑊 as above, suppose that there exists an indecomposable 𝜎0-semistable spherical
object 𝐸 of class 𝐯. Then there is a 𝜎+-stable spherical object 𝐸+ of class 𝐯. Likewise, there exist a
𝜎−-stable object 𝐸− of class 𝐯.

Proof. ByLemma 5.5, the Jordan–Hölder factors of𝐸 are spherical objects. In otherwords,𝐯 can be
written as a sum of spherical classes in 𝐶𝜎0 . If 𝐸 is 𝜎0-stable, there is nothing to prove. Otherwise,
Lemma 5.6 shows that, up to the sign of𝐰, 𝐸 has a Jordan–Hölder filtration

𝐵 → 𝐸 → 𝐴,

where 𝐵,𝐴 have class𝐰 and 𝐯 −𝐰, respectively. Observe that Ext1(𝐴, 𝐵) = Ext1(𝐵, 𝐴) ≠ 0 since
𝐸 is indecomposable, and denote by 𝐸′ the non-trivial extension

𝐴 → 𝐸′ → 𝐵.

If 𝜙𝜎+(𝐯 −𝐰) > 𝜙𝜎+(𝐰) set 𝐸+ = 𝐸. If 𝜙𝜎+(𝐯 −𝐰) < 𝜙𝜎+(𝐰), set 𝐸+ = 𝐸′. In any case, 𝐸+
satisfies the assumptions of [2, Lemma 9.3], and hence is 𝜎+-stable. □

5.2.2 Wall-crossing for radical classes

Lemma 5.8. Let 𝐯 be a primitive radical class in 𝐾(), and𝑊 be a wall for 𝐯. Then 𝐻𝑊 contains
a spherical class𝐰 and the intersection matrix of𝐻𝑊 is

(
0 0

0 −2

)
.

Proof. Another generator of 𝐻𝑊 , 𝐰, is either radical or semi-rigid by Lemma 5.5. If it is semi-
rigid, (𝐰,𝐰) = 0, so the intersection form is zero on 𝐻𝑊 and 𝐻𝑊 contains no spherical classes.
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2296 ROTA

Then every 𝜎0-semistable object 𝐸 of class 𝐯 must be stable on𝑊, because it can only have one
Jordan–Hölder factor, so𝑊 is not a wall. The only other possibility is that𝐰 is spherical and the
intersection form is as claimed. □

Lemma 5.9. For𝑊 as above, suppose that there exists an indecomposable 𝜎0-semistable semi-rigid
object 𝐸 of class 𝐯. Then there is a 𝜎+-stable semi-rigid object 𝐸+ of class 𝐯. Likewise, there exist a
𝜎−-stable semi-rigid object 𝐸− of class 𝐯.

Proof. The proof is analogous to that of Lemma 5.7. If 𝐸 is 𝜎0-stable, there is nothing to prove,
otherwise itmust have at least a spherical stable factor. Then one canwrite𝐯 = 𝐚 + 𝐛with 𝐚 ∈ 𝐶𝜎0
spherical, and 𝐛 ∈ 𝐶𝜎0 . By Lemma 5.8, the only spherical classes in 𝐻 are of the form ±𝐰 + 𝑛𝐯

with 𝑛 ∈ ℤ; then 𝐛 has to be spherical as well, and there is only one integer 𝑁 such that 𝐚 ∶=
𝐰 +𝑁𝐯 and 𝐛 ∶= −𝐰 + (1 − 𝑁)𝐯 are both 𝜎0-effective.Moreover, 𝐚 and 𝐛 cannot be expressed as
the sum of other effective spherical classes. This implies that the Jordan–Hölder filtration of 𝐸 is

𝜖∶ 𝐵 → 𝐸 → 𝐴.

Since 𝐸 is indecomposable, (𝜖) ≠ 0 in Ext1(𝐴, 𝐵) ≃ Ext1(𝐵, 𝐴), and we can conclude as in
Lemma 5.7. □

Proof of Theorem 5.4. Suppose first that 𝐯 is a spherical class. Proposition 5.2 shows that up to a
sign there exists a 𝜏0-semistable sheaf 𝐸 of class 𝐯 which is spherical and indecomposable. Since
Stab†() is connected and 𝜏0 ∈ Stab†(), there is a path 𝛾 of stability conditions in Stab†()
connecting 𝜏0 and 𝜎.
Observe that the objects 𝐸+ produced in Lemma 5.7 are in turn indecomposable, because they

are stable with respect to some stability condition. Then, we can repeatedly apply Lemma 5.7
and conclude.
A similar argument, where one uses Lemma 5.9 instead of Lemma 5.7, works for radical

classes. □

5.3 Proof of Proposition 4.20

Now we prove that every stability condition in Stab†() (and hence in Stab†𝑛()) satisfies

(∗)∶ Im
𝑍(𝑏)

𝑍(𝑎)
> 0.

It suffices to show that there does not exist a stability condition 𝜎0 = (𝑍0,0) in Stab†() for
which Im 𝑍(𝑏)

𝑍(𝑎)
= 0.

Suppose such 𝜎0 existed. Acting with ℂ, we may assume that 𝑍0(𝑎), 𝑍0(𝑏) ∈ ℝ. Assume
moreover that 𝑍0 takes values in ℚ. Then, choose 𝑥, 𝑦 ∈ ℤ coprime such that

𝑥𝑍0(𝑎) + 𝑦𝑍0(𝑏) = 0 (19)

and 𝐯 ∶= 𝑥𝑎 + 𝑦𝑏 is a positive radical vector. Thus, 𝐯 is a primitive radical vector with 𝑍0(𝐯) = 0.
This implies that there exists a neighborhood 𝑉 ⊂ Stab†() of 𝜎0 such that no 𝜎 ∈ 𝑉 admits
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THE STABILITY MANIFOLD OF LOCAL ORBIFOLD ELLIPTIC QUOTIENTS 2297

semistable objects of class 𝐯, since semistability is a closed condition. But this contradicts
Theorem 5.4.
If 𝑍0 takes values in ℝ, there may be no integer solutions to (19), but for every 𝜖 > 0 there are

integers 𝑥, 𝑦 such that

|𝑥𝑍0(𝑎) + 𝑦𝑍0(𝑏)| < 𝜖
and 𝐯 = 𝑥𝑎 + 𝑦𝑏 is a primitive radical vector. Choosing 𝜖 ≪ 1, the support property implies that
there exists a neighborhood 𝑉 ⊂ Stab†() of 𝜎0 such that no 𝜎 ∈ 𝑉 admits semistable objects of
class 𝐯, and we conclude in the same way.

5.4 Action of ℂ and the orbit of normalized conditions

Recall the ℂ-action on Stab() defined in equation (2) and denote by  the orbit of Stab†𝑛().
Here, we show that = Stab†().
It is straightforward to see ⊆ Stab†(), since is connected and intersects Stab†(). To prove

the other, fix 𝜏 ∈ Stab†(). By definition, there exists a path 𝛾∶ [0, 1] → Stab†() such that 𝛾0 = 𝜏
and 𝛾1 ∈ 𝑈. Wewill use 𝛾 to define 𝑧0 ∈ ℂ and amodified path 𝛾′, taking values in Stab†𝑛(), such
that 𝛾′

0
= 𝑧0 ⋅ 𝜏, which shows 𝜏 ∈ .

For every 𝑡 ∈ [0, 1], 𝛾𝑡 = (𝑍𝑡,𝑡) admits a semistable object 𝐸𝑡 of class 𝑎: this is true if 𝛾𝑡 is
generic by Theorem 5.4, and hence for all 𝑡 since semistability is a closed condition. Then define
𝜁𝑡 ∶= 𝑍𝑡(𝐸𝑡) ∈ ℂ

∗ for all 𝑡. We can chose 𝐸𝑡 in a way that 𝜁 ∶ 𝑡 ↦ 𝜁𝑡 is continuous, hence a path
in ℂ∗: since 𝐸0 is 𝛾(0)-semiststable, then it is semistable in an interval [0, 𝑡1] with 0 ⩽ 𝑡1 ⩽ 1, and
hence we can pick 𝐸𝑡 = 𝐸0 for all 𝑡 ∈ [0, 𝑡1]. Since 𝛾(𝑡1) is at a wall for 𝑎, by Lemma 5.9 there
exists 𝐸1 which is 𝛾(𝑡)-semistable for 𝑡 ∈ [𝑡1, 𝑡2], with 𝑡1 < 𝑡2 ⩽ 1. Set 𝐸𝑡 = 𝐸1 for 𝑡1 < 𝑡 ⩽ 𝑡2. Since
𝑍𝑡1(𝐸0) = 𝑍𝑡1(𝐸1), the function 𝜁 is continuous at 𝑡1. We can iterate this process since walls for 𝑎
are finite by Proposition 5.3.
Since 𝛾1 ∈ Stab†𝑛(), we have 𝜁1 = 1, so the principal value 𝑧 ∶= Log 𝜁 defines a continuous

function 𝑧∶ [0, 1] → ℂ such that 𝑧1 = 0. We can finally define the path

𝛾′ ∶ [0, 1] → Stab†𝑛()

𝑡 ↦ 𝑧𝑡 ⋅ 𝛾(𝑡).

By construction, every stability condition 𝛾′(𝑡) is normalized, and 𝛾′
1
= 𝛾1 ∈ 𝑈. Then 𝛾′0 = 𝑧0 ⋅

𝜏 ∈ Stab†𝑛(), and 𝜏0 ∈ .
If 𝜏 ∈ Stab𝑛(), the complex number 𝑧0 has the form 𝑧0 = 𝑖2𝜋𝑘 for some 𝑘 ∈ ℤ, and acting

with 𝑧0 is the same as acting with [2𝑘] ∈ Aut(): in other words, the connected components of
Stab𝑛() are even shifts of Stab†𝑛(). Arguing as above one sees that Stab

†() is a ℂ∗-bundle over
Stab𝑛().

6 STABILITY CONDITIONS ON

In this section, we study the action of Br() on Stab() and show that it preserves Stab†𝑛().
Then, we describe the image of Stab†𝑛() in Hom(𝐾(), ℂ) and show 𝜋(Stab†𝑛()) = 𝖷reg
(Proposition 6.7). Finally, we prove our main results in Section 6.2.
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6.1 Group actions and the image of the central charge map

The group of auto-equivalences of  acts on Stab() as in equation (3). The following discus-
sion shows that the auto-equivalences in Br() preserve Stab†𝑛(). It follows that the central
charge map is equivariant with respect to the actions of Br() and 𝑊 on Stab†𝑛() and
Hom(𝐹, ℂ), respectively.
Recall from Section 3.4 that the boundary of 𝐷 (defined as a fundamental domain of 𝑊 in

Hom(𝐹, ℂ)) is contained in the union of𝑌𝑢,±walls𝑊𝑣,± as𝑢, 𝑣 vary in the vertices of |Γ𝑓| and |Γ𝑎|,
respectively. Denote by �̃�𝑢,±, �̃�𝑣,± the inverse images of 𝑌𝑢,±,𝑊𝑣,± to𝑈 (we use Proposition 4.18
here).

Lemma 6.1. Let 𝜎 = (𝑍,) be a point in the boundary of𝑈. Then 𝜎 lies in the union of �̃�𝑣,±, �̃�𝑢,±.

Proof. This follows from the description of the boundary of 𝐷 in Section 3.4: the only other
possibility is that Im𝑍(𝑏) = 0, but this is excluded by Proposition 4.20. □

Recall the notation of equation (9), and let 𝑣 ∈ |Γ|:
Lemma 6.2. Let 𝜎 = (𝑍,) be a point in the boundary of𝑈 contained in a unique wall among the
functions �̃�𝑣,±. Then there is an element 𝑇 ∈ Br() such that 𝑇 ⋅ 𝜎 also lies in the boundary of 𝑈.
More precisely, we may pick 𝑇 = Φ𝑆𝑣 if 𝜎 ∈ �̃�𝑣,+, and 𝑇 = Φ−1𝑆𝑣 if 𝜎 ∈ �̃�𝑣,−.

Proof. Suppose 𝜎 ∈ �̃�𝑣,−. Set 𝑆 ∶= 𝑆𝑣. Let 𝑉 be a small neighborhood of 𝜎 ∈ Stab(), and
consider the open subset

𝑉+ = {𝜎′ = (𝑍′,′) ∈ 𝑉 | Im𝑍(𝑆) < 0}.
Arguing as in [9, Lemma 3.5], we claim that we can choose𝑉 small enough so thatΦ−1

𝑆
(𝑉+) ⊂ 𝑈,

hence Φ−1
𝑆
𝜎 lies in the closure of𝑈. Thus, we need to show that for sufficiently small 𝑉 the heart

of all 𝜎′ ∈ 𝑉+ is equal to Φ𝑆(𝑅) ⊂ . By Lemma 2.3, it suffices to show that Φ𝑆(𝑀) lies in the
heart of any 𝜎′ ∈ 𝑉+, for all the objects𝑀 listed in Proposition 4.17.
We verify this on a case by case basis: assume first that 𝑆 = 𝑡𝑗

𝑖
, 𝑗 ≠ 0. Then:

Case 1. Suppose 𝐿 is a line bundle on 𝑋. Then 𝐿 is locally of the form ((𝑘∕𝑎𝑖)𝑝𝑖) for some
𝑘 ∈ {0, … , 𝑎𝑖}, and one computes

Hom∙(𝑡
𝑗
𝑖
, 𝐿) =

⎧⎪⎨⎪⎩
ℂ[−1] if 𝑘 = 𝑗
ℂ[−2] if 𝑘 + 𝑖 = 𝑗
0 otherwise.

If Hom1(𝑡𝑗
𝑖
, 𝐿) ≠ 0, then there is a non-split short exact sequence in𝑅

𝐿 → Φ𝑆𝐿 → 𝑡
𝑗
𝑖
.

It follows that Φ𝑆𝐿 lies in the heart of 𝜎 and its semistable factors have phases in (0,1). Choosing
𝑉 small enough ensures that this is the case for all 𝜎′ ∈ 𝑉+ too.
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If Hom2(𝑡𝑗
𝑖
, 𝐿) ≠ 0, then Φ𝑆𝐿 fits in a triangle

𝐿 → Φ𝑆𝐿 → 𝑡
𝑗
𝑖
[−1],

which implies that Φ𝑆𝐿 lies in′, because so do 𝐿 and 𝑡𝑗
𝑖
[−1].

If Hom∙(𝑡𝑗
𝑖
, 𝐿) = 0, then Φ𝑆𝐿 = 𝐿 and the same argument applies.

Case 2. The same argument applies toΦ
𝑡
𝑗
𝑖

(𝑞) = 𝑞 for all 𝑞 ≠ 𝑝1, and to all sheaves supported
away from 𝑝𝑖;
Case 3. The only possibilities for Φ𝑆𝑡𝑘𝑖 , 𝑘 ≠ 𝑗, 0 are that Hom∙(𝑡𝑗

𝑖
, 𝑡𝑘
𝑖
) = 0 or Hom∙(𝑡𝑗

𝑖
, 𝑡𝑘
𝑖
) =

ℂ[−1]. Both are analogous to the case of a line bundle above. Consider Φ𝑆(𝑆) = 𝑆[−1]. Since 𝑆
is 𝜎-stable of phase 1, we may assume by shrinking 𝑉 that 𝑆 is 𝜎′-stable with phase at most 2.
Moreover, 𝑆 must have phase bigger than 1 in 𝜎′, so 𝑆[−1] lies in the heart of 𝜎′. Similarly, one
sees that Φ𝑆𝑡0𝑖 [−1] ∈ ′.
Case 4. If𝑀 is a cluster supported at 𝑝𝑖 , then𝑀 has a non-split composition series with factors

the 𝑡𝑗
𝑖
for 𝑗 = 0,… , 𝑎𝑖 − 1, where 𝑡0𝑖 is the last factor. Then,Φ𝑆𝑀 has a non-split composition series

with all factors in′ but the last one in′[1], and 𝑍′(Φ𝑆𝑀) = −𝑍′(𝑎) = −1, so Φ𝑆(𝑀) ∈ ′.
Case 5. It remains to show the claim for 𝑁[−1] where 𝑁 is the proper quotient of a cluster𝑀,

with kernel 𝐾. Write the triangle

𝑀[−1] → 𝑁[−1] → 𝐾 (20)

and apply Φ𝑆 . By the discussion above, Φ𝑆(𝐾) ∈ ′ since 𝐾 is obtained by repeated extensions of
functions 𝑡𝑗

𝑖
with 𝑗 > 0, and Φ𝑆(𝑀)[−1] is stable of phase 0. Then Φ𝑆(𝑁)[−1] ∈ ′, because the

triangle (20) does not split.
Similar computations show that Φ𝑆(𝑀) ∈ ′ for all 𝑀 ∈ 𝑅 and 𝑆 = 𝑋 . A symmetric

argument settles the case 𝜎 ∈ �̃�𝑣,+. □

Lemma 6.3. Let 𝜎 = (𝑍,) be a point in the boundary of𝑈 contained in a unique wall among the
�̃�𝑢,±. Then there is an element 𝑇 ∈ Br() such that 𝑇𝜎 also lies in the boundary of𝑈. More precisely,
we may pick 𝑇 = 𝜌𝑢 if 𝜎 ∈ �̃�𝑢,+, and 𝑇 = 𝜌−1𝑢 if 𝜎 ∈ �̃�𝑢,−.

Proof. If 𝜎 ∈ �̃�𝑢,+, observe that we can choose a small neighborhood 𝑉 of 𝜎 in Stab() so that
every 𝜏 ∈ 𝑉 has heart𝑅. Consider the open subset

𝑉′ = {𝜏 = (𝑍′,𝑅) ∈ 𝑉 | 𝜏 ∉ �̄�}.
For 𝜏 ∈ 𝑉′, we then have that 𝜌−1𝑢 𝑍

′ = 𝜌−1𝑢 Re𝑍′ + 𝑖 Im𝑍′ belongs to 𝐷. Then, it is enough to
show 𝜌𝑢(𝑅) = 𝑅 to conclude 𝜌𝑢𝜏 ∈ 𝑈, so that 𝜌𝑢𝜎 lies in the closure of 𝑈.
Using Proposition 4.17, one sees that 𝜎(1) only contains objects whose class is a multiple of 𝑎.

Since 𝜌𝑢 preserves the imaginary part of 𝑍′ and fixes the class 𝑎, we have 𝜏(1) = 𝜎(1). Then,
the only possibility is that for 𝑢 ∈ |Γ𝑓|, one has 𝜌𝑢(𝑅) = 𝑅[2𝑛], for some integer 𝑛. We prove
that 𝑛must be 0. One readily checks

𝜌(0,1)(𝑋(1)) = Φ𝑋
Φ𝑋(1)

(𝑋(1)) ≃ Φ𝑋
(𝑋(1)[−1]) = 𝑋(−1)
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2300 ROTA

using Lemma 4.3. This implies 𝜌0(𝑅) = 𝑅. Now one has

𝜌(𝑖,1)(𝑋(−1)) = Φ(𝑡1
𝑖
)𝜌(0,1)Φ(𝑡1

𝑖
)𝜌
−1
(0,1)
(𝑋(−1))

≃ Φ(𝑡1
𝑖
)𝜌0Φ(𝑡1

𝑖
)(𝑋(1))

≃ Φ(𝑡1
𝑖
)Φ𝑋

Φ𝑋(1)
Φ(𝑡1

𝑖
)(𝑋(1))

≃ Φ(𝑡1
𝑖
)Φ𝑋

(𝑡1𝑖 )

≃ 𝑋,

(21)

by repeatedly applying Lemma 4.3. For 𝜌(𝑖,𝑗), 𝑗 > 1, we claim 𝜌(𝑖,𝑗)(𝑋) ≃ 𝑋 . This is a conse-
quence of the fact that 𝑋(𝑑) is orthogonal to 𝑡

𝑗
𝑖
for 𝑑 = 0,−1, all 𝑖 and all 𝑗 > 1. Indeed, one

computes

𝜌(𝑖,2)(𝑋) = Φ(𝑡2
𝑖
)𝜌(𝑖,1)Φ(𝑡2

𝑖
)𝜌
−1
(𝑖,1)
(𝑋)

≃ Φ(𝑡2
𝑖
)𝜌(𝑖,1)Φ(𝑡2

𝑖
)(𝑋(−1))

≃ Φ(𝑡2
𝑖
)𝜌(𝑖,1)(𝑋(−1))

≃ Φ(𝑡1
𝑖
)(𝑋)

≃ 𝑋,

(22)

and proves the same claim for 𝑗 > 2 inductively. This concludes the proof in the case 𝜎 ∈ �̃�𝑖,+.
The case 𝜎 ∈ �̃�𝑖,− is similar. □

Proposition 6.4. For any 𝜎 ∈ Stab†𝑛(), there is an autoequivalence Φ ∈ Br() such that Φ ⋅ 𝜎 ∈
𝑈.

Proof. Same as the proof of [18, Proposition 4.13]. □

Let 𝜋−1(𝖷reg)† be the connected component of 𝜋−1(𝖷reg) containing 𝑈. Since it is a subset of
Stab†𝑛(), we have:

Corollary 6.5. For any 𝜎 ∈ 𝜋−1(𝖷reg)†, there is an auto-equivalence Φ ∈ Br() such that Φ ⋅ 𝜎 ∈
𝑈.

Lemma 6.6. The image of 𝜋∶ Stab†𝑛() → Hom(𝐹, ℂ) contains 𝖷reg.

Proof. Stab†𝑛() contains the orbit of 𝑈 under Br(). Since the action of Br() lifts that of𝑊 on
Hom(𝐹, ℂ), the orbit of 𝑈 under the action of Br() is mapped to 𝖷reg ⊂ Hom(𝐹, ℂ). □

The next goal of our discussion is to prove the following:
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THE STABILITY MANIFOLD OF LOCAL ORBIFOLD ELLIPTIC QUOTIENTS 2301

Proposition 6.7. The projection 𝜋 maps Stab†𝑛() onto 𝖷reg, so that 𝜋(Stab
†
𝑛()) = 𝖷reg.

Proof. By Lemma 6.6, it is sufficient to show that 𝜋(Stab†𝑛()) ⊆ 𝖷reg, or, equivalently, that
Stab†𝑛() ⊆ 𝜋

−1(𝖷reg)
†. To show this, it is enough to check that Stab†𝑛() contains no bound-

ary points of 𝜋−1(𝖷reg)†. Any such boundary point 𝜎 = (𝑍,) is projected to 𝑍 ∈ 𝜕𝖷reg. From the
definition of 𝖷reg in Proposition 3.11, either 𝑍 vanishes on a ray in ℝ>0(𝑅), or Im𝑍(𝑏) = 0.
In the latter case, Proposition 4.20 ensures that 𝜎 ∉ Stab†𝑛(). Then, suppose 𝛼 is a positive root

such that 𝑍(𝛼) = 0. If 𝜎 ∈ Stab†𝑛(), by Proposition 6.4 there is an element Φ ∈ Br(), such that
Φ ⋅ 𝜎 = (𝑍′, ′) ∈ 𝑈, and [Φ]𝛼 = 𝛽 ∈ Π. Then we have 𝑍′(𝛽) = 0. However, by Lemma 4.19, for
all 𝛽 ∈ Π there are objects of class 𝛽 which are semistable for all stability conditions in 𝑈, hence
Φ ⋅ 𝜎 violates the support property, and therefore 𝜎 ∉ Stab†𝑛(). □

Proposition 6.8. The action of Br() on Stab†𝑛() is free and properly discontinuous.

Proof. First, we check that the action of Br() is free. By Corollary 6.5, it is enough to show this
for 𝜎 ∈ 𝑈. Assume then that 𝜎 = Φ𝜎 for some Φ ∈ Br() and 𝜎 ∈ 𝑈. We have 𝑍(Φ(−)) = 𝑍(−),
hence [Φ] = id on 𝐾(). So [Φ(𝑆𝑚)] = [𝑆𝑚] for all𝑚. Up to isomorphism, 𝑆𝑚 is the only object in
𝑅 in its class (this is readily observed translating𝑅 to Ψ−1(𝑅)), hence Φ(𝑆𝑚) ≃ 𝑆𝑚 for all𝑚.
Then Φ ≃ id in Br() by Lemma 6.9.
To show that the action of Br() is properly discontinuous, it is enough to exhibit, for every

non-trivial Φ ∈ Br() and every 𝜎 ∈ 𝑈, a neighborhood 𝑉 of 𝜎 such that Φ(𝑉) ∩ 𝑉 = ∅. If
[Φ] ≠ id, the existence of 𝑉 follows from Proposition 3.11. If [Φ] = id, then it is a consequence
of Lemma 2.6. □

Lemma 6.9. Suppose Φ ∈ Br() satisfies Φ(𝑆) ≃ 𝑆 for all 𝑆 ∈ Π. Then Φ ≃ id.

Proof. We consider Φ as an element of Aut(𝐷𝑏(Tot(𝜔𝑋))), and we study the equivalent problem
of showing that

Φ′ ∶= Ψ−1 ◦Φ ◦Ψ

is the identity on Aut(𝐷𝑏(𝑌′)), where 𝑌′ denotes the crepant resolution of Tot(𝜔𝑋), under the
assumption that elements of Ψ−1Π are fixed (recall the notation of Section 4).
First, observe that for 𝑝 ∈ 𝑌′ ⧵ 𝑋′, we have Φ(𝑝) ≃ 𝑝 because all 𝑆 ∈ Π are supported on 𝑋

and hence orthogonal to 𝑝. If 𝑝 ∈ 𝑋 ⊂ 𝑋′, applying Φ to the short exact sequence

0 → 𝑖∗𝑋(−1)
𝑓
�→ 𝑖∗𝑋 → 𝑝 → 0

one obtains a non-zero map Φ(𝑓) of pure one-dimensional sheaves, fitting in a triangle

𝑖∗𝑋(−1)
Φ(𝑓)
����→ 𝑖∗𝑋 → Φ(𝑝).

This implies that𝐻−1Φ(𝑝) = 0 and Φ(𝑝) is a skyscraper supported at a point of 𝑋.
Now let {𝑝} = 𝑋 ∩ 𝐶𝑖,1. Then the skyscraper supported at 𝑝 must be fixed by Φ′, because it

admits a restriction map 𝐶𝑖,1 (−1) → 𝑝 and Φ′ fixes 𝐶𝑖,1 (−1) = Ψ
−1𝑡1

𝑖
. Let 𝑀𝑝 denote the
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2302 ROTA

cluster corresponding to 𝑝. Then Φ fixes 𝑀𝑝 because Φ′ fixes 𝑝. Moreover, 𝑀𝑝 has a unique
composition series by the 𝑡𝑗

𝑖
, which are all fixed by Φ except possibly 𝑡0

𝑖
. Then Φ must also fix 𝑡0

𝑖
for 𝑖 = 1, … , 𝑟.
Then, since every cluster has a composition series which factors the simple sheaves 𝑡𝑗

𝑖
and Φ

fixes the 𝑡𝑗
𝑖
for all 𝑗 = 0,… , 𝑎𝑖 − 1, it must also send any cluster to a cluster. In other words, Φ′

sends skyscraper sheaves of points on any exceptional curve 𝐶𝑖 to skyscraper sheaves.
One can then apply [15, Corollary 5.23], which implies that there exists an automorphism𝜙 of𝑌′

such that Φ′(𝑡) ≃ 𝜙(𝑡) and Φ′ ≃ (− ⊗ )◦𝜙∗ for some line bundle  on 𝑌′. The automorphism
𝜙 is the identity, because it is the identity on the dense open complement of 𝑋′. The Picard group
ofTot(𝜔𝑋) is isomorphic to Pic (𝑋)

⨁
(⊕ℤ{𝐶𝑖,𝑗}) hence the only line bundle fixing theΨ−1(𝑆)with

𝑆 ∈ Π is the trivial one. Then, Φ′ ≃ id as we wished to prove. □

6.2 Proof of main results

Denote by �̄� the composition of the maps Stab†𝑛()
𝜋
�→ 𝖷reg → 𝖷reg∕𝑊. Then we have:

Theorem 6.10. The map

�̄� ∶ Stab†𝑛() → 𝖷reg∕𝑊

is a covering map, and the group Br() acts as group of deck transformations.

Proof. Weonly need to show that the quotient of Stab†𝑛() byBr() coincideswith 𝖷reg∕𝑊. Equiv-
alently, for every pair of stability conditions 𝜎1, 𝜎2 satisfying �̄�(𝜎1) = �̄�(𝜎2), we need to exhibit an
element Φ ∈ Br() such that 𝜎1 = Φ ⋅ 𝜎2.
By Corollary 6.5, it is enough to show this when 𝜎1 ∈ 𝑈. Moreover, there existsΦ ∈ Br() such

that 𝜎′
2
∶= Φ ⋅ 𝜎2 lies in 𝑈. Then we have

𝜋(𝜎′2) = [Φ] ⋅ 𝜋(𝜎2) = [Φ] ⋅ 𝜋(𝜎1)

in 𝐷. Since 𝑈 and 𝐷 are homeomorphic, this implies [Φ] = id and 𝜎′
2
= 𝜎1. □

Let Aut†() ⊂ Aut() be the subgroup of auto-equivalences which preserve the component
Stab†𝑛(). WriteAut†∗() for the quotient ofAut†() by the subgroup of auto-equivalences which
act trivially on Stab†𝑛().

Corollary 6.11. There is an isomorphism

Aut†∗() ≃ Br()⋊ Aut(Γ),

Where 𝐴𝑢𝑡(Γ) acts on Br() by permuting the generators.

Proof. The argument is the same as [9, Corollary 1.4]. Observe that unlike in [9], the shift
auto-equivalence does not belong to Aut†(), since it maps Stab†𝑛() to a different connected
component in Stab𝑛() if it is an even shift or outside Stab𝑛() if it is odd. □
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