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ABSTRACT
In this paper, we analyze re-ranking based recommendation diver-
sification algorithms and observe that, commonly, such algorithms
can be unified under the scheme of maximizing submodular or
modular objective functions from the class of parameterized con-
cave over modular functions. We showcase that such diversification
objective functions can be expressed in a generic functional form
consisting of the relevance and diversity terms. We then theoret-
ically analyze and show that the total curvature of submodular
functions provides insights about the relevance-diversity trade off.
This is expected to support data analysts to seek balanced hyper-
parameter values and, thus, serve as a ‘vehicle of validation’ by
checking the total curvature of submodular objective functions. Our
experimental evaluation and performance assessment over bench-
mark datasets are aligned with our theoretical analysis. We also
discuss the importance of balanced trade-off between relevance and
diversity in specific application settings like news recommendations
to trade-off algorithmic bias and short term user engagement.
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1 INTRODUCTION
In prior work, most of the standard personalized recommenda-
tion algorithms consider only the relevance of the items to users
upon proceeding with predictions [1, 5, 14]. This relevance-driven
strategy implicitly assumes that the degrees of relevance of the
items within the recommended set are independent of each other.
Undeniably, this results in similar and redundant items to appear
in the recommended set [7]. Moreover, popularity bias [1, 31] in
Recommender Systems (RS) exacerbates the situation by exclud-
ing unpopular, but relevant items from recommendations though.
In personalized recommendation, diversification is established as
the vehicle to recommend novel, serendipitous items that result
in higher user satisfaction [2, 26, 27, 35, 40]. Furthermore, in the
context of group recommendation, diversification is a way to gen-
erate consensus recommendations by finding items relevant to a
group of users [25]. Additionally, diversification is a tool to handle
algorithmic bias of a predictive model. It is already established that
the majority of the data is generated by a small set of users and
follows Zipf’s law, also known as the wisdom of a few [4]. Hence,
there is an inherent data bias and any learning algorithm trained
on such data will inherit such a bias. Diversification approaches
deal with algorithmic bias by countering popularity bias [31].

A common strategy for diversification is re-ranking, i.e. given
a list of recommended items, re-ranking algorithms reorder the
list to account for diversity [14]. Many re-ranking based diversifi-
cation algorithms have been proposed in the past, which exploit
different aspects of recommendations, e.g., personal popularity ten-
dency [22], genre coverage [35], interest coverage [27], and long-tail
recommendation [2]. It has also been shown that re-ranking algo-
rithms make use of the ‘diminishing return’ property of submodular
functions to trade-off between relevance and diversity [9].

Submodular functions are set functions with non-increasing
marginal gains, i.e. by adding an element to a subset of a given
set A, it yields at least much value (or more) as if we add the
element to the whole A itself. Intuitively, given a set, adding a new
item similar to some already existing items yields lower value than
adding an item dissimilar to some already existing items (refer to
subsection 3.1 for a formal definition).

Even though re-ranking based diversification algorithms are very
popular, the objective functions used for diversification are poorly
understood. Additionally, balanced relevance-diversity trade-off
is obtained by hyperparameters tuning tasks like grid search. In
this paper, we aim to: (i) provide a unified theoretical framework
for different re-ranking based diversification algorithms; and (ii)
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propose a method to validate the balanced relevance-diversity trade-
off parameter by analyzing the total curvature of the diversification
objective functions.

Our analysis reveals that re-ranking objective functions are not
only submodular (or modular). Instead, they take a simple form: the
composition of a concave (including linear) function with a modular
one. We illustrate that the majority of the diversification objective
functions can be written in our proposed, generic, yet simple form
consisting of relevance and diversity terms. Such a generic repre-
sentation will help data analysts to design new application/data
specific diversification algorithms and tune the hyperparameter to
achive balanced trade-off. We also show that analyzing the total
curvature of such objective functions provides meaningful insights
about relevance-diversity trade-off and then one can adjust the
trade-off parameter accordingly. To this end, the total curvature
value will serve as a ‘vehicle of validation’ of the balanced trade-off
hyperparameter setting. It is worth noting that the most favourable
relevance-diversity trade-off may not be the balanced trade-off in
production, as it depends on business objectives (like always rec-
ommending a serendipitous item or include a sponsored item ),
diversity and/or relevance constraints (like showing minimum of
90% relevant items). Moreover, there is no single optimal point, but
a Pareto frontier of relevance-diversity values [13]. However, the
value of total curvature provides an indication of which direction
the hyperparameter values should be adjusted depending on the
intended objective.

The remainder of this paper is structured as follows. We give a
brief overview of existing diversification algorithms and position
our contributions in section 2. In section 3, we show that popular
diversification algorithms are based on the class of parameterized
concave/linear composition of modular functions. We also discuss
the total curvature and the worst-case lower bound for submodular
maximization in terms of the total curvature. Finally, we demon-
strate our experimental results in section 5 before concluding the
paper in section 6.

2 RELATEDWORK
The recommendation diversification issue has been extensively
studied in the past [3, 10, 14, 19, 22, 23, 27, 35, 36]. Many of these
algorithms were inspired by Web search result diversification al-
gorithms. Recommendation diversification algorithms can be clas-
sified into three schemes: (i) re-ranking based; (ii) multi-objective
optimization based; (iii) multi-armed bandit based algorithms.

Given a recommendation list produced by any standard per-
sonalized recommendation algorithm (like user-user or item-item
collaborative filtering), re-ranking algorithms re-order the items
of this list such that relevant and diverse items appear in the top-
𝑘 rankings. Re-ranking algorithms are simple to implement and
widely popular since they can be readily plugged in to existing
personalized RSs in a post-processing step. We will elaborate on an
in-depth analysis of re-ranking based algorithms in section 3.

Multi-objective optimization based algorithms train a predic-
tion model adopting joint optimization over an objective function
taking into account the expected cost of relevance and diversity
terms. Such algorithms extend the traditional collaborative filtering
models by adding diversity in the objective function. The authors

in [14] proposed an objective, which combines the standard latent
factor model with intra-list distance as a measure of diversity. The
authors in [10] considered the diversified recommendation as a
structured supervised learning problem and proposed a structured
Support Vector Machine-based objective function. The work in [11]
proposed an explainable matrix factorization by incorporating a
novelty term. Such approaches always involve solving complex
optimization problems, often non-convex and, thus, resulting in
extensively high computational cost while lacking of scalability.

Multi-armed bandit based algorithms are mainly applied on se-
quential recommendation tasks. In particular, the authors in [24, 39]
proposed an Upper Confidence Bound diversification algorithm as-
suming submodular reward function, which was linear in features.
Finally, the work in [28] proposed an algorithm for general reward
function. The interested reader could be referred to a comprehen-
sive survey of diversification algorithms in [8, 17, 38].

Contributions: Our work comes under the re-ranking based
approaches for recommendation diversification. Earlier works on re-
ranking based diversification focused on developing new re-ranking
algorithms/objective functions, whereas, we study the theoretical
properties of the re-ranking objective functions. Our main contribu-
tions are: (i) We uncover the generic functional form of re-ranking
based diversification objective functions and show that it is an in-
stance of maximizing submodular (modular) functions from the
class of parameterized concave/linear composition of modular func-
tions. (ii) We bridge the link between relevance-diversity trade-off
parameters and the total curvature of the objective function. We
show that by changing the hyperparameter of the objective func-
tion, one can effectively change the total curvature of the objective
function. To the best of our knowledge, such a theoretical analysis
has not been provided before in this area.

3 RERANKING-BASED DIVERSIFICATION
FUNCTIONS

3.1 Definitions
Definition 3.1. A function 𝐹 defined on the subsets of a ground

set Z is called submodular, if for all subsets A,B ⊆ Z,

𝐹 (A) + 𝐹 (B) ≥ 𝐹 (A ∪ B) + 𝐹 (A ∩ B) . (1)

𝐹 is modular if strict equality holds in Equation 1, while 𝐹 is mono-
tone if for every A ⊆ B, 𝐹 (A) ≤ 𝐹 (B).

We denote the set of items using X, the set of observed (rated)
items using O, the set of unobserved items using E and set of users
byU. S denotes a subset of E such that |S| ≤ 𝑘 for any positive 𝑘 ;
| · | denotes set cardinality and 𝑘 is the number of recommendations
to be retrieved. Given a user 𝑢 ∈ U and an item 𝑖 ∈ X, we denote
the relevance of the item 𝑖 for the user𝑢 as 𝑟𝑒𝑙𝑢 (𝑖) ∈ R+. For a given
set S, 𝑟𝑒𝑙𝑢 (S) represents the relevance of the items in the set S for
user 𝑢. It is defined as the sum of the relevance of individual items
in S, i.e., 𝑟𝑒𝑙𝑢 (S) =

∑
𝑖∈S 𝑟𝑒𝑙𝑢 (𝑖). We omit the subscript 𝑢 from the

forthcoming discussion wherever it is clear from the context.

3.2 Generic Functional Form
We start with a generic functional form for the re-ranking based
diversification objective function and show that most of the previ-
ously proposed approaches can be expressed using this form. Given
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a set S, consider the functional form given below:

𝐹 (S) = 𝑓 (S) + 𝛽𝑔(ℎ(S)), (2)

where 𝑓 (·) is a modular function representing the relevance of the
recommendation set S and 𝑔(ℎ(S)) represents the diversity term
which is the composition of a linear or concave function, 𝑔(·), and
a modular function ℎ.1 The 𝛽 is the hyperparameter to be tuned for
the relevance-diversity trade-off. Often, the ℎ(·) function is defined
as a function of relevance itself but capturing a certain diversity
aspect. In typical settings, the notion of diversity is defined using
different concepts, e.g., item coverage, popularity bias, item novelty,
serendipity, and long-tail recommendation. We will show that the
majority of the re-ranking based diversification objective functions
are represented using our generic form in Equation (2) and only
differ in the way ℎ(·) and 𝑔(·) are defined.

The TANGENT algorithm [23] proposed an objective function

that can be written as 𝐹 (S) = 𝑟𝑒𝑙 (𝑆) − 𝛽
1

𝑟𝑒𝑙 (𝑆)
2. Here, 𝑓 (·) is the

relevance of the set of items, which is defined as the sum of rel-
evance of items in S and, thus, a modular function of the set S;
while 𝑔(·) is the reciprocal of the relevance. Since the reciprocal
function is convex for any positive values of 𝑟𝑒𝑙 (S), 𝑔 is concave
(−ve of the reciprocal convex function) over the modular function
𝑟𝑒𝑙 (S). It is to be noted that, here, the notion of diversity is defined
as the reciprocal of relevance (higher relevance value results in
lower reciprocals).

The diversity objective function proposed in [22] took the form

of 𝐹 (S) = 𝑟𝑒𝑙 (S) + log
(
ℎ(S)
ℎ(O)

)
. The diversity notion, based on the

popularity bias, is used and ℎ(S) is defined as the personal popular-
ity tendency of the set S with respect to a given user. The aim of
this diversity objective is to encourage recommending items from
the item tail distribution. Moreover, the diversity term is defined
as the composition of a concave function (log) with the modular
function ℎ (S)

ℎ (O) .
The algorithm BinomDiv[35] re-ranks the recommended items

by defining a diversity term in terms of coverage. Coverage-based
diversity objectives encourage items from different parts of the
item distribution to be ranked in top positions. For instance, topic
coverage or genre coverage is a popular diversity metric, which
discourages items from the same topics to be ranked together in
top positions. Similar to the aforementioned cases, the 𝑓 (·) func-
tion in BinomDiv corresponds to a modular function indicating
the relevance of an item, while the diversity term is defined using
coverage term and non-redundancy. The exact objective function
takes the form (1 − 𝛽) · 𝑟𝑒𝑙 (S) + 𝛽 · ℎ(S) The function ℎ(S) de-
fined as the product of a coverage term and a non-redundancy term.
Both, coverage and non-redundancy terms, are defined in terms
of the topic coverage and, thus, take the form 𝑥𝛽 with 𝛽 ∈ (0, 1).
Here, 𝑥 is the probability that a relevant topic is not recommended
by a recommendation set. Since 𝑥𝛽 is concave for any 𝛽 ∈ (0, 1),
the diversity term is the composition of a concave over modular
function.

1The functional form _𝑓 (S) + (1− _)𝑔 (ℎ (S)) is equivalent to our form (normalized
version) 𝑓 (S) + 𝛽𝑔 (ℎ (S)) .
2In the original formulation the two terms are added with 𝛽 assumed to be negative.

The objective function proposed in [37] consists of two terms: the
first modular term captures the relevance with respect to neighbour-
ing users, while the second term, the neighbour coverage function,
stands as a surrogate for diversity. The diversity term is defined as
the concave composition 𝑔(𝑥) = 𝑥

1+𝑥 of a positive modular function.
Steck [33] used Maximal Margin Relevance (MMR) inspired ob-

jective function defined in [6] to calibrate the recommendation.
Though calibration can be different from diversity, the calibration
technique indirectly induces diversity by maximizing users’ interest
coverage [33]. Unlike in other MMR based approaches, Steck [33]
used a submodular diversity term defined in terms of the concave
function, log. Moreover, Abdollahpouri et al. [2] proposed an al-
gorithm for recommending items from long-tail distribution. The
core idea is based on xQuAD algorithm proposed in [29] which is
based on MMR heuristic, and hence submodular.

It is also very common that only the diversity aspect is considered
for re-ranking, i.e., 𝑓 (S) = 𝑐 for a constant 𝑐 , in Equation (2). The
authors in [34] proposed a re-ranking algorithm by disregarding
the relevance aspect and considering only the topic-coverage of
the recommended items. The objective function considers only the
diversity aspect and thus takes the form

𝐹 (S) =
∑

𝑖∈C(S)

∑
𝑗 ∈C(S−𝑖 )

−1
|C(S)| |C(S−𝑖 ) |

,

where C(S) represents the topics associated with the set of items
S and S−𝑖 = S \ {𝑖}. Here, 𝑔(·) is the sum of the concave functions
−1/𝑥 . Puthiya Parambath et al. [27] also proposed a re-ranking al-
gorithm considering only the diversity term. In fact, the proposed
objective function combines the relevance and diversity objectives
in a single objective defined in terms of the relevant interest cover-
age. They proposed different concave compositions of the interest
coverage term 𝑥 like 𝑥𝛽 , 𝛽 ∈ [0, 1] and log𝑥 to re-rank the items. In
addition, the proposed method achieves diversification in a single
stage unlike other re-ranking algorithms. In [36], the authors pro-
posed an intent-aware diversification algorithm. [9] showed that
intent-aware objective functions are either submodular or mod-
ular functions. The objective function in [36] is modular since it
is based on re-weighting item based collaborative filtering scores
using intent-aware covariance values. Similar to [27], this approach
also achieves diversification in a single step.

In the seminal work by Carbonell and Goldstein [6], the authors
introduced Maximal Margin Relevance (MMR), a method to re-
rank web search results to induce the diversity. They employed the
following heuristic for adding an element 𝑖 to the set S:

𝛽 · 𝑟𝑒𝑙 (𝑖) − (1 − 𝛽)max
𝑗 ∈S

𝑠𝑖𝑚(𝑖, 𝑗), (3)

where 𝑟𝑒𝑙 (𝑖) and max𝑗 ∈S 𝑠𝑖𝑚(𝑖, 𝑗) are positive modular functions
ofS. 𝑠𝑖𝑚(𝑖, 𝑗) is the positive similarity function between items 𝑖 and
𝑗 . Here, −𝑠𝑖𝑚(𝑖, 𝑗) acts as the diversity term because lower value
of similarity for an item will encourage that item to be included
in the final recommendation list as per Equation 3. The 𝛽 factor
in the above formulation is the hyperparameter that is tuned for
relevance-diversity trade-off. The MMR heuristic is defined as the
difference between twomodular functions, i.e., a linear composition
of modular functions and it is shown to be a submodular function,
albeit not necessarily monotonic [18].
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Algorithm/Method 𝑔(𝑥)
[23, 34] − 1

𝑥 , 𝑥 > 0,
[22] log(𝑥), 𝑥 > 0
[27, 35] 𝑥𝛽 , 𝑥 ≥ 0, 𝛽 ∈ (0, 1)
[37] 𝑥

1+𝑥 , 𝑥 ≥ 0
[36] 𝛽𝑥, 𝛽 > 0

Table 1: Functional form of 𝑔(𝑥)

Algorithm/Method Monotonicity

[6, 34] No
[2, 22, 23, 27, 35–37] Yes

Table 2: Monotonicity of diversification algorithms.

Many MMR inspired objectives form the basis for different diver-
sification algorithms [5, 16, 20] and they differ in the way relevance
and diversity terms are defined. For example, in [20], authors de-
fined diversity in terms of personality trait of a user. However, in [5]
diversity term is replaced with relative diversity which is defined
as the sum of the dissimilarity between the already recommended
items and a new, to be recommended, item. [16] defined diversity in
terms of sub-profile coverage of items for each user. Since MMR is
defined as a greedy heuristic [6], the exact objective function used
in MMR is not known. However, all the MMR inspired diversifica-
tion algorithms discussed above can be re-written in our standard
form as shown in Equation (2).

Table 1 summarizes the essence of the above discussion pertain-
ing to re-ranking algorithms. We conclude this section by rephras-
ing the characteristic of the re-ranking algorithm objective function:
it is a submodular/modular function belonging to the class of con-
cave/linear over modular functions. Though such an observation
might look straightforward, to the best of our knowledge, it has not
been formally established in the literature. The positive side of this
observation is that practitioners/data analysts can easily develop a
re-ranking strategy for diversification based on the available data
in hand, depending on the business objectives with their specific
diversity definitions.

4 OPTIMALITY OF RE-RANKING
DIVERSIFICATION ALGORITHMS

The major factor behind the popularity of the re-ranking based
diversification algorithms is that a solution can be obtained using a
simple greedy heuristic. Moreover, the celebrated result due to [21]
states that steepest ascent greedy algorithm for monotone submod-
ular maximization guarantees a constant approximation worst case
lower bound, i.e., 𝐹 (S∗) ≥ (1 − 1/𝑒)𝐹 (S𝑜𝑝𝑡 ), where 𝑒 is the base of
the natural logarithm, S∗ is the greedy solution and S𝑜𝑝𝑡 is the un-
known optimal solution. In practice, the greedy algorithm can often
perform much better than this worst-case guarantee. The constant
approximation guarantee of the greedy algorithm is applicable only
when the objective function is monotone. In practice, this aspect
is ignored. Though greedy algorithms for non-monotone submod-
ular functions do not yield any theoretical guarantees regarding
the optimality of the result, non-monotone submodular functions
are commonly used for diversification purposes. The monotonicity

property of different diversification algorithms is summarized in
Table 2.

4.1 Diversity-Relevance Trade-off Analysis
using Total Curvature

We analyze the relevance-diversity trade-off in re-ranking algo-
rithms to get a deeper theoretical understanding. In the majority of
re-ranking algorithms, the trade-off in relevance and diversity is
obtained by tuning the associated hyperparameter. For example, in
the case of MMR [6] based algorithms, 𝛽 is the hyperparameter con-
trolling the trade-off. Similarly, in non-MMR based algorithms like
[27, 35] also the hyperparameter 𝛽 controls the relevance-diversity
trade-off. Some formulations, particularly the modular formula-
tions like in [3], do not provide the flexibility of explicit relevance-
diversity trade-off. A typical question that arises in this context
is: what value of 𝛽 gives balanced relevance-diversity trade-off? We
should note that for any given values of 𝛽 , relevance-diversity trade-
off obtained by re-ranking based diversification algorithm is Pareto
optimal as it comes under the weighted-sum method [13]. However,
it might not be a balanced one. A balanced trade-off will potentially
depends on the application specific requirements.

The total curvature associated with submodular functions pro-
vides a way to find the balanced trade-off between relevance and
diversity. The total curvature of a non-decreasing submodular set
function with respect to a set S is defined as [12]:

𝛼 = max
𝑗 ∈S

𝐹 (S \ { 𝑗}) + 𝐹 ({ 𝑗}) − 𝐹 (S)
𝐹 ({ 𝑗}) . (4)

Intuitively, the total curvature measures how far 𝐹 (·) is from being
modular, and Equation 4 represents the distance of a monotone
submodular function to the modularity. The total curvature can
take values between 0 and 1 so that it is zero in the case of modular
functions and, one in the case of matroid rank function [? ].

The work in [12] extended the result of [21] and provided a
tighter lower bound for the submodular maximization problem in
terms of total curvature. According to [12], 𝐹 (S∗) ≥ (1−𝑒−𝛼 )𝐹 (S𝑜𝑝𝑡 )/𝛼 .
When the curvature is 1, this gives the standard approximation
bound given in [21] and, for any other values of 𝛼 , it strengthens
the approximation lower bound in [21]. For example, if the curva-
ture value 𝛼 = 0.1, we are guaranteed that 𝐹 (𝑆∗) ≥ 0.95𝐹 (𝑆𝑜𝑝𝑡 )
compared to the standard result of 𝐹 (𝑆𝑜𝑝𝑡 ) ≥ 0.63𝐹 (𝑆∗). Given a
set of items, the total curvature can be easily computed for any
submodular function [15]. For a recommended set containing 𝑛

items, total curvature can be calculated in O(𝑛). Here, we want to
emphasize that curvature does not rely on specific functional form
of 𝐹 (·) but only on the marginal gains obtained by adding an item.

By changing the value of the hyperparameter 𝛽 in the re-ranking
objective function, one can effectively change the total curvature of
the objective. Therefore, we can adjust the hyperparameter such
that the re-ranking objective becomes a modular or submodular
function with different curvature values. For example, by setting
𝛽 = 1 in [6, 27, 35] or 𝛽 = 0 in [23], the total curvature (𝛼) of
the resulting function can be made 0, thus, obtaining a modular
function. Similarly, by adjusting the hyperparameter such that 𝛼
becomes 1, one can obtain a submodular function close to a matroid
rank function, which is the maximal distant from being modular.
As 𝛼 approaches 1, the objective changes from ‘easy’ to ‘difficult’. A
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modular objective is considered ‘easy’ as the solution obtained using
the greedy heuristic is optimal in contrast to that a submodular
objective is ‘difficult’ as the greedy solution is sub-optimal.

Solving the modular objective function returns recommendation
lists containing only relevant items with no diversity aspect. This
also leads the greedy strategy to get the optimal objective value.
To be specific, in the MMR case, if we take 𝛽 such that 𝛼 = 0, only
the relevant part remains, and the recommendation list contains
items such that the intra-list dissimilarity is minimal. Similarly, if
we adjust 𝛽 in [27, 35] such that 𝛼 = 1, only the coverage part
remains and the recommendation contains very diverse items at
the expense of relevance. In other words, by simply adjusting the 𝛼
to be zero or one, one forces the recommender system not to have
any trade-off between relevance and diversity. For any 𝛼 ∈ (0, 1),
the greedy algorithm returns a mix of diverse and relevant items
with the lower bound guarantee provided by the corresponding
𝛼 value, and for 𝛼 value closer to 0.5, we get the optimal balance
between relevance and diversity.

Balanced Hyperparameter Tuning: In practical settings, the bal-
anced value of 𝛽 is found by the grid search and observing the
performance on a validation set. Our above exposition suggests a
more sophisticated way to perform a grid search. The balanced 𝛽

value depends on the objective function 𝐹 , whereas 𝛼 is indepen-
dent of 𝐹 [15]. An 𝛼 value closer to 0.5 gives the balanced trade-off
between being completely relevant and diverse. Thus, one can limit
the grid search for 𝛽 such that the corresponding 𝛼 is closer to 0.5
and obtain the balanced trade-off in relevance and diversity. An 𝛼

value closer to 0.5 indicates that the recommendation set contains
a good mix of relevant and diverse items. Moreover, the value of
𝛼 serves as a means of validation for the choice of the correct hy-
perparameter value. Therefore, we can justify whether the chosen
hyperparameters are appropriate or not by directly observing the
value of 𝛼 . We empirically validate this claim in our experimental
section.

5 EXPERIMENTAL EVALUATION
In this section, we aim to validate our claims on a movie recommen-
dation task. The main goal of this section is two-fold: (i) to show
that changing the hyperparameter 𝛽 is equivalent to changing the
total curvature of the diversification objective function; and (ii) to
show that balanced trade-off in relevance-diversity can be obtained
by choosing a 𝛽 value corresponding to to the total curvature value
close to 0.5. We used two diversification algorithms: (i) one based on
xQuAD, which relies on MMR [2] and (ii) the coverage maximiza-
tion algorithm in [27]. In case of xQuAD, we followed the Binary
xQuAD algorithm as described in [2]. In case of [27], we experi-
mented with two different concave compositions: (i) 𝑔(𝑥) = 𝑥𝛽 and
(ii) 𝑔(𝑥) = log(𝑥 + 𝛽). Below, we discuss the results for 𝑔(𝑥) = 𝑥𝛽 .

We used the benchmark MovieLens 20M dataset. The rating
values are block-wise ordered-taking one of the 5 values in {1,2,3,4,5}.
For our experiments, we filter out all the users with less than 500
ratings and the final dataset contained 6,488,818 ratings for 7,322
users and 25,782 movies. We carried out holdout cross validation by
splitting the rating data into training and test set such that 5% of the
original data goes into testing and the remaining goes into training.
The split is carried out five times in a manner that both the training

and test sets span the entire user and movie sets. The reported
results correspond to the average over the five splits. We used
regularized weighted non-negative matrix factorization to extract
the user and item features [32]. The extracted item features are used
to estimate the item-item similarity matrix. As the regularizer, we
used the variational form of the trace norm [30]. In case of [2], long-
tail and short-head items are defined as mentioned in the paper. The
values of 𝛼 are calculated using the predicted recommendations for
corresponding values of 𝛽 as per Equation 4.

The performance of the recommendation task is evaluated on
three metrics: one relevance ranking metric and two diversity met-
rics, where two diversity metrics include a serendipity metric and
a metric to measure the distinctiveness of the recommendations. In
our case, relevance is tied to the ranking, i.e., the most relevant item
should be ranked in the top position.We use the popular Discounted
Cumulative Gain (DCG) as the relevance ranking metric. DCG is a
binary ranking metric and we discretized the observed rating value
to calculate the DCG values on the test set. We used binary dis-
cretization such that rating values of 4 and 5 are deemed as relevant
and as irrelevant, otherwise. We define Serendipity Score (SS) as
the inverse of the average popularity of the recommended items,
which are not rated by the user. We used Feature Distance (FD) as
a measure of dissimilarity between the recommended items. It is
defined as the average Euclidean distance between the item vectors
in the recommended set and is similar to the intra-list distance [40].
SS and FD measure the diversity of the recommendations.

5.1 Experimental Results & Discussion
The results of our experiments are shown in Figure 1. The left side
plots in Figure 1 show the trade-off between DCG and FD, while
the right side plots show the trade-off between DCG and SS. The
metrics DCG, FD, SS measure different properties and the orders
of magnitude for these measures are different. The values reported
in the plots are then normalized. We normalize each metric value
by dividing the values with the maximum one reported for that
specific metric (for different 𝛼, 𝛽 values) to scale in (0,1]. The results
show the metric values for top 5 recommendations. It is evident
that as the hyperparameter 𝛽 is changed from 0 to 1, the total curva-
ture decreases from 1 to 0, i.e., the submodular function turns from
‘difficult’ to ‘easy’. As 𝛽 approaches 0, the diversification problem
becomes modular function maximization and greedy algorithm re-
turns the optimal solution containing only the most relevant items.
In case of both algorithms, the relevance and diversity metrics in-
tersect at 𝛼 close to 0.5, thus, validating our theoretical analysis:
an 𝛼 value closer to 0.5 gives the balanced trade-off between being
completely relevant and diverse. Thus, one can limit the grid search
for 𝛽 such that the corresponding 𝛼 is closer to 0.5 and obtain the
balanced trade-off in relevance and diversity. In practice, this fact
serves as a validation for choosing the hyperparameter for balanced
relevance-diversity trade-off. Nevertheless, the balanced trade-off
may be different from the most favourable trade-off in production
settings, which depends on e.g., intended business objectives, diver-
sity or accuracy constraints. Yet, the value of total curvature gives
an indication of which direction the hyperparameter value to be
corrected depending on the business demands. We observed the
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Figure 1: Relevance-Diversity trade-off for different values of 𝛼 and 𝛽 . Top and bottom rows represent the relevance-diversity
trade-off for the algorithms in [27] and [2], respectively.

same trend in our experiments using other concave formulations
like 𝑔(𝑥) = log(𝑥 + 𝛽) and 𝑔(𝑥) = 1 − 𝑒−𝛽𝑥 .

5.2 Balanced Trade-Off in Specific Domains
and Algorithmic Bias

As we said earlier, it is already established that the majority of the
data is generated by a small set of users and follows Zipf’s law,
also known as the wisdom of a few [4]. Hence, there is an inherent
selection bias in the logged data and any learning algorithm trained
on such data will inherit such a bias leading to algorithmic bias.
Diversification approaches deal with algorithmic bias by countering
popularity bias [31] and thus promoting rare items.

In sensitive domains like news recommendation, providing a
balanced set of recommendations is vital. In typical news recommen-
dation settings, users are expected to have inherent self-selection
bias, as users mostly read news articles related to topics they are
interested in. By providing the users with the most relevant rec-
ommendations only, with respect to a user-provided search query,
the system is limiting users’ general view about specific topics. For
example, if a user reads articles which support extreme radical

ideas, a standard recommendation strategy will keep on recom-
mending more such articles and thus the reader will develop a very
biased opinion about the topic. Hence, a standard recommendation
strategy can exacerbate the self-selection bias already existing in
domains like news recommendation.

An unbiased recommendation engine is expected to minimise
polarisation in society, while informing and entertaining people,
hence such a system should support diverse recommendations to
make the people aware of orthogonal views. A relatively diverse
recommendation will be the best bet against algorithmic bias, but it
might lead to user dissatisfaction with consequential revenue loss.
A well balanced recommendation will have a balanced mix of most
relevant and diverse articles.

A balanced trade-off in relevance and diversity can also enhance
the topical coverage a user is exposed to. For example, a user who
is mostly interested in soccer will be recommended mostly soccer
related news. By providing a balanced set of recommendations,
users will receive more off-topic news, for example tennis or hockey,
which might hinder the short term reward of the recommendations.
But in the longer run, this will help the users to get a broadened
view of the diverse topics.
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6 CONCLUSIONS
We showed that re-ranking based diversification algorithms are
based onmaximizing a submodular objective function from the class
of parameterized concave modular functions. Our analysis showed
that studying the total curvature of submodular functions gives
insights about the relevance-diversity trade-offs. We demonstrated
that by varying the concave composition parameter, one effectively
tunes the total curvature of the objective for the relevance-diversity
trade-off.
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